WO2005070824A1 - Method for refining carbonyl difluoride - Google Patents

Method for refining carbonyl difluoride Download PDF

Info

Publication number
WO2005070824A1
WO2005070824A1 PCT/JP2005/000776 JP2005000776W WO2005070824A1 WO 2005070824 A1 WO2005070824 A1 WO 2005070824A1 JP 2005000776 W JP2005000776 W JP 2005000776W WO 2005070824 A1 WO2005070824 A1 WO 2005070824A1
Authority
WO
WIPO (PCT)
Prior art keywords
difluoride
less
fluid
temperature
metal
Prior art date
Application number
PCT/JP2005/000776
Other languages
French (fr)
Japanese (ja)
Inventor
Akinori Yamamoto
Takuji Kume
Seiji Takubo
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2005070824A1 publication Critical patent/WO2005070824A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/80Phosgene

Definitions

  • the present invention relates to a method for producing carbonyl difluoride having a reduced metal content.
  • Carbonyl difluoride is a raw material for organic fluorine compounds
  • Patent Document 1 a method of reacting carbon dioxide gas and fluorine gas in a gas phase
  • Patent Document 2 a method of electrolytic fluorination of carbon monoxide
  • Patent Document 3 A method of fluorinating phosgene with hydrogen fluoride in the presence or a method of fluorinating phosgene with hydrogen fluoride in the presence of a solvent and triethylamine
  • Patent Document 4 A method of fluorinating with sodium fluoride in a solvent
  • Patent Document 5 A method in which phosgene is fluorinated in the gas phase with hydrogen fluoride over an activated carbon catalyst
  • Patent Document 5 a method in which fluorinated carbon monoxide is directly fluorinated with fluorine gas
  • Patent Document 7 Ru method tetrafluoropropoxy O b by reacting ethylene and oxygen difluoride carboxymethyl sulfonyl
  • Patent Literature 8 Patent Literature 9, and Patent Literature 10 describe tallying COF and gas containing COF.
  • metal difluoride production equipment is required to have pressure resistance and corrosion resistance.
  • the metal used include iron, copper, and alloys such as stainless steel, Hastelloy, Inconel, and Monel. Hastello In Ni-based alloys such as iron, monel, and inconel, a small amount of metal can be dissolved out depending on the operating conditions of power equipment, which is said to have high corrosion resistance, and can cause impurities in carbonyl difluoride. Iron and stainless steel are more likely.
  • the metal content in carbonyl difluoride depends on the material of the equipment and the metal content in the raw materials. Any metal is conceivable.
  • sodium, copper, etc. are one of the metals that must be prevented from being mixed most in semiconductors. Nevertheless, these patent documents do not describe a metal component. These metals need to be reduced in the production of semiconductors, for example, because they lead to a decrease in product yield and reliability.
  • Patent Document 1 JP-A-11-116216
  • Patent Document 2 Japanese Patent Publication No. 45-26611
  • Patent Document 3 JP-A-54-158396
  • Patent Document 4 US Patent 3088975
  • Patent Document 5 US Patent 2,866,622
  • Patent Document 6 EP0253527
  • Patent Document 7 US Patent 3639429
  • Patent Document 8 JP-A-10-223614
  • Patent Document 9 JP-A-2002-184765
  • Patent Document 10 JP 2002-158181A
  • Non-Patent Document 1 J. Amer.Chem.Soc., 91, 4432 (1969)
  • distillation requires a large amount of cost for equipment and operation of the equipment.
  • distilled COF is being stored in the storage tank, there is a possibility that metal may be mixed in the tank.
  • the liquefied COF is once vaporized and transferred to another container.
  • the pressure is once reduced by a pressure control valve and vaporized, and then it is transferred to another container.
  • a method of increasing the pressure with a compressor or the like, or a method of cooling a pressure vessel at a transfer destination is adopted.
  • these methods require equipment such as a compressor and a refrigerator, and the operation thereof is expensive.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the carbonyl difluoride stored in a liquid state was transferred as a fluid having a density of 0.7 g / cm 3 or less to transfer the carbonyl difluoride. It has been found that the metal content in carbonyl chloride can be reduced.
  • the present invention relates to the following method for producing carbon difluoride having a reduced metal content.
  • Reduced metal content characterized by transferring carbon difluoride containing metal components stored in liquid form in the supply side container to another container as a fluid with a density of 0.7 g / cm 3 or less Method for producing carbon difluoride.
  • the metal content contained in carbonyl difluoride can be removed by a simple method.
  • metals such as sodium and copper, which are problematic in the production of semiconductors, can be reduced to a level that does not adversely affect them, and the resulting carbon difluoride is used as a plasma cleaning gas for semiconductor production equipment. Useful.
  • FIG. 1 shows one embodiment of a carbonyl difluoride transfer system of the present invention.
  • FIG. 2 shows an embodiment of the carbonyl difluoride transfer system of the present invention.
  • FIG. 3 shows an embodiment of the carbonyl difluoride transfer system of the present invention.
  • the present invention can be implemented in various forms. For example, when transferring carbonyl difluoride obtained by a known method from a supply-side container (for example, a storage tank) to another container (a storage tank), or filling a supply-side container power cylinder, etc.
  • the method of the invention can be used.
  • a container for example, a cylinder
  • COF carbonyl difluoride
  • cylinders are shipped as products, and the transfer method of the present invention, which can remove metal components in products, can be preferably used.
  • the carbonyl difluoride in the supply container contains a metal component.
  • the total amount of metal components dissolved in carbon difluoride is usually 100000 ppb or more, especially 15 OOppb or higher.
  • the content of metals, such as sodium and copper, which have an adverse effect on semiconductor manufacturing, can be contained in the carbon difluoride in the supply container at about 5 ppb or more for sodium and about 10 ppb or more for copper.
  • the upper limit of the metal content is not particularly set V, but the metal content is particularly high! In such cases, the transfer rate of carbon difluoride is reduced, the density is reduced, the pressure is reduced, etc. Reduces the amount of dissolved metal and removes metals more efficiently.
  • the metal of the carbon difluoride after transfer is generally 500 ppb or less in total content, preferably
  • the content of metals, such as sodium and copper, after removal of metals that adversely affect semiconductor production is preferably 5 ppb or less for copper, and particularly preferably, the detection limit (lppb) or less for sodium, which is particularly preferable for sodium.
  • a COF gas can be suitably used as a cleaning gas for a semiconductor manufacturing chamber.
  • metals that can be contained in carbon difluoride include Al, Ca, Cr, Cu, Fe, Mn, Na, Ni, Zn, Ag, Au, Ba, and Bi. , Cd, Co, Ga, Ge, K :, Li, Ni, Pb
  • the material of the supply side container is usually a pressure-resistant metal container such as iron, copper, stainless steel! ⁇ ), Hastelloy, Inconel, Monel, etc. from the surface of this metal container, the metal dissolves in carbonyl fluoride. Therefore, the metal is mixed into the carbon difluoride.
  • the material of another container for example, storage tank II
  • a pressure-resistant metal container such as stainless steel (SUS), Hastelloy, iron or the like, or a fluorine resin.
  • the metal content dissolves in the COF, so the effect of metal removal is insufficient or negligible.
  • the state of the fluid depends on the density of the liquid, gas, critical state, and supercritical state. Density of the fluid is 0. 003-0. 7gZcm 3 preferably 0. 03-0. 7g More preferably ZCM 3 is 0. 1-0. 7gZcm 3. Density 0. 7gZcm 3 below fluid temperature is not particularly limited, when the supply side containers (e.g. below reservoir I) such as to transfer to another container (e.g., reservoir below [pi) is the fluid temperature ( The temperature of the storage tank I) is usually ⁇ 30 ° C. to 200 ° C., preferably ⁇ 20 ° C. to 180 ° C., and more preferably ⁇ 10 ° C. to 160 ° C. If the temperature is too low, cooling of Storage Tank II will be costly, and if the temperature is too high, there is a risk of corrosion of the storage tank and piping.
  • the temperature of the storage tank I is usually ⁇ 30 ° C. to 200 ° C., preferably ⁇ 20 ° C.
  • the pressure is preferably 1.2 MPa-lOMPa.
  • the density must be 0.7 g / cm 3 or less.
  • a preferred pressure range is 1.2-10 MPa, more preferably 1.5-8 MPa.
  • a detailed implementation method of the present invention includes the following method, but is not limited thereto.
  • the following method is used. Is possible. That is, as shown in FIG. 1, the gas phase portion of the storage tank I, the reservoir II while only passes the filter if necessary density 0. 7gZcm 3 following fluid through the pressure control valve and flow control valve or the like There is a way to transfer.
  • the temperature of the storage tank I may be lower than the critical temperature, but is generally about 40 ° C to 20 ° C, preferably about 30 ° C to 20 ° C.
  • the temperature of the storage tank II may be the same as or lower than the temperature of the storage tank I. In general, the temperature is about -60 ° C to 20 ° C, preferably about -50 ° C to 15 ° C.
  • the temperature difference between storage tank I and storage tank II is about 0-80 ° C, especially about 5-30 ° C, for example, about 10-25 ° C.
  • Density of the fluid is 0. 7gZcm 3 or less, preferably 0. 003-0. 7gZcm 3, more preferably 0. 03-0. 7gZcm 3 and more preferably 0. 1-0. 7gZcm 3. If the density of the fluid is too high, it will be difficult to remove the metal in carbonyl difluoride; if the density of the fluid is too low, a sufficient amount of Or it is necessary to compress carbon difluoride using a compressor or to make the temperature of another container much lower than the temperature of the supply side container. Become. [0021] Alternatively, as shown in FIG. 2, the tank II while passing a filter in accordance with density 0.
  • the temperature of the storage tank II does not depend on whether the temperature of the storage tank I is 15 ° C or more, and it is sufficient if the temperature of the storage tank is very low.
  • the storage tank I is heated to a critical temperature or higher.
  • the temperature of storage tank II does not necessarily need to be lower than storage tank I, and may be higher than storage tank I in some cases.
  • the temperature difference between the storage tanks I and II is 0-50 ° C, preferably 0-40 ° C, and more preferably 0-30 ° C.
  • the temperature difference between the storage tanks I and II is more than 0 and 50 ° C or less, preferably more than 0 and 30 ° C or less, more preferably more than 0 and 25 ° C or less. .
  • the following method is used for filling a product cylinder from the storage tank III.
  • the method shown in Fig. 1 to Fig. 3 is used to read tank I into tank m and tank ⁇ into cylinder, the method is almost the same, but there may be the following differences.
  • the filling amount in the cylinder is reduced.
  • the temperature of the reservoir - the illustrating a more specific way for example, if capacity of the reservoir III is a 10 m 3 difluoride carbonitrile If the temperature is raised to 30 ° C, a fluid with a density of 0.7 gZcm 3 can be obtained, and if the cylinder is kept at room temperature of about 20 ° C, it will be possible to fill with carbon difluoride at a density of at least 0.7 gZcm 3 Can be done. Further, the density of the fluid in the storage tank III is reduced by repeatedly filling, but by increasing the temperature of the storage tank III, the filling amount in the cylinder can be maintained.
  • the temperature of the 1S storage tank is generally 150 ° C or less is desirable.
  • there are methods as shown in Figs. In the methods shown in FIGS. 1 and 2, since the liquid is separated into a liquid phase and a gas phase, the temperature is lower than the critical temperature, and the pressure is lower than the critical pressure. With the method in Fig. 3, it is possible to raise the pressure above the critical pressure by raising the supply side vessel above room temperature. The higher the pressure on the feed side, the greater the amount of carbonyl difluoride that can be transferred or filled into the cylinder.
  • the temperature higher than room temperature refers to a temperature higher than about 20 ° C. which is near the critical temperature of carbon difluoride, and more preferably higher than about 23 ° C. which is higher than the critical temperature.
  • the filter is usually 200 ⁇ m-0.1 ⁇ m.
  • the target value of the metal content after removing the force, the quality of the filter, the density of the fluid, the temperature of the supply side container, etc. It can be changed as appropriate.
  • cylinder refers to a large pressure vessel such as 500 L or 1000 L in addition to a small pressure vessel such as 5 L, 10 L, or 47 L.
  • the metals to be removed include transition metal power, alkali metal, alkaline earth metal, anoreminidium, gallium, indium, thallium, genolemanium, tin, lead, arsenic, antimony, bismuth, and selenium, as described in the periodic table. , Tellurium, and polonium.
  • transition metals include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, lutetium, rhodium, palladium, silver, Indicates cadmium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, and lanthanides and actinides.
  • Alkali metals include lithium, sodium, potassium, rubidium, cesium, francium, and alkaline earth metals include beryllium, magnesium, calcium, strontium, norium, and radium. Show.
  • Al, Ca, Cr, Cu, Fe, Mn, Na, Ni, Zn, Ag, Au, Ba, Bi, Cd, Co, Ga, Ge, K Assess the degree of metal removal by calculating the contents of Li, Ni, Pb, Sb, Sn, Sr and Tl.
  • the metals analyzed in the examples are Al, Ca, Cr, Cu, Fe, Mn, Na, Ni, Zn, Ag, Au, Ba, Bi, Cd, Co, Ga, Ge, K: only Li, Ni, Pb, Sb, Sn, Sr and Tl, indium, arsenic, selenium, tellurium, polonium, scandium, titanium, nonadium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium , Palladium, tantalum, tungsten, rhenium, osmium, iridium, platinum, mercury, lanthanoids, actinoids, rubidium, cesium, francium, beryllium, magnesium, and radium are exemplified by the above metals. It is not based.
  • alkali metals especially sodium
  • copper are metals that have an adverse effect on the manufacture of semiconductor devices, and thus are preferably reduced to 5 ppb or less, preferably to the detection limit or less.
  • iron, nickel, chromium, etc. are metals that dissolve into carbon difluoride from stainless steel containers, and it is important to reduce them.
  • Ultrapure water is introduced into the lower part of the stainless steel pressure vessel storing COF via a valve.
  • the density of the liquid was 0.8 gZcm 3 .
  • the density of the fluid was 0.5 gZcm 3 .
  • carbonyl difluoride having a reduced metal content is removed by a simple method. can do.
  • carbonyl difluoride having a reduced content of sodium and copper is useful as a plasma cleaning gas for semiconductor manufacturing equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A method for producing a carbonyl difluoride wherein the metal content is reduced is characterized in that a carbonyl difluoride containing a metal component which has been stored in the liquid state in a container on the supply side is transferred to another container in the form of a fluid having a density of 0.7 g/cm3 or less.

Description

明 細 書  Specification
二フッ化カルボニルの精製方法  Purification method of carbonyl difluoride
技術分野  Technical field
[0001] 本発明は、金属含量が低減された二フッ化カルボニルの製造方法に関する。  The present invention relates to a method for producing carbonyl difluoride having a reduced metal content.
背景技術  Background art
[0002] 二フッ化カルボニル (COF )は、有機フッ素化合物の原料、半導体製造時のタリー  [0002] Carbonyl difluoride (COF) is a raw material for organic fluorine compounds,
2  2
ニングガスなどの用途があり、有用な物質である。  It is a useful substance that has applications such as lining gas.
[0003] 二フッ化カルボニルの製造方法としては、炭酸ガスとフッ素ガスとを気相で反応させ る方法 (特許文献 1)、一酸化炭素の電解フッ素化による方法 (特許文献 2)、溶媒存 在下ホスゲンをフッ化水素によりフッ素化する方法或いは溶媒およびトリェチルァミン 存在下フッ化水素によりホスゲンをフッ素化する方法 (特許文献 3)、溶媒中でフッ化 ナトリウムによりフッ素化する方法 (特許文献 4)、ホスゲンを気相で活性炭触媒にてフ ッ化水素によりフッ素化する方法 (特許文献 5)、一酸ィ匕炭素をフッ素ガスにより直接 フッ素化する方法 (非特許文献 1)、ホスゲンを気相で無機フッ化物と接触させ、その 後気相で活性炭と接触させてホスゲンと塩ィ匕フッ化カルボニルを得た後、塩ィ匕フッ化 カルボニルを分離し、これを気相で活性炭と接触させ、二フッ化カルボニルを得る方 法 (特許文献 6)、テトラフルォロエチレンと酸素とを反応させ二フッ化カルボ二ルを得 る方法 (特許文献 7)などが報告されている。しかし、何れの報告にも金属分の含有量 や低減方法への言及は一切無 、。  [0003] As a method for producing carbonyl difluoride, a method of reacting carbon dioxide gas and fluorine gas in a gas phase (Patent Document 1), a method of electrolytic fluorination of carbon monoxide (Patent Document 2), A method of fluorinating phosgene with hydrogen fluoride in the presence or a method of fluorinating phosgene with hydrogen fluoride in the presence of a solvent and triethylamine (Patent Document 3), a method of fluorinating with sodium fluoride in a solvent (Patent Document 4), A method in which phosgene is fluorinated in the gas phase with hydrogen fluoride over an activated carbon catalyst (Patent Document 5), a method in which fluorinated carbon monoxide is directly fluorinated with fluorine gas (Non-patent Document 1), After contacting with an inorganic fluoride and then in the gas phase with activated carbon to obtain phosgene and carbonyl chloride, the carbonyl chloride is separated and contacted with activated carbon in the gas phase So, method who obtain carbonyl difluoride (Patent Document 6), etc. to give Ru method tetrafluoropropoxy O b by reacting ethylene and oxygen difluoride carboxymethyl sulfonyl (Patent Document 7) have been reported. However, none of the reports mention the content of metals or the method of reducing them.
[0004] 特許文献 8、特許文献 9および特許文献 10には COFや COFを含むガスをタリー  [0004] Patent Literature 8, Patent Literature 9, and Patent Literature 10 describe tallying COF and gas containing COF.
2 2  twenty two
ユングガスとして利用することが開示されている。しかし、金属分の含有量やその低 減方法にっ 、ての言及は一切無 、。  It is disclosed to be used as Jung gas. However, there is no mention of the metal content and the method of reducing it.
[0005] 二フッ化カルボ-ルは、従来のクリーニングガス(C F、 CF、 NF )とは異なり、非  [0005] Unlike conventional cleaning gases (CF, CF, NF), carbon difluoride is non-
2 6 4 3  2 6 4 3
常に反応性や腐食性が高ぐ特に水分が微量でも存在した場合は、簡単に COと H  The reactivity and corrosiveness are always high.
2 2
Fに分解し、金属を侵すことがある。一般的に、二フッ化カルボ-ルの製造設備は、 耐圧性と耐腐食性が要求されるため、金属製の材質を用いる。用いられる金属として は、鉄、銅の他ステンレス、ハステロイ、インコネル、モネル等の合金がある。ハステロ ィ、モネル、インコネルといった Ni系合金は、耐食性が高いといわれている力 設備 の運転条件によっては微量の金属分が溶け出し、二フッ化カルボニルの不純物の原 因となり得る。鉄やステンレスは、その可能性がより高くなる。二フッ化カルボニルに 含まれる金属分は、設備の材質や原料中の金属分にも依るが、例えば材質がステン レスであれば、鉄、ニッケル、クロムが多いと考えられ、微量混入する金属としてあら ゆる金属が考えられる。一方で、ナトリウム、銅などは、半導体においては最も混入を 防がなければならない金属の一つである。にもかかわらず、これらの特許文献には、 金属成分についての記述はなされていない。これらの金属分は、半導体製造時など では、製品の歩留まりや信頼性の低下に繋がるため、低減される必要がある。 Decomposes into F and may attack metals. In general, metal difluoride production equipment is required to have pressure resistance and corrosion resistance. Examples of the metal used include iron, copper, and alloys such as stainless steel, Hastelloy, Inconel, and Monel. Hastello In Ni-based alloys such as iron, monel, and inconel, a small amount of metal can be dissolved out depending on the operating conditions of power equipment, which is said to have high corrosion resistance, and can cause impurities in carbonyl difluoride. Iron and stainless steel are more likely. The metal content in carbonyl difluoride depends on the material of the equipment and the metal content in the raw materials. Any metal is conceivable. On the other hand, sodium, copper, etc. are one of the metals that must be prevented from being mixed most in semiconductors. Nevertheless, these patent documents do not describe a metal component. These metals need to be reduced in the production of semiconductors, for example, because they lead to a decrease in product yield and reliability.
特許文献 1 :特開平 11— 116216号公報  Patent Document 1: JP-A-11-116216
特許文献 2:特公昭 45— 26611号公報  Patent Document 2: Japanese Patent Publication No. 45-26611
特許文献 3 :特開昭 54- 158396号公報  Patent Document 3: JP-A-54-158396
特許文献 4:米国特許 3088975  Patent Document 4: US Patent 3088975
特許文献 5:米国特許 2836622  Patent Document 5: US Patent 2,866,622
特許文献 6 :EP0253527  Patent Document 6: EP0253527
特許文献 7:米国特許 3639429  Patent Document 7: US Patent 3639429
特許文献 8:特開平 10— 223614  Patent Document 8: JP-A-10-223614
特許文献 9:特開 2002— 184765  Patent Document 9: JP-A-2002-184765
特許文献 10 :特開 2002 - 158181  Patent Document 10: JP 2002-158181A
非特許文献 1 :J. Amer. Chem. Soc. , 91, 4432 (1969)  Non-Patent Document 1: J. Amer.Chem.Soc., 91, 4432 (1969)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] これら金属の除去方法としては、蒸留やより簡便な方法としては、液化した COFを [0006] These metals can be removed by distillation or, more simply, by liquefied COF.
2 一旦気化させ、別の容器に移送する方法が可能である。  2 It is possible to vaporize once and transfer it to another container.
[0007] しかし、蒸留は設備や設備の運転に多額の費用が必要となる。また、蒸留した CO Fを貯槽に貯蔵している間にも金属分が混入する可能性があり、その様な場合は再[0007] However, distillation requires a large amount of cost for equipment and operation of the equipment. In addition, while the distilled COF is being stored in the storage tank, there is a possibility that metal may be mixed in the tank.
2 2
度蒸留する必要がある。また、液化した COFを一旦気化させ、別の容器に移送する  Need to be distilled. In addition, the liquefied COF is once vaporized and transferred to another container.
2  2
方法では、まず、圧力調節弁などで一旦圧力を低下させ気化させた後、別の容器に 圧縮機などで昇圧する方法、或 、は移送先の圧力容器を冷却する方法などが採ら れている。しかし、これらの方法では、圧縮機や冷凍機などの設備が必要で、これら の運転に費用がかかる。また、圧縮機を用いると、 COFが摺動部と接触するため金 In the method, first, the pressure is once reduced by a pressure control valve and vaporized, and then it is transferred to another container. A method of increasing the pressure with a compressor or the like, or a method of cooling a pressure vessel at a transfer destination is adopted. However, these methods require equipment such as a compressor and a refrigerator, and the operation thereof is expensive. Also, if a compressor is used, the COF contacts
2  2
属分ゃパーティクルなどの不純物が混入する可能性が極めて高い。一方、冷凍機で 移送先の容器を冷却する場合、移送先の容器がボンベなどであると、ボンべを冷却 しながら COFを計量し充填することになるため、その設備に多大なコストがかかる。  There is a very high possibility that impurities such as genus particles are mixed. On the other hand, when cooling the container at the transfer destination with a refrigerator, if the transfer destination container is a cylinder, etc., the COF will be measured and filled while cooling the cylinder. .
2  2
[0008] この様に、金属分の少な 、二フッ化カルボニルはこれまで言及されたことが無く、従 つて、その金属分の除去に関する精製方法についても開示された技術は無い。また 、一般的な精製方法では、コストがかかるため、より簡便な方法での精製方法が望ま れている。  [0008] As described above, carbonyl difluoride containing a small amount of metal has not been mentioned before, and therefore, there is no disclosed technique regarding a purification method for removing the metal. In addition, since a general purification method is costly, a simpler purification method is desired.
課題を解決するための手段  Means for solving the problem
[0009] そこで本発明者らは、上記課題を解決すべく鋭意検討を行った結果、液状で貯蔵 された二フッ化カルボニルを密度 0.7g/cm3以下の流体にして移送することによりニフ ッ化カルボニル中の金属分を低減できることを見出した。 [0009] The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the carbonyl difluoride stored in a liquid state was transferred as a fluid having a density of 0.7 g / cm 3 or less to transfer the carbonyl difluoride. It has been found that the metal content in carbonyl chloride can be reduced.
[0010] 本発明は、以下の金属含量が低減された二フッ化カルボ-ルの製造方法に関する [0010] The present invention relates to the following method for producing carbon difluoride having a reduced metal content.
1. 供給側容器に液状で貯蔵された金属成分を含む二フッ化カルボ-ルを密度 0.7g/cm3以下の流体として別の容器に移送することを特徴とする金属含量が低減さ れたニフッ化カルボ-ルの製造方法。 1. Reduced metal content characterized by transferring carbon difluoride containing metal components stored in liquid form in the supply side container to another container as a fluid with a density of 0.7 g / cm 3 or less Method for producing carbon difluoride.
2. 密度 0.7g/cm3以下の前記流体の移送をフィルターを通過させながら行うことを特 徴とする項 1に記載の方法。 2. The method according to item 1, wherein the transfer of the fluid having a density of 0.7 g / cm 3 or less is performed while passing through a filter.
3. 供給側容器の温度を室温(20°C)より高!、温度にしながら前記流体の移送を行 う項 1または 2に記載の方法。  3. The method according to item 1 or 2, wherein the fluid is transferred while keeping the temperature of the supply side container higher than room temperature (20 ° C).
4. 二フッ化カルボニルを充填する別の容器を冷却しながら前記流体の移送を行う 項 1一 3のいずれかに記載の方法。  4. The method according to any one of Items 1 to 3, wherein the fluid is transferred while cooling another container filled with carbonyl difluoride.
5. 移送前の二フッ化カルボ-ルの金属含量が lOOOppb以上であり、移送後の二 フッ化カルボ-ルの金属含量が 500ppb以下である項 1一 4のいずれかに記載の方 法。 6.移送された二フッ化カルボニル中のナトリウムが検出限界以下である半導体製造 用の項 1一 5の!、ずれかに記載の二フッ化カルボ-ルの製造方法。 5. The method according to any one of Items 14 to 14, wherein the metal content of the carbon difluoride before transfer is 100 ppb or more and the metal content of the carbon difluoride after transfer is 500 ppb or less. 6. The method for producing carboyl difluoride described in the item [1] or [1] of [1]-[5] for the production of semiconductors in which sodium in the transferred carbonyl difluoride is below the detection limit.
7.移送された二フッ化カルボニル中の銅が 5ppb以下である半導体製造用の請求 項 1一 5のいずれかに記載の二フッ化カルボ-ルの製造方法。  7. The method for producing carbon difluoride according to any one of claims 15 to 15, wherein the transferred carbonyl difluoride has a copper content of 5 ppb or less for semiconductor production.
8. 別の容器がボンベである項 1一 7のいずれかに記載の方法。  8. The method according to any one of Items 1 to 7, wherein the other container is a cylinder.
発明の効果  The invention's effect
[0011] 本発明によれば、二フッ化カルボニル中に含まれる金属含有量を簡便な方法で除 去することができる。特にナトリウム、銅などの半導体製造時に問題となる金属を悪影 響を与えな ヽレベル以下に低減することができ、得られた二フッ化カルボ二ルは半導 体製造装置のプラズマクリーニングガスとして有用である。  According to the present invention, the metal content contained in carbonyl difluoride can be removed by a simple method. Particularly, metals such as sodium and copper, which are problematic in the production of semiconductors, can be reduced to a level that does not adversely affect them, and the resulting carbon difluoride is used as a plasma cleaning gas for semiconductor production equipment. Useful.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の二フッ化カルボニルの移送システムの 1実施形態を示す。  FIG. 1 shows one embodiment of a carbonyl difluoride transfer system of the present invention.
[図 2]本発明の二フッ化カルボニルの移送システムの 1実施形態を示す。  FIG. 2 shows an embodiment of the carbonyl difluoride transfer system of the present invention.
[図 3]本発明の二フッ化カルボニルの移送システムの 1実施形態を示す。  FIG. 3 shows an embodiment of the carbonyl difluoride transfer system of the present invention.
符号の説明  Explanation of symbols
[0013] A:気相 [0013] A: Gas phase
B :液相  B: liquid phase
C :臨界又は超臨界流体  C: Critical or supercritical fluid
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明は、様々な形態で実施できる。例えば、既知の方法で得られた二フッ化カル ボニルを、供給側の容器 (例えば貯槽)から別の容器 (貯槽)に移送する際や、供給 側容器力 ボンベに充填する際などに、本発明の方法を利用することが出来る。特 に、供給側容器力も COFを使用する容器 (例えばボンべ)に移送する際には、当該 [0014] The present invention can be implemented in various forms. For example, when transferring carbonyl difluoride obtained by a known method from a supply-side container (for example, a storage tank) to another container (a storage tank), or filling a supply-side container power cylinder, etc. The method of the invention can be used. In particular, when transferring the supply-side container force to a container (for example, a cylinder) that uses COF,
2  2
ボンべは製品として出荷される場合が多ぐ製品中の金属分を除去できる本発明の 移送方法が好ましく利用できる。  In many cases, cylinders are shipped as products, and the transfer method of the present invention, which can remove metal components in products, can be preferably used.
供給側容器 (貯蔵容器)中の二フッ化カルボニルは金属成分を含むものである。ニフ ッ化カルボ-ル中に溶解した金属成分は、総含有量で通常 lOOOppb以上、特に 15 OOppb以上である。半導体製造に悪影響を及ぼす金属、例えば、ナトリウムや銅の 含有量は、ナトリウムに関しては 5ppb程度以上、銅に関しては lOppb程度以上供給 側容器中の二フッ化カルボ-ルに含まれ得る。金属含有量の上限は特に設定されな V、が、金属含有量が特に多!、場合には二フッ化カルボ-ルの移送速度を低下させる 、密度を下げる、圧力を下げるなどにより流体中の金属溶解量を低下させ、金属除去 をより効率的に行う。 The carbonyl difluoride in the supply container (storage container) contains a metal component. The total amount of metal components dissolved in carbon difluoride is usually 100000 ppb or more, especially 15 OOppb or higher. The content of metals, such as sodium and copper, which have an adverse effect on semiconductor manufacturing, can be contained in the carbon difluoride in the supply container at about 5 ppb or more for sodium and about 10 ppb or more for copper. The upper limit of the metal content is not particularly set V, but the metal content is particularly high! In such cases, the transfer rate of carbon difluoride is reduced, the density is reduced, the pressure is reduced, etc. Reduces the amount of dissolved metal and removes metals more efficiently.
[0015] 移送後の二フッ化カルボ-ルの金属は、総含有量で通常 500ppb以下、好ましくは  [0015] The metal of the carbon difluoride after transfer is generally 500 ppb or less in total content, preferably
450ppb以下、更に好ましくは 400ppb以下である。半導体製造に悪影響を及ぼす 金属、例えば、ナトリウムや銅の金属除去後の含有量は、銅に関しては 5ppb以下が 特に好ましぐナトリウムに関しては検出限界(lppb)以下が特に好ましい。このような COFガスは、半導体製造用チャンバのクリーニングガスとして好適に使用できる。  It is 450 ppb or less, more preferably 400 ppb or less. The content of metals, such as sodium and copper, after removal of metals that adversely affect semiconductor production is preferably 5 ppb or less for copper, and particularly preferably, the detection limit (lppb) or less for sodium, which is particularly preferable for sodium. Such a COF gas can be suitably used as a cleaning gas for a semiconductor manufacturing chamber.
2  2
[0016] なお、本明細書において、二フッ化カルボ-ル中に含まれ得る金属は、 Al、 Ca、 C r、 Cu、 Fe、 Mn、 Na、 Ni、 Zn、 Ag、 Au、 Ba、 Bi、 Cd、 Co、 Ga、 Ge、 K:、 Li、 Ni、 Pb In the present specification, metals that can be contained in carbon difluoride include Al, Ca, Cr, Cu, Fe, Mn, Na, Ni, Zn, Ag, Au, Ba, and Bi. , Cd, Co, Ga, Ge, K :, Li, Ni, Pb
、 Sb、 Sn、 Srおよび Tl力 なり、金属の総量 (金属含量、金属分など)とはこれらの金 属の合計量を意味する。また、検出限界以下の金属量は 0として計算する。上記以 外の金属は、二フッ化カルボ-ルに含まれ得る力 本明細書における金属総含有量 にはカウントな 、し考慮されな 、。 , Sb, Sn, Sr and Tl forces, and the total amount of metals (metal content, metal content, etc.) means the total amount of these metals. Calculate the amount of metal below the detection limit as 0. Metals other than the above may be included or excluded from the total metal content in the present specification.
供給側容器の材質は、通常鉄、銅の他、ステンレス !^)、ハステロイ、インコネル、 モネル等などの耐圧性の金属容器であり、この金属容器の表面から、金属がニフッ 化カルボニルに溶解するため、二フッ化カルボ-ル中に金属が混入することになる。 また、二フッ化カルボ-ルが移送される別の容器 (例えば貯槽 II)の材質は、通常ステ ンレス(SUS)、ハステロイ、鉄などの耐圧性の金属容器あるいはフッ素榭脂であり、 別の容器がステンレス等の金属製の容器の場合には、移送'充填後、 1週間以内に 使用するか、上記方法で再び移送されるのが好まし 、。  The material of the supply side container is usually a pressure-resistant metal container such as iron, copper, stainless steel! ^), Hastelloy, Inconel, Monel, etc. from the surface of this metal container, the metal dissolves in carbonyl fluoride. Therefore, the metal is mixed into the carbon difluoride. In addition, the material of another container (for example, storage tank II) to which carbon difluoride is transferred is usually a pressure-resistant metal container such as stainless steel (SUS), Hastelloy, iron or the like, or a fluorine resin. When the container is made of a metal such as stainless steel, it is preferable that the container be used within one week after the transfer and filling or be transferred again by the above method.
[0017] 移送される流体の密度は 0. 7gZcm3以下であれば金属分の除去が可能である。 [0017] Density of the fluid to be transported is possible to remove the metal content as long 0. 7gZcm 3 below.
それを超えると金属分が COFに溶解するため金属分除去の効果は不十分または無  Beyond that, the metal content dissolves in the COF, so the effect of metal removal is insufficient or negligible.
2  2
い。流体の状態は、液状態、ガス状態、臨界状態、超臨界状態の何れの状態でも良 ぐ密度に依存する。流体の密度は 0. 003—0. 7gZcm3好ましくは 0. 03-0. 7g Zcm3より好ましくは 0. 1-0. 7gZcm3である。密度 0. 7gZcm3以下の流体の温度 は、特に限定されないが、供給側容器 (例えば後述の貯槽 I)から別の容器 (例えば 後述の貯槽 Π)に移送する様な場合は、流体の温度 (貯槽 Iの温度)は通常 - 30°C— 200°Cが採用され、好ましくは— 20°C— 180°C、より好ましくは— 10°C— 160°Cがよい 。温度が低すぎると貯槽 IIの冷却にコストがかかり、温度が高すぎると、貯槽ゃ配管の 腐食の恐れが生じる。 Yes. The state of the fluid depends on the density of the liquid, gas, critical state, and supercritical state. Density of the fluid is 0. 003-0. 7gZcm 3 preferably 0. 03-0. 7g More preferably ZCM 3 is 0. 1-0. 7gZcm 3. Density 0. 7gZcm 3 below fluid temperature is not particularly limited, when the supply side containers (e.g. below reservoir I) such as to transfer to another container (e.g., reservoir below [pi) is the fluid temperature ( The temperature of the storage tank I) is usually −30 ° C. to 200 ° C., preferably −20 ° C. to 180 ° C., and more preferably −10 ° C. to 160 ° C. If the temperature is too low, cooling of Storage Tank II will be costly, and if the temperature is too high, there is a risk of corrosion of the storage tank and piping.
圧力は、 1. 2MPa— lOMPaが好ましい。ただし、密度は 0. 7g/cm3以下であること が必要である。これより低い圧力でも金属分の除去効果は得られるが、生産性を考え ると 1. 2MPa以上が好ましぐまた貯槽等圧力容器の耐圧を考えると lOMPa以下が 適当である。好ましい圧力範囲は、 1. 2— 10MPa、より好ましくは 1. 5— 8MPaであ る。 The pressure is preferably 1.2 MPa-lOMPa. However, the density must be 0.7 g / cm 3 or less. Although the effect of removing metal can be obtained with a pressure lower than this, considering the productivity, 1.2 MPa or more is preferable, and considering the pressure resistance of pressure vessels such as storage tanks, lOMPa or less is appropriate. A preferred pressure range is 1.2-10 MPa, more preferably 1.5-8 MPa.
[0018] 本発明の詳細な実施方法としては、次のような方法があるが、これに限られるもので はない。例えば、蒸留等により得られた二フッ化カルボニルが貯蔵された貯槽 1 (例え ば蒸留等の受器)から次の貯槽 II (例えば計量槽、製品貯槽)に移送する際に次のよ うな方法が可能である。即ち、図 1に示すように、貯槽 Iの気相部から、圧力調整弁や 流量調整弁等を介して密度 0. 7gZcm3以下の流体を必要に応じてフィルターを通 過させながら貯槽 IIに移送する方法がある。 [0018] A detailed implementation method of the present invention includes the following method, but is not limited thereto. For example, when transferring carbonyl difluoride obtained by distillation or the like from storage tank 1 (for example, a receiver for distillation or the like) to the next storage tank II (for example, a measuring tank or product storage tank), the following method is used. Is possible. That is, as shown in FIG. 1, the gas phase portion of the storage tank I, the reservoir II while only passes the filter if necessary density 0. 7gZcm 3 following fluid through the pressure control valve and flow control valve or the like There is a way to transfer.
[0019] この時の、貯槽 Iの温度は臨界温度以下であれば良いが、一般的には 40°C— 20 °C程度、好ましくは 30°C— 20°C程度である。貯槽 IIの温度は、貯槽 Iの温度と同じ か低ければ良いが、一般的には、 -60°C— 20°C程度、好ましくは— 50°C— 15°C程 度が適当である。また、貯槽 Iと貯槽 IIの温度差は、 0— 80°C程度、特に 5— 30°C程 度、例えば 10— 25°C程度である。  [0019] At this time, the temperature of the storage tank I may be lower than the critical temperature, but is generally about 40 ° C to 20 ° C, preferably about 30 ° C to 20 ° C. The temperature of the storage tank II may be the same as or lower than the temperature of the storage tank I. In general, the temperature is about -60 ° C to 20 ° C, preferably about -50 ° C to 15 ° C. The temperature difference between storage tank I and storage tank II is about 0-80 ° C, especially about 5-30 ° C, for example, about 10-25 ° C.
[0020] 流体の密度は 0. 7gZcm3以下、好ましくは 0. 003—0. 7gZcm3、より好ましくは 0. 03-0. 7gZcm3更に好ましくは 0. 1-0. 7gZcm3である。流体の密度が高す ぎると二フッ化カルボニル中の金属の除去が困難になり、流体の密度が低すぎると、 流体を供給する別の容器 (例えば貯槽 II)に十分な量の二フッ化カルボ-ルを充填 することが困難になるか、二フッ化カルボ-ルを圧縮機等を用いて圧縮するか、別の 容器の温度を供給側容器の温度よりも大きく低下させる必要が生じることになる。 [0021] 或いは図 2に示す様に、貯槽 Iの液相部から圧力調整弁や流量調整弁を介して密 度 0. 7gZcm3以下の流体を必要に応じてフィルターを通過させながら貯槽 IIに移送 する方法がある。この時の貯槽 Iの温度は、 15°C以上から臨界温度までであれば液 体の密度は 0. 7gZcm3以下(GAS DATA HANDBOOK MATHESON)と なり、必要に応じ圧力調整弁や流量調整弁、フィルターを介して貯槽 Πに移送される 。 15°Cより低い場合、圧力によっては液体の密度が 0. 7gZcm3より高くなることがあ るため、圧力調整弁や流量調整弁で圧力を低下させ密度を 0. 7gZcm3以下にした 後必要に応じてフィルターを通して貯槽 IIに移送する方法がある。この時の貯槽 IIの 温度は、貯槽 Iの温度が 15°C以上であるかそれより低いかには依存せず、貯槽はり 低い温度であれば良い。或いは、図 3に示すように、予め流体の密度が 0. 7g/cm3 以下になるように貯槽 Iの COFの重量を調整した後、貯槽 Iを臨界温度以上にして、 [0020] Density of the fluid is 0. 7gZcm 3 or less, preferably 0. 003-0. 7gZcm 3, more preferably 0. 03-0. 7gZcm 3 and more preferably 0. 1-0. 7gZcm 3. If the density of the fluid is too high, it will be difficult to remove the metal in carbonyl difluoride; if the density of the fluid is too low, a sufficient amount of Or it is necessary to compress carbon difluoride using a compressor or to make the temperature of another container much lower than the temperature of the supply side container. Become. [0021] Alternatively, as shown in FIG. 2, the tank II while passing a filter in accordance with density 0. 7gZcm 3 following fluid required via the pressure control valve and flow control valve from the liquid phase portion of the storage tank I There is a method of transport. Temperature at this time the tank I is, 15 ° if the above C to the critical temperature the density of the liquid body 0. 7gZcm 3 below (GAS DATA HANDBOOK MATHESON) and becomes a pressure regulating valve and flow control valve as required, It is transferred to storage tank 介 through the filter. If less than 15 ° C, required after the 0. 7gZcm 3 below density reduces the pressure in Kotogaa because the pressure regulating valve and flow control valve which density of the liquid is higher than 0. 7gZcm 3 by pressure There is a method of transferring to storage tank II through a filter according to the conditions. At this time, the temperature of the storage tank II does not depend on whether the temperature of the storage tank I is 15 ° C or more, and it is sufficient if the temperature of the storage tank is very low. Alternatively, as shown in FIG. 3, after previously adjusting the weight of the COF of the storage tank I so that the density of the fluid is 0.7 g / cm 3 or less, the storage tank I is heated to a critical temperature or higher.
2  2
圧力調整弁や流量調整弁を介し、必要に応じてフィルターを通して貯槽 Πに移送す る方法がある。この時の貯槽 IIの温度は、必ずしも貯槽 Iより低い温度である必要は無 ぐ貯槽 Iより高い温度でも良い場合もある。この時の貯槽 Iと貯槽 IIの温度差は 0— 50 °C、好ましくは 0— 40°C、更に好ましくは 0— 30°Cである。また、貯槽 Iより低い温度に する場合は、貯槽 Iと貯槽 IIの温度差は 0より大きく 50°C以下好ましくは 0より大きく 30 °C以下、更に好ましくは 0より大きく 25°C以下である。  There is a method of transferring to storage tank を 通 し て through a filter as needed through a pressure control valve or a flow control valve. At this time, the temperature of storage tank II does not necessarily need to be lower than storage tank I, and may be higher than storage tank I in some cases. At this time, the temperature difference between the storage tanks I and II is 0-50 ° C, preferably 0-40 ° C, and more preferably 0-30 ° C. When the temperature is lower than the storage tank I, the temperature difference between the storage tanks I and II is more than 0 and 50 ° C or less, preferably more than 0 and 30 ° C or less, more preferably more than 0 and 25 ° C or less. .
[0022] また、例えば、貯槽 IIIから製品用ボンベに充填する際は次のような方法がある。即 ち、図 1から図 3に示す方法で、貯槽 Iを貯槽 mに貯槽 Πをボンベに読みカゝえれば概 ね同じ方法であるが、次のような違いがある場合もある。例えば、ボンベに充填する 場合は、図 1から図 3に示す方法では、パーティクルの除去を目的に、フィルターを通 す事が望まれる。また、図 1および図 2に示す方法では、ボンべを貯槽 IIIより低い温 度にしなければ、ボンベへの充填量が少なくなる。一方でボンべを冷却しながら充填 するには、経済的とは言えないが、ボンべを恒温槽に入れたり、冷却用のジャケットを 取りつけたり、充填場を冷凍庫内に設ける等の方法で冷却することができる。図 3に 示す方法では、貯槽 IIIの温度を室温より高くする事により、ボンベの冷却の必要がな くなり、室温での充填が可能となる。より具体的な方法を示すと、例えば、貯槽 IIIの容 量が 10m3であれば二フッ化カルボ-ルを 7000kg貯槽 IIIに溜め、貯槽の温度を例え ば 30°Cに上げれば密度 0. 7gZcm3の流体が得られ、ボンべを室温の約 20°Cにし ておけば、少なくとも 0. 7gZcm3の密度で二フッ化カルボ-ルを充填する事ができ る。更に、充填を重ねる事により貯槽 IIIの流体の密度が低下するが、貯槽 IIIの温度を 上げる事により、ボンベへの充填量を保つ事ができる。また貯槽 IIIの密度の低下は 金属分の低減効果には影響が無く温度の上昇も金属分の低減効果には影響が無い 1S 貯槽の温度は、貯槽の耐圧等を考えると一般的には 150°C以下が望ましい。 上記のように図 1から図 3に示すような方法がある。図 1、図 2の方法では液相、気相 に分かれる状態であるので、温度は臨界温度より低くなり、圧力も臨界圧力より低い 圧力になる。図 3の方法で、供給側の容器を室温より高くする事により、圧力を臨界 圧力より高い圧力にする事が可能である。供給側の圧力が高い方がより多くの量の 二フッ化カルボニルを移送したりボンベへ充填することができる。従って、図 3の方法 が図 1や図 2の方法に比較して、より有利な方法といえる。ここで、室温より高い温度 とは、二フッ化カルボ-ルの臨界温度近傍である約 20°Cより高い温度、より好ましく は、臨界温度を超える約 23°Cより高い温度を指す。 [0022] Further, for example, the following method is used for filling a product cylinder from the storage tank III. In other words, if the method shown in Fig. 1 to Fig. 3 is used to read tank I into tank m and tank Π into cylinder, the method is almost the same, but there may be the following differences. For example, when filling a cylinder, it is desirable to pass through a filter in order to remove particles in the method shown in Figs. In addition, in the methods shown in FIGS. 1 and 2, unless the temperature of the cylinder is lower than that of the storage tank III, the filling amount in the cylinder is reduced. On the other hand, it is not economical to fill cylinders while cooling them, but it is not economical to cool cylinders by placing them in a thermostat, attaching a cooling jacket, or setting up a filling area in a freezer. can do. In the method shown in Fig. 3, by setting the temperature of storage tank III higher than room temperature, cooling of the cylinder is not required, and filling at room temperature becomes possible. For example pooled Le to 7000kg tank III, the temperature of the reservoir - the illustrating a more specific way, for example, if capacity of the reservoir III is a 10 m 3 difluoride carbonitrile If the temperature is raised to 30 ° C, a fluid with a density of 0.7 gZcm 3 can be obtained, and if the cylinder is kept at room temperature of about 20 ° C, it will be possible to fill with carbon difluoride at a density of at least 0.7 gZcm 3 Can be done. Further, the density of the fluid in the storage tank III is reduced by repeatedly filling, but by increasing the temperature of the storage tank III, the filling amount in the cylinder can be maintained. In addition, a decrease in the density of storage tank III has no effect on the effect of reducing the metal content, and an increase in the temperature does not affect the effect of reducing the metal content. The temperature of the 1S storage tank is generally 150 ° C or less is desirable. As described above, there are methods as shown in Figs. In the methods shown in FIGS. 1 and 2, since the liquid is separated into a liquid phase and a gas phase, the temperature is lower than the critical temperature, and the pressure is lower than the critical pressure. With the method in Fig. 3, it is possible to raise the pressure above the critical pressure by raising the supply side vessel above room temperature. The higher the pressure on the feed side, the greater the amount of carbonyl difluoride that can be transferred or filled into the cylinder. Therefore, it can be said that the method of FIG. 3 is more advantageous than the methods of FIGS. 1 and 2. Here, the temperature higher than room temperature refers to a temperature higher than about 20 ° C. which is near the critical temperature of carbon difluoride, and more preferably higher than about 23 ° C. which is higher than the critical temperature.
[0023] フィルタ一は、通常 200 μ m— 0. 1 μ mのものが使われる力 除去後の金属含量の 目標値、フィルターの品質、流体の密度や供給側容器の温度などの移送条件に応じ て適宜変更することができる。  [0023] The filter is usually 200 µm-0.1 µm. The target value of the metal content after removing the force, the quality of the filter, the density of the fluid, the temperature of the supply side container, etc. It can be changed as appropriate.
[0024] また、ここで言うボンベとは、 5L、 10L、 47Lなどの小型の耐圧容器以外に、 500L や 1000Lなどの大型の耐圧容器も指す。  Further, the term “cylinder” as used herein refers to a large pressure vessel such as 500 L or 1000 L in addition to a small pressure vessel such as 5 L, 10 L, or 47 L.
除去される金属分としては、周期律表で言うところの遷移金属のほ力、アルカリ金属、 アルカリ土類金属、ァノレミニゥム、ガリウム、インジウム、タリウム、ゲノレマニウム、スズ、 鉛、砒素、アンチモン、ビスマス、セレン、テルル、ポロニウムがある。より具体的には 、遷移金属は、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、二 ッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテ ユウム、ロジウム、パラジウム、銀、カドミウム、タンタル、タングステン、レニウム、ォスミ ゥム、イリジウム、白金、金、水銀、およびランタノイド、ァクチノイドを示す。アルカリ金 属は、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム、アルカリ土 類金属はベリリウム、マグネシウム、カルシウム、ストロンチウム、ノ リウム、ラジウムを 示す。本明細書では、上記の除去される金属のうち、 Al、 Ca、 Cr、 Cu、 Fe、 Mn、 N a、 Ni、 Zn、 Ag、 Au、 Ba、 Bi、 Cd、 Co、 Ga、 Ge、 K:、 Li、 Ni、 Pb、 Sb、 Sn、 Srおよ び Tlの含量を計算することで、金属除去の程度を評価する。 The metals to be removed include transition metal power, alkali metal, alkaline earth metal, anoreminidium, gallium, indium, thallium, genolemanium, tin, lead, arsenic, antimony, bismuth, and selenium, as described in the periodic table. , Tellurium, and polonium. More specifically, transition metals include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, lutetium, rhodium, palladium, silver, Indicates cadmium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, and lanthanides and actinides. Alkali metals include lithium, sodium, potassium, rubidium, cesium, francium, and alkaline earth metals include beryllium, magnesium, calcium, strontium, norium, and radium. Show. In this specification, among the metals to be removed, Al, Ca, Cr, Cu, Fe, Mn, Na, Ni, Zn, Ag, Au, Ba, Bi, Cd, Co, Ga, Ge, K : Assess the degree of metal removal by calculating the contents of Li, Ni, Pb, Sb, Sn, Sr and Tl.
上記の金属のうち、実施例で分析された金属は、 Al、 Ca、 Cr、 Cu、 Fe、 Mn、 Na、 N i、 Zn、 Ag、 Au、 Ba、 Bi、 Cd、 Co、 Ga、 Ge、 K:、 Li, Ni、 Pb、 Sb、 Sn、 Srおよび Tl のみであり、インジウム、砒素、セレン、テルル、ポロニウム、スカンジウム、チタン、ノ ナジゥム、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、 ロジウム、パラジウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、 水銀、ランタノイド、ァクチノイド、ルビジウム、セシウム、フランシウム、ベリリウム、マグ ネシゥム、ラジウムは、上記の金属で例示はされているが、金属含量計算の基礎とは されていない。  Among the above metals, the metals analyzed in the examples are Al, Ca, Cr, Cu, Fe, Mn, Na, Ni, Zn, Ag, Au, Ba, Bi, Cd, Co, Ga, Ge, K: only Li, Ni, Pb, Sb, Sn, Sr and Tl, indium, arsenic, selenium, tellurium, polonium, scandium, titanium, nonadium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium , Palladium, tantalum, tungsten, rhenium, osmium, iridium, platinum, mercury, lanthanoids, actinoids, rubidium, cesium, francium, beryllium, magnesium, and radium are exemplified by the above metals. It is not based.
例えば、アルカリ金属 (特にナトリウム)や銅は、半導体装置の製造時に悪影響を及 ぼす金属であるので 5ppb以下好ましくは検出限界以下に低減するのが好ましい。 また、鉄、ニッケル、クロムなどは、ステンレス容器から二フッ化カルボ-ル中に溶け 出す金属であり、これらを低減することも重要である。  For example, alkali metals (especially sodium) and copper are metals that have an adverse effect on the manufacture of semiconductor devices, and thus are preferably reduced to 5 ppb or less, preferably to the detection limit or less. In addition, iron, nickel, chromium, etc. are metals that dissolve into carbon difluoride from stainless steel containers, and it is important to reduce them.
実施例  Example
[0025] 以下、本発明を実施例及び比較例を用いてより詳細に説明するが、本発明はこれ ら実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0026] 比較例 1 Comparative Example 1
COFを貯蔵してあるステンレス製の耐圧容器の低部にバルブを介して超純水の入 Ultrapure water is introduced into the lower part of the stainless steel pressure vessel storing COF via a valve.
2 2
つた PFA製ボトルを真直ぐ繋いだ。ステンレス製の耐圧容器を 0°Cに冷却した後、容 器低部のバルブを開け、液相より COF (34g)を勢い良く超純水(11 lg)にパブリング  I connected the PFA bottle straight. After cooling the stainless steel pressure vessel to 0 ° C, open the valve at the bottom of the vessel and pulsate COF (34 g) from the liquid phase to ultrapure water (11 lg).
2  2
した。  did.
[0027] この時の液の密度は 0. 8gZcm3であった。 At this time, the density of the liquid was 0.8 gZcm 3 .
[0028] 実施例 1 Example 1
COF2を貯蔵してあるステンレス製の耐圧容器の上部にノ レブを介して超純水の入 つた PFA製ボトルに繋いだ。ステンレス製の耐圧容器を 0°Cに冷却した後、容器上部 のバルブを開け、気相より COF (49g)を勢い良く超純水(104g)にパブリングした。 [0029] この時のガスの密度は 0. 14gZcm3と予想される。 It was connected to a PFA bottle filled with ultrapure water via a knob at the top of a stainless steel pressure vessel that stores COF2. After the stainless steel pressure vessel was cooled to 0 ° C, the valve at the top of the vessel was opened, and COF (49 g) was pulsated from the gas phase to ultrapure water (104 g). [0029] Density of gas at this time is expected to 0. 14gZcm 3.
[0030] 実施例 2 Example 2
COF2を貯蔵してあるステンレス製の耐圧容器の上部にノ レブを介して超純水の入 つた PFA製ボトルに繋 、だ。ステンレス製の耐圧容器を 25°Cに加温し超臨界状態に した後、容器上部のバルブを開け、 COF2 (31g)を勢い良く超純水(104g)にバブリ ングした。  It is connected to a PFA bottle filled with ultrapure water via a knob at the top of a stainless steel pressure vessel that stores COF2. After heating the stainless steel pressure vessel to 25 ° C to make it supercritical, the valve at the top of the vessel was opened, and COF2 (31 g) was vigorously bubbled into ultrapure water (104 g).
[0031] この時の流体の密度は 0. 5gZcm3であった。 At this time, the density of the fluid was 0.5 gZcm 3 .
余属分析  Excess analysis
比較例、実施例でのパブリングした水溶液は、濃塩酸で洗浄した白金皿に入れ、ホ ットプレートで約二時間かけて蒸発乾固した。これを 0. 1Nの塩酸で再び溶力した後 同様にホットプレートで濃縮し、超純水を加えて等倍に希釈し試料を調製した。また、 パブリングをしていない水も同様の操作を行い、ブランクの試料を調製した。ここで得 られた試料を、 ICPにより金属分析を行った。比較例と実施例の結果を表 1に示した 。これらの結果は、得られた値が検出限界以上であれば、ブランク値を引いた値を示 し、検出限界以下であれば、 N. D.とした。  The aqueous solutions subjected to publishing in Comparative Examples and Examples were placed in a platinum dish washed with concentrated hydrochloric acid, and evaporated to dryness using a hot plate for about 2 hours. This was again dissolved with 0.1N hydrochloric acid, and then concentrated similarly on a hot plate, and diluted with an equal volume by adding ultrapure water to prepare a sample. In addition, a blank sample was prepared by performing the same operation on unpublished water. The samples obtained here were subjected to metal analysis by ICP. Table 1 shows the results of the comparative example and the example. These results indicate the value obtained by subtracting the blank value if the obtained value is above the detection limit, and indicate ND if the obtained value is below the detection limit.
[0032] [表 1] [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
[0033] Ag、 Au、 Ba、 Bi、 Cd、 Co、 Ga、 Ge、 K:、 Li、 Ni、 Pb、 Sb、 Sn、 Sr、 Tlは検出限界 以下であった。 [0033] Ag, Au, Ba, Bi, Cd, Co, Ga, Ge, K :, Li, Ni, Pb, Sb, Sn, Sr, and Tl were below the detection limit.
産業上の利用可能性  Industrial applicability
[0034] 本発明によれば、金属含有量を低減した二フッ化カルボニルを簡便な方法で除去 することができる。特にナトリウム、銅の含量が低減した二フッ化カルボニルは、半導 体製造装置のプラズマクリーニングガスとして有用である。 According to the present invention, carbonyl difluoride having a reduced metal content is removed by a simple method. can do. In particular, carbonyl difluoride having a reduced content of sodium and copper is useful as a plasma cleaning gas for semiconductor manufacturing equipment.

Claims

請求の範囲 The scope of the claims
[1] 供給側容器に液状で貯蔵された金属成分を含む二フッ化カルボニルを密度 0.7g/cm [1] A carbonyl difluoride containing metal component stored in a liquid state in the supply side container has a density of 0.7 g / cm
3以下の流体として別の容器に移送することを特徴とする金属含量が低減されたニフ ッ化カルボニルの製造方法。 3. A method for producing carbonyl difluoride having a reduced metal content, wherein the method is transferred to a separate vessel as a fluid of 3 or less.
[2] 密度 0.7g/cm3以下の前記流体の移送をフィルターを通過させながら行うことを特徴と する請求項 1に記載の方法。 [2] The method according to claim 1, wherein the transfer of the fluid having a density of 0.7 g / cm 3 or less is performed while passing through a filter.
[3] 供給側容器の温度を室温より高!、温度にしながら前記流体の移送を行う請求項 1に 記載の方法。 [3] The method according to claim 1, wherein the fluid is transferred while the temperature of the supply side container is set to a temperature higher than room temperature!
[4] 二フッ化カルボ-ルを充填する別の容器を冷却しながら前記流体の移送を行う請求 項 1に記載の方法。  [4] The method according to claim 1, wherein the transfer of the fluid is performed while cooling another container filled with carbon difluoride.
[5] 移送前の二フッ化カルボ-ルの金属含量が lOOOppb以上であり、移送後の二フッ化 カルボ-ルの金属含量が 500ppb以下である請求項 1に記載の方法。  [5] The method according to claim 1, wherein the metal content of the carbon difluoride before transfer is 100000 ppb or more, and the metal content of the carbon difluoride after transfer is 500 ppb or less.
[6] 移送された二フッ化カルボニル中のナトリウムが検出限界以下である半導体製造用 の請求項 1に記載の二フッ化カルボニルの製造方法。  [6] The method for producing carbonyl difluoride according to claim 1, which is used for semiconductor production wherein sodium in the transferred carbonyl difluoride is below the detection limit.
[7] 移送された二フッ化カルボニル中の銅が 5ppb以下である半導体製造用の請求項 1 に記載の二フッ化カルボ-ルの製造方法。  7. The method for producing carbon difluoride according to claim 1, wherein the transferred carbonyl difluoride has a copper content of 5 ppb or less for semiconductor production.
[8] 別の容器がボンベである請求項 1に記載の方法。  [8] The method according to claim 1, wherein the other container is a cylinder.
[9] 銅の含有量が 5ppb以下であり、かつ、ナトリウムの含有量が lppb以下であるニフッ 化カルボ二ルカもなる半導体製造用チャンバのクリーニングガス。  [9] A cleaning gas for a semiconductor manufacturing chamber containing copper fluorca having a copper content of 5 ppb or less and a sodium content of 1 ppb or less.
PCT/JP2005/000776 2004-01-26 2005-01-21 Method for refining carbonyl difluoride WO2005070824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-016612 2004-01-26
JP2004016612A JP2006282398A (en) 2004-01-26 2004-01-26 Method for refining carbonyl difluoride

Publications (1)

Publication Number Publication Date
WO2005070824A1 true WO2005070824A1 (en) 2005-08-04

Family

ID=34805494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000776 WO2005070824A1 (en) 2004-01-26 2005-01-21 Method for refining carbonyl difluoride

Country Status (2)

Country Link
JP (1) JP2006282398A (en)
WO (1) WO2005070824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016686A (en) * 2009-07-09 2011-01-27 Showa Denko Kk Method for refining carbonyl difluoride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515011A (en) * 1994-12-22 2002-05-21 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Production of carbonyl fluoride
JP2003212525A (en) * 2002-01-18 2003-07-30 Central Glass Co Ltd Method for purifying cof2
JP2003221213A (en) * 2002-01-31 2003-08-05 Central Glass Co Ltd Method for purifying carbonyl difluoride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515011A (en) * 1994-12-22 2002-05-21 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Production of carbonyl fluoride
JP2003212525A (en) * 2002-01-18 2003-07-30 Central Glass Co Ltd Method for purifying cof2
JP2003221213A (en) * 2002-01-31 2003-08-05 Central Glass Co Ltd Method for purifying carbonyl difluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016686A (en) * 2009-07-09 2011-01-27 Showa Denko Kk Method for refining carbonyl difluoride

Also Published As

Publication number Publication date
JP2006282398A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US7217402B1 (en) Apparatus and method for making metal chloride salt product
US11939231B2 (en) Method of synthesizing molybdenum oxychloride by reacting molybdenum oxide powder and chlorine gas and growing crystals of molybdenum oxychloride from the gaseous raw material
KR100929472B1 (en) Method for preparing chlorine gas, aqueous sodium hypochlorite solution and liquid chlorine
KR100742477B1 (en) Method for producing high-purity hydrochloric acid
CN112189006B (en) Quaternary alkylammonium hypochlorite solution, method for producing the same, and method for cleaning semiconductor wafer
US6818119B2 (en) Method for processing metals
JP2013536320A (en) Electrolysis method
US5176741A (en) Producing titanium particulates from in situ titanium-zinc intermetallic
CA3111844A1 (en) Corrosion-resistant coolant salt and method for making same
US6896863B2 (en) Sodium cyanide process
WO2005070824A1 (en) Method for refining carbonyl difluoride
US6277246B1 (en) Purification of electronic specialty gases by vapor phase transfilling
EP1873265A1 (en) Method of high-melting-point metal separation and recovery
EP1930296B1 (en) Method for producing high purity caustic potash
JP5205776B2 (en) Method and apparatus for producing solid product
US6036937A (en) Method for producing zinc bromide
Kekesi et al. Copper extraction from chloride solutions by evaporation and reduction with hydrogen
WO2021070550A1 (en) Method for producing bromine pentafluoride
JP4517656B2 (en) Method for producing bisphenol A
JP2017190284A (en) Method for purifying interhalogen fluoride compound
KR970010335B1 (en) Inorganic perbromide compositions and method of use thereof
KR102380543B1 (en) Method for preparing 1,2,3,4-tetrachlorobutane
JP2004315380A (en) Method for producing cyclic olefin
Baxter et al. A COMPARISON OF THE ATOMIC WEIGHTS OF TERRESTRIAL AND METEORIC NICKEL. III. THE ANALYSIS OF NICKELOUS BROMIDE
Dewing et al. Recovery of Zinc and Sulfur from Sphalerite Concentrates by Reaction with Sulfuric Acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
WWW Wipo information: withdrawn in national office

Ref document number: 2005206417

Country of ref document: AU