WO2005065576A1 - Degradationssteuerung biodegradierbarer implantate durch beschichtung - Google Patents
Degradationssteuerung biodegradierbarer implantate durch beschichtung Download PDFInfo
- Publication number
- WO2005065576A1 WO2005065576A1 PCT/EP2004/010077 EP2004010077W WO2005065576A1 WO 2005065576 A1 WO2005065576 A1 WO 2005065576A1 EP 2004010077 W EP2004010077 W EP 2004010077W WO 2005065576 A1 WO2005065576 A1 WO 2005065576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- degradation
- coating
- location
- implant
- degradation characteristic
- Prior art date
Links
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 92
- 230000015556 catabolic process Effects 0.000 title claims abstract description 90
- 238000000576 coating method Methods 0.000 title claims abstract description 59
- 239000011248 coating agent Substances 0.000 title claims abstract description 56
- 239000007943 implant Substances 0.000 title claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 38
- 230000001419 dependent effect Effects 0.000 claims abstract description 18
- 238000001727 in vivo Methods 0.000 claims abstract description 11
- 230000001186 cumulative effect Effects 0.000 claims abstract description 7
- 230000004048 modification Effects 0.000 claims description 7
- 238000012986 modification Methods 0.000 claims description 7
- 230000000877 morphologic effect Effects 0.000 claims description 5
- 230000004963 pathophysiological condition Effects 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 8
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 6
- 229920002674 hyaluronan Polymers 0.000 description 6
- 229960003160 hyaluronic acid Drugs 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 229920001577 copolymer Chemical compound 0.000 description 5
- 150000004676 glycans Chemical class 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 229920001432 poly(L-lactide) Polymers 0.000 description 4
- 229920000747 poly(lactic acid) Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 229910000861 Mg alloy Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001991 pathophysiological effect Effects 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000011632 Caseins Human genes 0.000 description 2
- 108010076119 Caseins Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 229920001710 Polyorthoester Polymers 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001308 poly(aminoacid) Polymers 0.000 description 2
- 229920002627 poly(phosphazenes) Polymers 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 208000007718 Stable Angina Diseases 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000004796 pathophysiological change Effects 0.000 description 1
- 238000013146 percutaneous coronary intervention Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
Definitions
- the invention relates to an at least largely biodegradable endovascular implant whose in vivo degradation can be controlled.
- biodegradable implants A wide variety of materials are available to the medical technician for realizing such biodegradable implants.
- metallic materials In addition to numerous polymers, which are often based on natural origin for better biocompatibility or at least based on natural compounds, metallic materials, with their mechanical properties which are significantly more favorable for the implants, have recently been favored. In this context, particular attention is paid to materials containing magnesium, iron and tungsten.
- One of the problems to be solved in the practical implementation of biodegradable implants is the degradation characteristic of the implant in vivo. On the one hand, this is to ensure that the functionality of the implant is maintained at least for the period of time necessary for the therapeutic purposes.
- the degrada- tion should run as evenly as possible over the entire implant, so that fragments are not released in an uncontrolled manner, which can be the starting point for undesired complications.
- Known biodegradable stents do not show a locally coordinated degradation characteristic.
- the task is to provide a biodegradable implant whose degradation can be optimized depending on the location.
- a tubular basic body made of at least one biodegradable material on its end faces, the basic body having a location-dependent first degradation characteristic D- ⁇ (x) in vivo, and a coating of at least one biodegradable material that completely or possibly only partially covers the base body, the coating having a location-dependent second degradation characteristic D 2 (x) in vivo, and
- a location-dependent cumulative degradation characteristic D (x) results from the sum of the degradation characteristics D- ⁇ (x) and D 2 (x) existing at the location (x) in each case and the location-dependent accumulation the degradation characteristic D (x) is predetermined by varying the second degradation characteristic D 2 (x) in such a way that the degradation takes place at the specified location (x) of the implant in a predeterminable time interval with a predeterminable degradation curve,
- the degradation characteristic of the entire stent can be locally optimized in the desired manner.
- the invention accordingly includes the idea that the degradation of the base body of the implant is adapted by a suitable coating - in extreme cases, however, also by omitting the coating - so that the degradation characteristic existing at one location degrades the implant in a predefinable time interval and with a predeterminable course of degradation enables.
- Biodegradation means hydrolytic, enzymatic and other metabolic degradation processes in the living organism, which lead to a gradual dissolution of at least large parts of the implant.
- biocorrosion is often used synonymously.
- bioresorption also includes the subsequent absorption of the degradation products.
- Materials suitable for the base body can be, for example, polymeric or metallic in nature.
- the base body can also consist of several materials. A common feature of these materials is their biodegradability.
- polysaccharides PSAC
- PHA polylactide
- PLA poly-L-lactide
- PGA polyglycol
- PLLA / PGA polyhydroxybutyric acid
- PHT polyethylene terephthalate
- PML polymalonic acid
- polyanhydrides polyphosphazenes, polyamino acids and their copolymers and hyaluronic acid.
- the polymers can be in pure form, in derivatized form, in the form of blends or as copolymers.
- Metallic biodegradable materials are based on alloys of magnesium, iron or tungsten.
- the biodegradable magnesium alloys in particular show extremely favorable degradation behavior, are easy to process and show little or no toxicity, but rather seem to stimulate the healing process positively.
- the basic body of a stent is generally composed of a large number of support elements arranged in a specific pattern.
- the support elements are loaded with different mechanical forces.
- this can mean, among other things, that the areas of the support elements which are under stress or which are at least temporarily exposed to high mechanical loads are broken down more quickly than areas which are less loaded.
- the present invention allows to counteract this phenomenon.
- the coating can also be formed from the aforementioned biodegradable materials.
- several different materials can also be used in one implant, for example at different locations or as multi-layer systems at a specific location of the implant.
- “Location-dependent degradation characteristic” in the sense of the invention means the time course (degradation course) and the time interval in which this degradation takes place.
- the first point of reference for the time interval is the time of the implantation itself. Of course, other times can also be used.
- An end of the time interval is understood in the sense of the invention as the point in time at which at least 80% by weight of the biodegradable implant mass has been broken down or the mechanical integrity of the implant no longer exists, i.e. the implant can no longer perform its supporting function.
- the degradation curve indicates the speed at which the degradation takes place at specific times in the time interval.
- the degradation of the implant is greatly delayed in the first two weeks after the implantation by means of a suitable coating and only progresses rapidly after the coating has been removed due to the faster degradation of the base body.
- the degradation characteristics of the base body and the coating can be estimated in advance using in vitro tests.
- the degradation characteristic of the coating is preferably determined by - varying its morphological structure, - material modification of the material and / or
- the location-dependent degradation characteristics of the implant can be influenced by adjusting the layer thickness of the coating.
- the focus is on controlling the degradation at a specific location in terms of time and scope.
- “Morphological structures” in the sense of the invention mean the conformation and aggregation of the compounds forming the coating, in particular polymers. This includes the type of molecular order structure, the porosity, the surface quality and other intrinsic properties of the carrier, which influence a degradation behavior of the biodegradable material on which the coating is based.
- Molecular order structures include amorphous, (partially) crystalline or mesomorphic polymer phases, which can be influenced or generated depending on the manufacturing process, coating process and environmental conditions used. The porosity and surface quality of the coating can be influenced by targeted variation of the manufacturing and coating process. In general, the degradation takes place more quickly with increasing porosity of the coating. Amorphous structures show similar effects to (partially) crystalline structures.
- 'Material modification' in the sense of the invention includes both a derivatization of the biodegradable material, in particular the polymers, and the addition of fillers and additives (additives) for the purpose of Understanding of the degradation characteristics understood.
- the derivatization includes, for example, measures such as networking or replacing reactive functionalities in these materials. It is well known, for example, that polymeric materials such as hyaluronic acid are broken down more slowly when increasing the degree of crosslinking. These measures must first be recorded quantitatively by means of established in vitro investigations in order to be able to provide an estimate of the degradation characteristics for the in vivo behavior.
- the location-dependent degradation characteristic of the implant is preferably specified as a function of the pathophysiological and / or rheological conditions to be expected in the application.
- the pathophysiological aspects take into account the fact that the stent is usually placed in the vessel in such a way that it lies in the center of the lesion, ie. H. the adjacent tissue at the ends and in the middle area of the stent is of different nature and therefore the supporting function of the implant needs to be maintained for different times to optimize the healing process.
- the tissue resistances acting on the implant are unequal due to the pathophysiological change, which can lead to an accelerated degradation due to the resulting mechanical stress in places of greater resistance.
- Rheological aspects in turn take into account the fact that the flow conditions, in particular in the area of the ends and in middle sections of the stent, are different. This can lead to accelerated dismantling of the implant at the ends of the stent due to the stronger flow.
- Rheological parameters can vary widely, particularly by specifying the stent design, and must be determined in individual cases. By taking the two parameters mentioned into account, optimal degradation over the entire dimension of the stent can be ensured for the desired therapy.
- the invention is explained in more detail below on the basis of exemplary embodiments and in the associated drawing. Show it:
- FIG. 1 shows a stent with a tubular base body which is open on its end faces and the peripheral wall of which is covered with a coating system
- FIG. 2a, 2b a schematic cross section along a longitudinal axis of a stent to illustrate the coating according to a first variant
- 3a, 3b show a schematic cross section along a longitudinal axis of a stent to illustrate the coating according to a second variant.
- FIG. 1 shows a highly schematic perspective side view of a stent 10 with a tubular base body 14 that is open at its ends 12.1, 12.2.
- a circumferential wall 16 of the base body 14 that extends radially about a longitudinal axis L consists of axially arranged side by side Segments, which in turn are composed of a plurality of support elements arranged in a specific pattern.
- the individual segments are connected to one another via connecting webs and, in summary, result in the base body 14.
- FIG. 1 the depiction of a specific stent design was deliberately omitted, since this is not necessary for the purposes of illustrating the invention and, moreover, an individual adaptation for each stent design a coating to the given geometric factors and other parameters is necessary.
- the stent 10 can be formed from a biodegradable magnesium alloy, in particular WE43.
- WE43 a biodegradable magnesium alloy
- the individual support elements are subjected to different mechanical loads, in particular at their articulation points. This can lead to the fact that the metallic structure z. B. changed due to micro-cracking. As a rule, a particularly rapid degradation will take place at points where a particularly high mechanical stress occurs.
- the dimensions of the individual support elements are dimensioned differently depending on the stent design present. It goes without saying that supporting elements with a larger circumference are dismantled more slowly than correspondingly filigree structures in the basic structure. The objective for a satisfactory degradation behavior of the implant should therefore be to counteract a kind of fact formation due to these different degradation characteristics.
- the location-dependent degradation characteristic of the base body is expressed in the following with the abbreviation D ⁇ x).
- the stent 10 of FIG. 1 shows in a highly schematic manner a coating 26 in which a plurality of sections 20.1, 20.2, 22.1, 22.2, 24 of the outer circumferential surface 18 of the peripheral wall 16 are formed from biodegradable materials which differ in their degradation characteristics D 2 (x) ,
- a polymer based on hyaluronic acid is given here as an example of a suitable material for the coating 26.
- Hyaluronic acid not only shows favorable degradation behavior, but is also particularly easy to process and also has positive physiological effects.
- the degradation characteristic D 2 (x) can be influenced, for example, in such a way that a certain degree of crosslinking is predetermined by reaction with glutaraldehyde.
- Numerous processes have been developed for applying a coating to the stent, such as, for example, rotary atomization processes, immersion processes and spray processes.
- the coating at least in regions covers the wall or the individual struts of the stent that form the support structure.
- the degradation characteristic D 2 (x) differs in the individual sections 20.1, 20.1, 20.2, 22.1, 22.2, 24.
- the sections 20.1 and 20.2 at the ends 12.1, 12.2 of the stent 10 show an accelerated degradation characteristic D 2 (x), whereas the sections 22.1 arranged more in the middle , 22.2 and 24 degrade more slowly.
- This in turn has the consequence that, given the same degradation characteristics D ⁇ x) of the base body, degradation at the end of the stent 10 proceeds faster. This makes sense insofar as the lesion to be treated should be centered opposite sections 22.1, 22.2 and 24 if the stent 10 is applied correctly. Accordingly, the degeneration characteristics D -] (x) and D 2 (x) add up to a cumulative location-dependent degeneration characteristic for the implant.
- 2a, 2b, 3a, 3b, 4 and 5 show - in each case in a highly schematic manner - a section along the longitudinal axis L of the stent 10 and in each case only one of the two sections resulting therefrom through the peripheral wall 16 however, the principles underlying the design of the coating are briefly discussed.
- a degradation characteristic D 2 (x) of a coating at a specific location (x) essentially depends on factors such as
- the local degradation characteristic D 2 (x) depends on the morphological structure and material modifications of the coating.
- the porosity of the coating can be varied, an increased porosity leading to accelerated degradation.
- the material modification it can be provided, for example, to add additives to the carriers which delay the enzymatic degradation.
- the degradation of coatings based on polysaccharide can also be delayed by increasing the degree of crosslinking.
- the cumulative degradation characteristic D (x) of the coating 26 can be predetermined by suitable specification of the degradation characteristic D 2 (x) of the coating 26, provided the degradation characteristic D- ⁇ (x) of the base body is known.
- the individual sections of the coating of the stent are also adapted depending on the pathophysiological and theological conditions to be expected in the application.
- the pathophysiological conditions here mean the tissue structure changed by disease in the stented vascular area.
- the stent is placed in such a way that the lesion, ie the fibroatheromatous plaque in coronary applications, is approximately in the central area of the stent.
- the adjoining tissue structures diverge in the axial direction over the length of the stent, and another therapy may also be indicated locally under certain circumstances.
- the theological conditions are understood to mean the flow conditions as they occur in the individual longitudinal sections of the stent after implantation of the stent. Experience has shown that there is a greater flow around the ends of the stent than the central regions of the stent. This can result in increased degradation of the carrier in the end regions.
- Biodegradable materials for the coating can include all polymeric matrices of synthetic nature or of natural origin are used in the sense of the invention, which are degraded in the living organism due to enzymatic or hydrolytic processes.
- pharmacologically active substances which are used in particular to treat the consequences of percutaneous coronary interventions, can be added to the coating.
- FIG. 2a shows a highly schematic and simplified sectional view of the peripheral wall 16, with its coating 26 applied to the outer lateral surface 18.
- the coating 26 consists of two end sections 28.1 and 28.2 and a middle section 30.
- the entire coating 26 is formed from a biodegradable material applied in a uniform layer thickness.
- Sections 28.1, 28.2, 30 differ in that the final soapy sections 28.1, 28.2 degrade more slowly than the middle section 30. In the present exemplary case, this is used to compensate for logically induced accelerations of the digestion process at the stent ends used, d. H.
- the schematic stent shown in FIG. 2a will show a largely homogeneous degradation behavior over the entire length of the stent.
- FIG. 2b discloses a second variant of the coating 26.
- the sections 28.1, 28.2 correspond to those in FIG. 2a.
- the section 30, however, is significantly reduced in its layer thickness. The result of this is that section 30 is broken down much more quickly than sections 28.1 and 28.2.
- Such degradation behavior of the implant can be useful if the artificial structure in the area of the lesion is to be removed as quickly as possible in order to eliminate any starting point for possible complications in this area as early as possible.
- FIG. 3a shows a coating system 26, in which two different materials with a different degradation behavior are applied to the sections 28.1, 28.2, 30 of the stent 10. The same applies to the variation of the system according to FIG. 3b.
- sections 28.1, 28.2 are covered by a material with a delayed degradation behavior compared to the material used in the middle section 30. Accordingly, the location-dependent degradation characteristic D (x) is influenced, ie generally delayed at the end.
- D (x) is influenced, ie generally delayed at the end.
- 3b shows in sections 28.1 and 28.2 a multilayer structure of the coating 26 in the radial direction.
- the material with the delayed degradation behavior is again applied in a first section 32, while a section 34 with the more rapidly degradable material is located radially outward.
- FIGS. 2a, 2b and 3a, 3b, 4 and 5 represent only highly schematic exemplary embodiments of the invention. They can be combined with one another in a variety of ways. For example, it is conceivable to design a complex coating consisting of several materials in individual sections. The primary goal is always to optimize the local degradation of the implant.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Urology & Nephrology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006545930A JP4861827B2 (ja) | 2003-12-24 | 2004-09-07 | 被覆(coating)を使用した生分解性移植片の分解制御 |
EP04765010A EP1699383A1 (de) | 2003-12-24 | 2004-09-07 | Degradationssteuerung biodegradierbarer implantate durch beschichtung |
US10/596,791 US20090208555A1 (en) | 2003-12-24 | 2004-09-07 | Control of the degradation of biodegradable implants using a coating |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10361940A DE10361940A1 (de) | 2003-12-24 | 2003-12-24 | Degradationssteuerung biodegradierbarer Implantate durch Beschichtung |
DE10361940.2 | 2003-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005065576A1 true WO2005065576A1 (de) | 2005-07-21 |
Family
ID=34706750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/010077 WO2005065576A1 (de) | 2003-12-24 | 2004-09-07 | Degradationssteuerung biodegradierbarer implantate durch beschichtung |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090208555A1 (de) |
EP (1) | EP1699383A1 (de) |
JP (1) | JP4861827B2 (de) |
DE (1) | DE10361940A1 (de) |
WO (1) | WO2005065576A1 (de) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008036548A2 (en) * | 2006-09-18 | 2008-03-27 | Boston Scientific Limited | Endoprostheses |
WO2008036457A2 (en) * | 2006-09-18 | 2008-03-27 | Boston Scientific Limited | Controlling biodegradation of a medical instrument |
WO2008036549A3 (en) * | 2006-09-18 | 2008-05-22 | Boston Scient Scimed Inc | Medical devices |
EP2018882A2 (de) | 2007-07-24 | 2009-01-28 | Biotronik VI Patent AG | Endoprothese und Verfahren zur Herstellung derselben |
JP2009522067A (ja) * | 2006-01-05 | 2009-06-11 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 生体侵食性体内プロテーゼ、およびその製造方法 |
EP2147688A2 (de) | 2008-07-23 | 2010-01-27 | BIOTRONIK VI Patent AG | Endoprothese und Verfahren zur Herstellung derselben |
US20100125328A1 (en) * | 2005-08-30 | 2010-05-20 | Boston Scientific Scimed, Inc. | Bioabsorbable stent |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8052744B2 (en) | 2006-09-15 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US8057534B2 (en) | 2006-09-15 | 2011-11-15 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US8303643B2 (en) | 2001-06-27 | 2012-11-06 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
CN102892356A (zh) * | 2010-03-17 | 2013-01-23 | 伊利诺伊大学评议会 | 基于生物可吸收基质的可植入生物医学装置 |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
US8715339B2 (en) | 2006-12-28 | 2014-05-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8808726B2 (en) | 2006-09-15 | 2014-08-19 | Boston Scientific Scimed. Inc. | Bioerodible endoprostheses and methods of making the same |
US9676026B2 (en) | 2008-08-11 | 2017-06-13 | Aap Implantate Ag | Implant made of a magnesium alloy and method for the production thereof |
US9691873B2 (en) | 2011-12-01 | 2017-06-27 | The Board Of Trustees Of The University Of Illinois | Transient devices designed to undergo programmable transformations |
US10925543B2 (en) | 2015-11-11 | 2021-02-23 | The Board Of Trustees Of The University Of Illinois | Bioresorbable silicon electronics for transient implants |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6764505B1 (en) | 2001-04-12 | 2004-07-20 | Advanced Cardiovascular Systems, Inc. | Variable surface area stent |
US7169178B1 (en) | 2002-11-12 | 2007-01-30 | Advanced Cardiovascular Systems, Inc. | Stent with drug coating |
CN104716170B (zh) | 2004-06-04 | 2019-07-26 | 伊利诺伊大学评议会 | 用于制造并组装可印刷半导体元件的方法和设备 |
EP1865882A4 (de) | 2005-04-05 | 2013-05-08 | Elixir Medical Corp | Abbaubare implantierbare medizinprodukte |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
US8052743B2 (en) | 2006-08-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with three-dimensional disintegration control |
JP2010503491A (ja) | 2006-09-15 | 2010-02-04 | ボストン サイエンティフィック リミテッド | 生物学的安定性無機層を有する生浸食性エンドプロスシーシス |
WO2008127402A2 (en) | 2006-11-03 | 2008-10-23 | Trustees Of Tufts College | Biopolymer sensor and method of manufacturing the same |
JP2010509645A (ja) | 2006-11-03 | 2010-03-25 | トラスティーズ オブ タフツ カレッジ | ナノパターンが形成されたバイオポリマー光学デバイスおよびその製造方法 |
EP2107964B1 (de) | 2006-11-03 | 2016-08-31 | Trustees of the Tufts College | Biopolymer-lichtwellenleiter und herstellungsverfahren dafür |
US20100046902A1 (en) | 2006-11-03 | 2010-02-25 | Trustees Of Tufts College | Biopolymer photonic crystals and method of manufacturing the same |
US20130150943A1 (en) | 2007-01-19 | 2013-06-13 | Elixir Medical Corporation | Biodegradable endoprostheses and methods for their fabrication |
US20080177373A1 (en) * | 2007-01-19 | 2008-07-24 | Elixir Medical Corporation | Endoprosthesis structures having supporting features |
US8814930B2 (en) | 2007-01-19 | 2014-08-26 | Elixir Medical Corporation | Biodegradable endoprosthesis and methods for their fabrication |
DE102007030438A1 (de) * | 2007-06-29 | 2009-01-08 | Biotronik Vi Patent Ag | Implantat aus einer biokorrodierbaren Magnesiumlegierung und mit einer Beschichtung aus einem Poly(orthoester) |
US8052745B2 (en) | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
EP2206017B1 (de) | 2007-11-05 | 2019-02-20 | Trustees Of Tufts College | Herstellung von photonischen strukturen aus seiden-fibroin mittels nano- kontaktdruckverfahren |
US8118857B2 (en) * | 2007-11-29 | 2012-02-21 | Boston Scientific Corporation | Medical articles that stimulate endothelial cell migration |
DE102008006455A1 (de) * | 2008-01-29 | 2009-07-30 | Biotronik Vi Patent Ag | Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung und einer korrosionshemmenden Beschichtung |
US20090287301A1 (en) * | 2008-05-16 | 2009-11-19 | Boston Scientific, Scimed Inc. | Coating for medical implants |
US8236046B2 (en) | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
EP2307054A4 (de) * | 2008-06-18 | 2013-02-06 | Tufts College | Essbare holografische seidenprodukte |
US7985252B2 (en) | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
JP5646492B2 (ja) | 2008-10-07 | 2014-12-24 | エムシー10 インコーポレイテッドMc10,Inc. | 伸縮可能な集積回路およびセンサアレイを有する装置 |
US8389862B2 (en) | 2008-10-07 | 2013-03-05 | Mc10, Inc. | Extremely stretchable electronics |
US8886334B2 (en) | 2008-10-07 | 2014-11-11 | Mc10, Inc. | Systems, methods, and devices using stretchable or flexible electronics for medical applications |
US8372726B2 (en) | 2008-10-07 | 2013-02-12 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
US8097926B2 (en) | 2008-10-07 | 2012-01-17 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
EP2396276B1 (de) | 2009-02-12 | 2016-08-31 | Trustees Of Tufts College | Nanoprägung von seidenfibroinstrukturen für biomedizinische und biophotonische anwendungen |
WO2010132552A1 (en) | 2009-05-12 | 2010-11-18 | The Board Of Trustees Of The University Of Illinois | Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays |
EP2457087A4 (de) | 2009-07-20 | 2015-09-02 | Tufts University Trustees Of Tufts College | Komplett aus proteinen bestehende implantierbare und abbaubare reflektoren |
WO2011026101A2 (en) | 2009-08-31 | 2011-03-03 | Trustees Of Tufts College | Silk transistor devices |
WO2011041727A1 (en) | 2009-10-01 | 2011-04-07 | Mc10, Inc. | Protective cases with integrated electronics |
US9936574B2 (en) | 2009-12-16 | 2018-04-03 | The Board Of Trustees Of The University Of Illinois | Waterproof stretchable optoelectronics |
US10441185B2 (en) | 2009-12-16 | 2019-10-15 | The Board Of Trustees Of The University Of Illinois | Flexible and stretchable electronic systems for epidermal electronics |
JP6046491B2 (ja) | 2009-12-16 | 2016-12-21 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ | コンフォーマル電子機器を使用した生体内での電気生理学 |
US8888841B2 (en) | 2010-06-21 | 2014-11-18 | Zorion Medical, Inc. | Bioabsorbable implants |
US8986369B2 (en) | 2010-12-01 | 2015-03-24 | Zorion Medical, Inc. | Magnesium-based absorbable implants |
WO2012158709A1 (en) | 2011-05-16 | 2012-11-22 | The Board Of Trustees Of The University Of Illinois | Thermally managed led arrays assembled by printing |
KR102000302B1 (ko) | 2011-05-27 | 2019-07-15 | 엠씨10, 인크 | 전자, 광학, 및/또는 기계 장치 및 시스템, 그리고 이를 제조하기 위한 방법 |
US8934965B2 (en) | 2011-06-03 | 2015-01-13 | The Board Of Trustees Of The University Of Illinois | Conformable actively multiplexed high-density surface electrode array for brain interfacing |
US20130138219A1 (en) * | 2011-11-28 | 2013-05-30 | Cook Medical Technologies Llc | Biodegradable stents having one or more coverings |
CN105283122B (zh) | 2012-03-30 | 2020-02-18 | 伊利诺伊大学评议会 | 可共形于表面的可安装于附肢的电子器件 |
US10246763B2 (en) | 2012-08-24 | 2019-04-02 | The Regents Of The University Of California | Magnesium-zinc-strontium alloys for medical implants and devices |
US9171794B2 (en) | 2012-10-09 | 2015-10-27 | Mc10, Inc. | Embedding thin chips in polymer |
US9259339B1 (en) | 2014-08-15 | 2016-02-16 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9730819B2 (en) | 2014-08-15 | 2017-08-15 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9480588B2 (en) | 2014-08-15 | 2016-11-01 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9855156B2 (en) | 2014-08-15 | 2018-01-02 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
EP3304430A4 (de) | 2015-06-01 | 2019-03-06 | The Board of Trustees of the University of Illionis | Miniaturisierte elektronische systeme mit drahtlosstrom- und nahfeldkommunikationfähigkeiten |
JP2018524566A (ja) | 2015-06-01 | 2018-08-30 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ | 代替的uvセンシング手法 |
CN113143536B (zh) | 2016-05-16 | 2022-08-30 | 万能医药公司 | 撑开支架 |
US11622872B2 (en) | 2016-05-16 | 2023-04-11 | Elixir Medical Corporation | Uncaging stent |
US11478348B2 (en) * | 2016-06-23 | 2022-10-25 | Poly-Med, Inc. | Medical implants having managed biodegradation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997011724A1 (en) | 1995-09-27 | 1997-04-03 | Biocon Oy | Biodegradable implant manufactured of polymer-based material and a method for manufacturing the same |
WO2002069848A2 (en) * | 2001-03-06 | 2002-09-12 | Board Of Regents, The University Of Texas System | Apparatus for stent deployment with delivery of bioactive agents |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5326568A (en) * | 1991-05-03 | 1994-07-05 | Giampapa Vincent C | Method of tissue-specific delivery |
US5360440A (en) * | 1992-03-09 | 1994-11-01 | Boston Scientific Corporation | In situ apparatus for generating an electrical current in a biological environment |
DE4222380A1 (de) * | 1992-07-08 | 1994-01-13 | Ernst Peter Prof Dr M Strecker | In den Körper eines Patienten perkutan implantierbare Endoprothese |
US5575818A (en) * | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
JP3816603B2 (ja) * | 1996-11-29 | 2006-08-30 | オリンパス株式会社 | ステント |
WO1998056312A1 (en) * | 1997-06-13 | 1998-12-17 | Scimed Life Systems, Inc. | Stents having multiple layers of biodegradable polymeric composition |
AU2001286940A1 (en) * | 2000-09-22 | 2002-04-02 | Kensey Nash Corporation | Drug delivering prostheses and methods of use |
US20020103526A1 (en) * | 2000-12-15 | 2002-08-01 | Tom Steinke | Protective coating for stent |
US7077859B2 (en) * | 2000-12-22 | 2006-07-18 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
DE10125999A1 (de) * | 2001-05-18 | 2002-11-21 | Biotronik Mess & Therapieg | Implantierbare, bioresorbierbare Gefäßwandstütze |
US7396539B1 (en) * | 2002-06-21 | 2008-07-08 | Advanced Cardiovascular Systems, Inc. | Stent coatings with engineered drug release rate |
-
2003
- 2003-12-24 DE DE10361940A patent/DE10361940A1/de not_active Withdrawn
-
2004
- 2004-09-07 EP EP04765010A patent/EP1699383A1/de not_active Withdrawn
- 2004-09-07 US US10/596,791 patent/US20090208555A1/en not_active Abandoned
- 2004-09-07 JP JP2006545930A patent/JP4861827B2/ja not_active Expired - Fee Related
- 2004-09-07 WO PCT/EP2004/010077 patent/WO2005065576A1/de active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997011724A1 (en) | 1995-09-27 | 1997-04-03 | Biocon Oy | Biodegradable implant manufactured of polymer-based material and a method for manufacturing the same |
WO2002069848A2 (en) * | 2001-03-06 | 2002-09-12 | Board Of Regents, The University Of Texas System | Apparatus for stent deployment with delivery of bioactive agents |
Non-Patent Citations (1)
Title |
---|
See also references of EP1699383A1 |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8303643B2 (en) | 2001-06-27 | 2012-11-06 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US20100125328A1 (en) * | 2005-08-30 | 2010-05-20 | Boston Scientific Scimed, Inc. | Bioabsorbable stent |
JP2009522067A (ja) * | 2006-01-05 | 2009-06-11 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 生体侵食性体内プロテーゼ、およびその製造方法 |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US8808726B2 (en) | 2006-09-15 | 2014-08-19 | Boston Scientific Scimed. Inc. | Bioerodible endoprostheses and methods of making the same |
US8052744B2 (en) | 2006-09-15 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US8057534B2 (en) | 2006-09-15 | 2011-11-15 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
WO2008036548A2 (en) * | 2006-09-18 | 2008-03-27 | Boston Scientific Limited | Endoprostheses |
WO2008036457A3 (en) * | 2006-09-18 | 2008-05-29 | Boston Scient Scimed Inc | Controlling biodegradation of a medical instrument |
US8002821B2 (en) * | 2006-09-18 | 2011-08-23 | Boston Scientific Scimed, Inc. | Bioerodible metallic ENDOPROSTHESES |
JP2010503463A (ja) * | 2006-09-18 | 2010-02-04 | ボストン サイエンティフィック リミテッド | 医療機器の生分解の制御 |
WO2008036548A3 (en) * | 2006-09-18 | 2008-05-22 | Boston Scient Scimed Inc | Endoprostheses |
WO2008036457A2 (en) * | 2006-09-18 | 2008-03-27 | Boston Scientific Limited | Controlling biodegradation of a medical instrument |
WO2008036549A3 (en) * | 2006-09-18 | 2008-05-22 | Boston Scient Scimed Inc | Medical devices |
US8715339B2 (en) | 2006-12-28 | 2014-05-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
DE102007034363A1 (de) | 2007-07-24 | 2009-01-29 | Biotronik Vi Patent Ag | Endoprothese |
EP2018882A2 (de) | 2007-07-24 | 2009-01-28 | Biotronik VI Patent AG | Endoprothese und Verfahren zur Herstellung derselben |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US9731050B2 (en) | 2008-07-23 | 2017-08-15 | Biotronik Vi Patent Ag | Endoprosthesis |
DE102008040640A1 (de) | 2008-07-23 | 2010-01-28 | Biotronik Vi Patent Ag | Endoprothese und Verfahren zur Herstellung derselben |
EP2147688A2 (de) | 2008-07-23 | 2010-01-27 | BIOTRONIK VI Patent AG | Endoprothese und Verfahren zur Herstellung derselben |
EP2147688A3 (de) * | 2008-07-23 | 2013-02-13 | Biotronik VI Patent AG | Endoprothese und Verfahren zur Herstellung derselben |
US9676026B2 (en) | 2008-08-11 | 2017-06-13 | Aap Implantate Ag | Implant made of a magnesium alloy and method for the production thereof |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
CN102892356A (zh) * | 2010-03-17 | 2013-01-23 | 伊利诺伊大学评议会 | 基于生物可吸收基质的可植入生物医学装置 |
CN105496423A (zh) * | 2010-03-17 | 2016-04-20 | 伊利诺伊大学评议会 | 基于生物可吸收基质的可植入生物医学装置 |
US9986924B2 (en) | 2010-03-17 | 2018-06-05 | The Board Of Trustees Of The University Of Illinois | Implantable biomedical devices on bioresorbable substrates |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
US9691873B2 (en) | 2011-12-01 | 2017-06-27 | The Board Of Trustees Of The University Of Illinois | Transient devices designed to undergo programmable transformations |
US10396173B2 (en) | 2011-12-01 | 2019-08-27 | The Board Of Trustees Of The University Of Illinois | Transient devices designed to undergo programmable transformations |
US10925543B2 (en) | 2015-11-11 | 2021-02-23 | The Board Of Trustees Of The University Of Illinois | Bioresorbable silicon electronics for transient implants |
Also Published As
Publication number | Publication date |
---|---|
EP1699383A1 (de) | 2006-09-13 |
US20090208555A1 (en) | 2009-08-20 |
JP4861827B2 (ja) | 2012-01-25 |
DE10361940A1 (de) | 2005-07-28 |
JP2007518473A (ja) | 2007-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005065576A1 (de) | Degradationssteuerung biodegradierbarer implantate durch beschichtung | |
EP1827301B1 (de) | Stützprothese | |
EP2018882B1 (de) | Endoprothese und Verfahren zur Herstellung derselben | |
EP1389471B1 (de) | Verfahren zur Herstellung eines implantationsfähigen Stents mit einer polymeren Beschichtung aus hochmolekularem Poly-L-Lactid | |
EP0770401B1 (de) | Verfahren zur Herstellung intraluminaler Stents aus bioresorbierbarem Polymermaterial | |
WO2005000164A1 (de) | Stent mit einem beschichtungssystem | |
DE10311729A1 (de) | Endovaskuläres Implantat mit einer mindestens abschnittsweisen aktiven Beschichtung aus Ratjadon und/oder einem Ratjadon-Derivat | |
DE102004029611A1 (de) | Implantat zur Freisetzung eines Wirkstoffs in ein von einem Körpermedium durchströmtes Gefäß | |
EP2967934B1 (de) | Bioresorbierbarer stent | |
EP2070558A2 (de) | Implantate mit membrandiffusionskontrollierter Wirkstofffreisetzung | |
EP2701757B1 (de) | Implantierbare gefässstütze | |
EP3613449A1 (de) | Verbesserung der polymerschicht bei degradierbaren vorrichtungen | |
EP2465476B1 (de) | Stent und Verfahren zu seiner Herstellung | |
EP3082890B1 (de) | Herstellung von resorbierbaren polymerrohren aus fäden | |
EP1711213B1 (de) | Implantat zur freisetzung eines wirkstoffs in ein von einem körpermedium durchströmtes gefäss | |
EP2147688B1 (de) | Endoprothese und Verfahren zur Herstellung derselben | |
EP2327380B1 (de) | Stent mit Funktionselementen | |
EP2806981A1 (de) | Vorrichtung zur beschichtung eines stents und dazugehöriges beschichtungsverfahren sowie nach dem verfahren hergestellter stent | |
EP2593151A1 (de) | Medizinisches implantat und verfahren zur herstellung eines solchen implantats | |
EP2385846A2 (de) | Medizinisches implantat und verfahren zur herstellung eines solchen implantats | |
DE102007029672A1 (de) | Implantat und Verfahren zu dessen Herstellung | |
EP2653174B1 (de) | Implantat und verfahren zur herstellung desselben | |
EP2433659A2 (de) | Implantat und Verfahren zur Herstellung desselben | |
EP3708129A1 (de) | Implantat | |
EP4169489A1 (de) | Stent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004765010 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006545930 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2004765010 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10596791 Country of ref document: US |