WO2005062047A1 - Method of analyzing biological samples, liquid reaction mixture and analytical device - Google Patents

Method of analyzing biological samples, liquid reaction mixture and analytical device Download PDF

Info

Publication number
WO2005062047A1
WO2005062047A1 PCT/JP2003/016572 JP0316572W WO2005062047A1 WO 2005062047 A1 WO2005062047 A1 WO 2005062047A1 JP 0316572 W JP0316572 W JP 0316572W WO 2005062047 A1 WO2005062047 A1 WO 2005062047A1
Authority
WO
WIPO (PCT)
Prior art keywords
label
biological sample
substance
biological samples
synthesis
Prior art date
Application number
PCT/JP2003/016572
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Kanda
Shinichi Fukuzono
Original Assignee
Hitachi High-Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High-Technologies Corporation filed Critical Hitachi High-Technologies Corporation
Priority to JP2005512335A priority Critical patent/JP4227139B2/en
Priority to PCT/JP2003/016572 priority patent/WO2005062047A1/en
Publication of WO2005062047A1 publication Critical patent/WO2005062047A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching

Definitions

  • the present invention relates to a method for analyzing a biological sample, a reaction solution, and an analyzer used for diagnosis, inspection, and research in the fields of biochemistry, molecular biology, and medical care.
  • nucleic acids and proteins As a technique for detecting trace amounts of biological samples, mainly nucleic acids and proteins, target, synthesized or purified biological samples are labeled with fluorescent, luminescent, or radioactive isotopes for qualitative and quantitative determination. And so on.
  • nucleic acid labeling method a technique of labeling a target nucleic acid synthesized by a PCR (polymerase chain reaction) method with a fluorescent substance, a luminescent substance and a radioisotope during or after the synthesis is well known.
  • an amplification reaction is performed using a primer to which biotin-digoxigenin (DIG) is added, and the amplified (synthesized) nucleic acid product is labeled with a fluorescent substance, a luminescent substance, and a radioisotope via biotin-digoxigenin (DIG).
  • DIG biotin-digoxigenin
  • a detection method using a fluorescent substance and a luminescent substance has been developed in recent years, and has become a simple method, for example, a kit for performing detection has been sold. It is used for the diagnosis of infectious diseases, genetic diseases, and cancer as a highly sensitive analysis method for biological samples.
  • each chemical substance used as a label has its own wavelength band. If labels of different wavelengths are added to several types of biological samples for each type, multiple types of biological samples can be detected simultaneously by one reaction by simultaneously measuring their wavelength spectra.
  • Japanese Unexamined Patent Publication No. Hei 9-213 495-49 relates to a technique for detecting a base sequence of a nucleic acid.
  • a technique has been disclosed in which a sample is labeled with a plurality of types of fluorescent dyes, the sample is separated (for example, separation by gel electrophoresis), and then a plurality of target nucleic acids are simultaneously detected.
  • Japanese Patent Application Laid-Open No. 5-118991 discloses that a mixture (combination) of two kinds of phosphors is used as a label, and the four kinds of phosphors are changed by changing the mixing ratio of these phosphors.
  • a method for detecting a base sequence which generates labels and discriminates four kinds of nucleic acids (base sequences) using these labels.
  • the labels mixed ratio of the first fluorescent substance and the second fluorescent substance
  • added to the four kinds of nucleic acids are separated after separating the nucleic acids by type (for example, separation by gel electrophoresis).
  • this intensity ratio is determined by detecting the fluorescence intensity of the first and second phosphors with two detectors). Is found).
  • Four types of nucleic acids are distinguished based on the intensity ratio.
  • the mixing ratio of the fluorescent substance labeled on the nucleic acid is determined by the primer (or terminator) modified with the first fluorescent substance and the primer (or terminator) modified with the second fluorescent substance during nucleic acid generation by the PCR method. It is changed by adjusting the mixing ratio.
  • the latter ie, the method of (2), is suitable for a qualitative analysis method such as nucleotide sequencing.
  • the method of (1) In order to enable simultaneous quantitative analysis of a plurality of types of biological samples (for example, target nucleic acids), it is effective to use the former, that is, the method of (1).
  • a method in which labels of different wavelengths (for example, phosphors) are added for each type of target sample and the fluorescence intensity (spectrum) of the separated target sample is detected is suitable.
  • This method also allows for qualitative analysis.
  • the fluorescent substance, luminous substance, etc. used for the label have a wavelength band having a slope-like spread centered on the peak wavelength instead of a single wavelength, a plurality of detections are performed. When the wavelengths (labels) of the samples are close, a part of the wavelength band overlaps. Thereby, other labels may influence the strength of the detected label, and the accuracy of the quantification may be reduced.
  • the present invention makes it possible to use many types of labels (fluorescent, luminescent, or radioactive isotopes).
  • an analysis method a reaction solution, and an analyzer capable of suppressing the overlap of the wavelength bands and performing quantitative analysis with high accuracy as well as qualitative analysis. Disclosure of the invention
  • the present invention provides a method for synthesizing biological samples by synthesizing two or more biological samples, adding labels having different wavelengths to the synthesized biological samples, and detecting those labels. To analyze. In this analysis, the detection intensity of the label in the biological sample is adjusted for each type of the biological sample, and in particular, among the detected labels, the detection intensity of the wavelength band having a greater influence on the other label is reduced. . In this way, even if different labels (different biological samples) are mixed in the reaction solution for synthesizing the biological sample, when the labels are detected simultaneously, the influence of the overlapping of the labels is almost eliminated. It is possible.
  • Synthesizing or synthesizing biological samples by synthesizing two or more biological samples and adding a label with a different wavelength for each type or a label binding medium to the substance used for the synthesis (substance for synthesis) Labeling later. And at least The amount of label or label binding medium added to one type of synthesis substance (addition rate) should be less than the amount of label or label binding medium added to another type of synthesis substance. Adjust to label the biological sample.
  • the overlap of the wavelength bands indicates the ratio of the amount of label (addition rate) added to one sample to the other. It can be made smaller by making it smaller than that of the sample.
  • the detection intensity for example, the waveform in the wavelength band of fluorescence, light emission, etc.
  • the slope of the waveform is also reduced.
  • the present invention is effective as a specific method for suppressing the overlapping of the long bands as described above.
  • the marker for decreasing the amount (decreasing the addition rate) the one that has a greater effect on one of the detection wavelengths (maximum wavelength: spectrum) is selected from the partially overlapping markers.
  • the biological sample is a nucleic acid
  • when quantifying two or more types of nucleic acids before measuring the intensity of the label (fluorescent substance, luminescent substance or radioisotope having a wavelength band) of each nucleic acid, The nucleic acids are separated for each type by electrophoresis or the like. Then, after the measurement of the label, the peak height, area, band luminance, and the like of the obtained detection waveform are directly used for analysis.
  • FIG. 1 is an example of a flowchart of a biological sample analysis according to an embodiment of the present invention.
  • Fig. 2 shows the conventional method, in which the addition rates of the labels X and Y for the primers A and B, and also for the nucleic acids A 'and B' are almost the same, and the fluorescence intensity of the nucleic acids A 'and B' is about the same.
  • 5 shows the fluorescence wavelength-fluorescence intensity characteristics in the case of the above.
  • FIG. 3 shows the labeling of the primers A and B and the nucleic acids A ′ and B ′ according to the present embodiment.
  • the addition ratio of X and Y is 1 to 10 and shows the fluorescence wavelength-fluorescence intensity characteristics when A 'is 1/10 of B'.
  • FIG. 4 shows the detection wavelength vs. fluorescence intensity characteristics of the conventional method.
  • the addition rates of the labels X and Y for the primers A and B are almost the same, but the original production amount of the nucleic acid B 'is shown. Is much less than A "".
  • FIG. 5 is a diagram showing a relationship between the detected wavelength and the fluorescence intensity when the fluorescence intensity of the nucleic acid A ′ in FIG. 4 is reduced according to the present invention.
  • FIG. 6 is a diagram showing the detection results of the conventional method when a PCR product amplified using ROX-303F and FAM-304F as FORWORD primers is used.
  • FIG. 7 is a view showing detection results when PCR products amplified using ROX-303F and 304FMIX as FORWORD primers are used.
  • FIG. 1 shows an example of a flowchart of a biological sample analysis according to the embodiment of the present invention.
  • two kinds of nucleic acids will be described as an example of a biological sample.
  • the primer solution used for PCR is mixed with the solution containing the sample and the thermal cycler is used. And perform PCR (step S 3). Specific examples of genomic DNA extraction and primer set will be described later. In addition, the description of the primer set will be described using a schematic diagram in the PCR sequence of step S3.
  • step S 3 (2) when performing synthesis (replication) of the target nucleic acid by PCR, two sites a and b sandwiching the target site of the double-stranded DNA are selected (see step S 3 (2)).
  • a site targeted by a single chain eg, RNA
  • RNA RNA
  • step S3 (1) only one target nucleic acid is schematically illustrated in step S3 (1), but genomic DNA other than the target is actually contained in the reaction solution.
  • the target nucleic acid is a pair of target nucleic acids (alleles) from the father and the mother, respectively. Exists.
  • the two strands of type I DNA were separated one by one by denaturation [Step S3 (2)], and the nucleic acid of the nucleic acid was placed at two sites a and b sandwiching the target sites of these chains.
  • Anneal primers (oligomers) A and B which are the starting points for replication.
  • the nucleotide sequences of the primers A and B are, of course, complementary to the corresponding replication origins a and b.
  • the reaction solution contains primers to which labels (fluorescent, luminescent, radioactive isotopes) X and Y of different wavelengths or label binding substances (modifying groups or antigens) are added.
  • labels X and Y the label and the substance for binding the label are collectively referred to as labels X and Y.
  • Label X modifies primer A (this primer is AX) and label B modifies primer Y (this primer is BY).
  • the reaction solution also contains unlabeled primers A and B.
  • Total amount of primer A sum of primer AX with label X and primer A without label
  • total amount of primer B primer BY with label Y and primer B without label
  • the rate of addition of label X added to primer A and the rate of addition of label Y added to primer B are different.
  • the addition rate (quantity ratio) of the label X, Y to the primer is determined by the fluorescence intensity, luminescence intensity, or radioactivity ratio.
  • the ratio between the primer AX and the primer BY is, for example, 1:10.
  • the quantitative ratio of the labeled nucleic acid to the unlabeled nucleic acid of each type that is, the quantitative ratio of AX to A, 8 ⁇ to 8, is 1: 1 to 1:50, preferably 1 to 5, respectively.
  • This adjustment is made in advance by a primer solution for each type in a primer set process (specific examples will be described later).
  • the target nucleic acid is replicated through the initializing and amplification in step S3 (2).
  • the target nucleus One of the primers AX and A binds to the acid replication origin a, and one of the primers BY and B binds to the replication origin b.
  • the replicated target nucleic acids include labeled nucleic acids A'X (target product based on primer AX) and B'Y (target nucleic acid based on primer BY), and unlabeled nucleic acids A 'and B'. Is included.
  • the ratio of A'X to B'Y is almost the same as the ratio of primers AX and BY, and is approximately 1 to 10.
  • the labeled nucleic acid primers AX and BY (with different types of labeled primers) can be used. Primers), and thus the ratio of labeled nucleic acid products A'X, B'Y.
  • the labeled primer (or modifying group or antibody) AX to be smaller than the labeled primer BY, the labeled nucleic acids A'X and B ' Less than Y [Step S 3 (5)].
  • each single-stranded DNA (A ′, B ′) has a complementary base sequence and has a higher-order structure specific to each base sequence.
  • Secondary structural polymorphism single-strand conformation polymorpmsm: SSCJ, separated at different positions by electrophoresis, and single-stranded when a single base in the DNA fragment is replaced by mutation, etc.
  • SSCJ single-strand conformation polymorpmsm
  • the higher order structure of DNA changes, and when such a change occurs, its migration position also changes, and the mutation in the gene is detected by comparing such a change in the migration position with, for example, a reference one. This detection is used, for example, in the LOH method (Loss of heterozygosity) described below.
  • the migration position can be detected by detecting the maximum wavelength of the target nucleic acid label using a spectroscope and analyzing the detected spectrum.
  • the qualitative and quantitative determination of the target nucleic acid can be obtained by spectral analysis (steps S5 and S6).
  • the ratio of labeled primers AX and BY is such that the labels X and Y are fluorescent, luminescent, and radioactive. In the case of radioisotopes, it is determined by their fluorescence intensity or radioactivity ratio. Also,
  • the determination is made based on the fluorescent intensity or the radioactivity ratio of the fluorescent substance, luminescent substance or radioisotope added to X or Y.
  • a reaction of adding a fluorescent substance, a luminescent substance, and a radioisotope to the modifying group or the antigen is performed after the PCR reaction.
  • the modifying group is biotin
  • the treatment of binding to biotin using a mixture of avidin or streptavidin to which a fluorescent substance, a luminescent substance, and a radioactive isotope has been added, and avidin or streptavidin not having been added is performed.
  • an antigen such as digoxigenin (DIG)
  • DIG digoxigenin
  • an enzyme such as alkaline phosphatase (AP) and horseradish peroxidase (HRP)
  • HRP horseradish peroxidase
  • CyDve Carboxyfluorescein (FAM), fluorescein-5-isothiocyanate (FITC), hexac loroflviorescein (HEX) rhodamine (ROX),
  • TAMRA Carboxytetramethylrhodamine
  • TET tetrachlorofluorescein
  • TAMRA tetrachlorofluorescein
  • TCT bait Horodamine 101 acid chloride
  • Radioactive isotopes include, for example, 32 P, 131 1, 35 S, 45 Ca, 3 H, and the like.
  • the quantitative ratio of the fluorescent substance, the luminescent substance, the radioisotope or the modifying group or the antigen to be used as the label of the nucleic acid is set according to the chemical substance to be used as the label.
  • the form of the measured spectrum when labeled with 5-carboxypluorescein (5_FAM) and 5-carboxy-X-i'hodamine (5'ROX) will be described.
  • nucleic acid A ', B' The case where quantification is performed simultaneously through each measurement spectrum will be described as an example.
  • FIG. 2 shows the conventional method, in which the addition rates of the labels X and ⁇ ⁇ ⁇ ⁇ ⁇ for the primers A and B and thus the nucleic acids A 'and ⁇ ' are similar, and the fluorescence intensity of the nucleic acids ⁇ 'and ⁇ ' is similar.
  • 4 shows a fluorescence wavelength-fluorescence intensity characteristic when measured.
  • FIG. 3 relates to the present example, in which the addition rate of the labels X and Y for the primers I and B ′ and the nucleic acids A ′ and B ′ is 1 to 10 and A ′ is 110 for B and B ′. It shows the fluorescence wavelength-fluorescence intensity characteristics when there is.
  • the maximum fluorescence wavelength of each fluorescent substance is 518 nm for 5-FAM and 604 nm for 5-ROX.
  • the detection wavelength of 604 nm is the detection wavelength of 5-ROX.
  • the 5-FAM wavelength band includes the 5-FAM wavelength band. Therefore, in the quantification of B ', as can be seen from Fig. 2, approximately 30% of the fluorescence intensity at the detection wavelength of 5-FAM, which is the label of A', is added, and the detection wavelength of B ' Is detected as the fluorescence intensity. In such a case, it is necessary to perform a process of removing the fluorescence intensity of A 'from the fluorescence intensity at the detection wavelength of B' by correcting by calculation or the like.
  • a primer to which 5-FAM has been added in advance is compared with a primer to which 5-ROX has been added at a detection wavelength.
  • the fluorescence intensity of A ′ also becomes approximately 110 (this fluorescence intensity is indicated by A ⁇ in FIG. 3).
  • the fluorescence intensity at 604 mn will be close to the actual fluorescence intensity of ⁇ ′ without correction, as shown in FIG.
  • labeling of the target nucleic acid A ′ Is a compound having a spectrum with a sharp slope on the short wavelength side and a gentle slope on the long wavelength side based on the maximum wavelength of the detection spectrum.
  • the label with the shorter wavelength affects the label with the longer wavelength, so the label (modification group, label binding for antigen, etc.) added to multiple types of primers (synthesis materials) is used. (Including the medium) make the shorter wavelength A 'less than the longer wavelength B'.
  • FIG. 4 also shows a detection wavelength-fluorescence intensity characteristic according to the conventional method.
  • the original production amount of the nucleic acid B 'labeled with 5-ROX is the nucleic acid A' labeled with 5-FAM.
  • the fluorescence intensity at the detection wavelength of B ' is 10% of A'.
  • a part of the wavelength band of A ' is included in the detected wavelength (maximum wavelength) of B', and it becomes difficult to detect B '.
  • the labeling rate of primer A is made smaller than the labeling rate of primer B in the same manner as described above, the fluorescence intensity on the A 'side is reduced as shown in Fig. 5.
  • the detection wavelength band of A ' hardly affects the detection wavelength (maximum wavelength) of B', and the actual fluorescence intensity of B 'can be approximated.
  • the analyzer When analyzing (analyzing) two types of target nucleic acids, the analyzer does not correct any of the data and either performs the analysis operation as it is, or when performing the quantitative operation, Data on the addition rate can be entered, and the quantification of each biological sample is calculated based on the addition rate data and the measurement data.
  • Samples include human peripheral blood (whole blood), biopsy tissue fragments, and urine.
  • the extraction of genomic DNA described here is performed by a well-known method.
  • QIAGEN DNA Blood Mini Kit may be used. Specifically, follow the standard protocol of the kit, but add 200 L of human whole blood and 20 L of QIAGEN Protease to a 1.5 mL tube. Next, add 200 L of Buffer AL, mix well using a voltex, and incubate for 56 to 10 minutes. Thereafter, the liquid is collected by centrifuging the microtube, adding 200 L of ethanol, and sufficiently stirring again using a voltex.
  • the whole amount of the mixture is injected into a spin column in a collection tube, centrifuged at 800 rpm for 1 minute, the solution is passed through the column, and genomic DNA is captured in the column. Then transfer the same spin column to a new collection tube, open the lid, inject 500 L of Buffer AW into the spin column, and centrifuge at 800 rpm for 1 minute. Transfer the spin column to a new collection tube again, then inject 500 liters of Buffer AW250, centrifuge at 1,400 rpm for 3 minutes, and wash the column. Transfer the spin column to a new collection tube, inject 100 L of Buffer AE, centrifuge at 800 rpm for 1 minute, elute the captured genomic DNA, and obtain a genomic DNA solution. The amount of nucleic acid in the eluate is quantified by measuring the eluted genomic DNA using an absorptiometer.
  • urine collected in a centrifuge tube is first centrifuged at 100 O rpm for 5 minutes to collect only the sediment, and the sediment is re-dispersed by adding physiological saline, washed, and washed again. Centrifuge at 0 O rpm for 5 minutes to collect the sediment and use it as a sample. After that, digestion with the well-known proteinase K is performed, and genomic DNA is extracted by phenol / clonal form extraction. Tissue sections can be made similarly. Alternatively, a sample obtained by cryopreserving a urine test substance, a tissue piece, or white blood cells of blood at -80 ° C may be used.
  • Step 2 Step of Preparing Primer Set for Amplifying Target Nucleic Acid Portion (Step 2) The following six kinds of polynucleotides were used as primers for PCR amplification. 5'TET-CAACAAAGCAAGATCCCTTC-3 '(ROX-303F primer)
  • the ROX-303F primer and the 303F primer, and the TET304F primer and the 304F primer are polynucleotides having the same sequence.
  • the ROX-303F primer and the 303F primer hybridize with a part of the 303 gene region on chromosome 9.
  • the TET-304F and 304F primers hybridize to a portion of the 304 gene on chromosome 9.
  • the ROX-303F primer is a labeled polynucleotide with the fluorescent substance ROX at its 5 'end
  • the TE "304F primer is a labeled polynucleotide with the fluorescent substance TET bound to its 5' end, and is detected by fluorescence detection. it can.
  • the 303F and 304F primers are unlabeled polynucleotides.
  • the binding of the fluorescent substance to the polynucleotide can be performed by a known method.
  • the 303R primer and the 304R primer hybridize with the 303 gene or a part of the 304 gene on chromosome 9, respectively, and are used as REVERSE primers in the PCR amplification reaction.
  • the ROX-303F primer and 303F primer, and the TET "304F primer and 304F primer were prepared at a concentration ratio of 1:10, respectively, to give a total concentration of 100 M (each 303FMIX primer solution and 304FMIX primer solution.)
  • the REVERSE primer solution used was prepared by preparing the 303R primer and the 304R primer at a concentration of 100 M each.
  • a PCR amplification reaction is performed using the aforementioned primers.
  • PCR reaction conditions were the same as the initial denaturation conditions at 95 ° C for 5 minutes, and the amplification temperature cycle was 30 times at 95 ° C for 30 seconds, at 57 for 30 seconds, and at 72 ° C for 30 seconds 30 times. Finally, the extension reaction is performed at 72 ° C for 7 minutes. After the reaction, amplification was confirmed by well-known gel electrophoresis.
  • Klenow Fragment 0.5 units was added to 5 L of the PCR reaction solution, and reacted at 37 ° C for 30 minutes. After the reaction, 1 L of a 10 O mM EDTA solution was added.
  • the generated DNA prepared in the above step is detected.
  • Various detection methods' devices can be applied. In this embodiment, a case in which SSCP analysis is performed by a capillary electrophoresis device will be described.
  • capillary electrophoresis device As a capillary electrophoresis device, one equipped with 16 capillary arrays and capable of electrophoresis simultaneously was used. Commercially available instruments of comparable performance include, for example, ABI PRISM TM 3100 Genetic Analyzer from Applied Biosystems. Using this device, a uniquely created capillary with an inner diameter of 75 m and a detection length of 36 cm is used to fill and detect a proprietary GeneScan polymer that has been independently concentrated and adjusted.
  • the reaction solution containing the resulting DNA subjected to the amplification reaction step and 3′-end blunting is mixed with 37 L of formamide containing an appropriate amount of a well-known labeled fragment marker (oligomer of known base length) at 94 ° C. Heat denaturation for 2 minutes. After that, use ice to prepare a sample solution for capillary electrophoresis. Dilute the reaction solution containing the generated DNA as necessary.
  • the electrophoresis conditions were as follows: the control temperature of the capillary was 22.5, the sample injection conditions were 20 KV for 5 seconds, and the electrophoresis separation was 15 KV for 70 minutes.
  • the signal strength to be analyzed is based on the electrophoresis data obtained as standard, and the baseline and amplitude are changed independently. 6. Analysis of LOH (Loss of heterozygosity) (Step S 6)
  • the solid line is 303 and the dashed line is the peak of the generated DNA amplified from the 304 gene.
  • Type III is genomic DNA, and the target nucleic acids are amplified from both the paternal and maternal genomes, so that genes 303 and 304 appear as two peaks each. Diagnosis can be performed by analyzing these two peaks.
  • the peak intensity obtained from 304 and the peak intensity obtained from 303 are almost equal, but in Fig. 7, the peak intensity obtained from 304 is lower than the peak intensity obtained from 303.
  • the height of the peak detected earlier in time is Al, and the height of the peak detected later is A2.
  • diagnosis is actually performed in consideration of the ratio of normal genes (JP-A-9-201199, etc.).
  • the percentage of cancer cell-derived genes in cancer tissue is
  • nucleic acid was exemplified as a biological sample.
  • present invention is not limited to this, and the present invention is not limited to this and can be applied to other biological samples having the problems presented in the present invention. It is possible. Industrial applicability
  • a plurality of labeled nucleic acids and proteins can be detected and quantified with higher precision as compared with conventional methods.
  • a great effect can be obtained when using fluorescent and luminescent materials whose wavelength bands overlap.
  • the amount of fluorescent, luminescent, and radioactive isotopes used for labeling is reduced, and the number of specimens per analysis can be increased, thereby reducing costs for producing and analyzing labeled biological samples.

Abstract

Biological samples are analyzed by synthesizing two or more types of biological samples, attaching labeling agents having different wavelengths for individual types to the thus synthesized biological samples, and then detecting the labeling agents. In this analysis, the detection intensities of the labeling agents of the biological samples are controlled depending on the types. Among the thus detected ones, the detection intensity of a labeling agent the wavelength range of which exerts a larger effect on the other labeling agent is weakened. In a specific embodiment, two or more types of biological samples are synthesized and labeling agents having different wavelengths for individual types or media for the binding to labeling agents are attached to materials to be used in the synthesis (materials for the synthesis). Thus, the biological samples are labeled during the synthesis or thereafter. Then the amount (attachment level) of the labeling agent or a medium for the binding to the labeling agent attached to at least one of the materials for the synthesis is controlled to a level less than the labeling agent or a medium for the binding to the labeling agent attached to the other material for the synthesis, thereby labeling the biological samples. According to this constitution, biological samples (nucleic acids, etc.) having a plural types of labeling agents can be simultaneously analyzed at a high quantitative accuracy as well as a high quantitative accuracy while preventing overlap of wavelength regions of labeling agents each other.

Description

生体試料の分析方法、 反応液、 及び分析装置 技術分野  Biological sample analysis method, reaction solution, and analyzer
本発明は、 生化学、 分子生物学、 医療分野などにおいて、 診断, 検査および 研究に用いられる生体試料の分析明方法、 反応液、 及び分析装置に関する。  The present invention relates to a method for analyzing a biological sample, a reaction solution, and an analyzer used for diagnosis, inspection, and research in the fields of biochemistry, molecular biology, and medical care.
 Rice field
背景技術 ' Background technology ''
微量の生体試料、 主に核酸、 タンパク質等を検出するための技術として、 合 成後または精製後のターゲットとなる生体試料を、 蛍光体、 発光体または放射 性同位体で標識し、 定性, 定量等の分析をすることが行なわれている。  As a technique for detecting trace amounts of biological samples, mainly nucleic acids and proteins, target, synthesized or purified biological samples are labeled with fluorescent, luminescent, or radioactive isotopes for qualitative and quantitative determination. And so on.
核酸の標識法として、 P C R (ポリメラ一ゼ連鎖反応) 法において合成され た標的核酸に、 合成過程或いは合成後において蛍光体、 発光体および放射性同 位体で標識する技術が周知である。  As a nucleic acid labeling method, a technique of labeling a target nucleic acid synthesized by a PCR (polymerase chain reaction) method with a fluorescent substance, a luminescent substance and a radioisotope during or after the synthesis is well known.
例えば、 ピオチンゃジゴキシゲニン (DIG) を付加したプライマーを用いて 増幅反応を行い、増幅(合成)後の核酸産物にビォチンゃジゴキシゲニン(DIG) を介して蛍光体、 発光体および放射性同位体等の標識を付加したり、 或いは、 合成後の核酸をアル力リフォスファターゼで処理後、 放射性同位体のリン酸を 付加することが知られている。  For example, an amplification reaction is performed using a primer to which biotin-digoxigenin (DIG) is added, and the amplified (synthesized) nucleic acid product is labeled with a fluorescent substance, a luminescent substance, and a radioisotope via biotin-digoxigenin (DIG). It is known to add a radioactive isotope or to add a radioactive isotope after treating a synthesized nucleic acid with an alkaline phosphatase.
上記のような標識を付加した生体試料の検出法の中でも、 特に蛍光体および 発光体を用いた検出法は、 近年開発が進み、 検出を行うためのキットが販売さ れるなど簡便な方法となり、生体試料の高感度分析法として、感染症や遺伝病、 ガンの診断などに利用されている。  Among the methods for detecting a biological sample to which a label has been added as described above, a detection method using a fluorescent substance and a luminescent substance has been developed in recent years, and has become a simple method, for example, a kit for performing detection has been sold. It is used for the diagnosis of infectious diseases, genetic diseases, and cancer as a highly sensitive analysis method for biological samples.
さらに、 現在では、 標識として用いられている化学物質の開発や、 分析装置 の改良により、 ごく微量の標識された生体試料でも検出が可能となっている。 また、 ( 1 ) 標識となる化学物質は、 各々固有の波長帯を持っているため、 複 数種の生体試料に、 種別ごとに異なる波長の標識を付加すれば、 それらの波長 スペクトルを同時に測定することにより、 複数種の生体試料を 1回の反応で同 時に検出することができる。 Furthermore, the development of chemicals used as labels and the improvement of analyzers have enabled the detection of very small amounts of labeled biological samples. Also, (1) Each chemical substance used as a label has its own wavelength band. If labels of different wavelengths are added to several types of biological samples for each type, multiple types of biological samples can be detected simultaneously by one reaction by simultaneously measuring their wavelength spectra.
特開平 9一 3 2 9 5 4 9号公報には、 核酸の塩基配列を検出する技術に関し、 特に、 一試料中の複数分析対象物 (例えば、 P C R法による核酸生成物) を識 別可能な複数種類の蛍光染料で標識し、 試料を分離 (例えばゲル電気泳動によ る分離) した後、 複数の標的となる核酸を同時に検出する技術が開示されてい る。  Japanese Unexamined Patent Publication No. Hei 9-213 495-49 relates to a technique for detecting a base sequence of a nucleic acid. A technique has been disclosed in which a sample is labeled with a plurality of types of fluorescent dyes, the sample is separated (for example, separation by gel electrophoresis), and then a plurality of target nucleic acids are simultaneously detected.
また、 ( 2 )特開平 5— 1 1 8 9 9 1号公報には、 2種類の蛍光体の混合物(組 合せ) を標識として使用し、 これらの蛍光体の混合比率を変えることにより 4 種の標識を生成し、 これらの標識を利用して 4種の核酸 (塩基配列) を判別す る塩基配列検出方法が開示されている。 ここで、 4種の核酸に付加された標識 (第 1の蛍光体と第 2の蛍光体の混合比率) は、 核酸を種別ごとに分離した後 (例えばゲル電気泳動法による分離) に、 各核酸から励起される第 1の蛍光体 と第 2の蛍光体の強度比を求めることにより (この強度比は、 第 1, 第 2の蛍 光体の蛍光強度を 2つの検出器により検出することで求まる) 検出される。 そ の強度比に基づき 4種の核酸を判別している。 核酸に標識される蛍光体の混合 比率は、 P C R法による核酸生成に際し、 第 1の蛍光体を修飾したプライマー (或いはターミネータ) と第 2の蛍光体を修飾したプライマー (或いはターミ ネー夕) との混合比率を調整することにより、 変えている。  Also, (2) Japanese Patent Application Laid-Open No. 5-118991 discloses that a mixture (combination) of two kinds of phosphors is used as a label, and the four kinds of phosphors are changed by changing the mixing ratio of these phosphors. There is disclosed a method for detecting a base sequence which generates labels and discriminates four kinds of nucleic acids (base sequences) using these labels. Here, the labels (mixing ratio of the first fluorescent substance and the second fluorescent substance) added to the four kinds of nucleic acids are separated after separating the nucleic acids by type (for example, separation by gel electrophoresis). By calculating the intensity ratio between the first and second phosphors excited by nucleic acids (this intensity ratio is determined by detecting the fluorescence intensity of the first and second phosphors with two detectors). Is found). Four types of nucleic acids are distinguished based on the intensity ratio. The mixing ratio of the fluorescent substance labeled on the nucleic acid is determined by the primer (or terminator) modified with the first fluorescent substance and the primer (or terminator) modified with the second fluorescent substance during nucleic acid generation by the PCR method. It is changed by adjusting the mixing ratio.
上記した従来技術のうち、 後者すなわち (2 ) の方式は塩基配列決定のよう な定性的な分析方法に適している。  Of the above conventional techniques, the latter, ie, the method of (2), is suitable for a qualitative analysis method such as nucleotide sequencing.
複数種の生体試料(例えば標的核酸) を、 同時に定量分析を可能にするには、 前者すなわち (1 ) の方式を用いることが有効である。 例えば、 異なる波長の 標識 (例えば蛍光体) を標的試料の種類別に付加し、 分離した標的試料の蛍光 強度 (スペクトル) を検出する方法が適している。 この方法は、 定性分析も可 能である。 しかし、 (1 ) の方式では、 標識に用いる蛍光体、 発光体等は、 単一の波長で はなくピークの波長を中心にスロープ状の広がりをもつた波長帯域を有するの で、 複数の検出試料の波長 (標識) が近接すると、 波長帯域の一部が重なる。 それによつて、 検出される標識の強度に他の標識が影響を及ぼし、 定量精度が - 低下するおそれがある。 In order to enable simultaneous quantitative analysis of a plurality of types of biological samples (for example, target nucleic acids), it is effective to use the former, that is, the method of (1). For example, a method in which labels of different wavelengths (for example, phosphors) are added for each type of target sample and the fluorescence intensity (spectrum) of the separated target sample is detected is suitable. This method also allows for qualitative analysis. However, in the method (1), since the fluorescent substance, luminous substance, etc. used for the label have a wavelength band having a slope-like spread centered on the peak wavelength instead of a single wavelength, a plurality of detections are performed. When the wavelengths (labels) of the samples are close, a part of the wavelength band overlaps. Thereby, other labels may influence the strength of the detected label, and the accuracy of the quantification may be reduced.
このような問題を解消するためには、 検出試料の波長帯が重ならないように 標識を選択すればよいが、 そのような標識はなかなか存在せず、 選択に限度が あった。 また、 検出の際にも、 その波長の重なりの影響を最小限にするため、 計算による補正などが必要とされる。  In order to solve such a problem, it is only necessary to select a label so that the wavelength bands of the detection samples do not overlap. However, such a label does not easily exist, and the selection is limited. Also, during detection, correction by calculation, etc., is required to minimize the effect of overlapping wavelengths.
本発明は、 これらの課題を解決することにより、多くの種類の標識(蛍光体、 発光体、 または放射性同位体) を使用可能にし、 かつ、 同時に複数種の標識を 測定しても、 標識同士の波長帯域の重なりを抑制して、 定性は勿論のこと定量 分析も精度良く行い得る分析方法、 反応液、 および分析装置を提供する。 発明の開示  By solving these problems, the present invention makes it possible to use many types of labels (fluorescent, luminescent, or radioactive isotopes). Provided are an analysis method, a reaction solution, and an analyzer capable of suppressing the overlap of the wavelength bands and performing quantitative analysis with high accuracy as well as qualitative analysis. Disclosure of the invention
本発明は、 基本的には、 2種類以上の生体試料を合成し、 合成された生体試 料に、 種類別に波長の異なる標識を付加し、 それらの標識を検出することによ り、 生体試料を分析する。 そして、 この分析において、 生体試料の標識の検出 強度を、 生体試料の種類別に調整し、 特に検出される標識のうち、 波長帯域が 他方の標識に影響を及ぼす度合いの大きい方の検出強度を弱める。 このように すれば、 生体試料合成用の反応液中に、 異なる標識 (異なる生体試料) が混在 しても、 それらの標識を同時に検出した時に、 それらの標識同士の重なりの影 響をほとんどなくすことが可能である。  Basically, the present invention provides a method for synthesizing biological samples by synthesizing two or more biological samples, adding labels having different wavelengths to the synthesized biological samples, and detecting those labels. To analyze. In this analysis, the detection intensity of the label in the biological sample is adjusted for each type of the biological sample, and in particular, among the detected labels, the detection intensity of the wavelength band having a greater influence on the other label is reduced. . In this way, even if different labels (different biological samples) are mixed in the reaction solution for synthesizing the biological sample, when the labels are detected simultaneously, the influence of the overlapping of the labels is almost eliminated. It is possible.
具体的態様としては、 次のような標識化手法を提案する。  As a specific embodiment, the following labeling method is proposed.
2種類以上の生体試料を合成し、 その合成に用いる物質 (合成用物質) に、 種類別に波長の異なる標識を付加するか或いは標識結合用媒体を付加すること により、 生体試料を合成過程或いは合成後に標識化する。 そして、 少なくとも 或る一種類の合成用物質に付加される標識或いは標識結合用媒体の量 (付加率) を、 他の種類の合成用物質に付加される標識或いは標識結合用媒体よりも少な くなるように調整して、 生体試料を標識化する。 Synthesizing or synthesizing biological samples by synthesizing two or more biological samples and adding a label with a different wavelength for each type or a label binding medium to the substance used for the synthesis (substance for synthesis) Labeling later. And at least The amount of label or label binding medium added to one type of synthesis substance (addition rate) should be less than the amount of label or label binding medium added to another type of synthesis substance. Adjust to label the biological sample.
複数種類の生体試料を、. 種類別に異なる検出波長 (標識) により検出する場 合、それらの波長帯域の重なりは、一方の試料に付加される標識の量の割合(付 加率) を他方の試料のそれよりも小さくすることにより、 小さくすることがで きる。 すなわち、 一方の試料の標識率を少なくすると、 その少なくした方の検 出波長帯域の検出強度(例えば、 蛍光, 発光などの波長帯域の波形) が弱まり、 その波形のスロープも小さくなる。 その結果、 他方の試料 (標識) の検出波長 領域に影響を及ぼす度合いが小さくなる。  When multiple types of biological samples are detected with different detection wavelengths (labels) for each type, the overlap of the wavelength bands indicates the ratio of the amount of label (addition rate) added to one sample to the other. It can be made smaller by making it smaller than that of the sample. In other words, when the labeling rate of one sample is reduced, the detection intensity (for example, the waveform in the wavelength band of fluorescence, light emission, etc.) of the detection wavelength band of the reduced sample is weakened, and the slope of the waveform is also reduced. As a result, the degree of influence on the detection wavelength region of the other sample (label) is reduced.
本発明は、 上記したような ¾長帯域の重なり抑制の具体的手法として有効で ある。  The present invention is effective as a specific method for suppressing the overlapping of the long bands as described above.
この場合、 量を少なくする方 (付加率を小さくする方) の標識として、 一部 重なり合う標識のうち、 一方の検出波長 (極大波長:スペクトル) にまで影響 を及ぼす度合いの大きい方を選択する。  In this case, as the marker for decreasing the amount (decreasing the addition rate), the one that has a greater effect on one of the detection wavelengths (maximum wavelength: spectrum) is selected from the partially overlapping markers.
なお、 生体試料が核酸である場合には、 2種以上の核酸を定量するに際して は、 各核酸の標識 (波長帯を持つ蛍光体、 発光体または放射性同位体) の強度 を測定する前に、 電気泳動などで核酸を種別ごとに分離させる。 そして、 その 標識の測定後に、 得られた検出波形のピークの高さ、 面積やバンドの輝度など をそのまま解析に用いる。 図面の簡単な説明  When the biological sample is a nucleic acid, when quantifying two or more types of nucleic acids, before measuring the intensity of the label (fluorescent substance, luminescent substance or radioisotope having a wavelength band) of each nucleic acid, The nucleic acids are separated for each type by electrophoresis or the like. Then, after the measurement of the label, the peak height, area, band luminance, and the like of the obtained detection waveform are directly used for analysis. Brief Description of Drawings
第 1図は、 本発明の実施形態に係る生体試料分析のフローチャートの一例で ある。 第 2図は、 従来方式であり、 プライマー A, Bひいては核酸 A ', B ' についての標識 X, Yの付加率は同程度で、 核酸 A ', B 'について同程度の 蛍光強度が測定された場合の蛍光波長一蛍光強度特性を示す。 第 3図は、 本実 施例に係るもので、 プライマー A, Bひいては核酸 A ', B 'についての標識 X, Yの付加率は 1対 1 0で、 A 'が B 'の 1/10であった場合の蛍光波長一 蛍光強度特性を示す。 第 4図は、 従来方式による検出波長一蛍光強度特性を示 すものであり、 プライマー A, Bについての標識 X, Yの付加率は同程度であ るが、 核酸 B 'の元々の生成量が A ""よりもはるかに少ない場合を示す。 第 5 図は、 第 4図における核酸 A 'の蛍光強度を本発明により弱めた場合の検出波 長一蛍光強度特性を示す図。 第 6図は、 FORWORD プライマーとして ROX-303Fと FAM-304Fを用いて増幅した PCR産物を用いた場合の従来法式 の検出結果を示す図。 第 7図は、 FORWORDプライマーとして ROX-303Fと 304FMIXを用いて増幅した PCR産物を用いた場合の検出結果を示す図。 発明を実施するための最良の形態 FIG. 1 is an example of a flowchart of a biological sample analysis according to an embodiment of the present invention. Fig. 2 shows the conventional method, in which the addition rates of the labels X and Y for the primers A and B, and also for the nucleic acids A 'and B' are almost the same, and the fluorescence intensity of the nucleic acids A 'and B' is about the same. 5 shows the fluorescence wavelength-fluorescence intensity characteristics in the case of the above. FIG. 3 shows the labeling of the primers A and B and the nucleic acids A ′ and B ′ according to the present embodiment. The addition ratio of X and Y is 1 to 10 and shows the fluorescence wavelength-fluorescence intensity characteristics when A 'is 1/10 of B'. Fig. 4 shows the detection wavelength vs. fluorescence intensity characteristics of the conventional method. The addition rates of the labels X and Y for the primers A and B are almost the same, but the original production amount of the nucleic acid B 'is shown. Is much less than A "". FIG. 5 is a diagram showing a relationship between the detected wavelength and the fluorescence intensity when the fluorescence intensity of the nucleic acid A ′ in FIG. 4 is reduced according to the present invention. FIG. 6 is a diagram showing the detection results of the conventional method when a PCR product amplified using ROX-303F and FAM-304F as FORWORD primers is used. FIG. 7 is a view showing detection results when PCR products amplified using ROX-303F and 304FMIX as FORWORD primers are used. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を詳細に説明するが、 本発明は、 これらの実施例の みによって限定されるものではない。  Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited only to these examples.
第 1図に、 本発明の実施形態に係る生体試料分析のフローチャートの一例を 示す。 ここでは、 生体試料として 2種の核酸を一例にして説明する。  FIG. 1 shows an example of a flowchart of a biological sample analysis according to the embodiment of the present invention. Here, two kinds of nucleic acids will be described as an example of a biological sample.
標的となる铸型 (標的核酸) を含むゲノム D NAの抽出、 およびプライマ一 セット後に (ステップ S l, S 2 )、 試料を含む溶液中に P C Rに用いるプライ マ一溶液を混合してサーマルサイクラーにより P C Rを実行する (ステツプ S 3 )。 ゲノム D NAの抽出、 プライマーセットの具体例については、 後述する。 また、 プライマーセットの説明については、 ステップ S 3の P C Rシーケンス にて模式図を利用して説明する。  After extraction of the genomic DNA containing the target type III (target nucleic acid) and the set of primers (Steps S1, S2), the primer solution used for PCR is mixed with the solution containing the sample and the thermal cycler is used. And perform PCR (step S 3). Specific examples of genomic DNA extraction and primer set will be described later. In addition, the description of the primer set will be described using a schematic diagram in the PCR sequence of step S3.
本例では、 P C Rによる標的核酸の合成 (複製) を行う場合に、 2本鎖 D N Aの標的となる部位を挟む 2箇所の部位 a, bを選択するが〔ステップ S 3 ( 2 ) 参照〕、 単鎖 (例えば R NA) の標的となる部位を選択してもよい。 2本鎖 D N Aは、 ステップ S 3 ( 1 )では、標的核酸一つのみを模式的に例示しているが、 実際には、 標的以外のゲノム D NAも反応液中に含まれる。 また標的核酸は、 父親由来と母親由来のそれぞれ対応する一対の標的核酸 (対立遺伝子) として 存在する。 In this example, when performing synthesis (replication) of the target nucleic acid by PCR, two sites a and b sandwiching the target site of the double-stranded DNA are selected (see step S 3 (2)). A site targeted by a single chain (eg, RNA) may be selected. In the double-stranded DNA, only one target nucleic acid is schematically illustrated in step S3 (1), but genomic DNA other than the target is actually contained in the reaction solution. The target nucleic acid is a pair of target nucleic acids (alleles) from the father and the mother, respectively. Exists.
本例では、 铸型 D NAの 2本鎖を変性により 1本づつに分離し 〔ステップ S 3 ( 2 )〕、 これらの鎖の標的となる部位を挟む 2箇所の部位 a, bに核酸の複 製基点となるプライマー (オリゴマー) A, Bをァニールさせる。  In this example, the two strands of type I DNA were separated one by one by denaturation [Step S3 (2)], and the nucleic acid of the nucleic acid was placed at two sites a and b sandwiching the target sites of these chains. Anneal primers (oligomers) A and B, which are the starting points for replication.
プライマー A, Bの塩基配列は、 当然、 対応する複製基点 a, bと相補的な 配列をなしている。  The nucleotide sequences of the primers A and B are, of course, complementary to the corresponding replication origins a and b.
反応液中には、 それぞれ異なる波長の標識 (蛍光体、 発光体、 放射性同位体) X, Yまたは標識結合用物質 (修飾基や抗原) を付加したプライマーが含まれ ている。 ここでは、 標識および標識結合用物質を総称して標識 X, Yとする。 標識 Xは、 プライマ一 Aを修飾し (このプライマーを AXとする)、 標識 Bは、 プライマー Yを修飾する (このプライマ一を B Yとする)。  The reaction solution contains primers to which labels (fluorescent, luminescent, radioactive isotopes) X and Y of different wavelengths or label binding substances (modifying groups or antigens) are added. Here, the label and the substance for binding the label are collectively referred to as labels X and Y. Label X modifies primer A (this primer is AX) and label B modifies primer Y (this primer is BY).
反応液中には、 標識を修飾していないプライマ一 A、 Bも含まれている。 プ ライマ一 Aの総量 (標識 Xが付加されたプライマー AXと標識が付加されない プライマ一 Aとの和) とプライマー Bの総量 (標識 Yが付加されたプライマ一 B Yと標識が付加されないプライマー Bとの和) とは、 同量にしてある。 ただ し、 プライマー Aに付加される標識 Xの付加率と、 プライマ一 Bに付加される 標識 Yの付加率は、 異なる。 標識 X, Yのプライマーへの付加率 (量比) は、 X, Yが蛍光体、 発光体、 放射性同位体の場合には、 その蛍光強度、 発光強度、 又は放射活性比により決定する。  The reaction solution also contains unlabeled primers A and B. Total amount of primer A (sum of primer AX with label X and primer A without label) and total amount of primer B (primer BY with label Y and primer B without label) And the same amount). However, the rate of addition of label X added to primer A and the rate of addition of label Y added to primer B are different. When X and Y are fluorophores, luminophores, and radioisotopes, the addition rate (quantity ratio) of the label X, Y to the primer is determined by the fluorescence intensity, luminescence intensity, or radioactivity ratio.
プライマー AXとプライマー B Yの比率は、 例えば 1対 1 0としてある。 ま た、 各種別ごとの核酸の標識化されたものと標識化されていないものの量比、 すなわち AXと A、 8丫と8の量比は、 それぞれ 1 : 1〜1 : 5 0好ましくは 1 : 5〜1 : 1 0の範囲で調整してある。  The ratio between the primer AX and the primer BY is, for example, 1:10. In addition, the quantitative ratio of the labeled nucleic acid to the unlabeled nucleic acid of each type, that is, the quantitative ratio of AX to A, 8 丫 to 8, is 1: 1 to 1:50, preferably 1 to 5, respectively. : 5-1: Adjusted in the range of 10
この調整は、 プライマーセットの工程で予め種別ごとのプライマー溶液で調 整される (具体例は、 後述する)。  This adjustment is made in advance by a primer solution for each type in a primer set process (specific examples will be described later).
本例では、 サーマルサイクルの繰り返しにおいて、 ステップ S 3 ( 2 ) のァ 二一リング及び増幅を経て標的核酸が複製される。 アニーリングでは、 標的核 酸の複製基点 aには、 プライマ一 AXおよび Aのいずれかが結合し、 複製基点 bには、 プライマー B Yおよび Bのいずれかが結合する。 In this example, in the repetition of the thermal cycle, the target nucleic acid is replicated through the initializing and amplification in step S3 (2). In annealing, the target nucleus One of the primers AX and A binds to the acid replication origin a, and one of the primers BY and B binds to the replication origin b.
複製される標的核酸には、 標識の付いた核酸 A ' X (プライマー AXに基づ く標的産物) と B ' Y (プライマー BYに基づく標的核酸)、 標識の付かない核 酸 A 'と B 'が含まれる。 本例では、 A ' Xと B ' Yの比率は、 プライマー A X、 BYの比率とほぼ同じで、 ほぼ 1対 1 0になる。  The replicated target nucleic acids include labeled nucleic acids A'X (target product based on primer AX) and B'Y (target nucleic acid based on primer BY), and unlabeled nucleic acids A 'and B'. Is included. In this example, the ratio of A'X to B'Y is almost the same as the ratio of primers AX and BY, and is approximately 1 to 10.
以上のように、 標識付きプライマー AXと標識無しプライマー A、 標識付き BYと標識無しプライマ一 Bとの混合比率を調整することで、 標識化された核 酸プライマー AX, BY同士(種類が異なる標識付きプライマ一同士) の量比、 ひいては標識化された核酸生成物 A ' X, B ' Yの量比を変えることができる。 本例のように、 標識付きプライマ一 (または修飾基または抗体) AXを標識 付きプライマ一 B Yよりも小さくなるように調整することにより、 PCRの産 物である標識付き核酸 A ' Xも B ' Yより少なくなる 〔ステップ S 3 (5)〕。  As described above, by adjusting the mixing ratio between the labeled primer AX and the unlabeled primer A, and the labeled BY and the unlabeled primer B, the labeled nucleic acid primers AX and BY (with different types of labeled primers) can be used. Primers), and thus the ratio of labeled nucleic acid products A'X, B'Y. As in this example, by adjusting the labeled primer (or modifying group or antibody) AX to be smaller than the labeled primer BY, the labeled nucleic acids A'X and B ' Less than Y [Step S 3 (5)].
PCR法により生成された 2種の核酸 A ' (A ' Xを含む)、 B ' (B ' Yを 含む) は、 電気泳動により分離される (ステップ S 4)。 すなわち、 それぞれの 1本鎖 DNA (A '、 B ') は、 それぞれ相補的な塩基配列をなし、 それぞれ の塩基配列に特異的な高次構造を有しているために (1本鎖DNA高次構造多 型: single -strand conformation polymorpmsm: S S C J ノ、 電 a'泳動により異 なる位置に分離される。 また、 DN A断片内の一塩基が変異などで置換された 場合には、 1本鎖 DN Aの高次構造は変化する。 このような変化が生じると、 その泳動位置も変化する。 このような泳動位置の変化を、 例えば基準のものと 比較することで、遺伝子の変異を検出することができる。 この検出は、例えば、 後述の L OH法 (Loss of heterozygosity) にて利用される。  The two nucleic acids A '(including A'X) and B' (including B'Y) generated by the PCR method are separated by electrophoresis (step S4). That is, each single-stranded DNA (A ′, B ′) has a complementary base sequence and has a higher-order structure specific to each base sequence. Secondary structural polymorphism: single-strand conformation polymorpmsm: SSCJ, separated at different positions by electrophoresis, and single-stranded when a single base in the DNA fragment is replaced by mutation, etc. The higher order structure of DNA changes, and when such a change occurs, its migration position also changes, and the mutation in the gene is detected by comparing such a change in the migration position with, for example, a reference one. This detection is used, for example, in the LOH method (Loss of heterozygosity) described below.
泳動位置の検出は、 標的核酸の標識の極大波長を分光器により検出し、 その 検出スペクトルを分析することにより求められる。 この場合、 スペクトル分析 により、 標的核酸の定性, 定量を求めることができる (ステップ S 5, S 6)„ 標識付きプライマ一 AX, BYの比率は、 標識 X, Yが蛍光体、 発光体、 放 射性同位体の場合は、 その蛍光強度または放射活性比により決定する。 また、The migration position can be detected by detecting the maximum wavelength of the target nucleic acid label using a spectroscope and analyzing the detected spectrum. In this case, the qualitative and quantitative determination of the target nucleic acid can be obtained by spectral analysis (steps S5 and S6). The ratio of labeled primers AX and BY is such that the labels X and Y are fluorescent, luminescent, and radioactive. In the case of radioisotopes, it is determined by their fluorescence intensity or radioactivity ratio. Also,
X、 Yが修飾基や抗原の場合は、 X、 Yに付加する蛍光体、 発光体、 放射性同 位体の蛍光強度または放射活性比により決定する。 When X and Y are modifying groups or antigens, the determination is made based on the fluorescent intensity or the radioactivity ratio of the fluorescent substance, luminescent substance or radioisotope added to X or Y.
なお、 X、 Yが修飾基や抗原の場合は、 P C Rの反応後に、修飾基や抗原に、 蛍光体、 発光体および放射性同位体を付加する反応を行う。 例えば、 修飾基が ピオチンの場合は、 蛍光体、 発光体および放射性同位体を付加したアビジン又 はストレプトアビジンと、 付加していないアビジンやストレプトアビジンの混 合物を用いてピオチンに結合する処理を行う。 ジゴキシゲニン (DIG) などの 抗原の場合は、 アルカリフォスファタ一ゼ(AP)、 ホースラデイシュペルォキシ ダーゼ (HRP) など酵素を付加した抗体と、 付加していない抗体の混合物とを 用いて、 抗体を抗原に結合後、 発色基質を用いて処理を行う。  When X and Y are a modifying group or an antigen, a reaction of adding a fluorescent substance, a luminescent substance, and a radioisotope to the modifying group or the antigen is performed after the PCR reaction. For example, when the modifying group is biotin, the treatment of binding to biotin using a mixture of avidin or streptavidin to which a fluorescent substance, a luminescent substance, and a radioactive isotope has been added, and avidin or streptavidin not having been added is performed. Do. In the case of an antigen such as digoxigenin (DIG), a mixture of an antibody to which an enzyme such as alkaline phosphatase (AP) and horseradish peroxidase (HRP) has been added and a mixture of an antibody to which no enzyme has been added are used. After binding the antibody to the antigen, treatment is performed using a chromogenic substrate.
プライマーに結合される蛍光体としては、  As the fluorescent substance bound to the primer,
CyDve、 Carboxyfluorescein(FAM)、 fluorescein- 5 - isothiocy anate (FITC)、 hexac loroflviorescein(HEX) rhodamine(ROX)、 CyDve, Carboxyfluorescein (FAM), fluorescein-5-isothiocyanate (FITC), hexac loroflviorescein (HEX) rhodamine (ROX),
carboxytetramethylrhodamine(TAMRA)> tetrac lorofluorescein(TET) > スフレ ホローダミン 1 0 1酸クロリド (商品名: Texas Red®) などが考えられる。 発光体としては、 例えば、 Carboxytetramethylrhodamine (TAMRA)> tetrachlorofluorescein (TET)> souffle Horodamine 101 acid chloride (trade name: Texas Red®). As a luminous body, for example,
3-(2'spiroadamantane)-4-methoxy-4-(3"-phosphoryloxy)-phenyl-l,2-dioxetan e (商品名: AMPPD®;)、 CSPDTM, MDP™、 CDP™などが考えられる。 3- (2'spiroadamantane) -4-methoxy-4- (3 "-phosphoryloxy) -phenyl-l, 2-dioxetane (trade name: AMPPD®), CSPDTM, MDP ™, CDP ™, and the like.
放射性同位体としては、 例えば、 32 P、 131 1、 35 S、 45 C a、 3 H、 などが 考えられる。 Radioactive isotopes include, for example, 32 P, 131 1, 35 S, 45 Ca, 3 H, and the like.
核酸の標識となる蛍光体、 発光体、 放射性同位体または修飾基や抗原の量比 は用いる標識となる化学物質によつて設定する。  The quantitative ratio of the fluorescent substance, the luminescent substance, the radioisotope or the modifying group or the antigen to be used as the label of the nucleic acid is set according to the chemical substance to be used as the label.
ここで、 第 2図および第 3図により、 上記の二箇所の部位 a、 bを複製 (増 幅) した核酸 A ' ( = A ' X ) , B ' ( = B ' Y ) がそれぞれ蛍光物質 5-carboxy£luorescein (5_FAM)と 5-carboxy-X-i'hodamine (5'ROX)を用いて標識さ れている場合の、 測定スぺクトルの形態を説明する。 また、 核酸 A ', B 'を それぞれの測定スペクトルを介して同時に、 定量する場合を一例として、 説明 する。 Here, according to FIGS. 2 and 3, nucleic acids A ′ (= A′X) and B ′ (= B′Y), which replicate (amplify) the above two sites a and b, respectively, are fluorescent substances. The form of the measured spectrum when labeled with 5-carboxypluorescein (5_FAM) and 5-carboxy-X-i'hodamine (5'ROX) will be described. In addition, nucleic acid A ', B' The case where quantification is performed simultaneously through each measurement spectrum will be described as an example.
第 2図は、 従来方式であり、 プライマー A, Bひいては核酸 A ' , Β 'につ いての標識 X, Υの付加率は同程度で、 核酸 Α ', Β 'について同程度の蛍光 強度が測定された場合の蛍光波長一蛍光強度特性を示す。 第 3図は、 本実施例 に係るもので、 プライマ一 Α, Βひいては核酸 A ', B 'についての標識 X, Yの付加率は 1対 1 0で、 A 'が B一の 1 10であった場合の蛍光波長—蛍光 強度特性を示す。  Fig. 2 shows the conventional method, in which the addition rates of the labels X and プ ラ イ マ ー for the primers A and B and thus the nucleic acids A 'and Β' are similar, and the fluorescence intensity of the nucleic acids Α 'and Β' is similar. 4 shows a fluorescence wavelength-fluorescence intensity characteristic when measured. FIG. 3 relates to the present example, in which the addition rate of the labels X and Y for the primers I and B ′ and the nucleic acids A ′ and B ′ is 1 to 10 and A ′ is 110 for B and B ′. It shows the fluorescence wavelength-fluorescence intensity characteristics when there is.
それぞれの蛍光物質の最大蛍光波長、すなわち検出波長は、 5-FAMが 518nm、 5-ROXが 604nmである。 この 2つの蛍光物質を同程度の蛍光強度となるよう な量で標識された核酸の検出を行うと、 第 2図のように両者の重なり合う波長 帯があり、 5-ROXの検出波長である 604nmには、 5-FAMの波長帯も含まれて いる。 このため、 B 'の定量では、 第 2図からもわかるように、 A 'の標識物 質である 5-FAMの検出波長における蛍光強度の約 3割分が加算されて、 B 'の 検出波長における蛍光強度として検出される。 このような場合には、 計算など で補正することにより B 'の検出波長における蛍光強度から A 'の蛍光強度分 を除く処理が必要である。  The maximum fluorescence wavelength of each fluorescent substance, that is, the detection wavelength, is 518 nm for 5-FAM and 604 nm for 5-ROX. When nucleic acids labeled with these two fluorescent substances are detected in such amounts that they have the same level of fluorescence intensity, there is a wavelength band that overlaps the two, as shown in Fig. 2, and the detection wavelength of 604 nm is the detection wavelength of 5-ROX. Also includes the 5-FAM wavelength band. Therefore, in the quantification of B ', as can be seen from Fig. 2, approximately 30% of the fluorescence intensity at the detection wavelength of 5-FAM, which is the label of A', is added, and the detection wavelength of B ' Is detected as the fluorescence intensity. In such a case, it is necessary to perform a process of removing the fluorescence intensity of A 'from the fluorescence intensity at the detection wavelength of B' by correcting by calculation or the like.
これに対して、 本実施例のように、 例えば、 検出対象となる核酸を増幅する 反応において、 予め 5-FAMを付加したプライマーを、 5-ROXを付加したプラ イマ一に対して検出波長における蛍光強度が 1 10になるように用いて部位 A を増幅すると、 A 'の蛍光強度も略 1 10となる(この蛍光強度を第 3図の A〃 で示す)。 ここで、 A〃 と B 'を同時に検出すると、 第 3図のように 604mnに おける蛍光強度は、 補正をしなくても実際の Β 'の蛍光強度に近くなる。 すな わち、 A ' (Α〃 ) の蛍光強度を、 測定可能な範囲で Β 'よりも充分に小さく することにより、 Α〃 の長波長側のスロープが小さくなり、 B 'の検出波長に ほとんど影響を及ぼさなくなる。  On the other hand, as in this example, for example, in a reaction for amplifying a nucleic acid to be detected, a primer to which 5-FAM has been added in advance is compared with a primer to which 5-ROX has been added at a detection wavelength. When the site A is amplified so that the fluorescence intensity becomes 110, the fluorescence intensity of A ′ also becomes approximately 110 (this fluorescence intensity is indicated by A〃 in FIG. 3). Here, if A ′ and B ′ are detected simultaneously, the fluorescence intensity at 604 mn will be close to the actual fluorescence intensity of Β ′ without correction, as shown in FIG. In other words, by making the fluorescence intensity of A '(Α〃) sufficiently smaller than Β' within the measurable range, the slope on the longer wavelength side of 小 さ く becomes smaller, and the detection wavelength of B 'becomes smaller. Has almost no effect.
本実施形態では、 第 2図、 第 3図に示すように、 標的核酸 A ' , の標識 は、 検出スぺクトルの極大波長を基準にして短波長側が急で長波長側がなだら かな勾配のスペクトルを持つ化合物である。 この場合には、 波長の短い方の標 識が波長の長い方の標識に影響を及ぼすので、 複数種のプライマー (合成用物 質) に付加される標識 (修飾基, 抗原などの標識結合用媒体を含む) の量は、 波長の短い方 A 'を、 波長の長い方 B 'よりも少なくする。 In the present embodiment, as shown in FIGS. 2 and 3, labeling of the target nucleic acid A ′, Is a compound having a spectrum with a sharp slope on the short wavelength side and a gentle slope on the long wavelength side based on the maximum wavelength of the detection spectrum. In this case, the label with the shorter wavelength affects the label with the longer wavelength, so the label (modification group, label binding for antigen, etc.) added to multiple types of primers (synthesis materials) is used. (Including the medium) make the shorter wavelength A 'less than the longer wavelength B'.
第 4図も、 従来方式による検出波長一蛍光強度特性を示すものである。 この 例は、プライマー A, Bについての標識 X, Yの付加率は同程度であるが、 5-ROX で標識された核酸 B 'の元々の生成量が 5-FAMで標識さらた核酸 A 'よりもは るかに少ない場合 (例えば B 'の検出波長における蛍光強度が A 'の 1 0 %で あった場合) である。 この場合にも、 A 'の波長帯域の一部が、 B 'の検出波 長 (極大波長) に含まれ、 B 'の検出が困難になる。 この場合も、 上記と同様 の方法で、 プライマ一 Aへの標識付加率をプライマー Bの標識付加率よりも小 さくすれば、 第 5図に示すように、 A '側の蛍光強度を弱めて、 A 'の検出波 長帯域が B 'の検出波長 (極大波長) に影響を及ぼすのをほとんどなくし、 B 'について、 実際の蛍 強度に近づけることができる。  FIG. 4 also shows a detection wavelength-fluorescence intensity characteristic according to the conventional method. In this example, although the addition rates of the labels X and Y for the primers A and B are almost the same, the original production amount of the nucleic acid B 'labeled with 5-ROX is the nucleic acid A' labeled with 5-FAM. This is the case when the fluorescence intensity at the detection wavelength of B 'is 10% of A'. Also in this case, a part of the wavelength band of A 'is included in the detected wavelength (maximum wavelength) of B', and it becomes difficult to detect B '. In this case as well, if the labeling rate of primer A is made smaller than the labeling rate of primer B in the same manner as described above, the fluorescence intensity on the A 'side is reduced as shown in Fig. 5. In addition, the detection wavelength band of A 'hardly affects the detection wavelength (maximum wavelength) of B', and the actual fluorescence intensity of B 'can be approximated.
なお、 分析装置は、 2種の標的核酸の分析 (解析) を行う場合には、 いずれ のデータも補正せず、 そのまま解析演算するか、 あるいは、 定量演算を行う場 合に、 上記した標識の付加率に関するデータを入力可能にし、 その付加率デー 夕と測定デ一夕に基づき各生体試料の定量を演算する。  When analyzing (analyzing) two types of target nucleic acids, the analyzer does not correct any of the data and either performs the analysis operation as it is, or when performing the quantitative operation, Data on the addition rate can be entered, and the quantification of each biological sample is calculated based on the addition rate data and the measurement data.
このように、 標識となる物質の量比を、 生体試料に応じて変えることで、 重 なり合う波長帯を有する標識となる物質を用いての検出が可能となり、 より多 くの種類の核酸を同時に定量することができる。  In this way, by changing the ratio of the amount of the labeling substance according to the biological sample, detection using the labeling substance having overlapping wavelength bands becomes possible, and more types of nucleic acids can be detected. It can be quantified at the same time.
以下に、 本発明の具体的な実施例について説明する。  Hereinafter, specific examples of the present invention will be described.
(実施例 1 )  (Example 1)
1 . 検体からの铸型 DNAの抽出工程 (ステップ S 1 ) 1. Extraction process of type I DNA from specimen (Step S 1)
検体として、 ヒト抹消血 (全血)、 バイオプシーによる組織片、 尿などが使用 できる。 ここで述べるゲノム DNAの抽出は、 周知の方法により行われる。 例えば、 ヒト抹消血の場合、 QIAGEN社の DNA Blood Mini Kitを使用 すればよい。 具体的には、 キットの標準プロトコールに従うが、 1.5mL チュ ーブに、 ヒト全血 2 0 0 L、 QIAGEN Protease 20 Lを加える。次いで、 Buffer AL 200 Lを加えて、 voltexを用いて十分に撹拌後、 5 6 、 10分 間のインキュベーションを行う。 その後、 マイクロチューブを遠心して液を集 め、 エタノール 2 0 0 Lを加えて再び voltexを用いて十分に撹拌する。 その 混合液全量をコレクションチューブ中のスピンカラムに注入し、 8 0 0 O rpm, 1分間遠心して、液をカラムに通し、 ゲノム DNAをカラム内に補足する。その 後、 同じスピンカラムを新しいコレクションチューブに移し、 ふたを開けてス ピンカラムに Buffer AW1 5 0 0 Lを注入して 8 0 0 O rpmで 1分間遠心 する。 再び、 スピンカラムを新しいコレクションチューブに移し、 次に Buffer AW2 5 0 0 L を注入して 1 4 0 0 0 r p mで 3分間遠心し、 カラムの洗浄 を行う。 スピンカラムを新しいコレクションチューブに移し、 Buffer AE 1 0 0 Lを注入し、 8 0 0 O rpm, 1分間遠心し、 補足したゲノム DNAを溶出 させ、 ゲノム DNA溶液を得る。 なお、 溶出ゲノム DNAを吸光度計を用いて測 定することにより、 溶出液中の核酸量を定量する。 Samples include human peripheral blood (whole blood), biopsy tissue fragments, and urine. The extraction of genomic DNA described here is performed by a well-known method. For example, in the case of human peripheral blood, QIAGEN DNA Blood Mini Kit may be used. Specifically, follow the standard protocol of the kit, but add 200 L of human whole blood and 20 L of QIAGEN Protease to a 1.5 mL tube. Next, add 200 L of Buffer AL, mix well using a voltex, and incubate for 56 to 10 minutes. Thereafter, the liquid is collected by centrifuging the microtube, adding 200 L of ethanol, and sufficiently stirring again using a voltex. The whole amount of the mixture is injected into a spin column in a collection tube, centrifuged at 800 rpm for 1 minute, the solution is passed through the column, and genomic DNA is captured in the column. Then transfer the same spin column to a new collection tube, open the lid, inject 500 L of Buffer AW into the spin column, and centrifuge at 800 rpm for 1 minute. Transfer the spin column to a new collection tube again, then inject 500 liters of Buffer AW250, centrifuge at 1,400 rpm for 3 minutes, and wash the column. Transfer the spin column to a new collection tube, inject 100 L of Buffer AE, centrifuge at 800 rpm for 1 minute, elute the captured genomic DNA, and obtain a genomic DNA solution. The amount of nucleic acid in the eluate is quantified by measuring the eluted genomic DNA using an absorptiometer.
尿の場合は、 まず、 遠心管に採取した尿を 1 0 0 O rpmで 5分間遠心して沈 渣のみを集め、 さらにその沈渣に生理用食塩水を加えて再分散させて洗浄し、 再度 1 0 0 O rpmで 5分間遠心して沈渣を集めて試料とする。 その後、 周知の プロティナ一ゼ K消化し、 フエノール/クロ口ホルム抽出などでゲノム DNAを 抽出する。 組織切片も同様にできる。 また、 尿審査物、 組織片、 血液の白血球 を— 8 0 °Cで凍結保存した試料を使ってもよい。  In the case of urine, urine collected in a centrifuge tube is first centrifuged at 100 O rpm for 5 minutes to collect only the sediment, and the sediment is re-dispersed by adding physiological saline, washed, and washed again. Centrifuge at 0 O rpm for 5 minutes to collect the sediment and use it as a sample. After that, digestion with the well-known proteinase K is performed, and genomic DNA is extracted by phenol / clonal form extraction. Tissue sections can be made similarly. Alternatively, a sample obtained by cryopreserving a urine test substance, a tissue piece, or white blood cells of blood at -80 ° C may be used.
2 . 標的核酸部を増幅するためのプライマーセットの調製工程 (ステップ 2 ) PCR増幅用のプライマ一として以下の 6種類のポリヌクレオチドを使用した。 5'TET-CAACAAAGCAAGATCCCTTC-3' (ROX-303Fプライマー)  2. Step of Preparing Primer Set for Amplifying Target Nucleic Acid Portion (Step 2) The following six kinds of polynucleotides were used as primers for PCR amplification. 5'TET-CAACAAAGCAAGATCCCTTC-3 '(ROX-303F primer)
5'-CAACAAAGCAAGATCCCTTC-3' (303Fプライマ一) 5'-CAACAAAGCAAGATCCCTTC-3 '(303F Primer)
5'-TAGGTACCTGGAAACTCTTGGC-3' (303Rプライマー) 5'TET-GTGCACCTCTACACCCAGAC-3' (TET-304Fプライマ一) 5'-TAGGTACCTGGAAACTCTTGGC-3 '(303R primer) 5'TET-GTGCACCTCTACACCCAGAC-3 '(TET-304F primer)
5'-GTGCACCTCTACACCCAGAC-3' (304Fプライマ一) 5'-GTGCACCTCTACACCCAGAC-3 '(304F Primer)
5'-TGTGCCCACACACATCTATC-3' (304Rプライマ一) 5'-TGTGCCCACACACATCTATC-3 '(304R primer one)
ROX-303Fプライマ一と 303Fプライマー、 TET304Fプライマ一と 304Fプ ライマ一は、 それぞれともに同じ配列を有するポリヌクレオチドである。  The ROX-303F primer and the 303F primer, and the TET304F primer and the 304F primer are polynucleotides having the same sequence.
ROX-303Fプライマーと 303Fプライマ一は、 9番染色体上の 303遺伝子領域 の一部とハイブリダィズする。 TET-304Fプライマ一と 304Fプライマ一は、 9 番染色体上の 304遺伝子の一部とハイプリダイズする。  The ROX-303F primer and the 303F primer hybridize with a part of the 303 gene region on chromosome 9. The TET-304F and 304F primers hybridize to a portion of the 304 gene on chromosome 9.
これらは共に PCR増幅反応の際の FORWARDプライマーとして使用する。 また、 ROX-303Fプライマーは、その 5'末端に蛍光体である ROXを、 TE "304F プライマーは、 その 5'末端に蛍光体である TETを結合させた標識ポリヌクレオ チドであり、 蛍光検出により検出できる。  These are both used as FORWARD primers in the PCR amplification reaction. In addition, the ROX-303F primer is a labeled polynucleotide with the fluorescent substance ROX at its 5 'end, and the TE "304F primer is a labeled polynucleotide with the fluorescent substance TET bound to its 5' end, and is detected by fluorescence detection. it can.
303Fプライマーと 304Fプライマーは、 非標識のポリヌクレオチドである。 蛍光体のポリヌクレオチドへの結合は周知の方法により行うことができる。  The 303F and 304F primers are unlabeled polynucleotides. The binding of the fluorescent substance to the polynucleotide can be performed by a known method.
303Rプライマ一と 304Rプライマ一は、それぞれ 9番染色体上の 303遺伝子 または 304遺伝子の一部とハイブリダイズし、 PCR増幅反応の際の REVERSE プライマ一として使用する。  The 303R primer and the 304R primer hybridize with the 303 gene or a part of the 304 gene on chromosome 9, respectively, and are used as REVERSE primers in the PCR amplification reaction.
PGR増幅反応の FORWARDプライマー溶液には、 ROX-303Fプライマーと 303Fプライマ一、 TET"304Fプライマ一と 304Fプライマーをそれぞれ 1: 10 の濃度比で全体として 100 M の濃度になるように調製した (それぞれ 303FMIXプライマー溶液、 304FMIXプライマー溶液とする。)。  For the FORWARD primer solution for the PGR amplification reaction, the ROX-303F primer and 303F primer, and the TET "304F primer and 304F primer were prepared at a concentration ratio of 1:10, respectively, to give a total concentration of 100 M (each 303FMIX primer solution and 304FMIX primer solution.)
REVERSEプライマ一溶液には、 303Rプライマーと 304Rプライマ一をそれ ぞれ 100 Mの濃度になるように調製したものを使用した。  The REVERSE primer solution used was prepared by preparing the 303R primer and the 304R primer at a concentration of 100 M each.
3 . 増幅反応工程 (ステップ S 3 ) 3. Amplification reaction process (Step S 3)
本工程では、 前述のプライマーを用いて PCR増幅反応を行う。  In this step, a PCR amplification reaction is performed using the aforementioned primers.
铸型となるゲノム DNA 0 . 1 g、 1.25mMの d NTP混合溶液 4 L、 1 0 XAmpliTaq Buffer 2.5 L、 AmpliTaaポリメラ一ゼ 0.125 L、 前述 の 303FMIXプライマー溶液、 304FMIXプライマー溶液、 303Rプライマー溶 液、 304Rプライマー溶液をそれぞれ 1 L、 滅菌水を全量 2 5 /i Lになるよう に加えて混合する。 PCR反応条件は、 最初の変性条件を 9 5 °Cで 5分間、 増幅 温度サイクルは、 9 5 °Cで 3 0秒間、 5 7 で 3 0秒間、 7 2 °Cで 30秒間を 30 回繰り返し、 最後に伸長反応を 72°Cで 7分間行う。 反応後、 周知のゲル電気泳 動で増幅を確認した。 0.1 g of genomic DNA to be 铸, 4 L of 1.25 mM dNTP mixed solution, 10 L of 10 XAmpliTaq Buffer, 0.125 L of AmpliTaa polymerase, described above Add 1 L of each of the 303FMIX primer solution, 304FMIX primer solution, 303R primer solution, and 304R primer solution, and add sterile water to a total volume of 25 / iL, and mix. The PCR reaction conditions were the same as the initial denaturation conditions at 95 ° C for 5 minutes, and the amplification temperature cycle was 30 times at 95 ° C for 30 seconds, at 57 for 30 seconds, and at 72 ° C for 30 seconds 30 times. Finally, the extension reaction is performed at 72 ° C for 7 minutes. After the reaction, amplification was confirmed by well-known gel electrophoresis.
4 . PCR産物の 3'末端平滑化 4. Blunt 3 'end of PCR product
0.5unitsの Klenow Fragmentを、 PCR反応溶液 5 Lに添加し、 37°Cで 30 分間反応した。 反応後、 1 0 O mM EDTA溶液を 1 L添加した。  0.5 units of Klenow Fragment was added to 5 L of the PCR reaction solution, and reacted at 37 ° C for 30 minutes. After the reaction, 1 L of a 10 O mM EDTA solution was added.
5 . 検出工程 (ステップ S 5 )  5. Detection process (Step S5)
本工程では、上記工程で調製した生成 DNAを検出する。検出方法'装置は種々 適用できるが、 本実施例ではキヤビラリ一電気泳動装置により SSCP解析を実 施する場合について説明する。  In this step, the generated DNA prepared in the above step is detected. Various detection methods' devices can be applied. In this embodiment, a case in which SSCP analysis is performed by a capillary electrophoresis device will be described.
キヤビラリ一電気泳動装置として、 キヤビラリーアレイを 16本装着し、 同時 に電気泳動できるものを使用した。 同程度の性能の装置で市販されているもの では、 例えば Applied Biosystems 社 ABI PRISM™ 3100 Genetic Analyzerなどがある。 この装置で、 独自に作成した内径 75 m、 検出長 36cm のキヤピラリーを使用し、 同社製の GeneScanポリマ一を独自に濃縮調整した ものを充填して検出する。  As a capillary electrophoresis device, one equipped with 16 capillary arrays and capable of electrophoresis simultaneously was used. Commercially available instruments of comparable performance include, for example, ABI PRISM ™ 3100 Genetic Analyzer from Applied Biosystems. Using this device, a uniquely created capillary with an inner diameter of 75 m and a detection length of 36 cm is used to fill and detect a proprietary GeneScan polymer that has been independently concentrated and adjusted.
上記増幅反応工程および 3'末端平滑化を行った生成 DNAを含む反応液 に、 周知の標識されたフラグメントマーカ一 (既知の塩基長のオリゴマー) を 適量含むホルムアミド 37 Lを混合し、 94°Cで 2分間熱変性を行う。 その後、 氷令し、キヤビラリ一電気泳動用の試料溶液とする。生成 DNAを含む反応液は 必要に応じて希釈して用いる。 電気泳動条件は、 キヤビラリ一の制御温度を 22.5で、 試料注入条件を 20KV、 5秒、 泳動分離を 15KV、 70分間行う。 なお、 解析する信号強度は、 標準で得られる泳動データをもとに、 ベースライン、 振 幅を独自に変更して使用する。 6 . LOH (Loss of heterozygosity) の解析 (ステップ S 6 ) The reaction solution containing the resulting DNA subjected to the amplification reaction step and 3′-end blunting is mixed with 37 L of formamide containing an appropriate amount of a well-known labeled fragment marker (oligomer of known base length) at 94 ° C. Heat denaturation for 2 minutes. After that, use ice to prepare a sample solution for capillary electrophoresis. Dilute the reaction solution containing the generated DNA as necessary. The electrophoresis conditions were as follows: the control temperature of the capillary was 22.5, the sample injection conditions were 20 KV for 5 seconds, and the electrophoresis separation was 15 KV for 70 minutes. The signal strength to be analyzed is based on the electrophoresis data obtained as standard, and the baseline and amplitude are changed independently. 6. Analysis of LOH (Loss of heterozygosity) (Step S 6)
第 6図、 第 7図において、 実線は 303、 破線は 304の遺伝子から増幅した生 成 DNAのピークである。 铸型がゲノム DNAであり、 父親由来と母親由来の両 者のゲノムから標的核酸が増幅されるため、 遺伝子 303,304は、 それぞれ 2つ のピークとなって現れる。 この 2つのピークを解析することによつて診断など を行うことができる。 そして、 第 6図では 304から得られるピーク強度と 303 から得られるピーク強度はほぼ同等だが、 第 7図では 304から得られるピーク 強度は 303から得られるピーク強度よりも低くなつている。 2つのピークのう ち、 時間的に先に検出されるピークの高さを Al、 あとに検出されるピークの高 さを A 2とすると、  In FIGS. 6 and 7, the solid line is 303 and the dashed line is the peak of the generated DNA amplified from the 304 gene. Type III is genomic DNA, and the target nucleic acids are amplified from both the paternal and maternal genomes, so that genes 303 and 304 appear as two peaks each. Diagnosis can be performed by analyzing these two peaks. In Fig. 6, the peak intensity obtained from 304 and the peak intensity obtained from 303 are almost equal, but in Fig. 7, the peak intensity obtained from 304 is lower than the peak intensity obtained from 303. Of the two peaks, the height of the peak detected earlier in time is Al, and the height of the peak detected later is A2.
min.(Al,A2)/max.(Al,A2) · · · · (1) の計算式から LOHの割合を調べることができる。  min. (Al, A2) / max. (Al, A2) · · · · · The ratio of LOH can be determined from the formula (1).
第 6図では、変換式を用いて、それぞれのピークの影響を最小限にしてから (1) の計算を行った。 In Fig. 6, the calculation of (1) was performed after minimizing the effect of each peak using the conversion formula.
第 7図では、 得られたピークの高さを用いてそのまま (1) の計算を行った。 この結果、 表 1のように両者ともほぼ同じ計算結果を得ることができた。 In Fig. 7, the calculation of (1) was directly performed using the obtained peak height. As a result, almost the same calculation results were obtained for both, as shown in Table 1.
表 1 各 PCR産物の LOH解析結果
Figure imgf000016_0001
Table 1 LOH analysis results of each PCR product
Figure imgf000016_0001
なお、 本解析では行わなかったが、 実際には正常遺伝子の割合も考慮して診断 などを行う (特開平 9-201199など)。 例えば、 がん組織に含まれるがん細胞由 来の遺伝子の割合は、 Although not performed in this analysis, diagnosis is actually performed in consideration of the ratio of normal genes (JP-A-9-201199, etc.). For example, the percentage of cancer cell-derived genes in cancer tissue is
{A1/A2 (正常組織からの遺伝子) -A1/A2 (がん組織からの遺伝子) } / {A1 /A2 (正常組織からの遺伝子) }  {A1 / A2 (gene from normal tissue) -A1 / A2 (gene from cancer tissue)} / {A1 / A2 (gene from normal tissue)}
で計算する。 また、 診断などにおいては、 ある一定の割合を設定し、 その値を 判定の基準として利用する。 この際、 計算結果にはお互いのピークの影響 (例 えば、 実施例で用いた 303と 304) を考慮して、 設定値を中心として一定の範 囲を擬陽性または擬陰性とする必要がある。 Calculate with In diagnosis, a certain percentage is set and the value is used as a criterion for judgment. In this case, the calculation results are affected by each other's peak (example For example, in consideration of 303 and 304) used in the embodiment, it is necessary to set a certain range around the set value as false positive or false negative.
なお、 上記実施例では、 生体試料として核酸を例示したが、 本発明はこれ に限定されるものではなく、 その他の生体試料でも本発明で提示した課題を有 するものについては、 適用することが可能である。 産業上の利用可能性  In the above examples, a nucleic acid was exemplified as a biological sample. However, the present invention is not limited to this, and the present invention is not limited to this and can be applied to other biological samples having the problems presented in the present invention. It is possible. Industrial applicability
本発明は、 従来の方法と比較して、 複数の標識された核酸およびタンパク質 を精度よく検出および定量することができる。 特に、 波長帯が重なり合う蛍光 および発光体を用いた場合に大きな効果が得られる。  According to the present invention, a plurality of labeled nucleic acids and proteins can be detected and quantified with higher precision as compared with conventional methods. In particular, a great effect can be obtained when using fluorescent and luminescent materials whose wavelength bands overlap.
標識するための蛍光体、 発光体および放射性同位体の使用量が下がり、 分析 1回あたりの検体数が増やせるため、 標識された生体試料の生成と分析のため のコストダウンが図れる。  The amount of fluorescent, luminescent, and radioactive isotopes used for labeling is reduced, and the number of specimens per analysis can be increased, thereby reducing costs for producing and analyzing labeled biological samples.

Claims

請求の範囲 The scope of the claims
1 . 2種類以上の生体試料を合成し、 合成された生体試料に、 種類別に波長 の異なる標識を付加し、 それらの標識を検出することにより、 生体試料を分析 する方法において、  1. In a method of analyzing two or more biological samples by synthesizing two or more biological samples, adding labels with different wavelengths to the synthesized biological samples, and detecting those labels,
前記生体試料の標識の検出強度を、 生体試料の種類別に調整し、 特に検出さ れる標識のうち、 波長帯域が他方の標識に影響を及ぼす度合いの大きい方の検 出強度を弱めることにより、 生体試料を分析する生体試料の分析方法。  The detection intensity of the label of the biological sample is adjusted for each type of the biological sample, and in particular, among the detected labels, the detection intensity of the one whose wavelength band has a large influence on the other label is weakened, whereby the biological intensity is reduced. A biological sample analysis method for analyzing a sample.
2 . 2種類以上の生体試料を合成し、 その合成に用いる物質 (以下、 「合成用 物質」 と称する) に、 種類別に波長の異なる標識を付加する或いは標識結合用 媒体を付加することにより、 生体試料を合成過程或いは合成後に標識化し、 そ れらの標識を検出することにより、 生体試料を分析する方法において、 少なくとも或る一種類の合成用物質に付加される標識或いは標識結合用媒体 の量を、 他の種類の合成用物質に付加される標識^^いは標識結合用媒体よりも 少なくなるように調整して、 生体試料を標識化する生体試料の分析方法。 2. By synthesizing two or more types of biological samples and adding labels with different wavelengths to each type or adding a label binding medium to the substances used in the synthesis (hereinafter referred to as “synthetic substances”). In a method of analyzing a biological sample by labeling a biological sample during or after the synthesis and detecting those labels, a method of labeling or label-binding medium added to at least one type of synthetic substance is used. A method for analyzing a biological sample in which a biological sample is labeled by adjusting the amount so that the amount of a label added to another type of synthetic substance is smaller than that of a label binding medium.
3 . 請求項 2において、 2種類以上の前記生体試料は、 ポリメラ一ゼ連鎖反 応 (以下、 「P C R」 と称する) 法により合成される核酸であり、 前記合成用物 質は、 プライマーであり、 前記標識は、 蛍光体または発光体または放射性同位 体であり、 前記標識結合用媒体は、 修飾基或いは抗体である生体試料の分析方 法。 3. In claim 2, the two or more kinds of biological samples are nucleic acids synthesized by a polymerase chain reaction (hereinafter, referred to as “PCR”) method, and the substance for synthesis is a primer. The method for analyzing a biological sample, wherein the label is a fluorescent substance, a luminescent substance, or a radioisotope, and the label binding medium is a modifying group or an antibody.
4. 請求項 2において、 前記標識は、 極大波長を基準にして短波長側が急で 長波長側がなだらかな勾配のスぺクトルを持つ標識化合物で、 複数種の合成用 物質に付加される標識或いは標識結合用媒体の量は、 波長の短い方の標識或い は該標識と結合する標識結合用媒体を、 波長の長い方の標識或いは該標識と結 合する標識結合用媒体よりも少なくする生体試料の分析方法。 4. The label according to claim 2, wherein the label is a labeled compound having a spectrum with a steep slope on the short wavelength side and a gentle slope on the long wavelength side with respect to the maximum wavelength, and a label added to a plurality of types of synthetic substances. The amount of the label binding medium is such that the amount of the label having a shorter wavelength or the label binding medium binding to the label is smaller than that of the longer wavelength label or the label binding medium binding to the label. Sample analysis method.
5 . 請求項 2において、 少なくとも或る一種類の合成用物質に付加される標 識或いは標識結合用媒体と、 他の種類の合成用物質に付加される標識或いは標 識結合用媒体との量比を、 1 : 2〜1 : 5 0好ましくは 1 : 5〜1 : 1 0に設 定する生体試料の分析方法。 5. The amount of the label or label binding medium added to at least one type of synthetic substance and the label or label binding medium added to another type of synthetic substance according to claim 2. The ratio is set to 1: 2 to 1:50, preferably 1: 5 to 1:10. Analysis method of the biological sample to be determined.
6 . 請求項 2において、 2種類以上の前記生体試料は、 ポリメラーゼ連鎖反 応法により合成される核酸であり、  6. In Claim 2, the two or more biological samples are nucleic acids synthesized by a polymerase chain reaction,
生体試料を合成する反応液中には、 前記合成用物質として、 前記標識または 前記標識結合用媒体となる修飾基または抗体を修飾したプライマーと、 前記標 識または前記修飾基または前記抗体を有さないプライマーとが含まれている生 体試料の分析方法。  The reaction solution for synthesizing the biological sample contains, as the substance for synthesis, a primer modified with the label or the modifying group or antibody serving as the label binding medium, and the label or the modifying group or the antibody. Method for analyzing biological samples that contain no primers.
7 . 請求項 2において、 2種類以上の前記生体試料は、 ポリメラーゼ連鎖反 応法により合成される核酸であり、  7. The method according to claim 2, wherein the two or more biological samples are nucleic acids synthesized by a polymerase chain reaction,
生体試料を合成する反応液中には、 前記合成用物質として、 前記標識または 前記標識結合用媒体となる修飾基または抗体を修飾したプライマーと、 前記標 識または前記修飾基または前記抗体を有さないプライマ一とが、 種類別に 1 : 1〜1 : 5 0, 好ましくは、 1 : 5〜1 : 1 0の量比で調整されている生体試 料の分析方法。  The reaction solution for synthesizing the biological sample contains, as the substance for synthesis, a primer modified with the label or the modifying group or antibody serving as the label binding medium, and the label or the modifying group or the antibody. A method for analyzing a biological sample in which the number of primers is adjusted to a ratio of 1: 1 to 1:50, preferably 1: 5 to 1:10 by type.
8 . 請求項 2において、 前記標識は、 蛍光体であり、 8. In Claim 2, the label is a phosphor,
この蛍光体は、 CyDye、 Carboxyfl orescein(FAM) ,  This phosphor is CyDye, Carboxyfluorescein (FAM),
tluorescem-5"isothiocyanate(FITC)> hexachlorofluorescem(HEX) , rhodamine(ROX)、 carboxytetramethylrhodamine(TAMRA)、 tluorescem-5 "isothiocyanate (FITC)> hexachlorofluorescem (HEX), rhodamine (ROX), carboxytetramethylrhodamine (TAMRA),
tetrachlorofluorescein(TET) , スルホローダミン 1 0 1酸クロリド (商品名: Texas Red®) のいずれかである生体試料の分析方法。 A method for analyzing a biological sample that is either tetrachlorofluorescein (TET) or sulforhodamine 101 acid chloride (trade name: Texas Red®).
9 . 請求項 2において、 前記標識は、 発光体であり、  9. In Claim 2, the marker is a luminous body,
この発光体試料は、  This phosphor sample
3-(2'spiroadamantane)-4-methoxy-4-(3"-phosphoryloxy)-phenyl-l,2-dioxetan e (商品名: AMPPD®)、 CSPDTM, MDPTM, CDPTMのいずれかである生体試 料の分析方法。  Biological sample that is one of 3- (2'spiroadamantane) -4-methoxy-4- (3 "-phosphoryloxy) -phenyl-l, 2-dioxetane (trade name: AMPPD®), CSPDTM, MDPTM, CDPTM Analysis method.
1 0 . 請求項 2において、 前記標識は、 生体試料に修飾される放射性同位体 であり、 この放射性同位体は、 32P、 131 1 , 35S、 45 C a3 H、 14Cのいずれかである 生体試料の分析方法。 10. The method according to claim 2, wherein the label is a radioisotope modified on a biological sample, The radioisotope is any one of 32 P, 131 1, 35 S, 45 Ca , 3 H, and 14 C. A method for analyzing a biological sample.
1 1 . 2種類以上の生体試料の合成に用いる物質 (以下、 「合成用物質」 と称 する) を含む反応液で、 反応液中には、 生体試料の種類を識別するための標識 或いはその標識の結合用媒体が付加された合成用物質と、 付加されない合成用 物質とが含まれ、 前記標識は、 波長により識別される物質であり、  1.1. A reaction solution containing a substance used for the synthesis of two or more biological samples (hereinafter referred to as “synthesis material”). The reaction solution contains a label or a label for identifying the type of biological sample. A synthesis substance to which a label binding medium is added, and a synthesis substance to which no label is added, wherein the label is a substance identified by wavelength,
少なくとも或る一種類の合成用物質の標識或いは標識結合用媒体の付加率を、 他の種類の合成用物質の標識或いは標識結合用媒体の付加率よりも小さくなる ように調整されている生体試料の反応液。  A biological sample in which the rate of addition of a label or label binding medium of at least one type of synthetic substance is adjusted to be smaller than the rate of addition of a label or label binding medium of another type of synthetic substance. Reaction solution.
1 2 . 請求項 1 1において、 前記反応液は、 P C R法に用いるプライマーで あり、 前記標識は、 蛍光体または発光体または放射性同位体であり、 前記標識 結合用媒体は、 修飾基或いは抗体である生体試料の反応液。  12. The method according to claim 11, wherein the reaction solution is a primer used for a PCR method, the label is a fluorescent substance, a luminescent substance, or a radioisotope, and the label binding medium is a modifying group or an antibody. Reaction liquid of a certain biological sample.
1 3 . 請求項 1 1において、 前記標識は、 極大波長を基準にして短波長側が 急で長波長側がなだらかな勾配のスぺクトルを持つ標識化合物で、 前記付加率 の小さい方は、 波長の短い方の標識或いはその標識結合用媒体である生体試料 の反応液。  13. The label according to claim 11, wherein the label is a label compound having a spectrum with a steep slope on the short wavelength side and a gentle slope on the long wavelength side with respect to the maximum wavelength. The reaction solution of the shorter label or the biological sample that is the medium for binding the label.
1 4. 請求項 1 1において、 少なくとも或る一種類の合成用物質に付加され る標識或いは標識結合用媒体と、 他の種類の合成用物質に付加される標識或い は標識結合用媒体との量比を、 1 : 2〜1 : 5 0好ましくは 1 : 5〜1 : 1 0 に設定する生体試料の反応液。  1 4. The method according to claim 11, wherein a label or label binding medium added to at least one kind of synthetic substance, and a label or label binding medium added to another kind of synthetic substance. A reaction solution of a biological sample, wherein the quantitative ratio of 1: is set to 1: 2 to 1:50, preferably 1: 5 to 1:10.
1 5 . 合成された生体試料を、 生体試料に付加された標識を介して測定する 検出器と、 前記検出器で測定されたスぺクトルに基づき 1以上の生体試料を分 析する機能を有する演算装置とを備えた生体試料の分析装置において、  15. A detector that measures the synthesized biological sample via a label attached to the biological sample, and has a function of analyzing one or more biological samples based on the spectrum measured by the detector. In a biological sample analyzer comprising a computing device,
前記演算装置は、 混在する 2種類以上の生体試料を分析する場合に、 少なく とも或る一種類の生体試料の合成用物質に付加される標識或いは標識結合用媒 体の付加率を、 他の種類の生体試料の合成用物質に付加される標識或いは標識 結合用媒体の付加率よりも小さくしたときに、 それらの標識の測定データを補 正せずそのまま分析計算式に用いる生体試料の分析装置。 When analyzing two or more types of mixed biological samples, the arithmetic unit determines the rate of addition of a label or a label-binding medium added to at least one type of biological sample for synthesis. When the rate of addition of the label or label binding medium added to the substance for synthesis of various biological samples is smaller than the rate of addition, the measurement data of those labels is supplemented. A biological sample analyzer that can be used in analytical calculations without correction.
1 6 . 合成された生体試料を、 生体試料に付加された標識を介して測定する 検出器と、 前記検出器で測定されたスぺクトルに基づき 1以上の生体試料を分 析する機能を有する演算装置とを備えた生体試料の分析装置において、  16. A detector that measures the synthesized biological sample via a label attached to the biological sample, and has a function of analyzing one or more biological samples based on the spectrum measured by the detector. In a biological sample analyzer comprising a computing device,
前記演算装置は、 混在する 2種類以上の生体試料を分析する場合に、 少なく とも或る一種類の生体試料の合成用物質に付加される標識或いは標識結合用媒 体の付加率を、 他の種類の生体試料の合成用物質に付加される標識或いは標識 結合用媒体の付加率よりも小さくしたときに、 それらの付加率に関するデータ を入力可能にし、 その付加率データと測定データに基づき各生体試料の定量を 演算する生体試料の分析装置。  When analyzing two or more types of mixed biological samples, the arithmetic unit determines the rate of addition of a label or a label-binding medium added to at least one type of biological sample for synthesis. When the rate of addition of a label or a label binding medium added to a substance for synthesis of a biological sample of a different type is made smaller than the rate of addition, data relating to the rate of addition can be input, and each biological sample can be input based on the rate of addition data and measurement data. A biological sample analyzer that calculates the amount of a sample.
PCT/JP2003/016572 2003-12-24 2003-12-24 Method of analyzing biological samples, liquid reaction mixture and analytical device WO2005062047A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005512335A JP4227139B2 (en) 2003-12-24 2003-12-24 Biological sample analysis method, reaction solution, and analyzer
PCT/JP2003/016572 WO2005062047A1 (en) 2003-12-24 2003-12-24 Method of analyzing biological samples, liquid reaction mixture and analytical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/016572 WO2005062047A1 (en) 2003-12-24 2003-12-24 Method of analyzing biological samples, liquid reaction mixture and analytical device

Publications (1)

Publication Number Publication Date
WO2005062047A1 true WO2005062047A1 (en) 2005-07-07

Family

ID=34708611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016572 WO2005062047A1 (en) 2003-12-24 2003-12-24 Method of analyzing biological samples, liquid reaction mixture and analytical device

Country Status (2)

Country Link
JP (1) JP4227139B2 (en)
WO (1) WO2005062047A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118991A (en) * 1991-10-29 1993-05-14 Hitachi Ltd Method and device for determining on base arrangement
JPH09329549A (en) * 1996-03-05 1997-12-22 Gull Lab Inc Method and apparatus for detection and discrimination of a plurality of objects to be analyzed using fluorescence technique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118991A (en) * 1991-10-29 1993-05-14 Hitachi Ltd Method and device for determining on base arrangement
JPH09329549A (en) * 1996-03-05 1997-12-22 Gull Lab Inc Method and apparatus for detection and discrimination of a plurality of objects to be analyzed using fluorescence technique

Also Published As

Publication number Publication date
JPWO2005062047A1 (en) 2007-07-12
JP4227139B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
AU2003270397B2 (en) Quantification of gene expression
KR20050034749A (en) Quantitative rt-pcr to ac133 to diagnose cancer and monitor angiogenic activity in a cell sample
JP2802125B2 (en) Nucleic acid detection method
EP1319716B1 (en) Method of analyzing nucleic acid
US20200102614A1 (en) Method for determining cross contamination of mouse genes for human cells in a patient-derived xenograft cells
CN101603077A (en) The method of a kind of general molecular beacon nucleic acid probe and detection DNA thereof
JP4227139B2 (en) Biological sample analysis method, reaction solution, and analyzer
WO2021039777A1 (en) Method for examining rheumatoid arthritis
WO2021127462A1 (en) Multiplexed assay using differential fragment size to identify cancer specific cell-free dna
US7625723B2 (en) Method of detecting or quantitatively determining mitochondrial DNA 3243 variation, and kit therefor
Jin-Yuan Real-Time PCR technique and its application in quantification of plant nucleic acid molecules
CA2517983C (en) Method for the identification of colorectal tumors
WO2014182726A2 (en) Genetic markers for macular degeneration disorder treatment
JP2023020631A (en) Method for testing systemic lupus erythematosus
JP2004313073A (en) Method for detecting and quantifying mitochondrial dna3243 mutation and kit therefor
WO2023021978A1 (en) Method for examining autoimmune disease
CN110551815A (en) Kit for detecting human Ras gene mutation and using method thereof
JPH08154679A (en) Method for identifying mutation of gene and its reagent
JPH09107995A (en) Labeling of dna fragment and detection of variant dna fragment
JPH06261795A (en) Process for detecting polynucleotides
JP2008011829A (en) Method for detecting nucleic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512335

Country of ref document: JP

122 Ep: pct application non-entry in european phase