WO2005067659A2 - Transport format combination selection in a wireless transmit/receive unit - Google Patents
Transport format combination selection in a wireless transmit/receive unit Download PDFInfo
- Publication number
- WO2005067659A2 WO2005067659A2 PCT/US2005/000571 US2005000571W WO2005067659A2 WO 2005067659 A2 WO2005067659 A2 WO 2005067659A2 US 2005000571 W US2005000571 W US 2005000571W WO 2005067659 A2 WO2005067659 A2 WO 2005067659A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cctrch
- tfcs
- tfc
- transmit power
- minimum set
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 50
- 230000005540 biological transmission Effects 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 5
- 208000037918 transfusion-transmitted disease Diseases 0.000 claims 4
- 238000010586 diagram Methods 0.000 description 10
- ZIIRLFNUZROIBX-UHFFFAOYSA-N 2,3,5-trichlorobenzene-1,4-diol Chemical compound OC1=CC(Cl)=C(O)C(Cl)=C1Cl ZIIRLFNUZROIBX-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/02—Selection of wireless resources by user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/22—TPC being performed according to specific parameters taking into account previous information or commands
- H04W52/226—TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/26—TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
- H04W52/262—TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/26—TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
- H04W52/267—TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
- H04W52/286—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/34—TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
- H04W52/346—TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/54—Signalisation aspects of the TPC commands, e.g. frame structure
- H04W52/60—Signalisation aspects of the TPC commands, e.g. frame structure using different transmission rates for TPC commands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention is related to a wireless communication system. More particularly, the present invention is related to transport format combination (TFC) selection in wireless transmit/receive units (WTRUs).
- TFC transport format combination
- a WTRU Under the current Third Generation Partnership Project (3GPP) standards, a WTRU is required to estimate a transmission power for each TFC. In the case that a certain TFC would require more transmission power than the maximum allowed WTRU transmission power, the WTRU should limit the usage of that TFC.
- 3GPP Third Generation Partnership Project
- the WTRU continuously evaluates which TFCs can be used for transmission.
- the evaluation is performed using the estimated WTRU transmit power of a given TFC.
- the medium access control (MAC) entity in the WTRU notifies an upper layer to reduce the data rate, if applicable.
- a WTRU has only one coded composite transport channel (CCTrCH) in uplink transmission. Therefore, the WTRU transmit power is the transmit power of the CCTrCH, which is determined by the TFC used for the CCTrCH.
- CCTrCH coded composite transport channel
- a WTRU may have more than one CCTrCH in uplink transmissions; one for the regular dedicated channel (DCH) and the other for EU enhanced dedicated channel (E-DCH).
- the WTRU transmit power will be the sum of the transmit power of two CCTrCHs.
- the WTRU transmit power is determined jointly by the TFCs of the two CCTrCHs.
- the combination of the TFC used by the dedicated CCTrCH and the TFC used by the EU CCTrCH is defined as the TFC pair of the WTRU whose transmit power is determined jointly by the TFCs of the two CCTrCHs. This is not an optimal method of determining the TFCs for more than one CCTrCH. [0010] There is a need for an efficient method for selecting a combination of
- TFCs for more than one CCTrCHs in uplink transmission are TFCs for more than one CCTrCHs in uplink transmission.
- the present invention is related to a method and apparatus for selecting a TFC in a WTRU.
- the WTRU is configured to process more than one CCTrCH for uplink transmission.
- the WTRU estimates a transmit power for each of a plurality of available TFCs and selects a TFC for each CCTrCH such that the sum of the estimated WTRU transmit power for the selected TFCs is within the allowed maximum WTRU transmit power.
- the WTRU may give priority to a particular CCTrCH, whereby the
- TFC for that particular CCTrCH is selected first and the TFC for the other CCTrCH is selected within the estimated remaining WTRU transmit power after power required for the selected TFC on the prioritized CCTrCH is deducted from the maximum allowed WTRU transmit power.
- This method allows for transmission of channels mapped to the first CCTrCH to be prioritized over channels mapped to the other CCTrCH.
- the WTRU may reserve a minimum set of TFCs for the other CCTrCH, whereby a TFC for the prioritized CCTrCH is first selected within the maximum allowed WTRU transmit power less the power required to support a minimum set of TFCs on the other CCTrCH. Then the TFC for the other CCTrCH is selected within the remaining WTRU transmit power after power required for the selected TFC on the prioritized CCTrCH is deducted from the maximum allowed WTRU transmit power.
- This method allows for transmission of channels mapped to the first CCTrCH to be prioritized over channels mapped to the other CCTrCHs while reserving transmit power to allow for a minimum set of TFCs on the other CCTrCH to be transmitted without being effected by the maximum allowed WTRU transmit power limit.
- the WTRU may be configured for individual maximum transmit power for each of the plurality of CCTrCHs, whereby a TFC for each CCTrCH is selected within the individual maximum transmit power designated to each CCTrCH.
- QoS quality of service
- FIG. 1 is a flow diagram of a general process for selecting TFCs in accordance with a first embodiment of the present invention.
- FIG. 2 is a flow diagram of a process for selecting TFCs in accordance with a second embodiment of the present invention.
- FIG. 3 is a flow diagram of a process for selecting TFCs in accordance with a third embodiment of the present invention.
- FIG. 4 is a flow diagram of a process for selecting TFCs in accordance with a fourth embodiment of the present invention.
- FIG. 5 is a block diagram of an apparatus for selecting TFCs in accordance with the present invention.
- WTRU includes but is not limited to a user equipment, a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment.
- WTRU includes but is not limited to a user equipment, a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment.
- the features of the present invention may be incorporated into an integrated circuit (IC) or be configured in a circuit comprising a multitude of interconnecting components.
- FIG. 1 is a flow diagram of a process 100 for selecting TFCs in accordance with a first embodiment of the present invention.
- the WTRU is configured to process a dedicated CCTrCH and an EU CCTrCH simultaneously in uplink transmission.
- the transmit power of the WTRU is limited to a maximum allowed WTRU transmit power, which is set by the wireless communication system.
- the WTRU estimates the transmit power for each of a plurality of available TFCs (step 102) for each CCTrCH.
- the WTRU estimates the transmit power of each TFC over a predetermined period taking into account the gain factor of each corresponding TFC.
- the WTRU selects TFCs for transmission on each CCTrCH among a plurality of available TFCs, such that the sum of the estimated transmit power of the selected TFCs for the dedicated CCTrCH and the EU CCTrCH does not exceed the maximum allowed WTRU transmit power (step 104).
- the dedicated CCTrCH, the EU CCTrCH, or both may be provided with a capability of transmitting a reserved minimum set of TFCs even when the power required for transmission of these TFCs exceeds the maximum allowed WTRU transmit power. TFCs that require power greater then the maximum allowed transmit power are defined to be in an excess power state.
- the minimum set is for reserving a lowest rate in a CCTrCH, thereby maintaining the basic services for the channel. Since in the EU CCTrCH there is only one TrCH, the minimum set corresponds to a lowest rate per logical channel or MAC-d flow mapped to the EU TrCH.
- the minimum set of TFCs may be one transport block per TTI for each channel mapped to the CCTrCH or a number of transport blocks per TTI corresponding to a guaranteed bit rate (GBR).
- the reserved minimum set of TFCs may be transmitted in an excess power state. In order to maintain the transmit power within the allowed maximum level, a WTRU scales down power on physical channels mapped to the dedicated CCTrCH, the EU CCTrCH, or all physical channels present.
- the EU CCTrCH may be provided with a minimum reserved set of TFCs that is one or more transport blocks per logical channel or MAC-d flow mapped to the EU CCTrCH.
- a transport block is one or more radio link control (RLC) protocol data units (PDUs).
- RLC radio link control
- One or more transport blocks is equivalent to a data rate.
- the reserved set of TFCs can be transmitted in an excess power state by scaling down power on either the physical channels mapped to the EU CCTrCH, the dedicated CCTrCH or all present UL channels.
- FIG. 2 is a flow diagram of a process 200 for selecting TFCs in accordance with a second embodiment of the present invention.
- TFC selection of the dedicated CCTrCH is prioritized over TFC selection of the EU CCTrCH.
- the WTRU estimates the transmit power requirement for each of a plurality of available TFCs configured for the dedicated CCTrCH(step 202).
- the WTRU selects a TFC for the dedicated CCTrCH first, without considering the power requirement of the EU CCTrCH (step 204).
- the WTRU selects a TFC for the EU CCTrCH within the remaining WTRU transmit power after the power required for the selected TFC for the dedicated CCTrCH is deducted from the maximum allowed WTRU transmit power (step 206).
- the TFC selection of the dedicated CCTrCH is not affected by the operation of EU CCTrCH, while the TFC selection of the EU CCTrCH is affected and limited by the operation of the dedicated CCTrCH.
- the remaining power for the EU CCTrCH is estimated either each dedicated CCTrCH TTI or each EU CCTrCH TTI. At each TTI of the EU CCTrCH, the remaining power available for the EU CCTrCH is estimated as the maximum allowed WTRU transmit power minus the power required by transmission of the selected dedicated CCTrCH TFC. Alternatively, at each TTI of the dedicated CCTrCH, the remaining power available for the EU CCTrCH is estimated as the maximum allowed WTRU transmit power minus the power required to support transmission of the selected dedicated CCTrCH TFC. [0032] In process 200, the EU CCTrCH may allow transmission of a minimum set of TFCs even when these TFCs are in excess power state.
- An EU TFC is in excess power state when the estimated remaining power is less then the calculated transmission power requirement for the EU CCTrCH TFC.
- the EU minimum set reserves a lowest or guaranteed rate on channels mapped to the EU CCTrCH, and thereby maintains the basic services for EU channels. Since in the EU CCTrCH there is only one TrCH, the minimum set corresponds to a lowest rate per logical channel or MAC-d flow mapped to the EU TrCH.
- the minimum set of TFCs may be one transport block per TTI for each channel mapped to the CCTrCH or a number of transport blocks per TTI corresponding to a guaranteed bit rate (GBR).
- GBR guaranteed bit rate
- FIG. 3 is a flow diagram of a process 300 for selecting TFCs in accordance with a fourth embodiment of the present invention.
- the WTRU gives priority to dedicated CCTrCH TFC selection while reserving transmit power for a minimum set of EU CCTrCH TFCs (step 302).
- a minimum set of TFCs for an EU CCTrCH is defined to reserve a lowest or guaranteed rate for channels mapped to the EU CCTrCH. Since in the EU CCTrCH there is only one TrCH, the minimum set corresponds to a lowest rate per logical channel or MAC-d flow mapped to the EU TrCH.
- the minimum set of TFCs may be one transport block per TTI for each channel mapped to the CCTrCH, or a number of transport blocks per TTI corresponding to a GBR.
- the EU CCTrCH may allow transmission of a minimum set of TFCs even when these TFCs are in excess power state.
- An EU TFC is in excess power state when the estimated remaining power is less then the calculated transmission power requirement for the EU TFC.
- the WTRU scales down power on physical channels mapped to the EU CCTrCH, the dedicated CCTrCH, or all physical channels present.
- the quality of the transmission is reduced, (i.e., lower SIR, higher BLER, etc). This may defeat the purpose of maintaining the minimum set.
- transmit power is reserved for the EU minimum set when TFC selection is performed on the prioritized dedicated CCTrCH.
- TFC selection of the dedicated CCTrCH is prioritized over TFC selection of the EU CCTrCH.
- the WTRU estimates the transmit power for each of a plurality of available TFCs configured for the dedicated CCTrCH and TFCs associated with the EU CCTrCH minimum set (step 304).
- the WTRU selects a TFC for the dedicated CCTrCH that has a power requirement that does not exceed the maximum allowed transmit power minus the power required to support the minimum set of TFCs on the EU CCTrCH (step 306). After the TFC for the dedicated CCTrCH is selected, at each TTI of the EU CCTrCH the WTRU selects a TFC for the EU CCTrCH with the remaining transmit power after power required for the selected the TFC for the dedicated CCTrCH is deducted from the maximum allowed transmit power (step 308).
- the remaining power for the EU CCTrCH is estimated either each dedicated CCTrCH TTI or each EU CCTrCH TTI.
- the remaining power available for the EU CCTrCH is estimated as the maximum allowed WTRU transmit power minus the power required by transmission of the selected dedicated CCTrCH TFC.
- the remaining power available for the EU CCTrCH is estimated as the maximum allowed WTRU transmit power minus the power required to support transmission of the selected dedicated CCTrCH TFC.
- FIG. 4 is a flow diagram of a process 400 for selecting TFCs in accordance with a third embodiment of the present invention.
- the WTRU sets an individual maximum transmit power, or a ratio relative to the maximum allowed WTRU transmit power, for a dedicated CCTrCH and an EU CCTrCH (step 402).
- the maximum power level (or the ratio) for each CCTrCH is a configurable parameter.
- the factors for determining the maximum power level (or the ratio) for each CCTrCH may include, but are not limited to, a data rate of each CCTrCH, quality-of-service (QoS) of each CCTrCH and a relative priority between the CCTrCHs.
- the WTRU estimates the transmit power for each of a plurality of available TFCs (step 404). The WTRU then selects a TFC for each CCTrCH within the individual maximum transmit power of each CCTrCH (step 406).
- the TFC selection process for each CCTrCH operates independently. The TFC of each CCTrCH is selected from only those TFCs that can be supported by the individual maximum power level determined for a particular CCTrCH.
- the dedicated CCTrCH, the EU CCTrCH, or both may be provided with a capability of transmitting a minimum set of TFCs. The minimum set is for reserving a lowest rate for each channel mapped to the CCTrCH, thereby maintaining the basic services for each channel.
- the minimum set of TFCs may be one transport block per TTI for each channel mapped to the CCTrCH or a number of transport blocks per TTI corresponding to a GBR.
- the minimum set of TFCs may be transmitted in an excess power state. In this situation, in order to maintain the transmit power within the allowed maximum level, the WTRU scales down all physical channels mapped to the EU CCTrCH, the dedicated CCTrCH, or all physical channels present.
- Figure 5 is a block diagram of an apparatus 500 for selecting TFCs in accordance with the present invention.
- the apparatus comprises a transmit power estimation unit 502, a TFC selection unit 504, and a measurement unit 506.
- the transmit power estimation unit 502 calculates an estimate of a transmit power for each of a plurality of available TFCs.
- the TFC selection unit 504 selects a TFC for each CCTrCH such that the sum of the estimated WTRU transmit power for the selected TFCs is within a maximum WTRU transmit power.
- the measurement unit 506 performs physical measurements of the WTRU transmit power over a predetermined period, and the transmit power estimation unit 502 calculates the estimate of a transmit power of each TFC using the measurement results and a gain factor of the corresponding TFC.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Burglar Alarm Systems (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Sorting Of Articles (AREA)
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2552734A CA2552734C (en) | 2004-01-09 | 2005-01-07 | Transport format combination selection in a wireless transmit/receive unit |
KR1020067014393A KR101061960B1 (ko) | 2004-01-09 | 2005-01-07 | 무선 송/수신 유닛에서의 전송 포맷 조합 선택 |
KR1020127006101A KR101299957B1 (ko) | 2004-01-09 | 2005-01-07 | 무선 송/수신 유닛에서의 전송 포맷 조합 선택 |
JP2006549446A JP4560520B2 (ja) | 2004-01-09 | 2005-01-07 | 無線送信/受信装置における送信形式の組み合わせの選択方法 |
ES05711312.8T ES2670352T3 (es) | 2004-01-09 | 2005-01-07 | Selección de combinación de formato de transporte en una unidad de transmisión/recepción inalámbrica |
AU2005204554A AU2005204554B2 (en) | 2004-01-09 | 2005-01-07 | Transport format combination selection in a wireless transmit/receive unit |
KR1020117008928A KR101171643B1 (ko) | 2004-01-09 | 2005-01-07 | 무선 송/수신 유닛에서의 전송 포맷 조합 선택 |
BR122015024347-5A BR122015024347B1 (pt) | 2004-01-09 | 2005-01-07 | Método para seleção de uma combinação de formatos de transporte em uma unidade de transmissão e recepção sem fio, e unidade de transmissão e recepção sem fio |
CN200580001747.8A CN101053175B (zh) | 2004-01-09 | 2005-01-07 | 用于传送格式组合的方法和设备 |
KR1020117017643A KR101236153B1 (ko) | 2004-01-09 | 2005-01-07 | 무선 송/수신 유닛에서의 전송 포맷 조합 선택 |
BRPI0506455A BRPI0506455A8 (pt) | 2004-01-09 | 2005-01-07 | Seleção de combinação de formatos de transporte em unidade de transmissão e recepção sem fio |
KR1020127018041A KR101299958B1 (ko) | 2004-01-09 | 2005-01-07 | 무선 송/수신 유닛에서의 전송 포맷 조합 선택 |
EP05711312.8A EP1704654B1 (en) | 2004-01-09 | 2005-01-07 | Transport format combination selection in a wireless transmit/receive unit |
KR1020107000356A KR101171622B1 (ko) | 2004-01-09 | 2005-01-07 | 무선 송/수신 유닛에서의 전송 포맷 조합 선택 |
IL176436A IL176436A (en) | 2004-01-09 | 2006-06-20 | Encryption and select format for transmission in a wireless transmission / reception unit |
NO20063615A NO337614B1 (no) | 2004-01-09 | 2006-08-09 | Transportformatkombinasjonsvalg i en trådløs sender/mottakerenhet |
HK08104006.6A HK1113868A1 (en) | 2004-01-09 | 2008-04-09 | Method and apparatus for transport format combination |
AU2008203300A AU2008203300C1 (en) | 2004-01-09 | 2008-07-24 | Transport format combination selection in a wireless transmit/receive unit |
IL197795A IL197795A (en) | 2004-01-09 | 2009-03-25 | Encryption and select format for transmission in a wireless transmission / reception unit |
NO20151174A NO339512B1 (no) | 2004-01-09 | 2015-09-11 | Fremgangsmåte, apparat og mobilenhet |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53542604P | 2004-01-09 | 2004-01-09 | |
US60/535,426 | 2004-01-09 | ||
US11/019,489 US7215655B2 (en) | 2004-01-09 | 2004-12-22 | Transport format combination selection in a wireless transmit/receive unit |
US11/019,489 | 2004-12-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005067659A2 true WO2005067659A2 (en) | 2005-07-28 |
WO2005067659A3 WO2005067659A3 (en) | 2007-04-12 |
Family
ID=34798009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/000571 WO2005067659A2 (en) | 2004-01-09 | 2005-01-07 | Transport format combination selection in a wireless transmit/receive unit |
Country Status (22)
Country | Link |
---|---|
US (5) | US7215655B2 (ko) |
EP (6) | EP1976145B1 (ko) |
JP (6) | JP4560520B2 (ko) |
KR (6) | KR101171622B1 (ko) |
CN (5) | CN104135762B (ko) |
AR (3) | AR047095A1 (ko) |
AT (1) | ATE470275T1 (ko) |
AU (3) | AU2005204554B2 (ko) |
BR (2) | BRPI0506455A8 (ko) |
CA (2) | CA2552734C (ko) |
DE (1) | DE602005021714D1 (ko) |
DK (1) | DK1976145T3 (ko) |
ES (4) | ES2346598T3 (ko) |
GE (1) | GEP20105121B (ko) |
HK (4) | HK1113868A1 (ko) |
HU (3) | HUE037403T2 (ko) |
IL (2) | IL176436A (ko) |
MY (2) | MY149657A (ko) |
NO (1) | NO337614B1 (ko) |
SG (1) | SG133615A1 (ko) |
TW (5) | TWI481216B (ko) |
WO (1) | WO2005067659A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008057465A3 (en) * | 2006-11-02 | 2008-12-11 | Interdigital Tech Corp | Method and apparatus for optimizing e-tfc restriction for hsupa channels |
US8700087B2 (en) | 2008-03-20 | 2014-04-15 | Interdigital Patent Holdings, Inc. | Method and apparatus for selecting enhanced dedicated channel transport format combination in cell—fach state and idle mode |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7218948B2 (en) | 2003-02-24 | 2007-05-15 | Qualcomm Incorporated | Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators |
US9661519B2 (en) | 2003-02-24 | 2017-05-23 | Qualcomm Incorporated | Efficient reporting of information in a wireless communication system |
US8811348B2 (en) | 2003-02-24 | 2014-08-19 | Qualcomm Incorporated | Methods and apparatus for generating, communicating, and/or using information relating to self-noise |
US9544860B2 (en) | 2003-02-24 | 2017-01-10 | Qualcomm Incorporated | Pilot signals for use in multi-sector cells |
KR101139664B1 (ko) * | 2003-09-26 | 2012-05-16 | 인터디지탈 테크날러지 코포레이션 | 무선 통신 전송 파워용 이득 팩터들의 판정을 위한 장치 및 방법 |
US7215655B2 (en) * | 2004-01-09 | 2007-05-08 | Interdigital Technology Corporation | Transport format combination selection in a wireless transmit/receive unit |
US8280425B2 (en) * | 2004-09-16 | 2012-10-02 | Motorola Mobility Llc | Wireless transmitter configuration |
US20060092881A1 (en) * | 2004-10-14 | 2006-05-04 | Rajiv Laroia | Methods and apparatus for determining, communicating and using information which can be used for interference control purposes |
RU2007117711A (ru) | 2004-10-14 | 2008-11-20 | Квэлкомм Флэрион Текнолоджиз, Инк. (Us) | Способы и устройство для определения, передачи и использования информации, которая может быть использована для целей управления помехами |
US8503938B2 (en) | 2004-10-14 | 2013-08-06 | Qualcomm Incorporated | Methods and apparatus for determining, communicating and using information including loading factors which can be used for interference control purposes |
CN1798420A (zh) * | 2004-12-22 | 2006-07-05 | 上海贝尔阿尔卡特股份有限公司 | 用于在基站中进行快速资源调度的方法与基站 |
KR101119100B1 (ko) * | 2005-01-03 | 2012-03-16 | 엘지전자 주식회사 | 데이터 블록 송수신 방법 |
WO2006082627A1 (ja) * | 2005-02-01 | 2006-08-10 | Mitsubishi Denki Kabushiki Kaisha | 送信制御方法、移動局および通信システム |
TWI506997B (zh) * | 2005-04-29 | 2015-11-01 | Interdigital Tech Corp | 多工增強上鏈頻道資料的無線傳輸/接收單元及方法 |
JPWO2007043098A1 (ja) * | 2005-09-30 | 2009-04-16 | 三菱電機株式会社 | 移動局及び通信方法 |
US8989084B2 (en) | 2005-10-14 | 2015-03-24 | Qualcomm Incorporated | Methods and apparatus for broadcasting loading information corresponding to neighboring base stations |
US9191840B2 (en) | 2005-10-14 | 2015-11-17 | Qualcomm Incorporated | Methods and apparatus for determining, communicating and using information which can be used for interference control |
US9125092B2 (en) | 2005-12-22 | 2015-09-01 | Qualcomm Incorporated | Methods and apparatus for reporting and/or using control information |
US9338767B2 (en) | 2005-12-22 | 2016-05-10 | Qualcomm Incorporated | Methods and apparatus of implementing and/or using a dedicated control channel |
US8514771B2 (en) * | 2005-12-22 | 2013-08-20 | Qualcomm Incorporated | Methods and apparatus for communicating and/or using transmission power information |
US9451491B2 (en) | 2005-12-22 | 2016-09-20 | Qualcomm Incorporated | Methods and apparatus relating to generating and transmitting initial and additional control information report sets in a wireless system |
US20070249287A1 (en) * | 2005-12-22 | 2007-10-25 | Arnab Das | Methods and apparatus for selecting between a plurality of dictionaries |
US9119220B2 (en) | 2005-12-22 | 2015-08-25 | Qualcomm Incorporated | Methods and apparatus for communicating backlog related information |
US9148795B2 (en) | 2005-12-22 | 2015-09-29 | Qualcomm Incorporated | Methods and apparatus for flexible reporting of control information |
US9572179B2 (en) | 2005-12-22 | 2017-02-14 | Qualcomm Incorporated | Methods and apparatus for communicating transmission backlog information |
US9473265B2 (en) | 2005-12-22 | 2016-10-18 | Qualcomm Incorporated | Methods and apparatus for communicating information utilizing a plurality of dictionaries |
US9137072B2 (en) | 2005-12-22 | 2015-09-15 | Qualcomm Incorporated | Methods and apparatus for communicating control information |
US8437251B2 (en) | 2005-12-22 | 2013-05-07 | Qualcomm Incorporated | Methods and apparatus for communicating transmission backlog information |
US9125093B2 (en) | 2005-12-22 | 2015-09-01 | Qualcomm Incorporated | Methods and apparatus related to custom control channel reporting formats |
US20070149132A1 (en) | 2005-12-22 | 2007-06-28 | Junyl Li | Methods and apparatus related to selecting control channel reporting formats |
US20070243882A1 (en) | 2006-04-12 | 2007-10-18 | Qualcomm Incorporated | Method and apparatus for locating a wireless local area network associated with a wireless wide area network |
CN101166076B (zh) * | 2006-10-20 | 2012-06-27 | 创新音速有限公司 | 无线通信系统设定上链路传输信道组态的方法及相关装置 |
US7940721B2 (en) * | 2006-12-22 | 2011-05-10 | Alcatel-Lucent Usa Inc. | Power overload control method useful with enhanced dedicated channel traffic |
US8594717B2 (en) * | 2007-01-22 | 2013-11-26 | Blackberry Limited | Method and apparatus for identifying supported transmission channel configurations |
KR101493108B1 (ko) | 2007-03-23 | 2015-02-13 | 옵티스 와이어리스 테크놀로지, 엘엘씨 | 무선 통신 기지국 장치 및 제어 채널 배치 방법 |
ES2397112T3 (es) | 2007-06-15 | 2013-03-04 | Panasonic Corporation | Aparato de comunicación inalámbrica y procedimiento de difusión de señal de respuesta |
KR101341515B1 (ko) * | 2007-06-18 | 2013-12-16 | 엘지전자 주식회사 | 무선 통신 시스템에서의 반복 전송 정보 갱신 방법 |
KR101486352B1 (ko) | 2007-06-18 | 2015-01-26 | 엘지전자 주식회사 | 무선 통신 시스템의 단말에서의 상향링크 동기 상태 제어방법 |
WO2008156314A2 (en) | 2007-06-20 | 2008-12-24 | Lg Electronics Inc. | Effective system information reception method |
KR101490253B1 (ko) | 2007-08-10 | 2015-02-05 | 엘지전자 주식회사 | 무선 통신 시스템에서의 제어정보 전송 및 수신 방법 |
EP2186247A4 (en) | 2007-08-10 | 2014-01-29 | Lg Electronics Inc | METHOD FOR CONTROLLING HARQ OPERATION WITH DYNAMIC RADIO RESOURCE ALLOCATION |
KR101514841B1 (ko) * | 2007-08-10 | 2015-04-23 | 엘지전자 주식회사 | 효율적인 랜덤 액세스 재시도를 수행하는 방법 |
WO2009022877A2 (en) | 2007-08-14 | 2009-02-19 | Lg Electronics Inc. | A method of transmitting and processing data block of specific protocol layer in wireless communication system |
KR101461970B1 (ko) * | 2007-09-13 | 2014-11-14 | 엘지전자 주식회사 | 무선 통신 시스템에서의 폴링 과정 수행 방법 |
KR100937432B1 (ko) | 2007-09-13 | 2010-01-18 | 엘지전자 주식회사 | 무선 통신 시스템에서의 무선자원 할당 방법 |
KR101479340B1 (ko) * | 2007-09-18 | 2015-01-06 | 엘지전자 주식회사 | 무선통신 시스템에서 셀 재선택 과정을 수행하는 방법 |
KR101396062B1 (ko) | 2007-09-18 | 2014-05-26 | 엘지전자 주식회사 | 헤더 지시자를 이용한 효율적인 데이터 블록 전송방법 |
KR101591824B1 (ko) * | 2007-09-18 | 2016-02-04 | 엘지전자 주식회사 | 무선 통신 시스템에서의 폴링 과정 수행 방법 |
KR101513033B1 (ko) | 2007-09-18 | 2015-04-17 | 엘지전자 주식회사 | 다중 계층 구조에서 QoS를 보장하기 위한 방법 |
KR101435844B1 (ko) * | 2007-09-18 | 2014-08-29 | 엘지전자 주식회사 | 무선 통신 시스템에서의 데이터 블록 전송 방법 |
US8687565B2 (en) * | 2007-09-20 | 2014-04-01 | Lg Electronics Inc. | Method of effectively transmitting radio resource allocation request in mobile communication system |
KR20090041323A (ko) * | 2007-10-23 | 2009-04-28 | 엘지전자 주식회사 | 데이터 블록 구성함에 있어서 단말의 식별 정보를 효과적으로 전송하는 방법 |
KR101487557B1 (ko) * | 2007-10-23 | 2015-01-29 | 엘지전자 주식회사 | 공통제어채널의 데이터를 전송하는 방법 |
EP2208294B1 (en) | 2007-10-29 | 2019-07-31 | LG Electronics Inc. | Method of repairing a security failure |
EP2086276B1 (en) * | 2008-01-31 | 2016-11-02 | LG Electronics Inc. | Method for signaling back-off information in random access |
EP2086148B1 (en) | 2008-01-31 | 2018-09-05 | LG Electronics Inc. | Method for sending status information in mobile telecommunications system and receiver of mobile telecommunications |
KR101594359B1 (ko) | 2008-01-31 | 2016-02-16 | 엘지전자 주식회사 | 랜덤 접속에서 백오프 정보를 시그널링하는 방법 |
KR101163275B1 (ko) | 2008-03-17 | 2012-07-05 | 엘지전자 주식회사 | Pdcp 상태 보고 전송 방법 |
WO2009116788A1 (en) * | 2008-03-17 | 2009-09-24 | Lg Electronics Inc. | Method of transmitting rlc data |
WO2009134055A2 (en) * | 2008-04-30 | 2009-11-05 | Samsung Electronics Co., Ltd. | System and method for data size adaptation in a ue |
US8358614B2 (en) * | 2008-10-31 | 2013-01-22 | Interdigital Patent Holdings, Inc. | Method and apparatus for handling uplink transmissions using multiple uplink carriers |
KR20150023886A (ko) | 2008-12-03 | 2015-03-05 | 인터디지탈 패튼 홀딩스, 인크 | 캐리어 집적에 대한 업링크 파워 헤드룸 보고 |
CN112584476A (zh) * | 2009-02-09 | 2021-03-30 | 交互数字专利控股公司 | 在wtru中进行上行链路功率控制的方法和wtru |
US8457056B2 (en) * | 2009-02-09 | 2013-06-04 | Qualcomm Incorporated | Non-scheduled grants in multi-carrier enhanced uplink |
US9392553B2 (en) | 2009-10-01 | 2016-07-12 | Interdigital Patent Holdings, Inc. | Determining power headroom in a wireless network |
CN101986755B (zh) * | 2010-10-22 | 2013-03-13 | 意法·爱立信半导体(北京)有限公司 | 增强专用信道的传输格式的选择方法及终端 |
WO2013049769A1 (en) | 2011-09-30 | 2013-04-04 | Interdigital Patent Holdings, Inc. | Multipoint transmission in wireless communication |
US9559767B2 (en) | 2011-12-19 | 2017-01-31 | Gilat Satellite Networks Ltd. | Adaptive fade mitigation |
US9282551B2 (en) * | 2012-09-11 | 2016-03-08 | Apple Inc. | Methods and apparatus for automated device state changes in response to network conditions |
US9194221B2 (en) | 2013-02-13 | 2015-11-24 | Harris Corporation | Apparatus for heating hydrocarbons with RF antenna assembly having segmented dipole elements and related methods |
US10588036B2 (en) | 2013-04-03 | 2020-03-10 | Interdigital Patent Holdings, Inc. | Method and apparatus for controlling uplink transmission power based on accumulated transmit power control commands and corresponding uplink subframe sets |
US9521655B2 (en) | 2013-07-30 | 2016-12-13 | Qualcomm Incorporated | Method and apparatus for avoiding power scaling in uplink data transmission |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5914950A (en) * | 1997-04-08 | 1999-06-22 | Qualcomm Incorporated | Method and apparatus for reverse link rate scheduling |
US6795424B1 (en) | 1998-06-30 | 2004-09-21 | Tellabs Operations, Inc. | Method and apparatus for interference suppression in orthogonal frequency division multiplexed (OFDM) wireless communication systems |
JP3408458B2 (ja) * | 1999-07-02 | 2003-05-19 | エヌイーシービューテクノロジー株式会社 | パケット変換処理システム |
US6781970B1 (en) * | 1999-08-27 | 2004-08-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Transport format combination indicator mapping for telecommunications |
WO2001063855A1 (en) * | 2000-02-25 | 2001-08-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Packet scheduling in umts using several calculated transfer rates |
JP2003528876A (ja) * | 2000-03-29 | 2003-09-30 | アルタナ ファルマ アクチエンゲゼルシャフト | アルキル化されたイミダゾピリジン誘導体 |
CN1265654C (zh) * | 2000-11-14 | 2006-07-19 | 皇家菲利浦电子有限公司 | 具有选择传输格式组合的无线网络 |
DE10101703A1 (de) * | 2001-01-15 | 2002-07-18 | Philips Corp Intellectual Pty | Drahtloses Netzwerk mit einer Auswahl von Transport-Format-Kombinationen |
US20030081538A1 (en) | 2001-10-18 | 2003-05-01 | Walton Jay R. | Multiple-access hybrid OFDM-CDMA system |
US6845088B2 (en) * | 2001-10-19 | 2005-01-18 | Interdigital Technology Corporation | System and method for fast dynamic link adaptation |
US6747958B2 (en) * | 2001-11-13 | 2004-06-08 | Qualcomm, Incorporated | Transport format combination selection for compressed mode in a W-CDMA system |
US6754169B2 (en) | 2001-12-13 | 2004-06-22 | Motorola, Inc. | Method and system of operation for a variable transmission mode multi-carrier communication system |
CN1161911C (zh) * | 2002-02-06 | 2004-08-11 | 华为技术有限公司 | 从传输格式组合的计算值到传输格式组合指示的映射方法 |
KR100810281B1 (ko) * | 2002-03-30 | 2008-03-07 | 삼성전자주식회사 | 부호분할다중접속 이동통신시스템에서 전송 포맷 선택을위한 검색시간 최소화 방법 |
JP4005400B2 (ja) * | 2002-04-10 | 2007-11-07 | 富士通株式会社 | 送信フォーマット組み合わせ情報選択方法及び移動端末装置 |
JP2003309533A (ja) | 2002-04-17 | 2003-10-31 | Matsushita Electric Ind Co Ltd | 無線送信装置、無線受信装置及びその方法 |
CN100512536C (zh) * | 2002-05-09 | 2009-07-08 | 诺基亚有限公司 | 在无线电接入网络中传输功率偏移信号的方法、装置和系统 |
CN100341589C (zh) * | 2002-05-24 | 2007-10-10 | 血管技术国际股份公司 | 用于涂覆医用植入物的组合物和方法 |
US7180963B2 (en) | 2002-11-25 | 2007-02-20 | Ali Corporation | Digital receiver capable of processing modulated signals at various data rates |
US6882857B2 (en) | 2002-11-26 | 2005-04-19 | Qualcomm, Incorporated | Method and apparatus for efficient processing of data for transmission in a communication system |
US7068703B2 (en) | 2003-02-18 | 2006-06-27 | Qualcomm, Incorporated | Frequency hop sequences for multi-band communication systems |
KR20040083617A (ko) * | 2003-03-24 | 2004-10-06 | 삼성전자주식회사 | 향상된 역방향 전용전송채널을 서비스하는 비동기 방식의부호분할다중접속 이동통신시스템에서 소프트 핸드오버영역에 위치하는 이동단말이 역방향 데이터를 재전송하는방법 및 시스템 |
US7321780B2 (en) * | 2003-04-30 | 2008-01-22 | Motorola, Inc. | Enhanced uplink rate selection by a communication device during soft handoff |
US7013143B2 (en) * | 2003-04-30 | 2006-03-14 | Motorola, Inc. | HARQ ACK/NAK coding for a communication device during soft handoff |
US6993342B2 (en) * | 2003-05-07 | 2006-01-31 | Motorola, Inc. | Buffer occupancy used in uplink scheduling for a communication device |
US20040228313A1 (en) * | 2003-05-16 | 2004-11-18 | Fang-Chen Cheng | Method of mapping data for uplink transmission in communication systems |
JP3847737B2 (ja) * | 2003-08-12 | 2006-11-22 | 松下電器産業株式会社 | 通信端末装置及び送信電力制御方法 |
KR100630169B1 (ko) * | 2003-08-16 | 2006-09-29 | 삼성전자주식회사 | 비동기 광대역 부호분할 다중접속 통신 시스템에서 역방향전용 채널을 이용한 역방향 패킷 데이터 서비스 방법 및장치 |
US7564867B2 (en) * | 2003-08-19 | 2009-07-21 | Alcatel-Lucent Usa Inc. | Enhanced uplink data transmission |
US20050043052A1 (en) * | 2003-08-20 | 2005-02-24 | Whinnett Nicholas W. | Method of operation of a communication device and corresponding communication device |
US7161916B2 (en) * | 2003-08-20 | 2007-01-09 | Qualcomm Incorporated | Method and apparatus for uplink rate selection in the presence of multiple transport channels in a wireless communication system |
US7817605B2 (en) * | 2003-08-22 | 2010-10-19 | Alcatel-Lucent Usa Inc. | Method of transmitting control signals for uplink transmission in communication systems |
US7733846B2 (en) * | 2003-08-26 | 2010-06-08 | Alcatel-Lucent Usa Inc. | Method and control channel for uplink signaling in a communication system |
US20050068921A1 (en) * | 2003-09-29 | 2005-03-31 | Jung-Tao Liu | Multiplexing of physical channels on the uplink |
US7680094B2 (en) * | 2003-09-29 | 2010-03-16 | Alcatel-Lucent Usa Inc. | Method of aligning physical channels for uplink transmission |
US20050073985A1 (en) * | 2003-10-04 | 2005-04-07 | Samsung Electronics Co., Ltd. | System and method for controlling a TTI in a W-CDMA communication system supporting enhanced uplink dedicated transport channel |
US7599339B2 (en) * | 2003-11-12 | 2009-10-06 | Interdigital Technology Corporation | Method and system for transferring wireless transmit/receive unit-specific information |
US7215655B2 (en) | 2004-01-09 | 2007-05-08 | Interdigital Technology Corporation | Transport format combination selection in a wireless transmit/receive unit |
KR100930893B1 (ko) * | 2004-05-04 | 2009-12-10 | 엘지전자 주식회사 | 상향링크 강화 전용 채널을 위한 스케줄링 방법 |
US20060023687A1 (en) * | 2004-07-27 | 2006-02-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Fast reliable downlink signaling to support enhanced uplink services in a communication system |
JP4408783B2 (ja) * | 2004-09-29 | 2010-02-03 | Necエレクトロニクス株式会社 | 復号装置及び復号方法 |
-
2004
- 2004-12-22 US US11/019,489 patent/US7215655B2/en active Active
-
2005
- 2005-01-07 EP EP08155384A patent/EP1976145B1/en active Active
- 2005-01-07 BR BRPI0506455A patent/BRPI0506455A8/pt not_active Application Discontinuation
- 2005-01-07 ES ES08155384T patent/ES2346598T3/es active Active
- 2005-01-07 CN CN201410412586.2A patent/CN104135762B/zh active Active
- 2005-01-07 HU HUE05711312A patent/HUE037403T2/hu unknown
- 2005-01-07 ES ES11185642.3T patent/ES2672374T3/es active Active
- 2005-01-07 KR KR1020107000356A patent/KR101171622B1/ko active IP Right Grant
- 2005-01-07 GE GEAP20059574A patent/GEP20105121B/en unknown
- 2005-01-07 CA CA2552734A patent/CA2552734C/en not_active Expired - Fee Related
- 2005-01-07 EP EP11185642.3A patent/EP2434656B1/en active Active
- 2005-01-07 SG SG200704895-2A patent/SG133615A1/en unknown
- 2005-01-07 EP EP15184096.4A patent/EP2988556A1/en active Pending
- 2005-01-07 MY MYPI20090868A patent/MY149657A/en unknown
- 2005-01-07 KR KR1020127018041A patent/KR101299958B1/ko active IP Right Grant
- 2005-01-07 CN CN200580001747.8A patent/CN101053175B/zh active Active
- 2005-01-07 KR KR1020127006101A patent/KR101299957B1/ko active IP Right Grant
- 2005-01-07 ES ES05711312.8T patent/ES2670352T3/es active Active
- 2005-01-07 KR KR1020067014393A patent/KR101061960B1/ko active IP Right Grant
- 2005-01-07 CN CN201310028722.3A patent/CN103220772B/zh active Active
- 2005-01-07 AT AT08155384T patent/ATE470275T1/de not_active IP Right Cessation
- 2005-01-07 CN CN201410412264.8A patent/CN104135761B/zh active Active
- 2005-01-07 CA CA2834628A patent/CA2834628A1/en not_active Abandoned
- 2005-01-07 KR KR1020117008928A patent/KR101171643B1/ko active IP Right Grant
- 2005-01-07 TW TW100135386A patent/TWI481216B/zh active
- 2005-01-07 MY MYPI20050066A patent/MY145315A/en unknown
- 2005-01-07 ES ES08155377.8T patent/ES2665881T3/es active Active
- 2005-01-07 EP EP05711312.8A patent/EP1704654B1/en active Active
- 2005-01-07 EP EP08155392.7A patent/EP1976146B1/en active Active
- 2005-01-07 JP JP2006549446A patent/JP4560520B2/ja active Active
- 2005-01-07 TW TW104101798A patent/TWI577213B/zh active
- 2005-01-07 DK DK08155384.4T patent/DK1976145T3/da active
- 2005-01-07 DE DE602005021714T patent/DE602005021714D1/de active Active
- 2005-01-07 TW TW104101800A patent/TWI577214B/zh active
- 2005-01-07 WO PCT/US2005/000571 patent/WO2005067659A2/en active Application Filing
- 2005-01-07 HU HUE08155377A patent/HUE037019T2/hu unknown
- 2005-01-07 BR BR122015024347-5A patent/BR122015024347B1/pt active IP Right Grant
- 2005-01-07 HU HUE11185642A patent/HUE037798T2/hu unknown
- 2005-01-07 EP EP08155377.8A patent/EP1976144B1/en active Active
- 2005-01-07 AU AU2005204554A patent/AU2005204554B2/en active Active
- 2005-01-07 KR KR1020117017643A patent/KR101236153B1/ko active IP Right Grant
- 2005-01-07 TW TW094100574A patent/TWI392256B/zh active
- 2005-01-07 CN CN201310028723.8A patent/CN103199955B/zh active Active
- 2005-01-07 TW TW097101562A patent/TWI370632B/zh not_active IP Right Cessation
- 2005-01-10 AR ARP050100069A patent/AR047095A1/es not_active Application Discontinuation
-
2006
- 2006-06-20 IL IL176436A patent/IL176436A/en active IP Right Grant
- 2006-08-09 NO NO20063615A patent/NO337614B1/no unknown
-
2007
- 2007-02-12 US US11/705,638 patent/US7522557B2/en active Active
- 2007-10-23 JP JP2007275779A patent/JP4560537B2/ja active Active
- 2007-10-31 AR ARP070104824A patent/AR063739A1/es not_active Application Discontinuation
-
2008
- 2008-04-09 HK HK08104006.6A patent/HK1113868A1/xx unknown
- 2008-07-24 AU AU2008203300A patent/AU2008203300C1/en active Active
-
2009
- 2009-03-25 IL IL197795A patent/IL197795A/en active IP Right Grant
- 2009-04-13 US US12/422,516 patent/US8483148B2/en active Active
- 2009-07-31 JP JP2009178936A patent/JP4610665B2/ja active Active
- 2009-12-07 AU AU2009245825A patent/AU2009245825B2/en active Active
-
2010
- 2010-02-26 AR ARP100100565A patent/AR075617A2/es not_active Application Discontinuation
- 2010-04-19 JP JP2010096501A patent/JP5026552B2/ja active Active
- 2010-08-17 JP JP2010182375A patent/JP5026570B2/ja active Active
-
2012
- 2012-03-09 JP JP2012053704A patent/JP5420698B2/ja active Active
-
2013
- 2013-05-16 US US13/895,817 patent/US20130250892A1/en not_active Abandoned
-
2014
- 2014-01-07 HK HK14100138.7A patent/HK1187177A1/zh unknown
- 2014-10-09 US US14/511,096 patent/US9942878B2/en active Active
-
2015
- 2015-04-29 HK HK15104116.4A patent/HK1203737A1/xx unknown
- 2015-04-29 HK HK15104120.8A patent/HK1203738A1/xx unknown
Non-Patent Citations (1)
Title |
---|
"3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility Study for Enhanced Upiink for UTRA FDD (Release 6)"", 3GPP TR 25.289, vol. 1.1.2, December 2003 (2003-12-01) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008057465A3 (en) * | 2006-11-02 | 2008-12-11 | Interdigital Tech Corp | Method and apparatus for optimizing e-tfc restriction for hsupa channels |
US7843875B2 (en) | 2006-11-02 | 2010-11-30 | Interdigital Technology Corporation | Method and apparatus for optimizing E-TFC restriction for HSUPA channels |
US8700087B2 (en) | 2008-03-20 | 2014-04-15 | Interdigital Patent Holdings, Inc. | Method and apparatus for selecting enhanced dedicated channel transport format combination in cell—fach state and idle mode |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1704654B1 (en) | Transport format combination selection in a wireless transmit/receive unit | |
MXPA06007741A (en) | Transport format combination selection in a wireless transmit/receive unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200580001747.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 176436 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2552734 Country of ref document: CA Ref document number: PA/a/2006/007741 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005204554 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006549446 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067014393 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2005204554 Country of ref document: AU Date of ref document: 20050107 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005204554 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4473/DELNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005711312 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9574 Country of ref document: GE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005711312 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0506455 Country of ref document: BR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067014393 Country of ref document: KR |