WO2005064730A2 - Fuel cell with integrated feedback control - Google Patents

Fuel cell with integrated feedback control Download PDF

Info

Publication number
WO2005064730A2
WO2005064730A2 PCT/US2004/043744 US2004043744W WO2005064730A2 WO 2005064730 A2 WO2005064730 A2 WO 2005064730A2 US 2004043744 W US2004043744 W US 2004043744W WO 2005064730 A2 WO2005064730 A2 WO 2005064730A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
oxidant
regulator
fuel cell
pressure regulator
Prior art date
Application number
PCT/US2004/043744
Other languages
French (fr)
Other versions
WO2005064730A3 (en
WO2005064730B1 (en
Inventor
Victor Gurin
Peter Novak
Original Assignee
Ener1, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ener1, Inc. filed Critical Ener1, Inc.
Publication of WO2005064730A2 publication Critical patent/WO2005064730A2/en
Publication of WO2005064730A3 publication Critical patent/WO2005064730A3/en
Publication of WO2005064730B1 publication Critical patent/WO2005064730B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to fuel cell assemblies and, more particularly to fuel cells having integrated feedback for regulation of water as well as fuel and oxidant supplied thereto.
  • Fuel cells hold great promise for commercial use in mobile and stationary power supply systems. Fuel cells electrochemically convert fuels and oxidants to electricity. Fuel cell types include Alkaline Fuel Cells (AFC), Molten Carbonate Fuel Cells (MCFC), Phosphoric Acid Fuel Cells (PAFC), Proton Exchange Membrane Fuel Cells (PEMFC or PEM), Solid Oxide Fuel Cells (SOFC) and Direct Methanol Fuel Cells.
  • AFC Alkaline Fuel Cells
  • MCFC Molten Carbonate Fuel Cells
  • PAFC Phosphoric Acid Fuel Cells
  • PEMFC or PEM Proton Exchange Membrane Fuel Cells
  • SOFC Solid Oxide Fuel Cells
  • Direct Methanol Fuel Cells Direct Methanol Fuel Cells.
  • a PEM fuel cell converts the chemical energy of fuels such as hydrogen and an oxygen containing gas (e.g. air) directly into electrical energy, water and heat.
  • an oxygen containing gas e.g. air
  • MEA membrane electrode assembly
  • the membrane permits the passage of protons (H+) generated by oxidation of hydrogen gas at the anode to reach the cathode side of the fuel cell and form water, while preventing passage therethrough of either of the reactant gases.
  • the membrane should remain sufficiently moist throughout, but not too moist. Thus, there must be removal of a portion of the water generated at the cathode, as well as the addition of water at the anode side to provide sufficient membrane moistness.
  • PEM fuel cells have a narrow range for controlling optimal concentration of electrolyte in the localized zone of electrochemical activity comprising the anode, membrane and cathode.
  • Such membranes have a limited ability for redistribution of water over the fuel cell working surface area.
  • This performance characteristic of fuel cells with PEMs is attributed to the reduced ability of the anode, cathode and membrane (as a group) to transport water, and to the hydrophobic characteristics of the materials used.
  • a hydrogen pressure regulator is commonly installed in the gas supply line upstream of the fuel cell stack.
  • a feedback control pressure regulator is generally provided which senses variation in pressure at the fuel cell and control reactants gas flow in a manner proportional to gas usage. Control of gas flow and pressure (i.e. reduction of pressure from input pressure to working pressure) is also accomplished using a regulator.
  • a two-stage pressure regulator system is usually installed. The pressure regulator reduces the working pressure of the fuel cell.
  • a pressure reference line is installed in parallel to hydrogen supply line to provide a reference pressure to the regulator.
  • This reference line is static and does not consume hydrogen during fuel cell operation. It is filled with hydrogen during start-up and emptied (purged) when the fuel cell generator is stopped or stored.
  • a vent valve is installed in the reference line to restrict pressure, and an electrical valve is installed for reduction of pressure to atmospheric pressure.
  • the reference line can be filled with inert gas, if available.
  • the oxidant feed line to the cathode pores in the fuel cell stack has a filter to remove particles and a compressor to built up air pressure to a working level.
  • the partial pressure of oxygen in air is relatively low (about 21.6%), the largest portion of air being nitrogen.
  • air should be fed in excess. In this case, the efficiency of oxygen usage is 40% - 60 % as a rule. At higher rates of oxygen usage, the cathode is less efficient.
  • the air supply system maintains the design working pressure level on cathode and anode.
  • the hydrogen pressure regulator has a feedback connection to the air supply line at the entry point to the fuel cell.
  • the hydrogen pressure in the anode chamber is constantly compared with the air pressure in the cathode chamber and the pressure regulator makes needed adjustments in order to maintain the correct pressure ratio.
  • the system described above for supplying hydrogen and air to fuel cells with solid-polymer electrolytes is essentially universal and used in almost all known designs with only minor variations. However, as explained below, these systems do not provide good regulation of the water concentration along the cathode and anode surface of the fuel cell stack, particularly for high and highly variable load conditions.
  • the power output of a hydrogen-air fuel cell mainly depends on effective performance of the cathodes (oxygen limited electrodes).
  • CEUO oxide-oxygen
  • CEUO > 70% stable fuel cell performance is generally not possible with current density j > 0.5 a/cm 2 because of low oxygen concentrations in air near the exhaust point from cathode chamber.
  • current density j > 0.5 a/cm 2 because of low oxygen concentrations in air near the exhaust point from cathode chamber.
  • compressed feed air at the outlet of the compressor can be at even higher temperatures (e.g. 130-170°C).
  • temperatures e.g. 130-170°C.
  • Concentration polarization results from restrictions to the transport of the fuel gases to the reaction sites. This usually occurs at high current because the forming of product water and excess hurnidification blocks the reaction sites. In this situation, there is increased risk of cross polarization in area near the gas outlet from the cathode chamber. This risk becomes much greater when the fuel cell load is highly variable over short time periods. Specifically, the risk is greatest when loads are switched from low to high levels and back in short periods of time, such as tens of seconds to minutes.
  • a recirculating reagent fuel-cell includes an ion-exchange membrane inte ⁇ osed between an anode and cathode to form a membrane/electrode assembly (MEA), the MEA interposed between a fuel gas diffusion layer and an oxidant gas diffusion layer.
  • An oxidant and fuel flow network are provided having an input portion for supplying reagent and an output portion for removing reagent and reaction products after the electrochemical reaction.
  • At least one of the oxidant flow network and fuel flow network includes a recirculation loop formed by a feedback conduit which provides fluid connection between the input and output portion. The recirculation loop feeds back a portion of the fuel or oxidant after electrochemical reaction to their respective input portion.
  • the recirculation loop can include a water containing volume, wherein a portion of the output flow flows through the water containing volume to generate a humidified flow, the humidified flow comprising a portion of the oxidant or the fuel flow supplied to the fuel cell.
  • the volume of the humidified flow can be adjustable, with the humidified flow volume increasing with a load on the fuel cell.
  • At least one of the oxidant and fuel input portions can include a jet pump therein, where the jet pump induces recirculation in the recirculation loop.
  • the output flow of the feedback conduit is preferably used as an input flow to the jet pump.
  • the jet pump mixes the portion of the fuel or oxidant flow fed back with externally supplied fuel or oxidant.
  • the water containing volume in the oxidant flow network can be a condenser for extracting water from the cathode, while the water containing volume in the fuel flow network can be an evaporator.
  • the condenser extracts water from the cathode in relation to a load on the fuel cell.
  • the condenser is preferably fluidly connected to the evaporator, with the condenser supplying the fuel flow network with water.
  • the fuel cell can include a flow modulator fluidicly connected with at least one of an input portion the fuel flow network and an input portion of the oxidant flow network, wherein the flow modulator provides a time varying mass flow of fuel or oxidant.
  • the modulator preferably includes structure for initiating operation across all fuel cell load conditions.
  • the fuel flow network can include a first modulator and the oxidant flow network can includes a second modulator, the first and second modulator being communicably connected.
  • the flow modulator preferably provides discrete pulses of fuel or oxidant flow, such as through use of a pressure sensor-controlled two- positional pressure regulator having only two positions, a first position being a fully open position and the other position being a low flow or fully closed.
  • a method of operating a fuel cell includes the steps of providing a fuel flow to an anode of the fuel cell and an oxidant flow to a cathode of the fuel cell, wherein at least one of the fuel flow and the oxidant flow comprises a recirculated flow portion.
  • the recirculated flow portion can be a humidified flow.
  • the fuel flow and the oxidant flow can include a recirculated flow portion, wherein the method can include the step of transferring water generated at the cathode into the fuel recirculated portion to humidify the fuel flow.
  • At least one of the fuel flow and the oxidant flow can be a time varying mass flow, the mass flow varying with a load on the fuel cell.
  • the time varying mass flow is preferably operative across all loads on the fuel cell and can comprise discrete pressure pulses.
  • both the fuel flow and the oxidant flow are time varying mass flows, wherein the method can further comprise the step of time synchronizing the time varying mass flow of the fuel flow with the time varying mass flow of the oxidant flow.
  • Figure 1 is a schematic of a recirculating reagent fuel cell system having recirculation loops in both the anode and cathode side, according to an embodiment of the invention.
  • Figure 2 shows the various components of an exemplary jet pump.
  • Figure 3 is a schematic model showing elements of an exemplary regulated gas supply system comprising a closed vessel with variable gas inflow, consumption and outlet flow.
  • Figures 4(a), (b) and (c) show examples of gas supply periods, pauses and cycles of an aperiodic load based reagent flow supply arrangement under relatively high, intermediate and low external load conditions, respectively, according to a preferred embodiment of the invention.
  • the invention is an electrochemical generator based on fuel cells, such as hydrogen-air fuel cells with solid polymer proton exchange membranes (PEM) that can be used in mobile or stationary applications.
  • Fuel cells such as hydrogen-air fuel cells with solid polymer proton exchange membranes (PEM) that can be used in mobile or stationary applications.
  • PEM solid polymer proton exchange membranes
  • Generators based on the invention provide higher reliability and higher efficiency as compared to conventional fuel cells, particularly under rapid and widely varying power demands, such as those encountered for typical automotive applications.
  • a recirculating reagent fuel-cell includes an ion-exchange membrane interposed between an anode and cathode anode to form a membrane/electrode assembly (MEA), the MEA interposed between a fuel gas diffusion layer and an oxidant gas diffusion layer.
  • MEA membrane/electrode assembly
  • An oxidant and fuel flow network are provided having an input portion for supplying reagent and an output portion for removing excess reagent and reaction byproducts after electrochemical reaction.
  • At least one of the oxidant flow network and fuel flow network includes a feedback conduit to form a recirculation loop, the recirculation loop feeding back a portion of the fuel and/or oxidant after electrochemical reaction to their respective input portion.
  • the oxidant flow loop can include a water vapor condenser to extract water from the cathode chambers, the amount of water being based on the external load on the fuel cell stack.
  • the fuel flow network can include an evaporator, where water is fed to the evaporator in the fuel loop from the condenser in the oxidant loop.
  • the portion of the output flow fed back to the input portion is a humidified flow.
  • the invention provides hurnidification and resulting membrane wetness which is based on the fuel cell load. If the load increases, the fuel cell generates more water, thus more water is collected in the condenser.
  • the invention is in no way limited to either hydrogen or air.
  • the fuel can generally be any oxidizable gas, including mixtures thereof, while air can more generally be any oxidant gas.
  • recirculating reagent gas flow arrangements according to the invention described herein can be advantageously used with other types of fuel cells, particularly for membrane-based fuel cells.
  • the aperiodic load based reagent flow supply feature described herein can be generally used with all fuels cell types, whether membrane based or not, and more generally, for chemically reactive systems.
  • System 100 includes fuel cell 5, which includes ion-exchange membrane 29 inte ⁇ osed between an anode 31 and cathode 27 to form a membrane/electrode assembly (MEA).
  • MEA membrane/electrode assembly
  • the MEA is inte ⁇ osed between porous oxidant gas diffusion layer 26 and porous fuel diffusion layer 32.
  • Cathode chamber 28 is bounded by plate 24 which is disposed adjacent to oxidant gas diffusion layer 26, while anode chamber 38 bounded by flow plate 34 is disposed adjacent to fuel diffusion layer 32.
  • the respective porous gas diffusion layer/electrode structures typically comprise a Pt electrocatalyst dispersed on high surface area carbon black, held together with a binding agents, such as polytetrafluoroethyene (PTFE) and NAFION ® .
  • system 100 comprises a plurality of fuel cells 5 hooked in series to form a fuel cell stack.
  • the fuel cell 5 arrangement described herein is not an aspect of the invention.
  • the reagent recirculation and control arrangement shown in both the cathode side 1 and anode side 2 are aspects of the invention.
  • Cathode side 1 is provided an air supply, preferably cleaned of particles by suitable filtration, which is fed into a compressor 10, which provides the necessary flow and pressure of oxidant (e.g. air) for cathode side 1 of fuel cell 5 to support the electrochemical reaction.
  • oxidant e.g. air
  • Both an electric motor 12 and an expander 11 are preferably used to drive compressor 10. Expander 11 utilizes energy from a hot pressurized oxidant output flow after electrochemical reaction.
  • Compressor 10 is in fluid communication with pressure regulator relay 25 via line 48.
  • Regulator 25 is preferably of the type "pressure sensor - controlled two- positional pressure regulator". This preferred type of regulator provides discrete constant pressure pulses of gas flow which have a pulse period and duty cycle (the % of the period in which the regulator is open) in relation to the external load and the gas consumption of the electrochemical reaction, which is generally variable over time, and may be highly variable.
  • Regulator 25 senses pressure in the output portion of the oxidant flow network and is communicably connected to regulator 75 on the anode side 2.
  • compressor 10 in the cathode side 1 and the compressor (if present) in the anode side 2 is preferably left running. This condition allows fast re-connection to external load, because when fuel cells are operated at the lower loads, the process of hydrogen and oxygen supply does not stop and can be rapidly increased as needed after re-connecting the external load.
  • an oxidant (cathode) recirculation feedback loop 15 is provided.
  • Cathode recirculation loop 15 comprises pump 50 which is used to induce oxidant flow though cathode chamber 28, flow splitter 20, and water vapor condenser 30 and associated connecting lines.
  • condenser 30 along with its associated lines provides the feedback conduit between input portion (at pump 50) and the output portion (at flow splitter 20) of cathode recirculation loop 15.
  • condenser 30 can be disposed between cathode chamber 28 and flow splitter 20.
  • Gas pump 50 is preferably a jet pump.
  • jet pumps are preferred due to their substantially proportional relation between consumption of recirculation streams and used gases in the fuel cells during the current production. Additional positive characteristics of such pumps as compared to electromechanical pumps include the absence of electrical energy use, high reliability, and essentially unlimited time in operation. Jet pump 50 can be driven entirely by potential energy of the compressed oxygen (e.g. stored in reagent tanks). Although jet pumps are preferred, other pump types may be used with the invention.
  • Fuel cells having anode recirculation networks together with conventional control systems and electronic pumping are known, even for PEM fuel cells, such as disclosed by published U.S. Patent Application No. 2003/0035986 to Yang.
  • the inventors are the first to design a PEM fuel cell including a cathode recirculation network, such as system 100 including cathode recirculation loop 15 shown in Fig. 1.
  • a cathode flow recirculation network is non-obvious in light of anode recirculation networks and provides some significant and unexpected advantages as described below.
  • an anode feedback network can be used to remove N 2 on the anode side of the membrane which diffuses across the membrane from the cathode side.
  • the output flow emerging after electrochemical reaction on the cathode side has about 10-12 % O 2 due to O 2 depletion during the electrochemical reaction to form water while the N 2 component and other components remain as they do not participate in the electrochemical reaction, as compared to air which as noted above has about 21 % oxygen.
  • the cathode output flow based on its low % O 2 content is not a valuable resource since ambient air can be utilized and provide about 21 % oxygen which is approximately 200% the O 2 content of the cathode output flow).
  • a cathode feedback network is clearly not cost effective utilizing a conventional pump because its operation cannot be offset by oxidant savings since for PEM fuel cells the oxidant is generally obtained at no cost.
  • H 2 which as noted above is easily and as a result inexpensively pumped, air is relatively difficult to pump since its density at STP is about 1.29 kg/m 3 .
  • jet pump 50 is shown including various components designed to control pressure/flow characteristics. These include the highspeed gas ejection nozzle 51, a stream mixing chamber 52 with diffuser 53 and a receiving chamber 54 for further gas mixing.
  • Gas passing through nozzle 51 forms a high-velocity stream in the receiving chamber 54.
  • This high-speed stream generates a lower pressure region at its boundary (according to the Bernoulli principle) and thereby sucks in gas from receiving chamber 54.
  • the two streams of air are directed into the mixing chamber.52 where their speed is equalized due to the mixing.
  • the mixed stream then passes through a diffuser 53, where the stream is expanded, and the static pressure increases.
  • the coefficient of injection characterizes the ratio between the mixing mass flow of moistened air from the outlet flow from the cathode chamber 28 of the fuel cell 5 in relation to airflow received from compressor 10 via nozzle 51 into air circulation loop.
  • Jet pump 50 is preferably optimized relative to a number of parameters.
  • the following operational parameters preferably include: 1. the gas pressure at the nozzle inlet 51 ; 2. the gas pressure in the receiving chamber 54; 3. the coefficient of injection which is equal to ratio between the mass of injected gasses from receiving chamber 54 and the mass of the gasses ejected from stream pump nozzle; 4. the compression ratio of the mixed stream, which is equal to the ratio between pressures of the mixed stream at diffuser outlet 53 and the pressure of the injected stream in the receiving chamber of the pump 54.
  • Throttling of the air stream occurs by passing the oxidant stream through the valve nozzle 51 of jet pump 50.
  • the pressure regulator 25 then enables stabilizing amount of oxidant gas going through the jet pump 50 in the face of arbitrary changes in oxidant consumption in the fuel cell stack.
  • the optimal upper and lower levels of oxidant (e.g. air) pressure on the cathode can be selected for each specific type of porous media.
  • the oxidant flow is throttled and the pressure preferably drops to between about 0.02 - 0.05 MPa according to the pressure in the circuit.
  • Heat generated by the fuel cell 100 is shown extracted by an independent coolant loop designated as 61 in FIG. 1.
  • Aportion of the oxidant, with depleted oxygen concentration after electrochemical reaction is directed from an output portion of the recirculation loop 15 into a flow splitter 20, such as a bleed air tee.
  • Flow splitter 20 directs a specific portion or amount of bleed oxidant following electrochemical reaction to expander 11 to use the energy of this flow to help drive the compressor 10 along with main drive motor 12, with the remaining depleted oxygen flow going to condenser 30. Following energy extraction at expander 11, the depleted oxygen flow can be exhausted to the atmosphere.
  • Water vapor condenser 30 preferably includes two cavities. The first cavity is part of the air recirculation loop 15, and the second cavity is used for coolant circulation to cool the condenser 30 and remove heat and is designated as 62 in FIG. 1.
  • condenser 30 re-circulated air received from flow splitter 20 saturated with water vapor is cooled and thus condensed. A portion of the water produced from condensation at condenser 30 is removed from air recirculation loop 15 preferably using a water transfer membrane 33 together with a differential pressure regulator 35.
  • the condenser has two functions; condensation of water vapor from the air flow exiting cathode chamber 28, and separation of condensed water from the air flow exiting cathode chamber 28 by removing gases including air, even in forms of bubbles.
  • the first function can be performed using a gas/liquid head-exchanger that is cooled, such as by a liquid coolant, for example, with an operating temperature in the range of 30 to 50° C.
  • the second function of water separation can be performed using a condenser equipped with porous hydrophilic membrane 33, through which condensed water can pass, but not air or other gases.
  • a suitable porous membrane preferably has high corrosion resistance and is able to conduct water through at the rate of water vapor condensation that occurs at maximum external load.
  • a differential pressure regulator 35 of the upstream type is preferably installed at the water outlet from condenser 30. Regulator 35 compares the air pressure in the condenser 30 with the water pressure after the membrane 33, and thus controls the differential pressure across the membrane 33. Control of the differential pressure across the membrane controls the pressure drop on the membrane, which if too high can cause membrane 33 pores to lose the ability to absorb water. [00060] As noted above, a portion of the water from the condenser 30 is directed to pressure regulator 35 which is then extracted from oxidant recirculation loop 15.
  • the differential pressure regulator 35 preferably has sensing elements, such as a diaphragm, in contact with two sources of pressure.
  • the reference side is connected to air recirculation loop of the condenser 30 outlet or inlet flow and the other side is connected with the condenser located after the separating membrane 33.
  • the regulator 35 can activate the pressure control valve located after condenser membrane using a tensile spring connected to regulator's sensing element (e.g. diaphragm).
  • the regulator 35 is preferably adjusted to maintain a pressure differential across membrane 33 of about 0.02 ⁇ 6.005 MPa.
  • anode side 2 provides fuel, such as hydrogen along with humidification to anode 31 of fuel cell 5.
  • Anode side 2 is provided a suitable source of hydrogen or other fuel, preferably being a filtered source, such as from a pressure vessel.
  • Hydrogen supplied first reaches solenoid valve 74 and then pressure regulator 75.
  • Regulator 75 is connected by piping to a pump 55, such as a jet pump having nozzle 57, which acts as to induce hydrogen flow in the closed recirculation loop 60.
  • Hydrogen recirculation loop 60 includes pump 55, anode chamber 38, hydrogen evaporator/humidifier 80, and associated tubing.
  • the hydrogen recirculation loop 60 is a part of the fuel and water vapor supply system for the anode 31. It also provides for extraction of excess water developed in fuel cell 30 as a result of the electrochemical reaction.
  • the anode chamber 38 of fuel cell 30 has baffles in the hydrogen feed stream that direct the hydrogen flow in such way so as to distribute it uniformly over the anode operating surface. Such distribution is preferably optimized for different anode sizes and geometrical forms.
  • regulator 75 is communicably connected to regulator 25 in cathode side 1. Although a wired connection is shown in FIG. 1, those having ordinary skill in the art will recognize that the connection of regulators 75 and 25 can be over the air or via a pneumatic line as well. For example, the controlling set point of the regulator 75 can be used as a reference point for the regulator 25.
  • Pump 55 is shown as a jet pump analogous to the jet pump 50 described with respect to cathode side 1, while regulator 75 is preferably a regulator analogous to the preferred embodiment of regulator 25 shown in FIG. 1, being the "pressure sensor + controlled two-positional pressure regulator” type.
  • Jet pump 55 receives hydrogen supplied via regulator 75 (when open) which is provided to nozzle 57.
  • Pump 55 mixes hydrogen supplied by regulator 75 (when open) with recirculated humidified hydrogen flow provided by evaporator 80.
  • the mixed hydrogen stream emerges from pump 55 and reaches anode 31 of fuel cell 5.
  • Regulator 75 preferably senses pressure along an output portion, such as in fluid connection with T-point 84 of the fuel flow network as shown in FIG 1.
  • Evaporator 80 is disposed within the hydrogen recirculation loop 60 between inlet and outlet portions to introduce water vapor into the hydrogen flow stream provided to anode 31. Although shown in the feedback conduit in FIG. 1, evaporator 80 can be disposed between anode chamber 38 and T-point 84. Evaporator 80 shown in FIG. 1 includes a porous water wick 81, and a water collection cavity- based device 82 to remove excess water from the evaporator 80. Evaporator 80 is designed to act as a fluid/gas heat exchanger. A temperature control system 93 circulates fluid medium through lines 90 and 91 to maintain the specified temperature conditions for evaporator 80.
  • Water from condenser 30 on the cathode side 1 via pressure regulator 35 installed on water outlet of condenser 30 in the oxidant loop 15 is in fluid connection with evaporator 80 via line 95.
  • Water from condenser 30 is preferably introduced to the upper portion of evaporator 80 near wick 81.
  • This configuration provides water vapor and hydrogen flow to the anodes in relation to the external electrical load.
  • water and hydrogen flow to anode 31 is supplied in relation to the external electrical load.
  • MH 2 0 ml + m2 Am3
  • MH 2 0 the water produced in the fuel cell 30 during the current generating process as a result of the reaction combining hydrogen and oxygen in the air
  • MH 2 0 f(Nu + Ni)
  • Nu is the useful power output of the electrochemical generator, equal to the external electrical load
  • Ni is the power used for the internal needs of the fuel cell system 100, such as for driving the air compressor 10 drive, coolant pump motors, temperature regulators, and electrically operated valves
  • ml is the mass of the water extracted from hydrogen recirculation loop evaporator 80 or dumped from the fuel cell 5 into the atmosphere
  • m2 is the mass of the water released in vapor form into atmosphere along with exhausted air from air recirculation loop 15 and air compressor expander 11
  • m3 is the mass of the water transferred from the air recirculation loop condenser 30 to the hydrogen recirculation loop evaporator 80.
  • Tfcs is the temperature of operating gases in the air recirculation loop 15 at the flow outlet of the fuel cell 30;
  • Te is the temperature (H* + HOv) of the flow at the evaporator 80 outlet;
  • Tc is the temperature (Air - HO) of flow in the air recirculation loop 15 at the condenser 30 outlet.
  • relative pressure levels between anode 38 and cathode chamber 28 are as follows: Pa > P + ⁇ P + 0.005 MPa, Where: Pa is the air and water vapor pressure in the oxidant recirculation loop 15; Ph is the hydrogen and water vapor pressure in the hydrogen recirculation loop 60; and ⁇ P is the pressure drop across the condenser 30 separating membrane 33 controlled by regulator 35. '
  • a liquid transport membrane 83 and water collection cavity-based device 82 are preferably included in system 100.
  • a hydro-membrane with selective water permeability 83 analogous to separator 33 in the oxidant loop, which separates liquid water from gas.
  • the lower part of evaporator 80 is fitted with water collection cavity-based device 82, which stores excess water not vaporized into the circulating hydrogen stream.
  • the outer part of the separating membrane is connected to a water extraction line via a back-pressure regulator 85, which controls the pressure drop on membrane 83 to, for example, 0.025 - 0.005 MPa.
  • This figure is preferably optimized based on system parameters including the membrane material and capillary sizes.
  • a purge line for the anode chamber 38 is preferably connected with a throttle 87 to restrict hydrogen flow when solenoid valve 88 is fully open.
  • Figure 3 shows a schematic model of elements of an exemplary regulated gas supply system comprising a closed vessel with variable gas inflow, consumption and outlet flow.
  • pressure regulators 25 and 75 are preferably of the type "pressure sensor-controlled two-positional pressure regulator”.
  • System 300 is a model for gas supply using such a regulator to a fuel cell with variable consumption in response to the speed of a chemical or electrochemical reaction.
  • a gas (pressurized air for example) from a source 310 is modeled as having an infinite volume and pressure.
  • pressure in the vessel 390 is desired to be maintained at a stable level, such as P work
  • a regulation throttle 392 is installed between pressure regulator 391 and the vessel 390 for restriction of gas flow. Gas flows through pipe 320 which has a non- regulated throttle 393 to restrict exiting gas flow and a controlling throttle 394, which reduces gas flow in pipe 320.
  • pressure sensors 395 and 397 are installed with different pressure regulating parameters to operate solenoids 399 and 398, respectively.
  • Design of the two-position pressure regulator 391 allows only two extreme positions of the valve and saddle, "fully open” and a low flow, which can include “fully closed.” Any intermediate positions of the valve relative to the saddle are not possible. Throttling of the gas stream entering the vessel 390 occurs only at the throttle 392. Gas can exit the vessel only through the pipe 320 at a variable flow rate controlled by the flow area changing of the regulating throttle 394. Maximum consumption of the effluent gas through the pipe 320 is limited by the flow area of the unregulated throttle 393. It is assumed that the maximum gas inflow rate to the vessel through the pipe 330 is 1.5 times the maximum gas consumption from the vessel through the pipe 320.
  • the object of system 300 is to control of the pressure in the vessel 390 under conditions of variable gas effluent rates from the vessel.
  • FIG. 4(a), (b) and (c) show exemplary gas supply periods, pauses and cycles of an aperiodic load based reagent flow supply arrangement under relatively high, intermediate and low external load conditions, respectively, according to a preferred embodiment of the invention for a fixed period of time, T ⁇ .
  • Pop is the operating pressure
  • Pmax is the maximum operating pressure
  • Prnin is the minimum operating pressure
  • Pnom is the nominal operating pressure
  • T is the time
  • M R is the mass circulation flow
  • Ts is the hydrogen supply time
  • Tc is the cycle time
  • Tp is the pause time.
  • Regulators 25 and 75 may be designed so that its valve is connected with a sensing diaphragm element, which enables free additional valve shift along the stream axis relative to a saddle of the valve and diaphragm. Due to use of a discrete control element, this type of regulator valve can only be in one of two extreme positions: “fully open” or low flow including “fully closed.” The discrete element does not allow the valve to remain in an intermediate position relative to the saddle, when the regulator is working in response to proportional throttling of the gas supply through the valve saddle.
  • FIG. 4(a) shows the gas supply period, pauses and cycles under relatively high load conditions.
  • the cycle time (Tc) which comprises a supply time (Ts) plus the pause time (Tp) provides a little over two (2) periods in the time Ti.
  • the supply time (Ts) is nearly equal to the cycle time (Tc).
  • Figure 4(b) shows the gas supply period, pauses and cycles under moderate load conditions. Under the moderate load conditions, almost five cycles are provided in the time Ti, while the supply time Ts is about 0.5 Tc.
  • Figure 4(c) shows the gas supply period, pauses and cycles under relatively low load conditions. Under the low load conditions, about three cycles are provided in the time Ti, while supply time Ts is about 0.2 Tc. [00083] Compiling the data from FIGs. 4(a)-(c), the supply time Ts increases as the load increases. In addition, the mass recirculation flow M R increases with increasing load.
  • the preferred pressure sensor - controlled two-positional pressure regulator can be characterized as a pulse gas supply and recirculation where the pulse dynamics change as a function of load.
  • a difference between the reactant flow characteristics obtained using the preferred pressure regulator as disclosed herein as compared to pulsed reactant systems such as disclosed in U.S. Pat. No. 6,093,502 to Carlstrom, Jr. et al. is the simultaneous variation of pulse width and pulse period in relation to the external load and gas consumption rate of the electrochemical reaction provided by the invention.
  • Carlstrom's pulsed system is only activated upon detection of a predetermined high load level, while the pulsed gas supply of the invention is preferably operable over all load conditions.
  • regulator 75 is the type "pressure sensor + controlled two-positional solenoid valve,” or a device which provides an equivalent response, which turns on when the pressure at 84 reaches P M U I , and turns off when the pressure at 84 reaches Pmax.
  • regulator 75 When regulator 75 is fully open, gas flows through, such as into the input portion of the recirculation loop 60 through pump 55, thus raising the operating pressure in loop 60.
  • regulator 75 When regulator 75 is fully closed, thus pausing the gas supply provided to loop 60, then pressure in the loop 60 begins dropping until Pmin is reached, this pressure value is sensed, and as a result regulator 75 again turns on and a new cycle is initiated.
  • advantages of the invention include: 1) increased air feed rate along the cathode working surface, due to the increasing amount of the air supplied to the each point provided by recirculation loop 15. This results in better control of oxidant feed by the air recirculation loop 15 to the "tri- surface" cathode area.
  • the pressure in the cathode chamber 28 is at lower pressure levels than those disclosed fuel cell devices where air is fed straight through without recirculation. Lower pressure results because of the higher flow speed provided for the required mass flow. Increased speed leads to increased active ventilation of cathode pores and surfaces and improved oxygen supply to the operating cathodes.
  • Implementation of the oxidant supply design according to the present invention can increase the rate of oxygen use by the cathode by a factor of 2.5 to 3.5. This increase is equivalent to the increasing the cathode working pressure by about 1.6-1.9 times. 2) Highly uniform water distribution and efficient water removal from the cathode surface. Improved hurnidification of air entering the cathode chamber 28 results in improved water concentration uniformity along the cathode, especially at in the gas inlet and outlet regions. This advantage is primarily due to the mixing of the air mass flow at higher temperature and lower humidity from the compressor with the humidified air mass flow at lower temperature from the regulation loop, for example in the proportion of 1:3.
  • Pulsation of the working (operating) pressure at the three-phase cathode interface is a significant advantage, since active ventilation of the pores occurs and, as a result, nitrogen (as a passive component of air) is rapidly removed from the active surface of catalysts.
  • Pressure pulsation in gas-transport pores of the cathode results in a significant decrease of the "nitrogen cover” effect. This effect occurs when nitrogen is pressed to the catalysts surface by the air passing along the three-phase interface through the gas-transport pores.
  • the pulsating cathode and anode gas feed system of the invention also provides significant advantages for preparing a fuel cell stack for start-up after a period of storage.
  • the fuel cell consumes oxygen fully from air before completely stopping.
  • re-start can be hindered because the active boundary between cathode and anode is in the state of nitrogen blockade. That is, access of the components to the three-phase interface is difficult due to the filling of gas-transport pores (in the cathode, for example) by nitrogen.
  • the pressure pulsation aspect of invention addresses this problem by greatly improving the process of starting electrochemical generator after down-time or storage.
  • the invention thus significantly increases the reliability and lifetime of the electrochemical generator.
  • the improvements of this invention enable the use of PEM fuel cell stacks as electrochemical generators for both mobile and stationary power units that are able to efficiently respond to rapidly cycling load conditions.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A recirculating reagent fuel-cell (5) includes an ion-exchange membrane (29) interposed between an anode (31) and cathode (27) anode to form a membrane/electrode assembly (MEA), the MEA interposed between a fuel gas diffusion layer (32) and an oxidant gas diffusion layer (26). An oxidant and fuel flow network are provided having an input portion for supplying reagent and an output portion for removing reagent after electrochemical reaction. The oxidant flow network includes a cathode recirculation loop (15), the cathode recirculation loop feeding back a portion of the oxidant after electrochemical reaction to the oxidant input portion. The cathode recirculation network can use entirely passive components which do not require electricity to operate, such as a pulse pressure regulator (25) and a jet pump (50).

Description

FUEL CELL WITH INTEGRATED FEEDBACK CONTROL
FIELD OF THE INVENTION
[0001] This invention relates to fuel cell assemblies and, more particularly to fuel cells having integrated feedback for regulation of water as well as fuel and oxidant supplied thereto.
BACKGROUND OF THE INVENTION [0002] Fuel cells hold great promise for commercial use in mobile and stationary power supply systems. Fuel cells electrochemically convert fuels and oxidants to electricity. Fuel cell types include Alkaline Fuel Cells (AFC), Molten Carbonate Fuel Cells (MCFC), Phosphoric Acid Fuel Cells (PAFC), Proton Exchange Membrane Fuel Cells (PEMFC or PEM), Solid Oxide Fuel Cells (SOFC) and Direct Methanol Fuel Cells.
[0003] There has been significant progress in the development of fuel cells, including improvements in specific characteristics, such as increased power density and increased efficiency. Nonetheless, the wide variations in load demand encountered in most commercial applications remain a problem for fuel cell based electro-chemical generators, particularly for those that use solid polymer electrolytes, such as PEMs. [0004] A PEM fuel cell converts the chemical energy of fuels such as hydrogen and an oxygen containing gas (e.g. air) directly into electrical energy, water and heat. At the heart of a PEM fuel cell is a membrane electrode assembly (MEA) comprising a proton conducting membrane electrolyte sandwiched between two gas diffusion electrodes. The membrane permits the passage of protons (H+) generated by oxidation of hydrogen gas at the anode to reach the cathode side of the fuel cell and form water, while preventing passage therethrough of either of the reactant gases.
[0005] Efficient operation of PEM fuel cells generally requires the removal of a portion of the water produced. Excess water can dilute the electrolyte, making it difficult to maintain optimum electrolyte concentrations under wide ranging of current loads. Load demands faced by a system in a typical commercial use might vary from 0 to 1000 ma/cm2 under a typical load cycle.
[0006] For the optimum operation of such fuel cells, the membrane should remain sufficiently moist throughout, but not too moist. Thus, there must be removal of a portion of the water generated at the cathode, as well as the addition of water at the anode side to provide sufficient membrane moistness.
[0007] Several characteristics of PEM fuel cells separate them from other types of fuel cells. For example, in contrast to other fuel cell types, PEM fuel cells have a narrow range for controlling optimal concentration of electrolyte in the localized zone of electrochemical activity comprising the anode, membrane and cathode. Such membranes have a limited ability for redistribution of water over the fuel cell working surface area. This performance characteristic of fuel cells with PEMs is attributed to the reduced ability of the anode, cathode and membrane (as a group) to transport water, and to the hydrophobic characteristics of the materials used.
[0008] These characteristics of solid-polymer membranes become critical when designing and using fuel cells with large working surface areas to produce large currents, such as required for transportation applications (e.g. automobiles, and busses), especially when a large number of fuel cells are combined in series to generate high voltage outputs. For example, to build an electrochemical generator having a capacity of 25kW at a voltage of 120V, a stack comprising 160 fuel cells is required with a working surface area of approximately 600 cm2 each. In a generator with a power rating of 60kW and a 330V output, it is necessary to install 420 fuel cell elements with a working surface area of 740 cm2 each, connected in series.
[0009] Maintaining the high output characteristics of fuel cells assembled into stacks to form electrochemical generators is one of the challenges of electrochemical generator design. In the case of fuel cells with solid-polymer membranes this task is even more difficult. The very narrow range over which water concentration must be controlled imposes strict requirements on the systems that feed the working gases, as well as on regulation of water concentration and temperature of each individual fuel cell. In addition, even at low operating times (1000-2000 hrs), characteristics of the individual fuel cells in a stack do not change in a constant or even manner. Progressive and uneven degradation in performance among the cells demands even more strict requirements for control of fuel cells assembled into electrochemical generator systems. [00010] In high power hydrogen-air electrochemical generators, hydrogen is supplied from storage tanks with high pressures up to 70 MPa. Systems for supplying gas usually have electric valves on hydrogen supply and purge lines. A hydrogen pressure regulator is commonly installed in the gas supply line upstream of the fuel cell stack. A feedback control pressure regulator is generally provided which senses variation in pressure at the fuel cell and control reactants gas flow in a manner proportional to gas usage. Control of gas flow and pressure (i.e. reduction of pressure from input pressure to working pressure) is also accomplished using a regulator. [00011] For smoother and more precise throttle control, a two-stage pressure regulator system is usually installed. The pressure regulator reduces the working pressure of the fuel cell. For synchronization of hydrogen and air pressures in the fuel cell stack, a pressure reference line is installed in parallel to hydrogen supply line to provide a reference pressure to the regulator.
[00012] This reference line is static and does not consume hydrogen during fuel cell operation. It is filled with hydrogen during start-up and emptied (purged) when the fuel cell generator is stopped or stored. As a rule, a vent valve is installed in the reference line to restrict pressure, and an electrical valve is installed for reduction of pressure to atmospheric pressure.
[00013] The reference line can be filled with inert gas, if available. The oxidant feed line to the cathode pores in the fuel cell stack has a filter to remove particles and a compressor to built up air pressure to a working level. The partial pressure of oxygen in air is relatively low (about 21.6%), the largest portion of air being nitrogen. For the cathode to work effectively, air should be fed in excess. In this case, the efficiency of oxygen usage is 40% - 60 % as a rule. At higher rates of oxygen usage, the cathode is less efficient.
[00014] In current fuel cell stack designs, the air supply system maintains the design working pressure level on cathode and anode. For this purpose, the hydrogen pressure regulator has a feedback connection to the air supply line at the entry point to the fuel cell. In this case the hydrogen pressure in the anode chamber is constantly compared with the air pressure in the cathode chamber and the pressure regulator makes needed adjustments in order to maintain the correct pressure ratio. [00015] The system described above for supplying hydrogen and air to fuel cells with solid-polymer electrolytes is essentially universal and used in almost all known designs with only minor variations. However, as explained below, these systems do not provide good regulation of the water concentration along the cathode and anode surface of the fuel cell stack, particularly for high and highly variable load conditions. [00016] The power output of a hydrogen-air fuel cell mainly depends on effective performance of the cathodes (oxygen limited electrodes). At higher coefficient efficiency oxide-oxygen (CEUO), such as CEUO > 70%, stable fuel cell performance is generally not possible with current density j > 0.5 a/cm2 because of low oxygen concentrations in air near the exhaust point from cathode chamber. [00017] In this case, there are gas transport restrictions on the amount of oxygen penetrating through the cathode pores and available to the cathodes. Drying takes place in some areas of the cathodes because of low water (vapor) concentration in the air supplied by the compressor.
[00018] Moreover, compressed feed air at the outlet of the compressor can be at even higher temperatures (e.g. 130-170°C). Thus, there is active removal of water (vapor) by the airflow which, in turn, leads to drying of the membrane in the air inlet region. In the air outlet area from the cathodes there occurs the reverse of this process leading to "flooding" of the cathode and membrane because air flowing in this area close to saturation and the rate of water uptake (vaporization) is lower. [00019] Because of low oxygen concentrations in the air after passing through most of the cathode chamber and gas flow restrictions, a large portion of the cathode surface can be in a condition of "concentration polarization." Concentration polarization results from restrictions to the transport of the fuel gases to the reaction sites. This usually occurs at high current because the forming of product water and excess hurnidification blocks the reaction sites. In this situation, there is increased risk of cross polarization in area near the gas outlet from the cathode chamber. This risk becomes much greater when the fuel cell load is highly variable over short time periods. Specifically, the risk is greatest when loads are switched from low to high levels and back in short periods of time, such as tens of seconds to minutes.
[00020] Such short-term load variations are generally not allowed in fuel cell operation. Otherwise non-optimum water concentration at the cathode and membrane can lead to cross polarization. This can cause the cells to operate in an electrolysis mode, which in turn can lead to direct reaction between hydrogen and air in the cell resulting in physical damage to the fuel cell.
[00021] Solving the problem of controlling water concentrations in fuel cells will greatly expand their potential application. However, this does not solve the problem of the fuel cell's inability to withstand wide range, short-term variations in load because of high thermal inertia due to the heat capacity of the fuel cell stack and the heat exchanges. The primary unmet requirement for use of hydrogen-air fuel cells in transportation and many stationary power applications is that fuel cell generators must be highly reliable in the face of rapid and wide-range variations in load. [00022] The above-mentioned issues represent a significant problem for electrochemical generators with solid polymer fuel cells as presently installed on electric vehicle prototypes. Currently available electrochemical generators do not meet consumer requirements in this regard, and therefore cannot be mass-produced and marketed for general use. This is not only because of the high cost and complexity of systems for controlling processes in fuel cells, but also because a primary application requirement cannot be met. This requirement is the ability to handle current loads that vary widely, and sometimes rapidly, for long-term operation (e.g. more than about 3000 hrs).
SUMMARY OF THE INVENTION [00023] A recirculating reagent fuel-cell includes an ion-exchange membrane inteφosed between an anode and cathode to form a membrane/electrode assembly (MEA), the MEA interposed between a fuel gas diffusion layer and an oxidant gas diffusion layer. An oxidant and fuel flow network are provided having an input portion for supplying reagent and an output portion for removing reagent and reaction products after the electrochemical reaction. At least one of the oxidant flow network and fuel flow network includes a recirculation loop formed by a feedback conduit which provides fluid connection between the input and output portion. The recirculation loop feeds back a portion of the fuel or oxidant after electrochemical reaction to their respective input portion.
[00024] The recirculation loop can include a water containing volume, wherein a portion of the output flow flows through the water containing volume to generate a humidified flow, the humidified flow comprising a portion of the oxidant or the fuel flow supplied to the fuel cell. The volume of the humidified flow can be adjustable, with the humidified flow volume increasing with a load on the fuel cell. [00025] At least one of the oxidant and fuel input portions can include a jet pump therein, where the jet pump induces recirculation in the recirculation loop. The output flow of the feedback conduit is preferably used as an input flow to the jet pump. In this embodiment, the jet pump mixes the portion of the fuel or oxidant flow fed back with externally supplied fuel or oxidant.
[00026] The water containing volume in the oxidant flow network can be a condenser for extracting water from the cathode, while the water containing volume in the fuel flow network can be an evaporator. In this embodiment, the condenser extracts water from the cathode in relation to a load on the fuel cell. The condenser is preferably fluidly connected to the evaporator, with the condenser supplying the fuel flow network with water.
[00027] The fuel cell can include a flow modulator fluidicly connected with at least one of an input portion the fuel flow network and an input portion of the oxidant flow network, wherein the flow modulator provides a time varying mass flow of fuel or oxidant. The modulator preferably includes structure for initiating operation across all fuel cell load conditions. The fuel flow network can include a first modulator and the oxidant flow network can includes a second modulator, the first and second modulator being communicably connected. The flow modulator preferably provides discrete pulses of fuel or oxidant flow, such as through use of a pressure sensor-controlled two- positional pressure regulator having only two positions, a first position being a fully open position and the other position being a low flow or fully closed. [00028] A method of operating a fuel cell includes the steps of providing a fuel flow to an anode of the fuel cell and an oxidant flow to a cathode of the fuel cell, wherein at least one of the fuel flow and the oxidant flow comprises a recirculated flow portion. The recirculated flow portion can be a humidified flow. The fuel flow and the oxidant flow can include a recirculated flow portion, wherein the method can include the step of transferring water generated at the cathode into the fuel recirculated portion to humidify the fuel flow.
[00029] At least one of the fuel flow and the oxidant flow can be a time varying mass flow, the mass flow varying with a load on the fuel cell. The time varying mass flow is preferably operative across all loads on the fuel cell and can comprise discrete pressure pulses. In a preferred embodiment, both the fuel flow and the oxidant flow are time varying mass flows, wherein the method can further comprise the step of time synchronizing the time varying mass flow of the fuel flow with the time varying mass flow of the oxidant flow.
BRIEF DESCRIPTION OF THE DRAWINGS [00030] A fuller understanding of the present invention and the features and benefits thereof will be accompanied upon review of the following detailed description together with the accompanying drawings, in which:
[00031] Figure 1 is a schematic of a recirculating reagent fuel cell system having recirculation loops in both the anode and cathode side, according to an embodiment of the invention.
[00032] Figure 2 shows the various components of an exemplary jet pump. [00033] Figure 3 is a schematic model showing elements of an exemplary regulated gas supply system comprising a closed vessel with variable gas inflow, consumption and outlet flow.
[00034] Figures 4(a), (b) and (c) show examples of gas supply periods, pauses and cycles of an aperiodic load based reagent flow supply arrangement under relatively high, intermediate and low external load conditions, respectively, according to a preferred embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION [00035] The invention is an electrochemical generator based on fuel cells, such as hydrogen-air fuel cells with solid polymer proton exchange membranes (PEM) that can be used in mobile or stationary applications. Generators based on the invention provide higher reliability and higher efficiency as compared to conventional fuel cells, particularly under rapid and widely varying power demands, such as those encountered for typical automotive applications.
[00036] A recirculating reagent fuel-cell includes an ion-exchange membrane interposed between an anode and cathode anode to form a membrane/electrode assembly (MEA), the MEA interposed between a fuel gas diffusion layer and an oxidant gas diffusion layer. An oxidant and fuel flow network are provided having an input portion for supplying reagent and an output portion for removing excess reagent and reaction byproducts after electrochemical reaction. At least one of the oxidant flow network and fuel flow network includes a feedback conduit to form a recirculation loop, the recirculation loop feeding back a portion of the fuel and/or oxidant after electrochemical reaction to their respective input portion.
[00037] The oxidant flow loop can include a water vapor condenser to extract water from the cathode chambers, the amount of water being based on the external load on the fuel cell stack. The fuel flow network can include an evaporator, where water is fed to the evaporator in the fuel loop from the condenser in the oxidant loop. In this embodiment, the portion of the output flow fed back to the input portion is a humidified flow. [00038] The invention provides hurnidification and resulting membrane wetness which is based on the fuel cell load. If the load increases, the fuel cell generates more water, thus more water is collected in the condenser. Since the output flow portion flowing through the condenser increases as the load increases, the humidified flow output by the condenser increases as well based on the level of the load. [00039] Although the invention is generally described with respect to a hydrogen- air electrochemical generator, the invention is in no way limited to either hydrogen or air. For example, the fuel can generally be any oxidizable gas, including mixtures thereof, while air can more generally be any oxidant gas. Moreover, recirculating reagent gas flow arrangements according to the invention described herein can be advantageously used with other types of fuel cells, particularly for membrane-based fuel cells. In addition, the aperiodic load based reagent flow supply feature described herein can be generally used with all fuels cell types, whether membrane based or not, and more generally, for chemically reactive systems.
[00040] Referring to FIG. 1, a schematic of a recirculating reagent fuel cell system 100 according to an embodiment of the invention is shown. System 100 includes fuel cell 5, which includes ion-exchange membrane 29 inteφosed between an anode 31 and cathode 27 to form a membrane/electrode assembly (MEA). The MEA is inteφosed between porous oxidant gas diffusion layer 26 and porous fuel diffusion layer 32. Cathode chamber 28 is bounded by plate 24 which is disposed adjacent to oxidant gas diffusion layer 26, while anode chamber 38 bounded by flow plate 34 is disposed adjacent to fuel diffusion layer 32. The respective porous gas diffusion layer/electrode structures typically comprise a Pt electrocatalyst dispersed on high surface area carbon black, held together with a binding agents, such as polytetrafluoroethyene (PTFE) and NAFION®. In most practical electrical chemical generator applications, system 100 comprises a plurality of fuel cells 5 hooked in series to form a fuel cell stack. The fuel cell 5 arrangement described herein is not an aspect of the invention. [00041] The reagent recirculation and control arrangement shown in both the cathode side 1 and anode side 2 are aspects of the invention. Cathode side 1 is provided an air supply, preferably cleaned of particles by suitable filtration, which is fed into a compressor 10, which provides the necessary flow and pressure of oxidant (e.g. air) for cathode side 1 of fuel cell 5 to support the electrochemical reaction. Both an electric motor 12 and an expander 11 are preferably used to drive compressor 10. Expander 11 utilizes energy from a hot pressurized oxidant output flow after electrochemical reaction.
[00042] Compressor 10 is in fluid communication with pressure regulator relay 25 via line 48. Regulator 25 is preferably of the type "pressure sensor - controlled two- positional pressure regulator". This preferred type of regulator provides discrete constant pressure pulses of gas flow which have a pulse period and duty cycle (the % of the period in which the regulator is open) in relation to the external load and the gas consumption of the electrochemical reaction, which is generally variable over time, and may be highly variable. Regulator 25 senses pressure in the output portion of the oxidant flow network and is communicably connected to regulator 75 on the anode side 2.
[00043] When the fuel cell 5 is operating in an idling mode, with external loads disconnected, compressor 10 in the cathode side 1 and the compressor (if present) in the anode side 2 is preferably left running. This condition allows fast re-connection to external load, because when fuel cells are operated at the lower loads, the process of hydrogen and oxygen supply does not stop and can be rapidly increased as needed after re-connecting the external load.
[00044] To increase the supply of oxidant gas to the cathode side of fuel cell 5 without the need for additional air intake into system 100, and for extraction of water and depleted oxidant, an oxidant (cathode) recirculation feedback loop 15 is provided. Cathode recirculation loop 15 comprises pump 50 which is used to induce oxidant flow though cathode chamber 28, flow splitter 20, and water vapor condenser 30 and associated connecting lines. In the arrangement shown in FIG. 1, condenser 30 along with its associated lines provides the feedback conduit between input portion (at pump 50) and the output portion (at flow splitter 20) of cathode recirculation loop 15. Although shown in the feedback conduit in Fig. 1, condenser 30 can be disposed between cathode chamber 28 and flow splitter 20.
[00045] After passing regulator 25, pressurized oxidant comprising gas is fed into the nozzle 51 of pump 50 at a typical pressure of 0.2 - 0.45 MPa. Gas pump 50 is preferably a jet pump. For recirculation of both fuel in anode side 2 and oxidant in cathode side 1, jet pumps are preferred due to their substantially proportional relation between consumption of recirculation streams and used gases in the fuel cells during the current production. Additional positive characteristics of such pumps as compared to electromechanical pumps include the absence of electrical energy use, high reliability, and essentially unlimited time in operation. Jet pump 50 can be driven entirely by potential energy of the compressed oxygen (e.g. stored in reagent tanks). Although jet pumps are preferred, other pump types may be used with the invention. [00046] Fuel cells having anode recirculation networks together with conventional control systems and electronic pumping are known, even for PEM fuel cells, such as disclosed by published U.S. Patent Application No. 2003/0035986 to Yang. However, the inventors are the first to design a PEM fuel cell including a cathode recirculation network, such as system 100 including cathode recirculation loop 15 shown in Fig. 1. A cathode flow recirculation network is non-obvious in light of anode recirculation networks and provides some significant and unexpected advantages as described below. [00047] With regard to anode recirculation, unreacted H2 which reaches the output flow is a valuable resource which is readily usable without further processing, as it is essentially undiluted by the electrochemical process (except for some minor and generally useful hurnidification). An anode feedback network can be cost effective because the cost of the pump and its operation (electricity, maintenance, etc.) can be offset in whole or in large part by the fuel savings provided by recycling unused fuel that would otherwise be exhausted to the ambient and thus wasted. H2 is easily and as a result inexpensively pumped as it is easy to compress since its density under standard conditions (STP) is about .08 kg/m3. Moreover, an anode feedback network can be used to remove N2 on the anode side of the membrane which diffuses across the membrane from the cathode side. As a result, despite the cost and added system complexity, there is significant motivation to add an anode recirculation loop to a PEM fuel cell. [00048] There is no corresponding motivation to add a cathode recirculation loop to a PEM fuel cell. Assuming air (about 21 % O2) is the oxidant supply as is generally the case for practical systems, the output flow emerging after electrochemical reaction on the cathode side has about 10-12 % O2 due to O2 depletion during the electrochemical reaction to form water while the N2 component and other components remain as they do not participate in the electrochemical reaction, as compared to air which as noted above has about 21 % oxygen.
[00049] Accordingly, the cathode output flow based on its low % O2 content is not a valuable resource since ambient air can be utilized and provide about 21 % oxygen which is approximately 200% the O2 content of the cathode output flow). Thus, a cathode feedback network is clearly not cost effective utilizing a conventional pump because its operation cannot be offset by oxidant savings since for PEM fuel cells the oxidant is generally obtained at no cost. Moreover, in contrast to H2 which as noted above is easily and as a result inexpensively pumped, air is relatively difficult to pump since its density at STP is about 1.29 kg/m3.
[00050] Applicants have discovered some significant and unexpected advantages by implementing cathode recirculation for a PEM fuel cell. By combining the recirculated portion and the compressed air portion, the velocity of the combined flow reaching the cathode has been found to be significantly improved. This translates into increasing fuel cell efficiency by effectively increasing the cathode gas mixing in gas diffusion layer (GDL) which increases the rate of oxygen supply to the cathode without increasing power consumption of the air compressor. Another result is significantly enhanced hurnidification and water content uniformity over the full membrane area. [00051] Now referring to FIG. 2, jet pump 50 is shown including various components designed to control pressure/flow characteristics. These include the highspeed gas ejection nozzle 51, a stream mixing chamber 52 with diffuser 53 and a receiving chamber 54 for further gas mixing.
[00052] Gas passing through nozzle 51 forms a high-velocity stream in the receiving chamber 54. This high-speed stream generates a lower pressure region at its boundary (according to the Bernoulli principle) and thereby sucks in gas from receiving chamber 54. The two streams of air are directed into the mixing chamber.52 where their speed is equalized due to the mixing. The mixed stream then passes through a diffuser 53, where the stream is expanded, and the static pressure increases. [00053] The coefficient of injection characterizes the ratio between the mixing mass flow of moistened air from the outlet flow from the cathode chamber 28 of the fuel cell 5 in relation to airflow received from compressor 10 via nozzle 51 into air circulation loop. The degree of compression of the mixed airflow output by pump 50 corresponds to aerodynamic resistance of the recirculation loop 15 when oxidant consumption is equal to consumption at the stream pump outlet. [00054] Jet pump 50 is preferably optimized relative to a number of parameters. The following operational parameters preferably include: 1. the gas pressure at the nozzle inlet 51 ; 2. the gas pressure in the receiving chamber 54; 3. the coefficient of injection which is equal to ratio between the mass of injected gasses from receiving chamber 54 and the mass of the gasses ejected from stream pump nozzle; 4. the compression ratio of the mixed stream, which is equal to the ratio between pressures of the mixed stream at diffuser outlet 53 and the pressure of the injected stream in the receiving chamber of the pump 54. [00055] Throttling of the air stream occurs by passing the oxidant stream through the valve nozzle 51 of jet pump 50. The pressure regulator 25 then enables stabilizing amount of oxidant gas going through the jet pump 50 in the face of arbitrary changes in oxidant consumption in the fuel cell stack. The optimal upper and lower levels of oxidant (e.g. air) pressure on the cathode can be selected for each specific type of porous media.
[00056] Returning again to FIG. 1, after passing pump 50, the oxidant flow is throttled and the pressure preferably drops to between about 0.02 - 0.05 MPa according to the pressure in the circuit. Heat generated by the fuel cell 100 is shown extracted by an independent coolant loop designated as 61 in FIG. 1. Aportion of the oxidant, with depleted oxygen concentration after electrochemical reaction, is directed from an output portion of the recirculation loop 15 into a flow splitter 20, such as a bleed air tee. Flow splitter 20 directs a specific portion or amount of bleed oxidant following electrochemical reaction to expander 11 to use the energy of this flow to help drive the compressor 10 along with main drive motor 12, with the remaining depleted oxygen flow going to condenser 30. Following energy extraction at expander 11, the depleted oxygen flow can be exhausted to the atmosphere.
[00057] Water vapor condenser 30 preferably includes two cavities. The first cavity is part of the air recirculation loop 15, and the second cavity is used for coolant circulation to cool the condenser 30 and remove heat and is designated as 62 in FIG. 1. In condenser 30, re-circulated air received from flow splitter 20 saturated with water vapor is cooled and thus condensed. A portion of the water produced from condensation at condenser 30 is removed from air recirculation loop 15 preferably using a water transfer membrane 33 together with a differential pressure regulator 35. [00058] Additional explanation with regard to design of the preferred condenser 30 is now presented. According to the present invention, the condenser has two functions; condensation of water vapor from the air flow exiting cathode chamber 28, and separation of condensed water from the air flow exiting cathode chamber 28 by removing gases including air, even in forms of bubbles. The first function can be performed using a gas/liquid head-exchanger that is cooled, such as by a liquid coolant, for example, with an operating temperature in the range of 30 to 50° C. [00059] The second function of water separation can be performed using a condenser equipped with porous hydrophilic membrane 33, through which condensed water can pass, but not air or other gases. A suitable porous membrane preferably has high corrosion resistance and is able to conduct water through at the rate of water vapor condensation that occurs at maximum external load. A differential pressure regulator 35 of the upstream type is preferably installed at the water outlet from condenser 30. Regulator 35 compares the air pressure in the condenser 30 with the water pressure after the membrane 33, and thus controls the differential pressure across the membrane 33. Control of the differential pressure across the membrane controls the pressure drop on the membrane, which if too high can cause membrane 33 pores to lose the ability to absorb water. [00060] As noted above, a portion of the water from the condenser 30 is directed to pressure regulator 35 which is then extracted from oxidant recirculation loop 15. The differential pressure regulator 35 preferably has sensing elements, such as a diaphragm, in contact with two sources of pressure. The reference side is connected to air recirculation loop of the condenser 30 outlet or inlet flow and the other side is connected with the condenser located after the separating membrane 33. The regulator 35 can activate the pressure control valve located after condenser membrane using a tensile spring connected to regulator's sensing element (e.g. diaphragm). The regulator 35 is preferably adjusted to maintain a pressure differential across membrane 33 of about 0.02 ± 6.005 MPa.
[00061] Now turning to anode side 2 of the system 100 , anode side 2 provides fuel, such as hydrogen along with humidification to anode 31 of fuel cell 5. Anode side 2 is provided a suitable source of hydrogen or other fuel, preferably being a filtered source, such as from a pressure vessel. Hydrogen supplied first reaches solenoid valve 74 and then pressure regulator 75. Regulator 75 is connected by piping to a pump 55, such as a jet pump having nozzle 57, which acts as to induce hydrogen flow in the closed recirculation loop 60. Hydrogen recirculation loop 60 includes pump 55, anode chamber 38, hydrogen evaporator/humidifier 80, and associated tubing. The hydrogen recirculation loop 60 is a part of the fuel and water vapor supply system for the anode 31. It also provides for extraction of excess water developed in fuel cell 30 as a result of the electrochemical reaction.
[00062] According to a preferred embodiment of the invention, the anode chamber 38 of fuel cell 30 has baffles in the hydrogen feed stream that direct the hydrogen flow in such way so as to distribute it uniformly over the anode operating surface. Such distribution is preferably optimized for different anode sizes and geometrical forms. [00063] As noted above, regulator 75 is communicably connected to regulator 25 in cathode side 1. Although a wired connection is shown in FIG. 1, those having ordinary skill in the art will recognize that the connection of regulators 75 and 25 can be over the air or via a pneumatic line as well. For example, the controlling set point of the regulator 75 can be used as a reference point for the regulator 25. Such a connection between fuel regulator 75 and regulator 25 in the air recirculation circuit 15 provides synchronization of their operation. When regulators 25 and 75 are pressure sensor controlled two position pressure regulators, air pressure pulsations in the cathode chamber 28 and hydrogen pressure pulsations in the anode chamber 38 become synchronized.
[00064] Two-sided and simultaneous (relative to the polymer membrane 29 in fuel cell 5) control of pressure on anode 31 and cathode 27 is important in the operation of the anode 31, membrane 29, and cathode 27 as a group. This arrangement improves the dynamic performance of fuel cell 5 during load variations and also decreases the degradation rate of volt-ampere characteristics of the fuel cell stack, due to the active anode and cathode ventilation to remove inert gases and provide for more uniform concentration of the electrolyte due to control of water.
[00065] Pump 55 is shown as a jet pump analogous to the jet pump 50 described with respect to cathode side 1, while regulator 75 is preferably a regulator analogous to the preferred embodiment of regulator 25 shown in FIG. 1, being the "pressure sensor + controlled two-positional pressure regulator" type. Jet pump 55 receives hydrogen supplied via regulator 75 (when open) which is provided to nozzle 57. Pump 55 mixes hydrogen supplied by regulator 75 (when open) with recirculated humidified hydrogen flow provided by evaporator 80. The mixed hydrogen stream emerges from pump 55 and reaches anode 31 of fuel cell 5. Regulator 75 preferably senses pressure along an output portion, such as in fluid connection with T-point 84 of the fuel flow network as shown in FIG 1.
[00066] Evaporator 80 is disposed within the hydrogen recirculation loop 60 between inlet and outlet portions to introduce water vapor into the hydrogen flow stream provided to anode 31. Although shown in the feedback conduit in FIG. 1, evaporator 80 can be disposed between anode chamber 38 and T-point 84. Evaporator 80 shown in FIG. 1 includes a porous water wick 81, and a water collection cavity- based device 82 to remove excess water from the evaporator 80. Evaporator 80 is designed to act as a fluid/gas heat exchanger. A temperature control system 93 circulates fluid medium through lines 90 and 91 to maintain the specified temperature conditions for evaporator 80.
[00067] Water from condenser 30 on the cathode side 1 via pressure regulator 35 installed on water outlet of condenser 30 in the oxidant loop 15 is in fluid connection with evaporator 80 via line 95. Water from condenser 30 is preferably introduced to the upper portion of evaporator 80 near wick 81. This configuration provides water vapor and hydrogen flow to the anodes in relation to the external electrical load. Specifically, the higher the load on fuel cell 30, the higher the hydrogen flow and oxidant flow provided by regulators 75 and 25 respectively, the more water is produced, which in turn transfers more water from cathode side 1 to evaporator 80 via line 95 which humidifies the increased hydrogen flow. Thus, water and hydrogen flow to anode 31 is supplied in relation to the external electrical load.
[00068] Important in the operation of hydrogen-air and related fuel cells with proton exchange membranes is the process of uniformly supplying water in addition to hydrogen to the "tri-surface" area of the anodes. According to the schematic of the cathode side 1 of an exemplary fuel cell 5 shown in FIG. 1, pressure regulator 35 provides hurnidification for fuel recirculation loop 60 for supply to anode 31. [00069] Water balance produced in the fuel cell 5 under load can be characterized by the following equations:
MH20 = ml + m2 Am3 where MH20 is the water produced in the fuel cell 30 during the current generating process as a result of the reaction combining hydrogen and oxygen in the air, and MH20 = f(Nu + Ni), where: Nu is the useful power output of the electrochemical generator, equal to the external electrical load; Ni is the power used for the internal needs of the fuel cell system 100, such as for driving the air compressor 10 drive, coolant pump motors, temperature regulators, and electrically operated valves, ml is the mass of the water extracted from hydrogen recirculation loop evaporator 80 or dumped from the fuel cell 5 into the atmosphere; m2 is the mass of the water released in vapor form into atmosphere along with exhausted air from air recirculation loop 15 and air compressor expander 11 ; and m3 is the mass of the water transferred from the air recirculation loop condenser 30 to the hydrogen recirculation loop evaporator 80. [00070] Operation of the dual loop system 100 as described above can be characterized by two equations, relating the relative temperature levels of its major components:
Tfcs > Te > Tc
Where: Tfcs is the temperature of operating gases in the air recirculation loop 15 at the flow outlet of the fuel cell 30;
Te is the temperature (H* + HOv) of the flow at the evaporator 80 outlet;
Tc is the temperature (Air - HO) of flow in the air recirculation loop 15 at the condenser 30 outlet.
Furthermore, relative pressure levels between anode 38 and cathode chamber 28 are as follows: Pa > P + ΔP + 0.005 MPa, Where: Pa is the air and water vapor pressure in the oxidant recirculation loop 15; Ph is the hydrogen and water vapor pressure in the hydrogen recirculation loop 60; and ΔP is the pressure drop across the condenser 30 separating membrane 33 controlled by regulator 35. '
[00071] Individual temperature regulators well known in the art mstalled on each controlling device can control temperature levels Tfcs, Te and Tc, for example. Temperature sensors for these temperature regulators can be installed in coolant flow circulating through the fuel cell stack evaporator 80 and condenser 30. [00072] To extract suφlus water from evaporator 80, a liquid transport membrane 83 and water collection cavity-based device 82 are preferably included in system 100. In the evaporator cavity is also preferably installed a hydro-membrane with selective water permeability 83, analogous to separator 33 in the oxidant loop, which separates liquid water from gas. The lower part of evaporator 80 is fitted with water collection cavity-based device 82, which stores excess water not vaporized into the circulating hydrogen stream. The outer part of the separating membrane is connected to a water extraction line via a back-pressure regulator 85, which controls the pressure drop on membrane 83 to, for example, 0.025 - 0.005 MPa. This figure is preferably optimized based on system parameters including the membrane material and capillary sizes. After the regulator 85, water from fuel cell can be exhausted into atmosphere or collected in an accumulator vessel.
[00073] At the hydrogen flow outlet of the fuel cell 5 at T-point 84, a purge line for the anode chamber 38 is preferably connected with a throttle 87 to restrict hydrogen flow when solenoid valve 88 is fully open.
[00074] Figure 3 shows a schematic model of elements of an exemplary regulated gas supply system comprising a closed vessel with variable gas inflow, consumption and outlet flow. As noted above, pressure regulators 25 and 75 are preferably of the type "pressure sensor-controlled two-positional pressure regulator". System 300 is a model for gas supply using such a regulator to a fuel cell with variable consumption in response to the speed of a chemical or electrochemical reaction.
[00075] A gas (pressurized air for example) from a source 310 is modeled as having an infinite volume and pressure. For example, the pressure provided ?\ = 0.5 MPa can be introduced into the vessel 390 via pipe 330 which has a two-position pressure regulator 391 including two solenoids, namely 399 to open and 398 to close. Assume that pressure in the vessel 390 is desired to be maintained at a stable level, such as Pwork
= 0.3+0.03 MPa.
[00076] A regulation throttle 392 is installed between pressure regulator 391 and the vessel 390 for restriction of gas flow. Gas flows through pipe 320 which has a non- regulated throttle 393 to restrict exiting gas flow and a controlling throttle 394, which reduces gas flow in pipe 320. On vessel 390, pressure sensors 395 and 397 are installed with different pressure regulating parameters to operate solenoids 399 and 398, respectively.
[00077] Design of the two-position pressure regulator 391 allows only two extreme positions of the valve and saddle, "fully open" and a low flow, which can include "fully closed." Any intermediate positions of the valve relative to the saddle are not possible. Throttling of the gas stream entering the vessel 390 occurs only at the throttle 392. Gas can exit the vessel only through the pipe 320 at a variable flow rate controlled by the flow area changing of the regulating throttle 394. Maximum consumption of the effluent gas through the pipe 320 is limited by the flow area of the unregulated throttle 393. It is assumed that the maximum gas inflow rate to the vessel through the pipe 330 is 1.5 times the maximum gas consumption from the vessel through the pipe 320. [00078] The object of system 300 is to control of the pressure in the vessel 390 under conditions of variable gas effluent rates from the vessel. Two pressure sensors 395 and 397 are installed on the vessel 390. If the pressure is lower than some predetermined level (for instance, Pwor = 0.275 MPa) the first pressure sensor 395 will command the pressure regulator 391 to open. If the pressure is higher than some predetermined level (for instance, Pwork = 0.320 MPa) the second pressure sensor 397 will command the pressure regulator 391 to close. As a result, system 300 delivers discrete pulses of gas at a constant pressure to vessel 390.
[00079] In conventional solutions to this problem, a "balanced-type" pressure regulator controls the gas supply to the fuel cell. The "balanced-type" pressure regulator in such a circuit has a measuring space directly after the valve saddle and throttling of the gas pressure occurs in the gap between the valve and saddle. Such regulators can replace both pressure sensors 395 and 397 and the two-position regulator 391. [00080] Figures 4(a), (b) and (c) show exemplary gas supply periods, pauses and cycles of an aperiodic load based reagent flow supply arrangement under relatively high, intermediate and low external load conditions, respectively, according to a preferred embodiment of the invention for a fixed period of time, T\. Pop is the operating pressure, Pmax is the maximum operating pressure, Prnin is the minimum operating pressure, Pnom is the nominal operating pressure, T is the time, MR is the mass circulation flow, Ts is the hydrogen supply time, Tc is the cycle time and Tp is the pause time. To implement pauses and cycles of an aperiodic load based reagent flow a relay-type of pressure regulator can be used. This preferred regulator has two positions, fully open and low flow including fully closed. In this preferred embodiment, a pressure sensor - controlled two-positional pressure regulator, or arrangement which provides equivalent flow dynamics responsive to system dynamics, is used for regulators 25 and 75. [00081] Regulators 25 and 75 may be designed so that its valve is connected with a sensing diaphragm element, which enables free additional valve shift along the stream axis relative to a saddle of the valve and diaphragm. Due to use of a discrete control element, this type of regulator valve can only be in one of two extreme positions: "fully open" or low flow including "fully closed." The discrete element does not allow the valve to remain in an intermediate position relative to the saddle, when the regulator is working in response to proportional throttling of the gas supply through the valve saddle. Such a regulator can be identified by the work regime as a device of the type "pressure sensor + controlled two-positional pressure regulator." [00082] Figure 4(a) shows the gas supply period, pauses and cycles under relatively high load conditions. Under the high load conditions, the cycle time (Tc) which comprises a supply time (Ts) plus the pause time (Tp) provides a little over two (2) periods in the time Ti. The supply time (Ts) is nearly equal to the cycle time (Tc). When the regulator is open the operating pressure (Pop) rises as a function of time until the time when Pop reaches Pmax, then the regulator shuts off. While the regulator is off, the operating pressure decreases until ?um is reached, and the regulator is turned on again. Figure 4(b) shows the gas supply period, pauses and cycles under moderate load conditions. Under the moderate load conditions, almost five cycles are provided in the time Ti, while the supply time Ts is about 0.5 Tc. Finally, Figure 4(c) shows the gas supply period, pauses and cycles under relatively low load conditions. Under the low load conditions, about three cycles are provided in the time Ti, while supply time Ts is about 0.2 Tc. [00083] Compiling the data from FIGs. 4(a)-(c), the supply time Ts increases as the load increases. In addition, the mass recirculation flow MR increases with increasing load.
[00084] Thus, the preferred pressure sensor - controlled two-positional pressure regulator" can be characterized as a pulse gas supply and recirculation where the pulse dynamics change as a function of load. A difference between the reactant flow characteristics obtained using the preferred pressure regulator as disclosed herein as compared to pulsed reactant systems such as disclosed in U.S. Pat. No. 6,093,502 to Carlstrom, Jr. et al. is the simultaneous variation of pulse width and pulse period in relation to the external load and gas consumption rate of the electrochemical reaction provided by the invention. In addition, Carlstrom's pulsed system is only activated upon detection of a predetermined high load level, while the pulsed gas supply of the invention is preferably operable over all load conditions.
[00085] Again returning to FIG. 1, assuming regulator 75 is the type "pressure sensor + controlled two-positional solenoid valve," or a device which provides an equivalent response, which turns on when the pressure at 84 reaches PMUI, and turns off when the pressure at 84 reaches Pmax. When regulator 75 is fully open, gas flows through, such as into the input portion of the recirculation loop 60 through pump 55, thus raising the operating pressure in loop 60. When regulator 75 is fully closed, thus pausing the gas supply provided to loop 60, then pressure in the loop 60 begins dropping until Pmin is reached, this pressure value is sensed, and as a result regulator 75 again turns on and a new cycle is initiated. In its fully closed position, the pressure upstream from jet pump nozzle 57 is reduced synchronously with the pressure in the recirculation loop 60, because gas volume between regulator 75 and nozzle 57 is much smaller then gas volume in the recirculation loop 60 and these two volumes are interconnected. During opening of the valve in regulator 75 the pressure downstream from it and before jet pump nozzle 57 is rises rapidly to the regulator's inlet pressure due to the discrete valve opening and difference (more then about 10 times) between valve cross section flow versus nozzle cross section.
[00086] When pressure in the recirculation loop 60 is increased then Pmax is reached, sensed, and the valve of regulator 75 is also closed rapidly. To minimize gas flow throttling on the pressure regulator, its full-open cross section and jet pump nozzle cross section should be calculated accordingly.
[00087] The invention provides numerous advantages over available fuel cell systems. For example, advantages of the invention include: 1) increased air feed rate along the cathode working surface, due to the increasing amount of the air supplied to the each point provided by recirculation loop 15. This results in better control of oxidant feed by the air recirculation loop 15 to the "tri- surface" cathode area. In operation, the pressure in the cathode chamber 28 is at lower pressure levels than those disclosed fuel cell devices where air is fed straight through without recirculation. Lower pressure results because of the higher flow speed provided for the required mass flow. Increased speed leads to increased active ventilation of cathode pores and surfaces and improved oxygen supply to the operating cathodes. Implementation of the oxidant supply design according to the present invention can increase the rate of oxygen use by the cathode by a factor of 2.5 to 3.5. This increase is equivalent to the increasing the cathode working pressure by about 1.6-1.9 times. 2) Highly uniform water distribution and efficient water removal from the cathode surface. Improved hurnidification of air entering the cathode chamber 28 results in improved water concentration uniformity along the cathode, especially at in the gas inlet and outlet regions. This advantage is primarily due to the mixing of the air mass flow at higher temperature and lower humidity from the compressor with the humidified air mass flow at lower temperature from the regulation loop, for example in the proportion of 1:3. This advantage results in a significant reduction in the risk of fire or explosion in the fuel cell due to the decrease in the risk of "overdrying" at the inlet section of cathode. It should also be noted that at a certain level of excess air pressure on the cathode as compared with the hydrogen pressure on the anode can result in air leaking onto the anode if the hermetic seal of the membrane is not maintained. When this occurs, a catalytic interaction occurs resulting in water formation. Such a situation does not increase the risk of fire however.
3) More effective water vapor supply to the entire anode surface is provided. This advantage is due to the continuous circulation of the humidified hydrogen through the anode chambers. 4) Equalization of electrolyte concentration over cathode surface by reducing temperature of the air flow at the inlet area of cathode 27 and inducement of vaporization by the outlet air flow along the cathode 27. Since a portion of the air supplied to cathodes is recirculated air, intake air requires less compression, and as a result is the temperature of the air supplied to cathodes is lower (and as a result moister) as compared to a conventional fuel cell system. 5) Reduced risk of membrane dehydration thus increasing the electrochemical performance of the membrane assembly is also provided. This advantage results because of the anode and/or cathode active surface limitation.
6) Pulsation of the working (operating) pressure at the three-phase cathode interface (gas, catalysts and electrolyte) is a significant advantage, since active ventilation of the pores occurs and, as a result, nitrogen (as a passive component of air) is rapidly removed from the active surface of catalysts. Pressure pulsation in gas-transport pores of the cathode results in a significant decrease of the "nitrogen cover" effect. This effect occurs when nitrogen is pressed to the catalysts surface by the air passing along the three-phase interface through the gas-transport pores.
[00088] Significant advantages under rapid changes in load over a wide range are provided by the invention. At the same conditions of pressure, temperature and air supply from compressor, the magnitude of the voltage variations during transit to a new steady state load decreases by a factor of about 1.5 to 2.2.
[00089] The pulsating cathode and anode gas feed system of the invention also provides significant advantages for preparing a fuel cell stack for start-up after a period of storage. Upon shut down, the fuel cell consumes oxygen fully from air before completely stopping. After long intervals between operation, days or weeks for example, re-start can be hindered because the active boundary between cathode and anode is in the state of nitrogen blockade. That is, access of the components to the three-phase interface is difficult due to the filling of gas-transport pores (in the cathode, for example) by nitrogen. The pressure pulsation aspect of invention addresses this problem by greatly improving the process of starting electrochemical generator after down-time or storage.
[00090] The invention thus significantly increases the reliability and lifetime of the electrochemical generator. The improvements of this invention enable the use of PEM fuel cell stacks as electrochemical generators for both mobile and stationary power units that are able to efficiently respond to rapidly cycling load conditions.
[00091] While various embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects.
The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the invention.

Claims

We claim: 1. A fuel-cell with a reagent feeding system, comprising: an ion-exchange membrane inteφosed between an anode and cathode to form a membrane/electrode assembly (MEA), said MEA inteφosed between a fuel gas diffusion layer and an oxidant gas diffusion layer; an oxidant flow network in fluid connection with said oxidant gas diffusion layer, said oxidant network having an input portion for supplying oxidant and an output portion for removing said oxidant after electrochemical reaction, and a fuel flow network in fluid connection with said fuel gas diffusion layer, said fuel network having an input portion for supplying fuel and an output portion for removing said fuel after said electrochemical reaction, wherein said oxidant flow network includes a feedback conduit to form an oxidant recirculation loop, said oxidant recirculation loop feeding back a portion of said oxidant after electrochemical reaction to said oxidant input portion.
2. The fuel cell of claim 1 , wherein said fuel flow network includes a feedback conduit to form a fuel recirculation loop, said fuel recirculation loop feeding back a portion of said fuel after said electrochemical reaction to said fuel input portion.
3. The fuel cell of claim 2, wherein said oxidant input portion includes an oxidant jet pump and said fuel input portion includes a fuel jet pump therein, said oxidant and fuel jet pumps inducing recirculation in said oxidant and fuel recirculation loops exclusively from potential energy provided by said oxidant supplied and said fuel supplied, respectively.
4. The fuel cell of claim 3, further comprising a pressure sensor-controlled two-position pulse pressure regulator disposed in said fuel network, said fuel pulse pressure regulator having an input receiving said supply fuel and an output coupled to a nozzle of said fuel jet pump, said fuel pulse pressure regulator generating discrete pulses of fuel flow having a pulse period which increases with an external electrical load imposed on said fuel cell.
5. The fuel cell of claim 4, further comprising a pressure sensor-controlled two-position pulse pressure regulator in said oxidant flow network, said oxidant pulse pressure regulator having an input receiving said supply oxidant and an output coupled to a nozzle of said oxidant jet pump, said oxidant pulse pressure regulator generating discrete pulses of oxidant flow which have a pulse period which increases with an external electrical load imposed on said fuel cell.
6. The fuel cell of claim 5, wherein said fuel pulse pressure regulator and said oxidant pulse pressure regulator are communicably connected, said discrete oxidant and fuel pulses being synchronized in time.
7. The fuel cell of claim 6, wherein a fuel pressure setpoint on said fuel pulse regulator is used as a reference pressure setpoint for said oxidant pulse regulator, whereby said oxidant pulse regulator is a slave regulator.
8. A fuel-cell, comprising: an ion-exchange membrane inteφosed between an anode and cathode to form a membrane/electrode assembly (MEA), said MEA inteφosed between a fuel gas diffusion layer and an oxidant gas diffusion layer; an oxidant flow network in fluid connection with said oxidant gas diffusion layer, said oxidant network having an input portion for receiving supply oxidant and an output portion for removing said oxidant after electrochemical reaction; a fuel flow network in fluid connection with said fuel gas diffusion layer, said fuel network having an input portion for receiving supply fuel and an output portion for removing said fuel after said electrochemical reaction, wherein at least one of said oxidant and fuel flow network includes a feedback conduit to form a recirculation loop which feeds back a portion of a reactant selected from said oxidant and said fuel after said electrochemical reaction from said output portion to said input portion, and a passive gas control system, said passive control system comprising: a pulse pressure regulator having an input receiving said supply reactant, said pulse pressure regulator generating discrete pulses of said reactant having a pulse period which increases with an external electrical load imposed on said fuel cell, and a jet pump having an input coupled to an output of said pulse pressure regulator, said jet pump inducing recirculation by mixing said fed back portion of said reactant with said supply reactant exclusively from potential energy provided by said discrete pulses of said supply reactant.
9. The fuel cell of claim 8, wherein both said oxidant flow network and said fuel flow network include said passive control system, said oxidant flow network including a oxidant pulse pressure regulator and said fuel flow network including a fuel pulse pressure regulator.
10. The fuel cell of claim 9, wherein said fuel pulse pressure regulator and said oxidant pulse pressure regulator are communicably connected, discrete oxidant and fuel pulses generated by said fuel pulse pressure regulator and said oxidant pulse pressure regulator being synchronized in time.
11. The fuel cell of claim 10, wherein a fuel pressure setpoint on said fuel pulse regulator is used as a reference pressure setpoint for said oxidant pulse regulator, whereby said oxidant pulse regulator is a slave regulator.
12. The fuel cell of claim 8, wherein said pulse pressure regulator is a pressure sensor-controlled two-position pulse pressure regulator.
PCT/US2004/043744 2003-12-24 2004-12-23 Fuel cell with integrated feedback control WO2005064730A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/746,405 US6979508B2 (en) 2003-11-12 2003-12-24 Fuel cell with integrated feedback control
US10/746,405 2003-12-24

Publications (3)

Publication Number Publication Date
WO2005064730A2 true WO2005064730A2 (en) 2005-07-14
WO2005064730A3 WO2005064730A3 (en) 2006-05-18
WO2005064730B1 WO2005064730B1 (en) 2006-07-06

Family

ID=34739063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/043744 WO2005064730A2 (en) 2003-12-24 2004-12-23 Fuel cell with integrated feedback control

Country Status (2)

Country Link
US (2) US6979508B2 (en)
WO (1) WO2005064730A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083821A2 (en) * 2004-02-24 2005-09-09 Ener1, Inc. Alkaline electrolyte fuel cells with improved hydrogen-oxygen supply system
WO2007128018A2 (en) * 2006-05-09 2007-11-15 Avl List Gmbh Fuel cell system
WO2016188822A1 (en) * 2015-05-28 2016-12-01 Thyssenkrupp Marine Systems Gmbh Recirculation fuel cell
WO2016188851A1 (en) * 2015-05-28 2016-12-01 Thyssenkrupp Marine Systems Gmbh Fuel cell comprising a humidifier
GB2569857A (en) * 2017-10-26 2019-07-03 Lg Fuel Cell Systems Inc Fuel cell systems with in-block reforming
DE102020207137A1 (en) 2020-06-08 2021-12-09 Thyssenkrupp Ag Method for operating a submarine with a fuel cell and a hydrogen storage device

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7402353B2 (en) * 2004-04-13 2008-07-22 General Motors Corporation Transient controls to improve fuel cell performance and stack durability
US7662495B2 (en) * 2004-11-05 2010-02-16 Gm Global Technologies Operations, Inc. Passive restriction pathways in fuel cell water drainage
US20090325012A1 (en) * 2004-12-17 2009-12-31 Astris Energi Inc. Alkaline fuel cell system
US8048576B2 (en) * 2005-07-12 2011-11-01 Honeywell International Inc. Power generator shut-off valve
US7811690B2 (en) * 2005-10-25 2010-10-12 Honeywell International Inc. Proton exchange membrane fuel cell
US7727655B2 (en) * 2005-10-25 2010-06-01 Honeywell International Inc. Fuel cell stack having catalyst coated proton exchange member
US8043736B2 (en) * 2006-01-10 2011-10-25 Honeywell International Inc. Power generator having multiple layers of fuel cells
US20070178340A1 (en) * 2006-01-31 2007-08-02 Honeywell International Inc. Fuel cell power generator with micro turbine
JP2007282449A (en) * 2006-04-11 2007-10-25 Honda Motor Co Ltd Thermoelectric converter
US8092943B2 (en) * 2006-04-19 2012-01-10 Daimler Ag Fuel cell system with improved fuel recirculation
US20080081228A1 (en) * 2006-06-20 2008-04-03 Fagan Neil B Anode purge gas dilution
US7698119B2 (en) * 2006-07-21 2010-04-13 Atomic Energy Council Simulator of fuel cell on gas phase reaction
US8283079B2 (en) * 2006-11-03 2012-10-09 Honeywell International Inc. Fuel cell power generator with water reservoir
US8822097B2 (en) 2006-11-30 2014-09-02 Honeywell International Inc. Slide valve for fuel cell power generator
DE102007004347A1 (en) * 2007-01-29 2008-07-31 Robert Bosch Gmbh Fuel cell system, has sensor to detect impact sound and pressure fluctuations in fluid supply strand, and attached to fluid supplying and/or fluid control elements, fluid compressor and control valve
JP4998942B2 (en) * 2007-03-06 2012-08-15 本田技研工業株式会社 Fuel cell motorcycle
CN101874323B (en) * 2007-11-22 2012-08-29 松下电器产业株式会社 Fuel cell system and method of operating the same
JP5378498B2 (en) * 2008-03-18 2013-12-25 ダイムラー・アクチェンゲゼルシャフト Fuel cell system
US20100055508A1 (en) * 2008-08-27 2010-03-04 Idatech, Llc Fuel cell systems with water recovery from fuel cell effluent
US8703358B2 (en) * 2008-11-20 2014-04-22 Mti Microfuel Cells, Inc. Fuel cell feed systems
CN102473945B (en) 2009-07-07 2014-08-20 日产自动车株式会社 Operation control device and operation control method for fuel battery power plant
FI20105377L (en) * 2010-04-12 2011-10-13 Waertsilae Finland Oy Method and device for controlling fuel supply in a fuel cell system
JP5763484B2 (en) * 2011-09-15 2015-08-12 本田技研工業株式会社 Fuel cell system
US9029036B2 (en) * 2012-10-25 2015-05-12 GM Global Technology Operations LLC Systems and methods for controlling a compressor recirculation valve
US8846262B2 (en) 2012-10-25 2014-09-30 GM Global Technology Operations LLC Reactive compressor surge mitigation strategy for a fuel cell power system
WO2014186880A1 (en) * 2013-05-24 2014-11-27 Hydrogenics Corporation System and method for controlling voltage of a fuel cell
JP6133365B2 (en) * 2014-08-01 2017-05-24 本田技研工業株式会社 Operation method of fuel cell system
JP6601734B2 (en) * 2015-03-13 2019-11-06 パナソニックIpマネジメント株式会社 Operation method of hydrogen generator, hydrogen generator and fuel cell system
DE102016006764A1 (en) * 2016-06-02 2017-12-07 Diehl Aerospace Gmbh Arrangement comprising a turbomachine and associated operating method
CN107358981B (en) * 2017-07-31 2023-03-14 重庆宙盾新能源技术开发有限公司 Nickel-hydrogen water energy fuel power generation system
US20230077343A1 (en) * 2021-09-10 2023-03-16 Hamilton Sundstrand Corporation Water recovery system for fuel cells
US11894588B2 (en) 2021-09-14 2024-02-06 GM Global Technology Operations LLC Fuel cell propulsion system with a fuel cell stack for a motor vehicle and process for controlling a temperature of the fuel cell stack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543238A (en) * 1992-08-10 1996-08-06 Siemens Aktiengesellschaft Fuel cell and method for moistening the electrolyte of the fuel cell
US5595833A (en) * 1994-02-19 1997-01-21 Rolls-Royce Plc Solid oxide fuel cell stack
US6093502A (en) * 1998-10-28 2000-07-25 Plug Power Inc. Fuel cell with selective pressure variation and dynamic inflection
US20020150801A1 (en) * 2001-04-16 2002-10-17 Asia Pacific Fuel Cell Technologies, Ltd. Anode stream recirculation system for a fuel cell

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547776A (en) 1991-01-15 1996-08-20 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
DE69320927T2 (en) * 1992-12-21 1999-02-18 Mitsubishi Chem Corp Porous film or foil, battery separator and lithium battery
US5914200A (en) * 1993-06-14 1999-06-22 Siemens Aktiengesellschaft High-temperature fuel cell stack arrangement with centrally located exit air space
JP3636068B2 (en) * 2000-02-16 2005-04-06 日産自動車株式会社 Fuel cell control device
JP2002256093A (en) * 2001-02-28 2002-09-11 Nitto Denko Corp Porous film, production method thereof and usage thereof
US20020122986A1 (en) * 2001-03-02 2002-09-05 Labarge William J. Lithium battery with separator stored lithium
US6500319B2 (en) 2001-04-05 2002-12-31 Giner Electrochemical Systems, Llc Proton exchange membrane (PEM) electrochemical cell having an integral, electrically-conductive, compression pad
US6566003B2 (en) 2001-04-18 2003-05-20 Mti Microfuel Cells, Inc. Method and apparatus for CO2 - driven air management for a fuel cell system
KR100412092B1 (en) * 2001-05-03 2003-12-24 삼성에스디아이 주식회사 Polymer electrolyte and lithium battery employing the same
TW511316B (en) * 2001-08-15 2002-11-21 Asia Pacific Fuel Cell Tech Diaphragm pump and anode stream recirculation system using such pump for a fuel cell
KR100440939B1 (en) * 2002-02-16 2004-07-21 삼성에스디아이 주식회사 Polymer electrolyte and lithium battery employing the same
US7122257B2 (en) * 2002-06-10 2006-10-17 Hewlett-Packard Development Company, Lp. Fuel cell reactant supply
AU2003286062A1 (en) * 2002-11-27 2004-06-18 Hydrogenics Corporation Fuel cell power system with external humidification and reactant recirculation and method of operating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543238A (en) * 1992-08-10 1996-08-06 Siemens Aktiengesellschaft Fuel cell and method for moistening the electrolyte of the fuel cell
US5595833A (en) * 1994-02-19 1997-01-21 Rolls-Royce Plc Solid oxide fuel cell stack
US6093502A (en) * 1998-10-28 2000-07-25 Plug Power Inc. Fuel cell with selective pressure variation and dynamic inflection
US20020150801A1 (en) * 2001-04-16 2002-10-17 Asia Pacific Fuel Cell Technologies, Ltd. Anode stream recirculation system for a fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083821A2 (en) * 2004-02-24 2005-09-09 Ener1, Inc. Alkaline electrolyte fuel cells with improved hydrogen-oxygen supply system
WO2005083821A3 (en) * 2004-02-24 2006-01-19 Ener1 Inc Alkaline electrolyte fuel cells with improved hydrogen-oxygen supply system
WO2007128018A2 (en) * 2006-05-09 2007-11-15 Avl List Gmbh Fuel cell system
WO2007128018A3 (en) * 2006-05-09 2008-01-10 Avl List Gmbh Fuel cell system
AU2016269009B2 (en) * 2015-05-28 2018-11-22 Thyssenkrupp Marine Systems Gmbh Recirculation fuel cell
WO2016188851A1 (en) * 2015-05-28 2016-12-01 Thyssenkrupp Marine Systems Gmbh Fuel cell comprising a humidifier
WO2016188822A1 (en) * 2015-05-28 2016-12-01 Thyssenkrupp Marine Systems Gmbh Recirculation fuel cell
US10637081B2 (en) 2015-05-28 2020-04-28 Thyssenkrupp Marine Systems Gmbh Recirculation fuel cell
EP3304628B1 (en) 2015-05-28 2020-07-29 thyssenkrupp Marine Systems GmbH Recirculation fuel cell
GB2569857A (en) * 2017-10-26 2019-07-03 Lg Fuel Cell Systems Inc Fuel cell systems with in-block reforming
US10680261B2 (en) 2017-10-26 2020-06-09 Lg Electronics, Inc. Fuel cell systems with in-block reforming
DE102020207137A1 (en) 2020-06-08 2021-12-09 Thyssenkrupp Ag Method for operating a submarine with a fuel cell and a hydrogen storage device
WO2021249750A1 (en) 2020-06-08 2021-12-16 Thyssenkrupp Marine Systems Gmbh Method for operating a submarine with a fuel cell and a hydrogen store
DE102020207137B4 (en) 2020-06-08 2024-02-08 Thyssenkrupp Ag Method for operating a submarine with a fuel cell and a hydrogen storage device

Also Published As

Publication number Publication date
US20050100777A1 (en) 2005-05-12
WO2005064730A3 (en) 2006-05-18
WO2005064730B1 (en) 2006-07-06
US20060003201A1 (en) 2006-01-05
US6979508B2 (en) 2005-12-27

Similar Documents

Publication Publication Date Title
US6979508B2 (en) Fuel cell with integrated feedback control
US8092943B2 (en) Fuel cell system with improved fuel recirculation
US8399142B2 (en) Relative humidity profile control strategy for high current density stack operation
US20080160363A1 (en) Control of the Polymer Humidifying Membrane of a Fuel Cell
US7354670B2 (en) Fuel cell with fuel gas adjustment mechanism
US7348083B2 (en) Fuel cell system
CA2389197C (en) Fuel cell and method of operating same
WO2003003494A2 (en) Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion
CA2591429A1 (en) Summer and winter mode operation of fuel cell stacks
EP2915209B1 (en) Fuel cell humidification management method&system
WO2005083821A2 (en) Alkaline electrolyte fuel cells with improved hydrogen-oxygen supply system
JP2007128868A (en) Anode flow shifting method using pulling-out function of closed type injector
JP6326439B2 (en) Control method of fuel cell system
US7402353B2 (en) Transient controls to improve fuel cell performance and stack durability
US20060134474A1 (en) Fuel cell humidification system
EP2216845A1 (en) Fuel cell system
CN101483248B (en) Anode recirculation pump control strategy
CN100361337C (en) Fuel cell capable of rapid response under output power abrupt intensification state
JP2004186008A (en) Solid polymer fuel cell, solid polymer fuel cell system and mobile body
CN114628746B (en) Fuel cell system
US20230318005A1 (en) Fuel cell system
US20040131899A1 (en) System and method for process gas stream delivery and regulation using down spool control
JP6589702B2 (en) Fuel cell system
JP2002313379A (en) Fuel cell system
CN116779916A (en) Hydrogen fuel power generation device and control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase