WO2005070895A1 - Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden durch direktsynthese - Google Patents

Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden durch direktsynthese Download PDF

Info

Publication number
WO2005070895A1
WO2005070895A1 PCT/EP2005/000378 EP2005000378W WO2005070895A1 WO 2005070895 A1 WO2005070895 A1 WO 2005070895A1 EP 2005000378 W EP2005000378 W EP 2005000378W WO 2005070895 A1 WO2005070895 A1 WO 2005070895A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
substituted
base
organic solvent
dicarboximide
Prior art date
Application number
PCT/EP2005/000378
Other languages
English (en)
French (fr)
Inventor
Martin KÖNEMANN
Arno BÖHM
Willi Helfer
Jürgen ROMEIS
Jianqiang Qu
Klaus MÜLLEN
Original Assignee
Basf Aktiengesellschaft
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft, MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical Basf Aktiengesellschaft
Priority to US10/586,133 priority Critical patent/US7358362B2/en
Priority to EP05700962A priority patent/EP1711469B1/de
Priority to DE502005007702T priority patent/DE502005007702D1/de
Priority to JP2006549994A priority patent/JP2007522121A/ja
Publication of WO2005070895A1 publication Critical patent/WO2005070895A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/18Ring systems of four or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/14Aza-phenalenes, e.g. 1,8-naphthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems

Definitions

  • the present invention relates to a new process for the preparation of terrylene-3,4: 11,12-tetracarboxylic acid diimides of the general formula I.
  • R, R ' are independently hydrogen; C ⁇ -C 3t rAlkyl, whose carbon chain can be interrupted by one or more groupings -O-, -S-, -NR 1 -, -CO- and / or -SO 2 - and that by cyano, CrC 6 alkoxy, aryl , which can be substituted by CrC ⁇ 8 alkyl or dC 6 alkoxy, and / or a 5- to 7-membered heterocyclic radical bonded via a nitrogen atom, which may contain further heteroatoms and may be aromatic, may be mono- or polysubstituted can; C 5 -C 8 cycloalkyl, the carbon skeleton of which is interrupted by one or more groupings -O-, -S- and / or -NR 1 - and / or which can be substituted one or more times by Ci-Ce-alkyl; Aryl or hetaryl, which can be substituted by CC 18 alkyl, CrC
  • R 2 is hydrogen; C C 8 alkyl; Aryl or hetaryl, each of which can be substituted by CrC 6 alkyl, CrCe alkoxy, halogen, hydroxy, carboxy or cyano.
  • Terrylene-3,4: 11,12-tetracarboxylic acid diimides are known to be suitable as pigments and fluorescent dyes with absorption in the long-wave red and fluorescence emission in the long-wave red to near-infrared region of the electromagnetic spectrum.
  • N.N'-dialkyl-substituted terrylene-3,4: 11,12-tetracarboxylic acid diimides are accessible according to Heterocycles 56, pp. 331-340 (2002) by adding an N-alkyl-9-bromoperylene-3,4-dicarboximide to 9-tributyltin derivative is reacted, which is then coupled with an N-alkyl-4-halo-naphthalene-1,8-dicarboximide to the corresponding 9- (4-naphthalen-1, 8-dicarboximide) perylene-3,4-dicarboximide, from which the terrylene-3,4: 11,12-tetracarboxylic acid diimide is in turn produced by cyclodehydrogenation.
  • the known production processes have a number of disadvantages: toxic tin compounds and / or strong bases are used in large quantities, the reaction times are very long and / or the overall yield is less than 50%.
  • the object of the invention was therefore to remedy these disadvantages and to provide a process which enables the preparation of terrylene-3,4: 11,12-tetracarbonate diimides in an advantageous, economical manner.
  • X denotes hydrogen, bromine or chlorine.
  • alkyl groups occurring in the formulas I to III can be straight-chain or branched. If the alkyl groups are substituted, they usually have 1 or 2 substituents.
  • Cycloalkyl groups and aromatic radicals which are substituted can generally have up to 3, preferably 1 or 2, of the substituents mentioned.
  • Methylthiomethyl 2-methylthioethyl, 2-ethylthioethyl, 2-propylthioethyl, 2-isopropylthioethyl, 2-butylthioethyl, 2- and 3-methylthiopropyl, 2- and 3-ethylthiopropyl, 2- and 3-propylthiopropyl, 2- and 3- Butylthiopropyl, 2- and 4-methylthiobutyl, 2- and 4-ethylthiobutyl, 2- and 4-propylthiobutyl, 3,6-dithiaheptyl, 3,6-dithiaoctyl, 4,8-dithianonyl, 3,7-dithiaoctyl, 3 , 7-dithianonyl, 2- and 4-butylthiobutyl, 4,8-dithiadecyl, 3,6,9-trithiadecyl, 3,6,9-trithiaundecyl,
  • Pentoxy isopentoxy, neopentoxy, tert-pentoxy and hexoxy
  • Carbamoyl methylaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, butylaminocarbonyl, pentylaminocarbonyl, hexylaminocarbonyl, heptylaminocarbonyl, octylaminocarbonyl, nonylaminocarbonyl, decylaminocarbonyl and phenylaminocarbonyl;
  • the terrylene-3,4: 11,12-tetracarboximide I can be prepared in one step by reacting a perylene-3,4-dicarboximide II with a naphthalene-1,8-dicaboximide III.
  • the reaction according to the invention is carried out in the presence of a base-stable, high-boiling, organic solvent and an alkali metal base.
  • the educt used can be both halogenated, that is chlorinated or brominated, in the 4-position and non-halogenated naphthalene-1,8-dicarboximide III. If non-halogenated naphthalene-1,8-dicarboximide III is used, it is generally advisable to carry out the reaction under more stringent reaction conditions, ie larger excesses of naphthalene-1,8-dicarboximide III and, in addition to a strong alkali metal base, a nitrogenous auxiliary base and use polar aprotic solvents.
  • the molar ratio of naphthalene-1,8-dicarboximide III to perylene-3,4-dicarboximide II when using halogenated starting material III is usually 4 to 1: 1 and preferably 2 to 1: 1, while in the case of non-halogenated starting material III, it is generally 8 to 1: 1 and preferably 6 to 2: 1.
  • solvents which are stable under the reaction conditions against bases and have a high boiling point (boiling point> 100 ° C. and above the selected reaction temperature) are suitable as solvents, in which the perylene-3,4-dicarboxylic acid imides II and the naphthalene-1, Completely dissolve 8-dicarboximide III at the reaction temperature and at least partially dissolve the bases used, so that the reaction conditions are largely homogeneous.
  • Nonpolar aprotic and polar aprotic solvents are particularly suitable, nonpolar aprotic solvents and ether-based aprotic solvents being preferred when using halogenated starting materials III and the polar aprotic solvents when using non-halogenated starting materials III are preferred.
  • protic solvents preferably those which have amino and hydroxy functions, can also be used. Of course, solvent mixtures can also be used.
  • nonpolar aprotic solvents are solvents boiling at> 100 ° C. from the following groups: aliphatics (in particular C 8 -C 18 alkanes), unsubstituted, alkyl-substituted and fused cycloaliphatics (in particular unsubstituted C -C 10 cycloalkanes, C 6 -C 8 cycloalkanes, which are substituted by one to three d- C ⁇ -alkyl groups, polycyclic saturated hydrocarbons with 10 to 18 C atoms), alkyl and cycloalkyl-substituted aromatics (especially benzene, which is substituted by one to three C ⁇ -C 6 Alkyl groups or a C 5 -C 8 cycloalkyl radical is substituted) and condensed aromatics which may be alkyl-substituted and / or partially hydrogenated (in particular naphthalene which is substituted by one to four d-Ce-alkyl
  • nonpolar aprotic solvents examples include: octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, hexadecane and octadecane; Cycloheptane, cyclooctane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, propylcyclohexane, isopropylcyclohexane, dipropylcyclohexane, butylcyclohexane, tert-butylcyclohexane, methylcycloheptane and methylcycloctane; Toluene, o-, m- and p-xylene, 1,3,5-tri- methylbenzene (mesitylene), 1,2,4
  • non-polar aprotic solvents are xylene (all isomers), mesitylene and above all toluene and decalin.
  • polar aprotic solvents examples include N, N-disubstituted aliphatic carboxamides (in particular NN-di-CrC ⁇ alkyl-dC ⁇ carboxamides), nitrogen-containing heterocycles, trialkylamines (in particular tri (C 3 -C 6 alkyl) ) amines) and aprotic ethers (in particular cyclic ethers, diaryl ethers and Di-C ⁇ -C 6 alkyl ethers of monomeric and oligomeric C 2 -C 3 alkylene glycols, which can contain up to 6 alkylene oxide units, especially diethylene glycol di-C C alkyl ether) ,
  • Examples of preferred polar aprotic solvents are: N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide and N, N-dimethylbutyramide; N-methyl-2-pyrrolidone, quinoline, isoquinoline, quinaldine, pyrimidine, N-methylpiperidine and pyridine; Tripropyl and tributylamine; Di- and tetramethyltetrahydrofuran, dioxane, diphenyl ether, diethylene glycol dimethyl, diethyl, dipropyl, diisopropyl, di-n-butyl, di-sec-butyl and di-tert-butyl ether , Diethylene glycol methyl ethyl ether, triethylene glycol dimethyl and diethyl ether and triethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, diphenyl ether and especially dieth
  • protic solvents contain amino and hydroxy functions.
  • preferred protic solvents are alcohol amines, in particular mono-, di- and tri-C 2 -C 4 -alcoholamines, such as mono-, di- and triethanolamine, ethanolamine being particularly preferred.
  • the amount of solvent is usually 50 to 250 ml of non-polar aprotic solvent, 10 to 50 ml of polar aprotic solvent or 3 to 50 ml of protic solvent per g of perylene-3,4-dicarboximide II.
  • Strong inorganic and organic bases containing alkali metal or alkaline earth metal are suitable as the base, the bases containing alkali metal being particularly suitable.
  • Preferred inorganic bases are alkali and alkaline earth metal hydroxides and amides
  • preferred organic bases are alkali and alkaline earth metal alcoholates (especially the CC 10 alcoholates, especially tert.-C 4 -C 6 alcoholates), alkali and alkaline earth metal (phenyl) alkylamides (especially the bis (C 1 -C 4 alkyl) amides) and triphenylmethyl metalates.
  • the alkali metal alcoholates are particularly preferred.
  • Preferred alkali metals are lithium, sodium and potassium, with potassium being very particularly preferred.
  • Magnesium and calcium are particularly suitable alkaline earth metals.
  • particularly preferred bases are: lithium hydroxide, sodium hydroxide and potassium hydroxide; Lithium amide, sodium amide and potassium amide; Lithium methylate, sodium methylate, potassium methylate, lithium ethylate, sodium ethylate, potassium ethylate, sodium isopropylate, potassium isopropylate, sodium tert-butoxide, potassium tert-butoxide, lithium (1, 1-dimethyl) octylate, sodium (1, 1 - dimethyl) octylate and potassium (1,1-dimethyl) octylate; Lithium dimethylamide, lithium diethylamide, lithium diisopropylamide, sodium diisopropylamide, triphenylmethyllithium, triphenylmethyl sodium and triphenylmethyl potassium. Mixtures of different bases can of course also be used.
  • Very particularly preferred bases are lithium diisopropylamide, sodium methylate, sodium tert-butoxide, especially potassium methylate and potassium hydroxide and in particular potassium tert-butoxide.
  • Suitable bases are alkylamines which are liquid at the reaction temperatures, in particular tri-C 3 -C 6 -alkylamines, such as tripropylamine and tributylamine, alcoholamines, in particular mono-, di- and tri-C 2 -C -alcoholamines, such as mono-, di - And triethanolamine, and especially heterocyclic bases, such as pyridine, N-methylpiperidine, N-methylpiperidone, N-methylmorpholine, N-methyl-2-pyrrolidone, pyrimidine, quinoline, isoquinoline, quinaldine and especially diazabicyclonones (DBN) and diazabicycloundecene (DBU). Mixtures of these auxiliary bases can of course also be used.
  • DBN diazabicyclonones
  • DBU diazabicycloundecene
  • Suitable amounts for the auxiliary base are generally 1 to 15 g, preferably 1 to 5 g, per g of perylene-3,4-dicarboximide II in the case of the halogenated starting materials III and, as a rule, in the case of the non-halogenated starting materials III 1 to 60 g, preferably 5 to 30 g, per g of perylene-3,4-dicarboximide II.
  • halogenated starting materials III usually contain 2 to 10 mol, in particular 2 to 4 mol, per mol of perylene-3 , 4-dicarboximide II and, in the case of non-haiogenated starting materials III, generally 2 to 20 mol, preferably 8 to 20 mol, per mol of perylene-3,4-dicarboximide II.
  • the alkali metal base can be used in solid or in dissolved form. If the alkali metal base is used in combination with a non-polar aprotic reaction solvent in which it is not sufficiently soluble, it can be in an alcohol which have a higher base strength than the alkali metal base.
  • tertiary aliphatic alcohols which may contain aryl substituents and have a total of four to twelve carbon atoms, for example tert-butanol, 2-methyl-2-butanol (tert-amyl alcohol), 3-methyl-3-pentanol, 3-ethyl-3-pentanol, 2-phenyl-2-pentanol, 2,3-dimethyl-3-pentanol, 2,4,4-trimethyl-2-pentanol and 2,2,3,4,4- pentamethyl-3-pentanol.
  • tert-butanol 2-methyl-2-butanol (tert-amyl alcohol)
  • 3-methyl-3-pentanol 3-ethyl-3-pentanol
  • 2-phenyl-2-pentanol 2,3-dimethyl-3-pentanol
  • 2,4,4-trimethyl-2-pentanol 2,2,3,4,4- pentamethyl-3-pentanol.
  • the reaction temperature is usually 50 to 210 ° C, preferably 70 to 180 ° C.
  • naphthalene-1,8-dicarboximide III can then generally be carried out at a lower temperature, which is particularly recommended for naphthalene-1, 8-dicarboximides III with base-labile substituents (e.g. cyclohexyl) on the imide nitrogen atom.
  • base-labile substituents e.g. cyclohexyl
  • the reaction time is usually 1 to 3 h for halogenated educts III and 2 to 8 h for non-sharked educts IM.
  • non-halogenated starting materials III is expediently carried out as follows:
  • Perylene-3,4-dicarboximide II, naphthalene-1,8-dicarboximide III and base are added, the solvent and, if appropriate, auxiliary base are added under an inert gas and the mixture is heated to the desired reaction temperature with stirring and under an inert gas.
  • the terrylene-3,4: 11,12-tetracarboxylic acid diimide I is precipitated by adding a protic solvent which dissolves the other components, e.g. of d-C ⁇ alcohols and in particular water. It is filtered off and washed with one of the solvents mentioned, in particular with one of the alcohols.
  • halogenated starting materials III A similar procedure can be used when using halogenated starting materials III. However, only a mixture of perylene-3,4-dicarboximide II, base, optionally auxiliary base and solvent, with stirring and protective gas, can be heated to a temperature in the range from 120 to 210 ° C. (deprotonation) and the naphthalene-1 Then add 8-dicarboximide III, if necessary after lowering the temperature to 50 to 120 ° C.
  • reaction product may be appropriate to subject the reaction product to oxidation.
  • oxidizing agents such as preferably hydrogen peroxide, but also sugars containing aldehyde groups, for example glucose, in particular after the reaction.
  • products I e.g. Recrystallization from a mixture of halogenated solvents, such as chloroform and methylene chloride, and alcohols, such as methanol, ethanol and isopropanol, or from a carboxamide, such as N-methylpyrrolidone.
  • halogenated solvents such as chloroform and methylene chloride
  • alcohols such as methanol, ethanol and isopropanol
  • carboxamide such as N-methylpyrrolidone.
  • the terrylene-3,4: 11,12-tetracarboxylic acid diimides I can be obtained in good yields (generally from 50 to 80% when using halogenated starting materials III and 25 to 70% when using non-halogenated starting materials III ) and high purities (usually 95 to 99%) can be produced economically in one step.
  • Terrylene-3,4: 11, 12-tetracarboxylic acid diimides I substituted symmetrically as well as unsymmetrically on the imide nitrogen atoms are advantageously accessible.
  • DGDME diethylene glycol dimethyl ether

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Verfahren zur Herstellung von Terrylen-3,4:11,12-tetracarbonsäurediimiden (I) mit folgender Bedeutung der Variablen: R, R' unabhängig voneinander Wasserstoff; gewünschtenfalls substituiertes Alkyl oder Cycloalkyl, Aryl oder Hetaryl; R¹ Wasserstoff oder Alkyl; R² Wasserstoff; Alkyl; gewünschtenfalls substituiertes Aryl oder Hetaryl, indem man ein Perylen-3,4-dicarbonsäureimid (II) in Gegenwart eines basenstabilen, hochsiedenden, organischen Lösungsmittels und einer alkali- oder erdalkalimetallhaltigen Base mit einem Naphthalin-1,8-dicarbonsäureimid (III) in der X Wasserstoff, Brom oder Chlor bedeutet, umsetzt.

Description

Verfahren zur Herstellung von Terrylen-3,4:11,12-tetracarbonsäurediimiden durch Direktsynthese
Beschreibung
Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von Terrylen- 3,4:11,12-tetracarbonsäurediimiden der allgemeinen Formel I
Figure imgf000003_0001
in der die Variablen folgende Bedeutung haben:
R, R' unabhängig voneinander Wasserstoff; Cι-C3trAlkyl, dessen Kohlenstoffkette durch eine oder mehrere Gruppierungen -O-, -S-, -NR1-, -CO- und/oder -SO2- unterbrochen sein kann und das durch Cyano, CrC6-Alkoxy, Aryl, das durch CrCι8-Alkyl oder d-C6-Alkoxy substituiert sein kann, und/oder einen über ein Stickstoffatom gebundenen 5- bis 7- gliedrigen heterocyclischen Rest, der weitere Heteroatome enthalten und a- romatisch sein kann, ein- oder mehrfach substituiert sein kann; C5-C8-Cycloalkyl, dessen Kohlenstoffgerüst durch eine oder mehrere Gruppierungen -O-, -S- und/oder -NR1- unterbrochen und/oder das durch C-i-Ce-Alkyl ein- oder mehrfach substituiert sein kann; Aryl oder Hetaryl, das durch C C18-Alkyl, CrC6-Alkoxy, Cyano, Halogen, -CONHR2 und/oder Aryl- oder Hetarylazo, das jeweils durch Cι-C10-Alkyl, CrC6-Alkoxy oder Cyano substituiert sein kann, ein- oder mehrfach substituiert sein kann; R1 Wasserstoff oder C C6-Alkyl;
R2 Wasserstoff; C Cι8-Alkyl; Aryl oder Hetaryl, das jeweils durch CrC6-Alkyl, CrCe-Alkoxy, Halogen, Hydroxy, Carboxy oder Cyano substituiert sein kann.
Terrylen-3,4:11,12-tetracarbonsäurediimide eignen sich bekanntermaßen als Pigmente und Fluoreszenzfarbstoffe mit Absorption im langwellig roten und Fluoreszenzemission im langwellig roten bis nahinfraroten Bereich des elektromagnetischen Spektrums.
In Chem. Eur. S. 3, S. 219 - 225 (1997) ist ein Verfahren zu ihrer Herstellung beschrieben, das von 5-Bromacenaphthenchinon ausgeht und eine Vielzahl von Reaktionsschritten umfaßt: Ketalisierung, Überführung in eine Boronsäure, Umsetzung mit einem 9-Bromperylen-3,4-dicarbonsäureimid in einer Suzuki-Kupplungsreaktion zu einem 9- (4-Acenaphthochinonyl)perylen-3,4-dicarbonsäureimid, Oxidation zum Tetracarbonsäu- reimidanhydrid, Imidierung zum Diimid und Cyclodehydrierung zum Terrylen-3,4: 11,12- tetracarbonsäurediimid.
N.N'-Dialkylsubstituierte Terrylen-3,4:11,12-tetracarbonsäurediimide sind gemäß Hete- rocycles 56, S. 331 - 340 (2002) zugänglich, indem ein N-Alkyl-9-bromperylen-3,4- dicarbonsäureimid zum 9-Tributylzinnderivat umgesetzt wird, das dann mit einem N- Alkyl-4-Halogennaphthalin-1,8-dicarbonsäureimid zum entsprechenden 9-(4-Naph- thalin-1 ,8-dicarbonsäureimid)perylen-3,4-dicarbonsäureimid gekuppelt wird, aus dem wiederum durch Cyclodehydrierung das Terrylen-3,4:11,12-tetracarbonsäurediimid hergestellt wird.
Die bekannten Herstellungsverfahren haben eine Reihe von Nachteilen: Es werden toxische Zinnverbindungen und/oder starke Basen in großen Mengen eingesetzt, die Reaktionszeiten sind sehr lang, und/oder die Gesamtausbeute liegt bei unter 50%.
Der Erfindung lag daher die Aufgabe zugrunde, diesen Nachteilen abzuhelfen und ein Verfahren bereitzustellen, das die Herstellung von Terrylen-3,4:11,12-tetracarbon- säurediimiden auf vorteilhafte, wirtschaftliche Weise ermöglicht.
Demgemäß wurde ein Verfahren zur Herstellung von Terrylen-3,4:11 ,12-tetracarbon- säurediimiden der allgemeinen Formel I
Figure imgf000004_0001
in der die Variablen die eingangs angegebene Bedeutung haben, gefunden, welches dadurch gekennzeichnet ist, daß man ein Perylen-3,4-dicarbonsäureimid der allgemeinen Formel II
Figure imgf000004_0002
in Gegenwart eines basenstabilen, hochsiedenden, organischen Lösungsmittels und einer alkali- oder erdalkalimetallhaltigen Base mit einem Naphthalin-1 ,8-dicarbon- säureimid der allgemeinen Formel III
Figure imgf000005_0001
in der X Wasserstoff, Brom oder Chlor bedeutet, umsetzt.
Alle in den Formeln I bis III auftretenden Alkylgruppen können geradkettig oder verzweigt sein. Wenn die Alkylgruppen substituiert sind, tragen sie in der Regel 1 oder 2 Substituenten.
Cycloalkylgruppen und aromatische Reste, die substituiert sind, können im allgemei- nen bis zu 3, bevorzugt 1 oder 2, der genannten Substituenten aufweisen.
Als Beispiele für geeignete Reste R, R', R1, R2 und R3 (bzw. für deren Substituenten) seien im einzelnen genannt:
Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, Pentyl, Isopentyl, Neopentyl, tert.-Pentyl, Hexyl, 2-Methylpentyl, Heptyl, 1-Ethylpentyl, Octyl, 2-Ethylhexyl, Isooctyl, Nonyl, Isononyl, Decyl, Isodecyl, Undecyl, Dodecyl, Tridecyl, Isotridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, Nonadecyl und Eicosyl (die obigen Bezeichnungen Isooctyl, Isononyl, Isodecyl und Isotridecyl sind Trivialbezeichnungen und stammen von den nach der Oxosynthese erhaltenen Alkoholen);
Methoxymethyl, 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-lsopropoxyethyl, 2- Butoxyethyl, 2- und 3-Methoxypropyl, 2- und 3-Ethoxypropyl, 2- und 3-Propoxypropyl, 2- und 3-Butoxypropyl, 2- und 4-Methoxybutyl, 2- und 4-Ethoxybutyl, 2- und 4-Propoxy- butyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 4,8-Dioxanonyl, 3,7-Dioxaoctyl, 3,7-Dioxanonyl, 4,7-Dioxaoctyl, 4,7-Dioxanonyl, 2- und 4-Butoxybutyl, 4,8-Dioxadecyl, 3,6,9-Trioxade- cyl, 3,6,9-Trioxaundecyl, 3,6,9-Trioxadodecyl, 3,6,9, 12-Tetraoxatridecyl und 3,6,9,12- Tetraoxatetradecyl;
Methylthiomethyl, 2-Methylthioethyl, 2-Ethylthioethyl, 2-Propylthioethyl, 2-lsopropylthio- ethyl, 2-Butylthioethyl, 2- und 3-Methylthiopropyl, 2- und 3-Ethylthiopropyl, 2- und 3- Propylthiopropyl, 2- und 3-Butylthiopropyl, 2- und 4-Methylthiobutyl, 2- und 4-Ethylthio- butyl, 2- und 4-Propylthiobutyl, 3,6-Dithiaheptyl, 3,6-Dithiaoctyl, 4,8-Dithianonyl, 3,7- Dithiaoctyl, 3,7-Dithianonyl, 2- und 4-Butylthiobutyl, 4,8-Dithiadecyl, 3,6,9-Trithiadecyl, 3,6,9-Trithiaundecyl, 3,6,9-Trithiadodecyl, 3,6,9, 12-Tetrathiatridecyl und 3,6,9,12- Tetrathiatetradecyl; 2-Monomethyl- und 2-Monoethylaminoethyl, 2-Dimethylaminoethyl, 2- und 3- Dimethyl- aminopropyl, 3-Monoisopropylaminopropyl, 2- und 4-Monopropylaminobutyl, 2- und 4- Dimethylaminobutyl, 6-Methyl-3,6-diazaheptyl, 3,6-Dimethyl-3,6-diazaheptyl, 3,6-Di- azaoctyl, 3,6-Dimethyl-3,6-diazaoctyl, 9-Methyl-3,6,9-triazadecyl, 3,6,9-Trimethyl-3,6,9- triazadecyl, 3,6,9-Triazaundecyl, 3,6,9-Trimethyl-3,6,9-triazaundecyl, 12-Methyl- 3,6,9, 12-tetraazatridecyl und 3,6,9, 12-Tetramethyl-3,6,9, 12-tetraazatridecyl;
Propan-2-on-1-yl, Butan-3-on-1-yl, Butan-3-on-2-yl und 2-Ethylpentan-3-on-1-yl;
2-Methylsulfonylethyl, 2-Ethylsulfonylethyl, 2-Propylsulfonylethyl, 2-lsopropylsulfonyl- ethyl, 2-Butylsulfonylethyl, 2- und 3-Methylsulfonylpropyl, 2- und 3-Ethylsulfonylpropyl, 2- und 3-Propylsulfonylpropyl, 2- und 3-Butylsulfonylpropyl, 2- und 4-Methylsulfonyl- butyl, 2- und 4-Ethylsulfonylbutyl, 2- und 4-Propylsulfonylbutyl und 4-Butylsulfonylbutyl;
Cyanomethyl, 2-Cyanoethyl, 3-Cyanopropyl, 2-Methyl-3-ethyl-3-cyanopropyl, 7-Cyano- 7-ethylheptyl und 4,7-Dimethyl-7-cyanoheptyl;
Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy,
Pentoxy, Isopentoxy, Neopentoxy, tert.-Pentoxy und Hexoxy;
Carbamoyl, Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl, Butyl- aminocarbonyl, Pentylaminocarbonyl, Hexylaminocarbonyl, Heptylaminocarbonyl, Oc- tylaminocarbonyl, Nonylaminocarbonyl, Decylaminocarbonyl und Phenylaminocarbo- nyl;
Chlor, Brom und lod;
Phenylazo, 2-Napthylazo, 2-Pyridylazo und 2-Pyrimidylazo;
Phenyl, 1- und 2-Naphthyl, 2- und 3-Pyrryl, 2-, 3- und 4-Pyridyl, 2-, 4- und 5-Pyrimidyl, 3-, 4- und 5-Pyrazolyl, 2-, 4- und 5-Imidazolyl, 2-, 4- und 5-Thiazolyl, 3-(1,2,4-Triazyl), 2-(1,3,5-Triazyl), 6-Chinaldyl, 3-, 5-, 6- und 8-Chinolinyl, 2-Benzoxazolyl, 2-Benzothia- zolyl, 5-Benzothiadiazolyl, 2- und 5-Benzimidazolyl und 1- und 5- Isochinolyl;
2-, 3- und 4-Methylphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Dimethylphenyl, 2,4,6-Tri- methylphenyl, 2-, 3- und 4-Ethylphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Diethylphenyl, 2,4,6-Triethylphenyl, 2-, 3- und 4-Propylphenyi, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Dipropyl- phenyl, 2,4,6-Tripropylphenyl, 2-, 3- und 4-lsopropylphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Diisopropylphenyl, 2,4,6-Triisopropylphenyl, 2-, 3- und 4-Butylphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Dibutylphenyl, 2,4,6-Tributylphenyl, 2-, 3- und 4-lsobutylphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Diisobutylphenyl, 2,4,6-Triisobutylphenyl, 2-, 3- und 4-sec- Butylphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Di-sec-butylphenyl und 2,4,6-Tri-sec. -butyl- phenyl, 2-, 3- und 4-tert.-Butylphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Di-tert.-butylphenyl, 2,4,6-Trkert-butylphenyl; 2-, 3- und 4-Methoxyphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Di- methoxyphenyl, 2,4,6-Trimethoxyphenyl, 2-, 3- und 4-Ethoxyphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Diethoxyphenyl, 2,4,6-Triethoxyphenyl, 2-, 3- und 4-Propoxyphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Dipropoxyphenyl, 2-, 3- und 4-lsopropoxyphenyl, 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Diisopropoxyphenyl und 2-, 3- und 4-Butoxyphenyl; 2-, 3- und 4-Chlor- phenyl, und 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Dichlorphenyl; 2-, 3- und 4-Hydroxyphenyl und 2,3-, 2,4-, 2,5-, 3,5- und 2,6-Dihydroxyphenyl; 2-, 3- und 4-Cyanophenyl; 3- und 4- Carboxyphenyl; 3- und 4-Carboxamidophenyl, 3- und 4-N-Methylcarboxamidophenyl und 3- und 4-N-Ethylcarboxamidophenyl; 3- und 4-Acetylaminophenyl, 3- und 4-Propio- nylaminophenyl und 3- und 4-Butyrylaminophenyl; 3- und 4-N-Phenylaminophenyl, 3- und 4-N-(o-Tolyl)aminophenyl, 3- und 4-N-(m-Tolyl)aminophenyl und 3- und 4-N-(p-To- lyl)aminophenyl; 3- und 4-(2-Pyridyl)aminophenyl, 3- und 4-(3-Pyridyl)aminophenyl, 3- und 4-(4-Pyridyl)aminophenyl, 3- und 4-(2-Pyrimidyl)aminophenyl und 4-(4-Pyrimidyl)- aminophenyl;
4-Phenylazophenyl, 4-(1-Naphthylazo)phenyl, 4-(2-Naphthylazo)phenyl, 4-(4-Naphthyl- azo)phenyl, 4-(2-Pyridylazo)phenyl, 4-(3-Pyridylazo)phenyl, 4-(4-Pyridylazo)phenyl, 4- (2-Pyrimidylazo)phenyl, 4-(4-Pyrimidylazo)phenyl und 4-(5-Pyrimidylazo)phenyl;
Cyclopentyl, 2- und 3-Methylcyclopentyl, 2- und 3-Ethylcyclopentyl, Cyclohexyl, 2-, 3- und 4-Methylcyclohexyl, 2-, 3- und 4-Ethylcyclohexyl, 3- und 4-Propylcyclohexyl, 3- und 4-lsopropylcyclohexyl, 3- und 4-Butylcyclohexyl, 3- und 4-sec-Butylcyclohexyl, 3- und 4-tert.-Butylcyclohexyl, Cycloheptyl, 2-, 3- und 4-Methylcycloheptyl, 2-, 3- und 4-Ethyl- cycloheptyl, 3- und 4-Propylcycloheptyl, 3- und 4-lsopropylcycloheptyl, 3- und 4-Butyl- cycloheptyl, 3- und 4-sec-Butylcycloheptyl, 3- und 4-tert.-Butylcycloheptyl, Cyclooctyl, 2-, 3-, 4- und 5-Methylcyclooctyl, 2-, 3-, 4- und 5-Ethylcyclooctyl, 3-, 4- und 5-Propyl- cyclooctyl, 2-Dioxanyl, 4-Morpholinyl, 2- und 3-Tetrahydrofuryl, 1-, 2- und 3-Pyrrolidinyl und 1-, 2-, 3- und 4-Piperidyl.
Mit Hilfe des erfindungsgemäßen Verfahrens können die Terrylen-3,4:11,12-teträ- carbonsäurediimide I durch Umsetzung eines Perylen-3,4-dicarbonsäureimids II mit einem Naphthalin-1,8-dicabonsäureimid III in einem Schritt hergestellt werden.
Die erfindungsgemäße Umsetzung wird in Gegenwart eines basenstabilen, hochsiedenden, organischen Lösungsmittels und einer Alkalimetallbase durchgeführt.
Als Edukt kann dabei sowohl in 4-Position halogeniertes, also chloriertes oder bromier- tes, als auch nichthalogeniertes Naphthalin-1,8-dicarbonsäureimid III eingesetzt wer- den. Wird nichthalogeniertes Naphthalin-1,8-dicarbonsäureimid III verwendet, so empfiehlt es sich in der Regel, die Umsetzung bei verschärften Reaktionsbedingungen vorzunehmen, d.h. größere Überschüsse an Naphthalin-1,8-dicarbonsäureimid III und zusätzlich zu einer starken alkalimetallhaltigen Base eine stickstoffhaltige Hilfsbase sowie polar-aprotische Lösungsmittel einzusetzen.
Dementsprechend beträgt das Molverhältnis von Naphthalin-1,8-dicarbonsäureimid III zu Perylen-3,4-dicarbonsäureimid II bei Verwendung von halogeniertem Edukt III (X: Chlor oder Brom) üblicherweise 4 bis 1 : 1 und bevorzugt 2 bis 1 : 1 , während es bei nichthalogeniertem Edukt III im allgemeinen bei 8 bis 1 : 1 und vorzugsweise bei 6 bis 2 : 1 liegt.
Als Lösungsmittel sind grundsätzlich alle unter den Reaktionsbedingungen gegen Basen stabilen, hochsiedenden (Siedepunkt > 100°C und oberhalb der gewählten Reakti- onstemperatur) Lösungsmittel geeignet, in denen sich die Perylen-3,4-dicarbonsäure- imide II und die Naphthalin-1,8-dicarbonsäureimide III bei Reaktionstemperatur vollständig und die verwendeten Basen zumindest partiell lösen, so daß weitgehend homogene Reaktionsbedingungen vorliegen. Besonders geeignet sind unpolar-aprotische und polar-aprotische Lösungsmittel, wobei unpolar-aprotische Lösungsmittel und auf Ethern basierende aprotische Lösungsmittel bei Einsatz von halogenierten Edukten III und die polar-aprotischen Lösungsmittel bei Einsatz von nichthalogenierten Edukten III bevorzugt sind. Es können aber auch protische Lösungsmittel, vorzugsweise solche, die Amino- und Hydroxyfunktionen aufweisen, eingesetzt werden. Selbstverständlich können auch Lösungsmittelgemische verwendet werden.
Beispiele für besonders geeignete unpolar-aprotische Lösungsmittel sind bei > 100°C siedende Lösungsmittel aus den folgenden Gruppen: Aliphaten (insbesondere C8-C18- Alkane), unsubstituierte, alkylsubstituierte und kondensierte Cycloaliphaten (insbesondere unsubstituierte C -C10-Cycloalkane, C6-C8-Cycloalkane, die durch ein bis drei d- Cβ-Alkylgruppen substituiert sind, polycyclische gesättigte Kohlenwasserstoffe mit 10 bis 18 C-Atomen), alkyl- und cycloalkylsubstituierte Aromaten (insbesondere Benzol, das durch ein bis drei Cι-C6-Alkylgruppen oder einen C5-C8-Cycloalkylrest substituiert ist) und kondensierte Aromaten, die alkylsubstituiert und/oder teilhydriert sein können (insbesondere Naphthalin, das durch ein bis vier d-Ce-Alkylgruppen substituiert ist) sowie Mischungen dieser Lösungsmittel.
Als Beispiele für bevorzugte unpolar-aprotische Lösungsmittel seien im einzelnen genannt: Octan, Isooctan, Nonan, Isononan, Decan, Isodecan, Undecan, Dodecan, Hexadecan und Octadecan; Cycloheptan, Cyclooctan, Methylcyclohexan, Dimethyl- cyclohexan, Trimethylcyclohexan, Ethylcyclohexan, Diethylcyclohexan, Propylcyclo- hexan, Isopropylcyclohexan, Dipropylcyclohexan, Butylcyclohexan, tert.-Butylcyclo- hexan, Methylcycloheptan und Methylcyclooctan; Toluol, o-, m- und p-Xylol, 1,3,5-Tri- methylbenzol (Mesitylen), 1,2,4- und 1 ,2,3-Trimethylbenzol, Ethylbenzol, Propylbenzol, Isopropylbenzol, Butylbenzol, Isobutylbenzol, tert.-Butylbenzol und Cyclohexylbenzol; Naphthalin, Decahydronaphthalin (Dekalin), 1- und 2-Methylnaphthalin, 1- und 2-Ethyl- naphthalin; Kombinationen aus den zuvor genannten Lösungsmitteln, wie sie aus den hochsiedenden, teil- oder durchhydrierten Fraktionen thermischer und katalytischer Crackprozesse bei der Rohöl- oder Naphthaverarbeitung gewonnen werden können, z.B. Gemische vom Exsol® Typ und Alkylbenzolgemische vom Solvesso® Typ.
Besonders bevorzugte unpolar-aprotische Lösungsmittel sind Xylol (alle Isomere), Me- sitylen und vor allem Toluol und Dekalin.
Beispiele für besonders geeignete polar-aprotische Lösungsmittel sind N,N-disubsti- tuierte aliphatische Carbonsäureamide (insbesondere N.N-Di-CrC^alkyl-d-C^car- bonsäureamide), stickstoffhaltige Heterocyclen, Trialkylamine (insbesondere Tri(C3-C6- alkyl)amine) und aprotische Ether (insbesondere cyclische Ether, Diarylether und Di- Cι-C6-alkylether von monomeren und oligomeren C2-C3-Alkylenglykolen, die bis zu 6 Alkylenoxideinheiten enthalten können, vor allem Diethylenglykoldi-C C -alkylether).
Als Beispiele für bevorzugte polar-aprotische Lösungsmittel seien im einzelnen ge- nannt: N,N-Dimethylformamid, N,N-Diethylformamid, N,N-Dimethylacetamid und N,N- Dimethylbutyramid; N-Methyl-2-pyrrolidon, Chinolin, Isochinolin, Chinaldin, Pyrimidin, N-Methylpiperidin und Pyridin; Tripropyl- und Tributylamin; Di- und Tetramethyltetra- hydrofuran, Dioxan, Diphenylether, Diethylenglykoldimethyl-, -diethyl-, -dipropyl-, -diisopropyl-, -di-n-butyl-, -di-sec.-butyl- und -di-tert.-butylether, Diethylenglykolmethyl- ethylether, Triethylenglykoldimethyl- und -diethylether und Triethylenglykolmethyl- ethylether, wobei Diethylenglykoldiethylether, Diphenylether und vor allem Diethyl- englykoldimethylether besonders bevorzugt sind.
Besonders geeignete protische Lösungsmittel enthalten Amino- und Hydroxyfunktio- nen. Beispiele für bevorzugte protische Lösungsmittel sind Alkoholamine, insbesondere Mono-, Di- und Tri-C2-C4-alkoholamine, wie Mono-, Di- und Triethanolamin, wobei Ethanolamin besonders bevorzugt ist.
Die Lösungsmittelmenge beträgt in der Regel 50 bis 250 ml unpolar-aprotisches Lö- sungsmittel, 10 bis 50 ml polar-aprotisches Lösungsmittel bzw. 3 bis 50 ml protisches Lösungsmittel je g Perylen-3,4-dicar-bonsäureimid II.
Als Base sind starke anorganische und organische alkali- oder erdalkalimetallhaltige Basen geeignet, wobei die alkalimetallhaltigen Basen besonders geeignet sind. Bevor- zugte anorganische Basen sind Alkali- und Erdalkalimetallhydroxide und -amide, bevorzugte organische Basen sind Alkali- und Erdalkalimetallalkoholate (insbesondere die C C10-Alkoholate, vor allem tert.-C4-C6-Alkoholate), Alkali- und Erdalkalimetall- (phenyl)alkylamide (insbesondere die Bis(C1-C4-alkyl)amide) und Triphenylmethylme- tallate. Besonders bevorzugt sind die Alkalimetallalkoholate. Bevorzugte Alkalimetalle sind Lithium, Natrium und Kalium, wobei Kalium ganz besonders bevorzugt ist. Besonders geeignete Erdalkalimetalle sind Magnesium und Calcium.
Als Beispiele für besonders bevorzugte Basen seien im einzelnen genannt: Lithiumhydroxid, Natriumhydroxid und Kaliumhydroxid; Lithiumamid, Natriumamid und Kali- umamid; Lithiummethylat, Natriummethylat, Kaliummethylat, Lithiumethylat, Natrium- ethylat, Kaliumethylat, Natriumisopropylat, Kaliumisopropylat, Natrium-tert.-butylat, Kalium-tert.-butylat, Lithium-(1 , 1 -dimethyl)octylat, Natrium-(1 , 1 -dimethyl)octylat und Kalium-(1,1-dimethyl)octylat; Lithiumdimethylamid, Lithiumdiethylamid, Lithiumdiisopro- pylamid, Natriumdiisopropylamid, Triphenylmethyllithium, Triphenylmethylnatrium und Triphenylmethylkalium. Selbstverständlich können auch Mischungen verschiedener Basen eingesetzt werden.
Ganz besonders bevorzugte Basen sind Lithiumdiisopropylamid, Natriummethylat, Natrium-tert.-butylat, vor allem Kaliummethylat und Kaliumhydroxid und insbesondere Kalium-tert.-butylat.
Bei Verwendung der Methylate und der Hydroxide sowie generell bei Verwendung von nichthaiogenierten Edukten III empfiehlt sich zur Erhöhung der Reaktivität der Zusatz einer stickstoffhaltigen Hilfsbase mit geringer nucleophiler Wirkung. Geeignete Basen sind bei den Reaktionstemperaturen flüssige Alkylamine, insbesondere Tri-C3-C6-alkyl- amine, wie Tripropylamin und Tributylamin, Alkoholamine, insbesondere Mono-, Di- und Tri-C2-C -alkoholamine, wie Mono-, Di- und Triethanolamin, und insbesondere heterocyclische Basen, wie Pyridin, N-Methylpiperidin, N-Methylpiperidon, N-Methyl- morpholin, N-Methyl-2-pyrrolidon, Pyrimidin, Chinolin, Isochinolin, Chinaldin und vor allem Diazabicyclononen (DBN) und Diazabicycloundecen (DBU). Selbstverständlich können auch Mischungen dieser Hilfsbasen verwendet werden.
Geeignete Einsatzmengen für die Hilfsbase liegen im Fall der halogenierten Edukte III im allgemeinen bei 1 bis 15 g, vorzugsweise bei 1 bis 5 g, je g Perylen-3,4-dicarbon- säureimid II und im Fall der nichthaiogenierten Edukte III in der Regel bei 1 bis 60 g, bevorzugt bei 5 bis 30 g, je g Perylen-3,4-dicarbonsäureimid II. Von der Alkalimetallba- se werden bei halogenierten Edukten III üblicherweise 2 bis 10 mol, insbesondere 2 bis 4 mol, je mol Perylen-3,4-dicarbonsäureimid II und bei nichthaiogenierten Edukten III im allgemeinen 2 bis 20 mol, vorzugsweise 8 bis 20 mol, je mol Perylen-3,4-dicarbon- säureimid II, eingesetzt.
Die Alkalimetallbase kann in fester oder in gelöster Form eingesetzt werden. Wenn die Alkalimetallbase in Kombination mit einem unpolar-aprotischen Reaktionslösungsmittel verwendet wird, in dem sie nicht ausreichend löslich ist, kann sie in einem Alkohol, der eine höhere Basenstärke als die Alkalimetallbase hat, gelöst werden. Geeignet sind vor allem tertiäre aliphatische Alkohole, die Arylsubstituenten enthalten können und insgesamt vier bis zwölf C-Atome aufweisen, z.B. tert.-Butanol, 2-Methyl-2-butanol (tert.- Amylalkohol), 3-Methyl-3-pentanol, 3-Ethyl-3-pentanol, 2-Phenyl-2-pentanol, 2,3-Di- methyl-3-pentanol, 2,4,4-Trimethyl-2-pentanol und 2,2,3,4,4-Pentamethyl-3-pentanol.
Die Reaktionstemperatur liegt üblicherweise bei 50 bis 210°C, bevorzugt bei 70 bis 180°C.
Insbesondere bei Abwesenheit eine Hilfsbase kann es vorteilhaft sein, zunächst eine Reaktionstemperatur im oberen Bereich zu wählen, um das Perylen-3,4-dicarbon- säureimid II in 9-Stellung zu deprotonieren. Die anschließende Kupplungsreaktion mit dem Naphthalin-1,8-dicarbonsäureimid III kann dann in der Regel bei niedrigerer Temperatur durchgeführt werden, was sich insbesondere bei Naphthalin-1 ,8-dicarbon- säureimiden III mit basenlabilen Substituenten (z.B. Cyclohexyl) am Imidstickstoffatom empfiehlt.
Die Reaktionszeit beträgt in der Regel 1 bis 3 h bei halogenierten Edukten III und 2 bis 8 h bei nichthaiogenierten Edukten IM.
Verfahrenstechnisch geht man beim Einsatz nichthalogenierter Edukte III zweckmäßigerweise wie folgt vor:
Man legt Perylen-3,4-dicarbonsäureimid II, Naphthalin-1,8-dicarbonsäureimid III und Base vor, gibt Lösungsmittel und gegebenenfalls Hilfsbase unter Schutzgas zu und erhitzt die Mischung die gewünschte Zeit unter Rühren und unter Schutzgas auf die gewünschte Reaktionstemperatur. Nach Abkühlen auf Raumtemperatur fällt man die Terrylen-3,4:11,12-tetracarbonsäurediimide I durch Zugabe von einem protischen Lösungsmittel, das die anderen Komponenten löst, z.B. von d-C^-Alkoholen und insbe- sondere Wasser, aus. Man filtriert ab und wäscht mit einem der genannten Lösungsmittel, insbesondere mit einem der Alkohole.
Bei Verwendung halogenierter Edukte III kann man analog vorgehen. Man kann jedoch auch zunächst nur ein Gemisch von Perylen-3,4-dicarbonsäureimid II, Base, gegebe- nenfalls Hilfsbase sowie Lösungsmittel unter Rühren und Schutzgas auf eine Temperatur im Bereich von 120 bis 210°C erhitzen (Deprotonierung) und das Naphthalin-1,8- dicarbonsäureimid III anschließend, gegebenenfalls nach Absenken der Temperatur auf 50 bis 120°C, zugeben.
Gelegentlich kann es zweckmäßig sein, das Reaktionsprodukt einer Oxidation zu unterziehen. Dies kann am einfachsten durch Einblasen von Luftsauerstoff in die noch warme Reaktionsmischung geschehen. Es ist jedoch auch möglich, Oxidationsmittel, wie vorzugsweise Wasserstoffperoxid, aber auch aldehydgruppenhaltige Zucker, z.B. Glukose, insbesondere nach der Reaktion zuzugeben.
Zur weiteren Reinigung kann man die Produkte I z.B. aus einem Gemisch von haloge- nierten Lösungsmitteln, wie Chloroform und Methylenchlorid, und Alkoholen, wie Methanol, Ethanol und Isopropanol, oder aus einem Carbonsäureamid, wie N-Methylpyr- rolidon, Umkristallisieren. Alternativ kann man auch eine Säulenchromatographie an Kieselgel unter Verwendung von Methylenchlorid oder Aceton als Eluens vornehmen.
Mit Hilfe des erfindungsgemäßen Verfahrens können die Terrylen-3,4:11,12-tetracar- bonsäurediimide I in guten Ausbeuten (in der Regel von 50 bis 80% bei Einsatz halo- genierter Edukte III und 25 bis 70% bei Einsatz nichthalogenierter Edukte III) und hohen Reinheiten (üblicherweise 95 bis 99%) auf wirtschaftliche Weise in einem Schritt hergestellt werden. Sowohl an den Imidstickstoffatomen symmetrisch als auch un- symmetrisch substituierte Terrylen-3,4:11 ,12-tetracarbonsäurediimide I sind auf vorteilhafte Weise zugänglich.
Beispiele
Beispiel 1 bis 7
Eine Mischung aus 10 mmol des Perylen-3,4-dicarbonsäureimids II, x ml des Lösungsmittels L und gegebenenfalls b g Diazabicycloundecen (DBU) als Hilfsbase wurde unter Rühren in einer Stickstoffatmosphäre auf T^C erwärmt, in 30 min mit insge- samt m mmol der Base B (Beispiel 1 bis 6: B gelöst in 100 ml 2-Methylbutanol; Beispiel 7: B als Feststoff) versetzt. Nach einer Nachrührzeit von tι h bei T^C und Abkühlen auf T2°C wurden bei dieser Temperatur portionsweise in 30 min insgesamt 150 ml einer Lösung von 15 mmol (Beispiel 5: 18 mmol) des 4-Bromnaphthalimids III im Lösungsmittel L zugegeben.
Nach einer Nachrührzeit von t2 h bei T2 CC unter Luft, Abkühlen auf Raumtemperatur und gegebenenfalls Zugabe von 300 ml Methanol zur vollständigen Ausfällung wurde der gebildete Niederschlag abfiltriert, nacheinander mit kaltem Lösungsmittel L, Petrol- ether und Methanol bis zum farblosen Ablauf gewaschen und bei 100CC im Vakuum getrocknet. Zur weiteren Reinigung wurde das Rohprodukt aus Beispiel 1 bis 4 sowie 6 und 7 einer Säulenchromatographie an Kieselgel mit Methylenchlorid als Eluens und das Rohprodukt aus Beispiel 5 einer fraktionierten Kristallisation aus Schwefelsäure unterzogen.
Weitere Einzelheiten zu diesen Versuchen sowie deren Ergebnisse sind in der folgenden Tabelle zusammengestellt. Dabei bedeuten:
Ha N-(2,6-Diisopropylphenyl)perylen-3,4-dicarbonsäureimid llb N-Methylperylen-3,4-dicarbonsäureimid llc N-Cyclohexylperylen-3,4-dicarbonsäureimid lila 4-Brom-N-(2,6-diiisopropylphenyl)naphthalin-1,8-dicarbonsäureimid lllb: 4-Brom-N-cyclohexylnapthalin-1,8-dicarbonsäureimid lllc 4-Brom-N-methylnaphthalin-1,8-dicarbonsäureimid
B1 Kalium-tert.-butylat
B2 Kaliummethylat
B3 Kaliumhydroxid
DGDME: Diethylenglykoldimethylether
Tabelle
Figure imgf000014_0001
Beispiel 8
10 mmol N-(2,6-Diisopropylphenyl)perylen-3,4-dicarbonsäureimid, 40 mmol N-(2,6- Diisopropylphenyl)naphthalin-1,8-dicarbonsäureimid und 0,2 mol Natrium-tert.-butylat wurden unter Stickstoff in 30 ml Diazabicyclononen (DBN) und 25 ml Diethylenglykol- dimethylether gelöst und auf 130°C erwärmt.
Nach dreistündigem Rühren bei dieser Temperatur und Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch auf 100 ml Wasser gegeben. Der Niederschlag wurde abfiltriert und solange mit Ethanol gewaschen, bis das Filtrat rötlich ablief. Nach Umkristallisieren in einem Chloroform/Ethanol-Gemisch wurden 3,5 g blaues Produkt erhalten, was einer Ausbeute von 42% entspricht.
Beispiel 9
Es wurde analog zu Beispiel 8 vorgegangen, jedoch wurden 0,4 mol Natrium-tert.- butylat und 60 ml DBU sowie anstelle von Diethylenglykoldimethylether 50 ml Ethanol- amin eingesetzt, und die Reaktionszeit betrug 6h.
Es wurden 2,3 g Produkt erhalten, was einer Ausbeute von 28% entspricht.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Terrylen-3,4: 11,12-tetracarbonsäurediimiden der allgemeinen Formel I
Figure imgf000016_0001
in der die Variablen folgende Bedeutung haben: R, R' unabhängig voneinander Wasserstoff; CrC3o-Alkyl, dessen Kohlenstoffkette durch eine oder mehrere Gruppierungen -O-, -S-, -NR1-, -CO- und/oder -SO2- unterbrochen sein kann und das durch Cyano, CrC6-Alkoxy, Aryl, das durch Cι-C18-Alkyl oder d-C6- Alkoxy substituiert sein kann, und/oder einen über ein Stickstoffatom gebundenen 5- bis 7-gliedrigen heterocyclischen Rest, der weitere Hete- roatome enthalten und aromatisch sein kann, ein- oder mehrfach substituiert sein kann; C5-C8-Cycloalkyl, dessen Kohlenstoffgerüst durch eine oder mehrere Gruppierungen -O-, -S- und/oder -NR1- unterbrochen und/oder das durch C C6-Alkyl ein- oder mehrfach substituiert sein kann; Aryl oder Hetaryl, das durch C C18-Alkyl, C C6-Alkoxy, Cyano, Halogen, -CONHR2 und/oder Aryl- oder Hetarylazo, das jeweils durch d-Cio- Alkyl, C C6-Alkoxy oder Cyano substituiert sein kann, ein- oder mehrfach substituiert sein kann; R1 Wasserstoff oder d-Ce-Alkyl; R2 Wasserstoff; Cι-C18-Alkyl; Aryl oder Hetaryl, das jeweils durch d-C6- Alkyl, Ci-Ce-Alkoxy, Halogen, Hydroxy, Carboxy oder Cyano substituiert sein kann, dadurch gekennzeichnet, daß man ein Perylen-3,4-dicarbonsäureimid der allgemeinen Formel II
Figure imgf000016_0002
in Gegenwart eines basenstabilen, hochsiedenden, organischen Lösungsmittels und einer alkali- oder erdalkalimetallhaltigen Base mit einem Naphthalin-1 ,8-di- carbonsäureimid der allgemeinen Formel III
Figure imgf000017_0001
in der X Wasserstoff, Brom oder Chlor bedeutet, umsetzt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man als organisches Lösungsmittel ein aprotisches organisches Lösungsmittel einsetzt.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man als organisches Lösungsmittel ein polar-aprotisches organisches Lösungsmittel einsetzt.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man als organisches Lösungsmittel ein unpolar-aprotisches Lösungsmittel einsetzt.
>. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man als organisches Lösungsmittel ein protisches Lösungsmittel einsetzt.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man als organisches Lösungsmittel ein Amino- und Hydroxyfunktionen enthaltendes Lösungsmittel einsetzt.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß man als Base eine starke anorganische oder organische alkalimetallhaltige Base einsetzt.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man als Base ein Alkalimetallalkoholat einsetzt.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man eine stickstoffhaltige Base mit geringer nucleophiler Wirkung zusätzlich als Hilfsbase einsetzt.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß man die Umsetzung bei 50 bis 210°C vornimmt.
PCT/EP2005/000378 2004-01-23 2005-01-15 Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden durch direktsynthese WO2005070895A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/586,133 US7358362B2 (en) 2004-01-23 2005-01-15 Method for the production of terylene-3,4:11,12-tetracarboxydiimides by direct synthesis
EP05700962A EP1711469B1 (de) 2004-01-23 2005-01-15 Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden durch direktsynthese
DE502005007702T DE502005007702D1 (de) 2004-01-23 2005-01-15 Verfahren zur herstellung von terrylen-3,4:11,12-t
JP2006549994A JP2007522121A (ja) 2004-01-23 2005-01-15 直接合成によるテリレン−3,4:11,12−テトラカルボン酸ジイミドの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003734.5 2004-01-23
DE102004003734A DE102004003734A1 (de) 2004-01-23 2004-01-23 Verfahren zur Herstellung von Terrylen-3,4:11,12-tetracarbonsäurediimiden durch Di-rektsynthese

Publications (1)

Publication Number Publication Date
WO2005070895A1 true WO2005070895A1 (de) 2005-08-04

Family

ID=34745092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000378 WO2005070895A1 (de) 2004-01-23 2005-01-15 Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden durch direktsynthese

Country Status (8)

Country Link
US (1) US7358362B2 (de)
EP (1) EP1711469B1 (de)
JP (1) JP2007522121A (de)
KR (1) KR20060124711A (de)
CN (1) CN100519534C (de)
DE (2) DE102004003734A1 (de)
TW (1) TW200533718A (de)
WO (1) WO2005070895A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1843407A1 (de) * 2006-04-07 2007-10-10 Basf Aktiengesellschaft Flüssig-kristalline Rylentetracarbonsäurederivate und deren Verwendung
US7671202B2 (en) 2004-01-26 2010-03-02 Northwestern University Perylene n-type semiconductors and related devices
US7893265B2 (en) 2007-01-08 2011-02-22 Polyera Corporation Methods for preparing arene-BIS (dicarboximide)-based semiconducting materials and related intermediates for preparing same
US7902363B2 (en) 2006-11-17 2011-03-08 Polyera Corporation Diimide-based semiconductor materials and methods of preparing and using the same
US7947837B2 (en) 2006-10-25 2011-05-24 Polyera Corporation Organic semiconductor materials and methods of preparing and use thereof
US8022214B2 (en) 2007-01-24 2011-09-20 Polyera Corporation Organic semiconductor materials and precursors thereof
US8618297B2 (en) 2008-07-25 2013-12-31 Basf Se Azide substituted naphthylene or rylene imide derivatives and their use as reagents in click-reactions
WO2020193309A1 (en) 2019-03-22 2020-10-01 Basf Se Plant cultivation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646943A (zh) * 2020-06-18 2020-09-11 福州大学 联萘酚二酰亚胺衍生物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512773A1 (de) * 1995-04-05 1996-10-10 Langhals Heinz Quaterrylenbisimide und ihre Verwendung als Fluoreszenzfarbstoffe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512773A1 (de) * 1995-04-05 1996-10-10 Langhals Heinz Quaterrylenbisimide und ihre Verwendung als Fluoreszenzfarbstoffe

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOLTRUP F O ET AL: "TERRYLENIMIDES: NEW NIR FLUORESCENT DYES", CHEMISTRY - A EUROPEAN JOURNAL, VCH PUBLISHERS, US, vol. 3, no. 2, 1997, pages 219 - 225, XP000931226, ISSN: 0947-6539 *
LANGHALS H ET AL: "A Two-Step Synthesis of Quaterrylenetetracarboxylic Bisimides-Novel NIR Fluorescent Dyes", TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 36, no. 36, 4 September 1995 (1995-09-04), pages 6423 - 6424, XP004027248, ISSN: 0040-4039 *
WEIL TANJA ET AL: "Synthesis and characterization of dendritic multichromophores based on rylene dyes for vectorial transduction of excitation energy", CHEMISTRY - A EUROPEAN JOURNAL, VCH PUBLISHERS, US, vol. 10, no. 6, 2004, pages 1398 - 1414, XP002316375, ISSN: 0947-6539 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982039B2 (en) 2004-01-26 2011-07-19 Northwestern University N-type semiconductors and related devices
US7671202B2 (en) 2004-01-26 2010-03-02 Northwestern University Perylene n-type semiconductors and related devices
WO2007116001A2 (de) * 2006-04-07 2007-10-18 Basf Se Flüssig-kristalline rylentetracarbonsäurederivate und deren verwendung
WO2007116001A3 (de) * 2006-04-07 2007-11-22 Basf Ag Flüssig-kristalline rylentetracarbonsäurederivate und deren verwendung
JP2009532436A (ja) * 2006-04-07 2009-09-10 ビーエーエスエフ ソシエタス・ヨーロピア 液晶性のリレンテトラカルボン酸誘導体及びそれらの使用
US8481736B2 (en) 2006-04-07 2013-07-09 Basf Se Liquid crystalline rylene tetracarboxylic acid derivatives and use thereof
EP1843407A1 (de) * 2006-04-07 2007-10-10 Basf Aktiengesellschaft Flüssig-kristalline Rylentetracarbonsäurederivate und deren Verwendung
US7947837B2 (en) 2006-10-25 2011-05-24 Polyera Corporation Organic semiconductor materials and methods of preparing and use thereof
US7902363B2 (en) 2006-11-17 2011-03-08 Polyera Corporation Diimide-based semiconductor materials and methods of preparing and using the same
US7893265B2 (en) 2007-01-08 2011-02-22 Polyera Corporation Methods for preparing arene-BIS (dicarboximide)-based semiconducting materials and related intermediates for preparing same
US8022214B2 (en) 2007-01-24 2011-09-20 Polyera Corporation Organic semiconductor materials and precursors thereof
US8618297B2 (en) 2008-07-25 2013-12-31 Basf Se Azide substituted naphthylene or rylene imide derivatives and their use as reagents in click-reactions
US8802852B2 (en) 2008-07-25 2014-08-12 Basf Se Azide substituted naphthylene or rylene imide derivatives and their use as reagents in click-reactions
US8921558B2 (en) 2008-07-25 2014-12-30 Basf Se Azide substituted naphthylene or rylene imide derivatives and their use as reagents in click-reactions
WO2020193309A1 (en) 2019-03-22 2020-10-01 Basf Se Plant cultivation method

Also Published As

Publication number Publication date
US20070155968A1 (en) 2007-07-05
CN1910155A (zh) 2007-02-07
CN100519534C (zh) 2009-07-29
US7358362B2 (en) 2008-04-15
EP1711469A1 (de) 2006-10-18
DE102004003734A1 (de) 2005-08-11
TW200533718A (en) 2005-10-16
JP2007522121A (ja) 2007-08-09
EP1711469B1 (de) 2009-07-15
KR20060124711A (ko) 2006-12-05
DE502005007702D1 (de) 2009-08-27

Similar Documents

Publication Publication Date Title
EP1874773B1 (de) Hexarylen- und pentarylentetracarbonsäurediimide
EP1879847B1 (de) Terrylen- und quaterrylenderivate
EP1532210B1 (de) Rylenfarbstoffe
EP1373214B1 (de) Rylenderivate und deren verwendung als farbstoffe
WO2003104232A1 (de) 1,6,9,14-tetrasubstituierte terrylentetracarbonsäurediimide
DE10243906A1 (de) 9-Cyanosubstituierte Perylen-3,4-dicarbonsäuremonoimide
US7799920B2 (en) Method for producing perylene-3,4-dicarboxylic acid imides
WO2001016109A1 (de) Thermochrome rylenfarbstoffe
EP1370612A2 (de) Thermochrome rylenfarbstoffe
EP2089390B1 (de) Heptarylen-und octarylentetracarbonsäurediimide und deren herstellung
EP1711469B1 (de) Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden durch direktsynthese
EP1789415B1 (de) Verfahren zur herstellung von quaterrylen-3,4:13,14-tetracarbonsäurediimiden durch direktsynthese
WO2005070894A1 (de) Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden
EP2285806B1 (de) Dreifach und vierfach substituierte pentarylentetracarbonsäurediimide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005700962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10586133

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580002917.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006549994

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067016609

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005700962

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067016609

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10586133

Country of ref document: US