WO2005059818A1 - Burning in dual interface cards by internal continuos grid contacts - Google Patents

Burning in dual interface cards by internal continuos grid contacts Download PDF

Info

Publication number
WO2005059818A1
WO2005059818A1 PCT/FR2004/003187 FR2004003187W WO2005059818A1 WO 2005059818 A1 WO2005059818 A1 WO 2005059818A1 FR 2004003187 W FR2004003187 W FR 2004003187W WO 2005059818 A1 WO2005059818 A1 WO 2005059818A1
Authority
WO
WIPO (PCT)
Prior art keywords
strands
card according
microcircuit card
connection terminals
conductive
Prior art date
Application number
PCT/FR2004/003187
Other languages
French (fr)
Inventor
Jacques Venambre
Guy Enouf
Jérôme Bouvard
Original Assignee
Oberthur Card Systems Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oberthur Card Systems Sa filed Critical Oberthur Card Systems Sa
Publication of WO2005059818A1 publication Critical patent/WO2005059818A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07766Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement
    • G06K19/07769Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement the further communication means being a galvanic interface, e.g. hybrid or mixed smart cards having a contact and a non-contact interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna

Definitions

  • the invention relates to a microcircuit card comprising a card body carrying a microcircuit and in the thickness of which are provided terminals for connection to a component which it is desired to connect to internal contacts of this microcircuit . It is aimed in particular, but not exclusively, at cards of the dual interface type, that is to say cards which operate at the same time thanks to data transmitted by external contacts flush with the surface of the card (according to the standard ISO 7816) and thanks to data transmitted without contact, via an antenna. Such a card is often called “Dual Interface” or “Combi” .0 Cards of this type are known from document FR-2716281; these cards include a card body and the same microcircuit for these two types of transmission.
  • the microcircuit is part of a module (sometimes also called a sticker) comprising a support film carrying this microcircuit on an internal face.
  • This support film also comprises, on its external face, 5 external contacts connected to the microcircuit and, on its internal face, internal contacts also connected to the microcircuit and cooperating with antenna connection terminals or terminals, located in the thickness of the card.
  • This module is fixed in a cavity of the card body in the thickness of which the antenna is made, and the antenna terminals, made in the thickness of this card, are accessible in this cavity.
  • Technical problem The market for these cards "Dual Interface” matures, but a "technical problems of these products remains reliability, particularly regarding the electrical and mechanical connection between the module and the antenna.
  • a “Dual Interface” card consists in preparing a film generally made of polymer (PVC, PET, polycarbonate), called inlay, on which electrically conductive tracks (copper or conductive ink) are created which must form the antenna , then laminate this inlay between layers, generally of polymer, until the card body of the desired thickness is obtained.
  • a cavity is then produced in this card body, before carrying out a so-called inserting operation, according to which is fixed in this cavity the module, prepared in addition so as to have on its microcircuit a radio-frequency part adapted to cooperate with this antenna. t both provide a mechanical link between the module and the card body and an electrical connection between the radio-frequency part and the antenna.
  • Anisotropic adhesives (we also sometimes speak of anisotropic adhesives when this adhesive is present in the form of a film rather than a paste) have two distinct components: • An adhesive mass (polyester, or phenolic or other) reactivable to hot and under pressure, creating the bonding function, • Metallized particles, glass or polymers, embedded in this mass, and used to electrically connect the parts to be bonded. Adhesion and electrical conduction Adhesive masses generally have fairly good adhesion to the materials from which card bodies or support films are commonly made, PVC in most cases, but lower adhesion on electrically conductive tracks, generally in copper, which constitute the antenna connection terminals.
  • the surface density (parallel to the surfaces to be bonded) of the metallized particles present in the adhesive mass is calculated so as not to allow lateral electrical conduction (risk of electrical leaks on the parts to be isolated).
  • the electrical conduction in the Z axis is only done well from a minimum threshold, typically of the order of 30 particles / mm 2 . Taking into account the average sizes of these particles but also the distribution of their diameters (25 ⁇ m min / 55 ⁇ m max), obtaining a good electrical connection requires providing, when designing the product, a copper surface greater than a given threshold.
  • the subject of the invention is a microcircuit card comprising, in the thickness of its card body, terminals (at least one terminal) for connection to a component which have a geometry leading to good reliability of the electrical contact between these terminals of connection and internal contacts of one or of the module carrying this microcircuit, while ensuring a good mechanical connection, by eliminating the problem of positioning the connection terminals in the card body (or even the positioning tolerance of the internal contacts of the module when inserting), and minimizing the deformations likely to appear when laminating the sheets to form the card body.
  • the invention relates to a microcircuit card comprising, in its thickness, at least one terminal for connection to a first component and / or at least one internal contact of a second component comprising this microcircuit, the geometry of which leads to a good reliability of the electrical contact between these connection terminals and these internal contacts.
  • a microcircuit card comprising, in its thickness, at least one terminal for connection to a first component and / or at least one internal contact of a second component comprising this microcircuit, the geometry of which leads to a good reliability of the electrical contact between these connection terminals and these internal contacts.
  • the invention proposes for this purpose a microcircuit card comprising a card body in the thickness of which are provided terminals for connection to a first component, and a second component comprising this microcircuit and internal contacts connected to these connection terminals by a mechanical and electrical connection material, characterized in that at least one of the connection zones constituted by the connection terminals and the internal contacts has a geometry comprising strands of conductive track separated by spaces at the less as wide as these strands. It should be noted that the only difference between the first and second components is that one arbitrarily chooses to designate the component comprising the microcircuit as being the second component and that, in particular, both the connection terminals and the internal contacts are in the thickness of the card body.
  • strand By strand is meant according to the invention a portion of conductive track, that is to say a thin or thick layer in the sense of microelectronic technologies, for example deposited by lithography, the width of which is substantially less than their length, in a ratio of at least 3.
  • the invention may appear to have similarities with the teaching of document WO-98/38598 which relates to the connection of a module to a wire antenna whose ends are folded back into pins hair. It should however be noted that, if this document mentions the possibility of making connection zones by filing and delimitation, it is to reject this technology which is deemed to lead to connection terminals of too large dimensions.
  • connection zone facing the internal contacts of the module is formed of small conductive islands; these are simple dots and certainly not strands.
  • shape of the connection terminals is very often rectangular or circular, and the massive surface of conductive material (most often copper) is several mm 2 .
  • these massive shapes are replaced, over an at least equal connection area, by geometries (of combs, loops or grids, in particular) forming an alternation of conductive strands and free zones.
  • problems that the invention aims to solve are mainly related to the geometry of the connection terminals, a particularly advantageous case is that where it is the connection terminals which have a geometry comprising such strands of track separated by spaces at least as wide as these runways. This solves in particular the problem linked to the extra thicknesses due to the massive connection zones, while leaving free, in the area of the connection terminal, zones of better adhesion than the conductive material constituting the track strands.
  • connection zones are formed of conductive strands and of free zones (allowing access, for the fixing material, to the material on which the track strands are formed) makes it possible to provide connection zones (i.e. - say areas where a connection will be possible, even if, after mounting, the connection is actually made on a smaller area) very large. It is therefore possible to provide that the connection terminals are contiguous, which does not pose any particular problem from the point of view of insulating the terminals from one another when an adhesive or anisotropic adhesive as a mechanical and electrical bonding material. It can be noted in this regard that such an anisotropic adhesive cannot be used in practice with a wire because, with a wire, the area available for connection in the direction of connection is too small.
  • the track strands are electrically mounted in parallel. It is clear that such parallel mounting would be impossible with a wire antenna as proposed in the aforementioned document WO-98/38598. But a parallel assembly has the advantage over a series assembly that, in the event of deterioration of a strand, the consequences are much less on the overall performance in the event of parallel assembly than in the case of an assembly in series: in one case, the other strands remain available to participate in the connection, while in the other case, only part of them remains available.
  • the conductive strands have a thickness at most equal to 30 microns, preferably at most equal to 15 microns (for example of the order of 12 microns).
  • - these strands cross at least one other conductive strand transversely to these: the fact of connecting these strands has the advantage of increasing the possible points of connection to the internal contacts of the module, while minimizing the consequences of the degradation of one of these strands, - these strands cross this other strand at their ends, which corresponds to maximum occupancy of the mechanical connection surface, - these strands cross a plurality other conductive strands so as to form a conductive grid, which corresponds to an optimum from the point of view of electrical conduction, without having to cover the entire bonding surface with conductive material, - this conductive grid comprises meshes of at least two different sizes, defining areas with different relationships between the strand surface and the total surface, which makes it possible to adapt to the geometry of the internal contacts with which these connection terminals must cooperate, - these strands close on them so as to " form loops, which corresponds to a another configuration which is easy to implement, - these loops intersect, which makes
  • connection terminals include strands mounted in parallel and oriented towards the center of the cavity, which allows in particular good conduction with the internal contacts when they are arranged, on the other hand, in a ring configuration, - these connection terminals are arranged facing each other of this cavity, - these connection terminals are arranged on steps bordering the cavity, which allows the attachment of modules comprising a large microcircuit, it being recalled (see above) that they can be contiguous so as to jointly occupy almost the entire surface of the step when it is desired to maximize the available area to make the connection, - the internal contacts of the second component have a geometry comprising conductive track strands (regardless of whether the terminals of c whether or not they are formed); it is clear that most of the advantages mentioned above about advantageous features connection terminals formed of track strands can be found for the internal contacts, in particular when these are preferably mounted in parallel, - of course it
  • FIG. 1 is a schematic exploded perspective view of the body of a card according to the invention, in an intermediate stage of manufacturing this card,
  • FIG. 2 is an exploded sectional view of this body, in this step,
  • FIG. 3 is a perspective view of this body before fitting a module
  • - Figure 4 is a sectional view of this body, before this installation
  • - Figure 5 is a schematic view showing this body and the module about to be put in place
  • FIG. 6 is a detailed sectional view showing the cavity of the card body in which the module has been put in place
  • FIG. 7 is a bottom view of this card, showing the connection terminals and the internal contacts, by transparency through the card body,
  • FIG. 8A is a detail view of another geometry of connection terminals, in the form of a grid,
  • FIG. 8B is a detailed view of a variant of this geometry, with the same thickness of conductive strands as in FIG. 8A but with a smaller mesh size,
  • - Figure 8C is a detail view of yet another variant of this geometry, with the same thickness of strands as in Figures 8A and 8B, but with an even smaller mesh size
  • - Figure 9 is a view detail of another geometry of connection terminals, with different mesh sizes, inside the contour of the cavity of the card body
  • FIG. 10 is a view schematically showing the superimposition of internal contacts of a module and connection terminals according to another embodiment, in the form of grids formed on a step bordering the cavity
  • - Figure 11 is another view showing the superposition of internal contacts of a module with connection terminals, according to another embodiment, with strands generally oriented towards the center of the cavity
  • - Figure 12 is another view representing the superposition of the internal contacts of a module and the connection terminals according to yet another embodiment, with strands in loops
  • - FIG. 13 is another view showing the superposition of the internal contacts of a module and connection terminals according to yet another embodiment, with zig-zag strands.
  • FIGS. 1 to 7 represent stages in the production of a microcircuit card of the “Dual Interface” type according to an embodiment according to the invention.
  • Figures 1 and 2 show a stack of sheets intended, by its assembly, to form the body of this card. Inside this stack is a sheet 1 called an inlay on which a unitary antenna 2 has been deposited, in the form of substantially planar tracks 2A, terminated by two connection terminals 3 and 4.
  • the at least one of the connection zones formed by these connection terminals or by the internal contacts with which these terminals must cooperate have a geometry comprising strands of conductive track separated by spaces at least as wide as these strands.
  • connection terminals have a geometry comprising conductive strands 3A and 4A advantageously mounted in parallel, being separated by spaces at least as wide as these strands.
  • these connection terminals are formed of strands starting from an external contour, here of generally rectangular shape and formed of two C facing each other, marked 3B or 4B.
  • the strands of each terminal here extend to another conductive strand 3C or 4C which they cross at their ends.
  • This other strand of each terminal is here parallel to the other strand of the other terminal.
  • these strands are even arranged, geometrically, parallel to each other, in different directions within the terminal 3 and within the terminal 4, respectively.
  • These strands are advantageously tracks of the same nature as the tracks constituting the turns of the antenna, copper in practice. And their width and their thickness are preferably equal to those of these turns. As a variant, these runway strands are made of aluminum.
  • the antenna 2 is here represented on an individual basis. In reality these antennas are received in the form of large rectangular boards, for example of 591 mm x 370mm comprising 36 antennas (6x6) distributed with an X pitch of 91.2mm and a Y pitch of 57mm.
  • the inlay 1 is conventionally made of PVC 200 ⁇ m thick and the turns are formed from a copper layer 35 ⁇ m thick and 120 ⁇ m wide, photo-etched representing the design of the antenna.
  • the inlay in particular epoxy glass, polyethylene terephthalate (PET or PETS), polycarbonate, polyimide, ABS, etc. while the turns can be made of another conductive material such as aluminum.
  • the tracks constituting here the antenna are interrupted at two points 2B and 2C intended to be electrically connected under the plane of these tracks, by a bridge (not shown) of any suitable known type made on the underside of the inlay.
  • the sheets between which the inlay 1 is arranged in FIG. 1 are in fact multiple, as is clear from FIG. 2. This inlay is first of all interposed between two layers 11 and 11 ′ having a compensating role, themselves bordered by two printing layers 12 and 12 'covered with two covering layers 13 and 13', generally transparent.
  • These layers 11-13 and 11 '-13' are for example made of PVC or equivalent material.
  • the function of the compensation layers is in particular to absorb the reliefs due to the presence of the copper tracks, while the printing layers are intended to receive images or printed characters in a lasting manner.
  • the layers 11 and 11 ' have for example a thickness of 100 microns, the layers 12 and 12' a thickness of 140 microns and the layers 13 and 13 'a thickness of the order of 40 to 80 microns.
  • the final thickness is for example of the order of 800 microns.
  • the assembly of these layers is done by a hot lamination treatment, with in principle the application of a pressure shown diagrammatically by the arrows appearing in FIGS. 1 and 2. At the end of this lamination, the antenna is not more visible. As indicated above, this lamination is done in practice on large area sheets. A calendering operation then makes it possible to isolate each unitary card body.
  • Figures 3 and 4 show a step of making a cavity
  • the cavity 15 intended to receive a module (see FIGS. 5 to 7).
  • the machining of this cavity is conventionally carried out by milling.
  • the cavity comprises two zones 15A and 15B superimposed but of different dimensions. It thus appears a step 16 bordering this cavity.
  • the upper zone 15A is cut out in the layers 11-13 situated above the inlay, while the lower zone 15B, of smaller dimensions, is hollowed out in these layers 11- 13, but also in the inlay and in the lower compensation layer 11 ′.
  • the machining of this cavity results in the removal of a central part of the pattern formed jointly by the connection terminals 3 and 4 of FIG.
  • FIG. 5 represents, in perspective, the card body of FIGS. 3 and 4, as well as a module 20 ready to be inserted therein.
  • This module notably includes a support film 21 here shown with its internal face turned upwards, so that the microcircuit 22 can be seen there, as well as conductive strands mounted in parallel forming internal contacts 23 and 24 of this module. As can be seen from FIG.
  • this support film 21 carries electrically conductive zones on its two faces, namely external contacts 25 on its external face intended to be accessible from the outside, and tracks on the internal face. connected to the microcircuit 22 by conductive wires 26, for example made of gold, and connected to the internal contacts 23 and 24. These internal contacts are for example made of gold, even palladium or copper.
  • the fact that the cavity has a step separating two zones 15A and 15B facilitates the positioning of the module so that its internal contacts are in contact with the connection terminals of the antenna, while making it possible to accommodate the protruding microcircuit down relative to the support film.
  • the deep zone 15B also makes it possible to house a resin 27 encapsulating this microcircuit.
  • This resin preferably extends to the bottom of this deep portion 15B so as to contribute to the fixing of the module in the cavity.
  • the connection between the internal contacts of the module and the connection terminals is ensured by an adhesive 28 in which are embedded electrically conductive balls.
  • the inserting operation consists of depositing the resin in the bottom of the central cavity (see two drops 27A in FIG. 5) and the adhesive on one of the faces to be bonded (for example on the step), and place the previously prepared and cut module in the cavity and stick it by pressure and heating (reactivation of the anisotropic adhesive).
  • the anisotropic adhesive or glue makes it possible both to electrically connect the antenna connection terminals to the internal contacts of the module and to mechanically fix this module, by its periphery, in the cavity.
  • connection terminal 7 shows from below, by transparency through the lower layers of the card body, the strands constituting the connection terminals and internal contacts of the module. It is observed that the strands 3A constituting the connection terminal closest to the outer edge of the card body cross the strands 23A constituting the corresponding internal contact of the module, while the strands 4A cross the strands 24A of the other internal contact of the module . Each crossing of these strands constitutes an electrical connection between these terminals and these contacts. It is easy to understand that, thanks to this configuration of the connection terminals, a deviation of the antenna position from its set position relative to the edges of the card does not prevent the formation of a significant number of elementary contacts between antenna and module.
  • the tolerance constraints concerning the positioning of the antenna in the stack during lamination are therefore much less strict than with the conventional geometries of the connection terminals. These constraints are all the less severe since here, the internal contacts of the module also consist of strands electrically mounted in parallel. On the other hand, a local detachment of the module vis-à-vis the tier does not necessarily render the card inoperative since other contact sites remain. On the other hand, the step area occupied jointly by the conductive strands forming one of the connection terminals (here the entire area of the step) is significant, while leaving a significant fraction of the area available for good adhesion with the areas in question. look at the module.
  • connection terminals have a geometry comprising strands mounted in parallel, independently of the geometry of the internal contacts of the module, insofar as the mechanical strength of the "material” zones plastic + conductive material "between such strands is already better than between zones” conductive material + conductive material ". But the overall mechanical strength is of course even better when there are both in the connection terminals and in the internal contacts of the zones of plastic material opposite other zones of plastic material.
  • connection terminals are generally narrow, they generate, during lamination, much less deformation of the compensation layers than connection terminals massive classics.
  • connection terminals are formed of conductive strands mounted in parallel, independently of the geometry of the internal contacts of the module, but are of course reinforced when these internal contacts are also formed of conductive strands mounted in parallel.
  • connection terminals and internal contacts
  • FIGS. 8A to 8C represent terminals 33, 33 ′ and 33 "each formed by a grid.
  • Such a grid can be analyzed as being formed by conductive strands mounted in parallel (all the parallel strands at a given side of the grid) which cross at least one other strand arranged transversely. Insofar as the grids shown here are square, the "main" strands cross an equal number of other conductive strands. These three figures represent three grids whose mesh size is increasingly large, for the same width of the strands. It can be seen that in FIG. 8A, the surface fraction left free by the conductive strands is maximum, while in FIG. 8C this fraction is minimum. In FIG.
  • the ratio between the mesh size and the width of the strands is of the order of 6.6 (mesh size of 0.80 mm for strands of 0.12 mm wide) while this ratio is of the order of 3.3 (mesh size of 0.40 mm for strands of 0.12 mm) in Figure 8B and of the order of 2.5 (mesh size of 0.30 mm for strands of 0.12 mm wide) for Figure 8C.
  • Figure 8A we will choose the configuration of Figure 8A if we want to favor mechanical adhesion, or on the contrary that of Figure 8C if we want to favor electrical conduction, while we will choose that of Figure 8B if l '' we want both good adhesion and good electrical conduction.
  • the width of the conductive strands is equal to the width of the tracks constituting the turns of the antenna. More generally, the width of these strands is preferably chosen between 120 microns and 250 microns. In a variant not shown, it is possible to provide conductive rings at the location of the crossings of strands, which reduces the risks of detachment.
  • FIG. 9 represents a set of two connection terminals 43 and 44 both formed by two grids, the spacing between the strands taking, depending on the location, at least two different values: this spacing is here minimum at the ends and in the central part , while this spacing is maximum between the ends and the central part. We observe that almost all of these grids are contained within the maximum contour of the hole.
  • FIG. 10 shows another pair of connection terminals 53 and 54 formed from a square mesh grid with small spacing. The contours of the step are shown in this figure, and a white loop represents internal contacts 23 'or 24' of the module which are shaped as a ring.
  • the inlay need not be precisely positioned in the card body to guarantee that there are many points of contact between this ring and the right or left portions of the grid.
  • FIG. 11 represents another geometry of connection terminals 63 and 64, which differs from that of FIGS.
  • the strands 63A and 64A which are oriented towards the center of the cavity , extend between an external supply strand 63B or 64B and an internal strand 63C or 64C to which they are connected by their ends.
  • the internal contacts 73 and 74 of the module each comprising, on the right or on the left, three discs 73A or 74A intended for connection to wires (not covered by the connection terminals) connected to two wings 73B or 74B located respectively to the right or to the left of these discs, as well as two end wings 73C or 74C arranged above and below these discs.
  • connection terminals 83 and 84 comprise strands are not rectilinear as in the examples considered above, but are closed in on themselves so as to form loops. Of course, in their production, these loops are dissociated in any appropriate manner so as to allow the terminals 83 and 84 to be isolated from one another.
  • FIG. 13 represents another alternative embodiment in which the connection terminals 93 and 94 are no longer formed from straight or curved conductive strands but in a zig-zag fashion (with an appropriate dissociation to separate the terminals 93 and 94).
  • the conductive zones are narrow with respect to their length, and that they are in practice surrounded by non-conductive zones which lend themselves well to good adhesion. By varying the widths of strands and / or the spaces separating them, it is possible to "specialize" different bonding zones of the module on the card by playing on the copper surface / total surface ratio.
  • the corners of the zones forming the connection terminals can be covered with little copper (we prefer adhesion) while in the middle zones we prefer electric conduction (more copper).
  • the ratio between the surface of conductive material and the total surface of the bonding zone is advantageously less than 40%, preferably between 10% and 30%, advantageously between 10 and 20%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

The invention relates to a microcircuit card whose body is provided in the thickness thereof with terminals (3, 4) for connecting to a first component and a second component (20) comprising a microcircuit (22) and internal contacts (23, 24) connected to said connection terminals by a mechanical and electric connecting material. The inventive card is characterised in that at least one of connection areas formed by connection terminals and the internal contacts has a geometry comprising conductive strip threads (3A, 4B) which are separated by spaces whose width is at least equal or greater than said strip threads.

Description

FIABILISATION DES CARTES DUAL INTERFACE PAR CONTACTS INTERNES A GRILLE CONTINUERELIABILITY OF DUAL INTERFACE CARDS BY INTERNAL CONTACTS WITH A CONTINUOUS GRID
0 Domaine de l'invention L'invention concerne une carte à microcircuit comportant un corps de carte portant un microcircuit et dans l'épaisseur duquel sont prévues des bornes de connexion à un composant que l'on veut connecter à des contacts internes de ce microcircuit. Elle vise en particulier, mais non exclusivement, des5 cartes du type à double interface, c'est-à-dire des cartes qui fonctionnent à la fois grâce à des données transmises par des contacts externes affleurant la surface de la carte (selon la norme ISO 7816) et grâce à des données transmises sans contact, via une antenne. Une telle carte est souvent dénommée « Dual Interface » ou « Combi ».0 On connaît des cartes de ce type d'après le document FR-2716281 ; ces cartes comprennent un corps de carte et un même microcircuit pour ces deux types de transmission. Le microcircuit y fait partie d'un module (parfois aussi appelé vignette) comportant un film-support portant ce microcircuit sur une face interne. Ce film-support comporte également, sur sa face externe, des5 contacts externes connectés au microcircuit et, sur sa face interne, des contacts internes également connectés au microcircuit et coopérant avec des bornes ou terminaux de connexion de l'antenne, situées dans l'épaisseur de la carte. Ce module est fixé dans une cavité du corps de carte dans l'épaisseur duquel est réalisée l'antenne, et les bornes de l'antenne, réalisées dans0 l'épaisseur de cette carte, sont accessibles dans cette cavité. Problème technique Le marché de ces cartes « Dual Interface » devient mature, mais une " des problématiques techniques de ces produits demeure leur fiabilité, en particulier en ce qui concerne la connexion électrique et mécanique entre le module et l'antenne. En règle générale, la fabrication d'une carte « Dual Interface » consiste à préparer un film généralement en polymère (PVC, PET, polycarbonate), appelé inlay, sur lequel on crée des pistes électriquement conductrices (en cuivre ou en encre conductrice) devant former l'antenne, puis à laminer cet inlay entre des couches, généralement de polymère, jusqu'à obtenir le corps de carte d'épaisseur voulue. On réalise alors une cavité dans ce corps de carte, avant de procéder à une opération dite d'encartage, selon laquelle on fixe dans cette cavité le module, préparé par ailleurs en sorte d'avoir sur son microcircuit une partie radio-fréquence adaptée à coopérer avec cette antenne. Cette fixation doit à la fois assurer une liaison mécanique entre le module et le corps de carte et une connexion électrique entre la partie radio- fréquence et l'antenne. Cette fixation implique une bonne adhérence, une bonne mise en_ regard des surfaces à connecter électriquement, sans pour autant conduire à une dégradation des éléments à fixer. Les techniques de connexion entre module et antenne sont peu nombreuses. On connaît ainsi l'utilisation de colles conductrices ou de pâtes conductrices, mais l'utilisation d'adhésifs anisotropes (selon une direction perpendiculaire entre les surfaces à relier) est actuellement jugée la méthode de connexion la plus prometteuse. Les colles anisotropes (on parle parfois aussi d'adhésifs anisotropes lorsque cette colle est présente sous la forme d'un film plutôt que d'une pâte) comportent deux composantes distinctes : • Une masse adhésive (polyester, ou phénolique ou autre) réactivable à chaud et sous pression, créant la fonction de collage, • Des particules métallisées, de verre ou de polymères, noyées dans cette masse, et utilisées pour connecter électriquement les parties à coller. Adhérence et conduction électrique Les masses adhésives ont en général une assez bonne adhérence sur les matériaux dont sont couramment réalisés les corps de carte ou les films- supports, du PVC le plus souvent, mais une plus faible adhérence sur les pistes électriquement conductrices, généralement en cuivre, qui constituent les bornes de connexion l'antenne. D'autre part, la densité surfacique (parallèlement aux surfaces à coller) des particules métallisées présentes dans la masse adhésive (environ de 40 à 150/mm2) est calculée de façon à ne pas permettre de conduction électrique latérale (risques de fuites électriques sur les parties à isoler). Mais la conduction électrique dans l'axe Z (celui de l'épaisseur) ne se fait bien qu'à partir d'un seuil minimum, typiquement de l'ordre de 30 particules /mm2. Compte tenu des tailles moyennes de ces particules mais également de la distribution de leurs diamètres (25μm min/ 55μm max), l'obtention d'une bonne connexion électrique nécessite de prévoir, lors de la conception du produit, une surface de cuivre supérieure à un seuil donné. Mais, puisque augmenter la surface de cuivre équivaut à réduire l'adhérence globale de l'adhésif, avec donc un risque de décollement ultérieur du module, et par conséquence un risque de déconnexion électrique entre l'antenne et le microcircuit et donc de non fonctionnalité du produit (il ne faut pas oublier que l'application principale pour le moment de ces cartes est le transport, d'où une utilisation quotidienne des cartes, d'où l'exigence d'un niveau de fiabilité élevé), on comprend qu'il y a un compromis à définir entre adhérence et conduction électrique, auquel correspond un rapport donné entre surface de cuivre et surface globale de collage ; un rapport de 10 à 20 % peut paraître une valeur acceptable à cet égard. Superposition des contacts internes et des bornes de connexion L'opération de lamination qui consiste à presser à chaud et sous pression des feuilles plastiques, par exemple en PVC, de part et d'autre de l'inlay comportant les antennes, pose le problème du positionnement de ces antennes par rapport à la future découpe des corps de cartes et de leurs cavités. Les feuilles étant opaques, l'utilisation de fibres optiques éclairant par transmission des motifs d'alignement prévus dans ces feuilles ne règle que partiellement ce problème de décalage. La précision demandée est en effet actuellement de +/-0.5mm, mais plus de 25% des produits peuvent présenter des décalages allant jusqu'à 0.8mm voire plus ; dans ce cas, lors de l'encartage, la superposition des contacts internes du module et des bornes de connexion de l'antenne est mauvaise et entraîne une forte réduction de la surface réelle de contact électriqueField of the Invention The invention relates to a microcircuit card comprising a card body carrying a microcircuit and in the thickness of which are provided terminals for connection to a component which it is desired to connect to internal contacts of this microcircuit . It is aimed in particular, but not exclusively, at cards of the dual interface type, that is to say cards which operate at the same time thanks to data transmitted by external contacts flush with the surface of the card (according to the standard ISO 7816) and thanks to data transmitted without contact, via an antenna. Such a card is often called “Dual Interface” or “Combi” .0 Cards of this type are known from document FR-2716281; these cards include a card body and the same microcircuit for these two types of transmission. The microcircuit is part of a module (sometimes also called a sticker) comprising a support film carrying this microcircuit on an internal face. This support film also comprises, on its external face, 5 external contacts connected to the microcircuit and, on its internal face, internal contacts also connected to the microcircuit and cooperating with antenna connection terminals or terminals, located in the thickness of the card. This module is fixed in a cavity of the card body in the thickness of which the antenna is made, and the antenna terminals, made in the thickness of this card, are accessible in this cavity. Technical problem The market for these cards "Dual Interface" matures, but a "technical problems of these products remains reliability, particularly regarding the electrical and mechanical connection between the module and the antenna. In general, the manufacture of a “Dual Interface” card consists in preparing a film generally made of polymer (PVC, PET, polycarbonate), called inlay, on which electrically conductive tracks (copper or conductive ink) are created which must form the antenna , then laminate this inlay between layers, generally of polymer, until the card body of the desired thickness is obtained. A cavity is then produced in this card body, before carrying out a so-called inserting operation, according to which is fixed in this cavity the module, prepared in addition so as to have on its microcircuit a radio-frequency part adapted to cooperate with this antenna. t both provide a mechanical link between the module and the card body and an electrical connection between the radio-frequency part and the antenna. This fixing implies good adhesion, good comparison of the surfaces to be electrically connected, without however leading to degradation of the elements to be fixed. There are few connection techniques between module and antenna. We thus know the use of conductive adhesives or conductive pastes, but the use of anisotropic adhesives (in a perpendicular direction between the surfaces to be joined) is currently considered the most promising connection method. Anisotropic adhesives (we also sometimes speak of anisotropic adhesives when this adhesive is present in the form of a film rather than a paste) have two distinct components: • An adhesive mass (polyester, or phenolic or other) reactivable to hot and under pressure, creating the bonding function, • Metallized particles, glass or polymers, embedded in this mass, and used to electrically connect the parts to be bonded. Adhesion and electrical conduction Adhesive masses generally have fairly good adhesion to the materials from which card bodies or support films are commonly made, PVC in most cases, but lower adhesion on electrically conductive tracks, generally in copper, which constitute the antenna connection terminals. On the other hand, the surface density (parallel to the surfaces to be bonded) of the metallized particles present in the adhesive mass (approximately 40 to 150 / mm 2 ) is calculated so as not to allow lateral electrical conduction (risk of electrical leaks on the parts to be isolated). However, the electrical conduction in the Z axis (that of thickness) is only done well from a minimum threshold, typically of the order of 30 particles / mm 2 . Taking into account the average sizes of these particles but also the distribution of their diameters (25 μm min / 55 μm max), obtaining a good electrical connection requires providing, when designing the product, a copper surface greater than a given threshold. However, since increasing the copper surface is equivalent to reducing the overall adhesion of the adhesive, with therefore a risk of subsequent detachment of the module, and consequently a risk of electrical disconnection between the antenna and the microcircuit and therefore of non-functionality of the product (it should not be forgotten that the main application for the moment of these cards is transport, hence daily use of the cards, hence the requirement for a high level of reliability), we understand that 'There is a compromise to be defined between adhesion and electrical conduction, to which corresponds a given ratio between copper surface and overall bonding surface; a ratio of 10 to 20% may seem an acceptable value in this regard. Superimposition of internal contacts and connection terminals The lamination operation which consists of hot pressing and under pressure of plastic sheets, for example PVC, on either side of the inlay comprising the antennas, poses the problem of positioning of these antennas relative to the future cutting of card bodies and their cavities. The sheets being opaque, the use of optical fibers illuminating by transmission alignment patterns provided in these sheets only partially addresses this problem of offset. The precision requested is indeed currently +/- 0.5mm, but more than 25% of the products may have offsets of up to 0.8mm or more; in this case, when inserting, the superimposition of the internal contacts of the module and the antenna connection terminals is poor and results in a large reduction in the actual electrical contact area
Déformation des feuilles plastiques du fait des bornes de connexion. Lors de la lamination conduisant à l'assemblage des feuilles formant le corps de carte, le flux thermique dans le sens de l'épaisseur des feuilles à assembler rencontre, soit uniquement du PVC (ou autre polymère) soit le matériau électriquement conducteur, du cuivre le plus souvent, inséré sur l'inlay pour former les pistes ou les bornes de connexion. Le cuivre, n'ayant pas la même conductibilité thermique que les matériaux plastiques des feuilles, fait office de radiateur et modifie le gradient de température (cela est également vrai pour les autres matériaux conducteurs). Au refroidissement, des contraintes se créent dans l'empilage de feuilles plastiques entre les zones 100% plastiques et les zones plastiques+Cuivre, d'où apparition de reliefs correspondant à la forme de l'antenne et de ses bornes de connexion. Ceci pose un double problème : • problème d'esthétique, et • difficultés pour la réalisation correcte de la personnalisation graphique ultérieure de la carte (impression sur la surface extérieure non plate de l'empilement). L'invention a pour objet une carte à microcircuit comprenant, dans l'épaisseur de son corps de carte, des bornes (au moins une borne) de connexion à un composant qui ont une géométrie conduisant à une bonne fiabilité du contact électrique entre ces bornes de connexion et des contacts internes d'un ou du module portant ce microcircuit, tout en assurant une bonne liaison mécanique, en éliminant le problème de positionnement des bornes de connexion dans le corps de carte (voire la tolérance de positionnement des contacts internes du module lors de l'encartage), et en minimisant les déformations susceptibles d'apparaître lors de la lamination des feuilles pour former le corps de carte. Les problèmes précités à propos de la fiabilité de la liaison électrique se pose aussi bien pour les contacts internes que pour les bornes de connexion (en ce qui concerne l'adhérence des surfaces en regard), de sorte que, de manière tout à fait générale, l'invention a pour objet une carte à microcircuit comprenant, dans son épaisseur, au moins une borne de connexion à un premier composant et/ou au moins un contact interne d'un second composant comportant ce microcircuit, dont la géométrie conduit à une bonne fiabilité du contact électrique entre ces bornes de connexion et ces contacts internes. Il mérite d'être noté que ces problèmes, exposés ci-dessus à propos des cartes « Dual Interface » se retrouvent très généralement dès lors que l'on cherche, dans une carte à microcircuit, à connecter des contacts internes d'un module à des bornes de connexion d'un composant qui sont ménagées dans l'épaisseur du corps de cette carte. C'est ainsi que ces problèmes sont susceptibles d'apparaître lorsqu'on cherche à se connecter à une antenne, mais aussi à un écran de visualisation, à un capteur de chaleur, à une batterie, à un capteur d'empreintes digitales, etc. Plus généralement, les problèmes cités se posent dès lors que l'on veut connecter un premier composant (antenne, capteur ou autre) à un second composant (module, autre capteur ou autre) comprenant un microcircuit. Par ailleurs, les problèmes précités sont sensibles non seulement avec un adhésif anisotrope, mais aussi, quoique peut-être avec une moindre ampleur, avec d'autres types de matériaux de liaison mécanique et électrique. Exposé de l'invention L'invention propose à cet effet une carte à microcircuit comportant un corps de carte dans l'épaisseur duquel sont ménagées des bornes de connexion à un premier composant, et un second composant comprenant ce microcircuit et des contacts internes connectés à ces bornes de connexion par un matériau de liaison mécanique et électrique, caractérisée en ce que l'une au moins des zones de connexion constituées par les bornes de connexion et les contacts internes a une géométrie comprenant des brins de piste conducteurs séparés par des espaces au moins aussi larges que ces brins. Il mérite d'être noté que la seule différence entre les premier et second composants est que l'on choisit arbitrairement de désigner le composant comportant le microcircuit comme étant le second composant et que, notamment, aussi bien les bornes de connexion que les contacts internes sont dans l'épaisseur du corps de carte. Par brin on entend selon l'invention une portion de piste conductrice, c'est-à-dire une couche mince ou épaisse au sens des technologies microélectroniques, par exemple déposée par lithographie, dont la largeur est sensiblement plus faible que leur longueur, dans un rapport d'au moins 3. Ainsi définie, l'invention peut paraître présenter des similitudes avec l'enseignement du document WO-98/38598 qui concerne la connexion d'un module à une antenne en fil dont les extrémités sont repliées en épingles à cheveux. Il convient toutefois de noter que, si ce document mentionne la possibilité de réaliser des zones de connexion par dépôt et délimitation, c'est pour rejeter cette technologie qui est jugée conduire à des bornes de connexion de trop grandes dimensions. C'est pourquoi il enseigne d'utiliser un fil qui est disposé sur une face d'une couche mais qui, dans la zone de connexion, est forcé à traverser cette couche de place en place pour permettre la connexion avec un module ; en effet, l'antenne en fil est formée sur une face opposée à celle où se font les connexions. Il en découle que la zone de connexion en regard des contacts internes du module est formée de petits îlots conducteurs ; il s'agit de simples points et certainement pas de brins. Actuellement la forme des bornes de connexion est très souvent rectangulaire ou circulaire, et la surface massive de matériau conducteur (de cuivre le plus souvent) est de plusieurs mm2. Selon l'invention, on remplace, sur une aire de connexion au moins égale, ces formes massives par des géométries (de peignes, de boucles ou de grilles, notamment) formant une alternance de brins conducteurs et de zones libres. Dans la mesure où les problèmes que l'invention vise à résoudre sont principalement liés à la géométrie des bornes de connexion, un cas particulièrement avantageux est celui où ce sont les bornes de connexion qui ont une géométrie comprenant de tels brins de piste séparés par des espaces au moins aussi larges que ces brins de piste. Cela résout en particulier le problème lié aux surépaisseurs dues aux zones de connexion massives, tout en laissant libre, dans l'aire de la borne de connexion, des zones de meilleure adhérence que le matériau conducteur constitutif des brins de piste. Le fait que les zones de connexion soient formées de brins conducteurs et de zones libres (laissant accès, pour le matériau de fixation, au matériau sur lequel sont formés les brins de piste) permet de prévoir des zones de connexion (c'est-à-dire des zones où une connexion sera possible, même si, après montage, la connexion se fait effectivement sur une aire plus faible) très vastes. Il est donc possible de prévoir que les bornes de connexion soient contiguës, ce qui ne pose pas de problème particulier du point de vue isolation des bornes l'une vis-à-vis de l'autre dès lors qu'on utilise un adhésif ou colle anisotrope comme matériau de liaison mécanique et électrique. Il peut être noté à cet égard qu'un tel adhésif anisotrope n'est pas utilisable en pratique avec un fil en raison de ce que, avec un fil, la zone disponible pour une connexion selon la direction de connexion est trop faible. De manière préférée les brins de piste sont électriquement montés en parallèle. Il est clair qu'un tel montage en parallèle serait impossible avec une antenne en fil telle que la propose le document WO-98/38598 précité. Mais un montage en parallèle a l'avantage sur un montage en série que, en cas de détérioration d'un brin, les conséquences sont bien moindres sur la performance d'ensemble en cas de montage en parallèle que dans le cas d'un montage en série : dans un cas, les autres brins restent disponibles pour participer à la connexion, alors que dans l'autre cas, seule une partie d'entre eux reste disponible. Une des conséquences est qu'il est possible de prévoir pour les brins de piste des épaisseurs faibles, typiquement plus faibles que celles classiquement utilisées pour des pistes d'antenne (typiquement de l'ordre de 35 microns) sans risque trop important (lié aux opérations de formation des pistes où d'encartage, c'est-à-dire de montage du module dans le corps de carte) sur la qualité de la connexion au sein de la carte finale : il en découle de moindres perturbations géométriques dans l'épaisseur de la carte finale, et contribue à résoudre le problème technique visé par l'invention. C'est ainsi que, de manière avantageuse, les brins conducteurs ont une épaisseur au plus égale à 30 microns, de préférence au plus égale à 15 microns (par exemple de l'ordre de 12 microns). Selon d'autres caractéristiques préférées de l'invention, éventuellement combinées : - ces brins croisent au moins un autre brin conducteur transversalement à ceux-ci : le fait de relier ces brins a pour avantage d'augmenter les points possibles de connexion aux contacts internes du module, tout en minimisant les conséquences de la dégradation de l'un de ces brins, - ces brins croisent cet autre brin en leurs extrémités, ce qui correspond à une occupation maximale de la surface de liaison mécanique, - ces brins croisent une pluralité d'autres brins conducteurs en sorte de former une grille conductrice, ce qui correspond à un optimum du point de vue conduction électrique, sans pour autant avoir à recouvrir la totalité de la surface de liaison avec du matériau conducteur, - cette grille conductrice comporte des mailles d'au moins deux tailles différentes, définissant des zones présentant des rapports différents entre la surface de brins et la surface totale, ce qui permet de s'adapter à la géométrie des contacts internes avec lesquels ces bornes de connexion doivent coopérer, - ces brins se referment sur eux en sorte" de former des boucles, ce qui correspond à une autre configuration facile à mettre en oeuvre, - ces boucles se coupent, ce qui permet d'obtenir les mêmes avantages qu'avec un maillage de brins rectilignes, - certains au moins des brins ont une disposition périodique, ce qui est commun aux configurations précitées de grilles ou de boucles, - ces brins conducteurs sont répartis en deux lots sensiblement symétriques l'un de l'autre, ce qui permet de simplifier la configuration des bornes de connexion (le dessin de l'une donne l'autre) tout en équilibrant la tenue mécanique des deux bornes, - le second composant est avantageusement monté dans une cavité, ce qui permet de loger de manière satisfaisante le microcircuit sans avoir à lui fixer des contraintes trop sévères d'encombrement, - cette cavité est de préférence débouchante, ce qui correspond notamment au cas où le second composant est un module, - ces bornes de connexion comportent des brins montés en parallèle et orientés vers le centre de la cavité, ce qui permet notamment une bonne conduction avec les contacts internes lorsqu'ils sont disposés, par contre, selon une configuration en anneau, - ces bornes de connexion sont disposées en regard de part et d'autre de cette cavité, - ces bornes de connexion sont disposées sur des gradins bordant la cavité, ce qui permet la fixation de modules comportant un microcircuit volumineux, étant rappelé (voir ci-dessus) qu'elles peuvent être contiguës en sorte d'occuper conjointement presque toute la surface du gradin lorsqu'on souhaite maximiser l'aire disponible pour réaliser la connexion, - les contacts internes du second composant ont une géométrie comportant des brins de piste conducteurs (indépendamment du fait que les bornes de connexion en soient formées, ou non) ; il est clair que la plupart des avantages mentionnés ci-dessus à propos de caractéristiques avantageuses des bornes de connexion formées de brins de piste peuvent se retrouver pour les contacts internes, notamment lorsque ceux-ci sont, de manière préférée, montés en parallèle, - bien entendu il est tout particulièrement intéressant qu'aussi bien les bornes de connexion que les contacts internes comportent des brins de piste conducteurs : il est recommandé que ces brins aient des directions différentes en sorte de se croiser, - la surface totale des contacts internes est inférieure à la surface totale des bornes de connexion, - les brins des bornes de connexion et ceux des contacts internes sont en regard en des zones dont la surface globale est d'au moins 1.8 mm2, - le rapport entre la surface de matériau conducteur et la surface libre de matériau sous-jacent est compris entre 20% et 40%, de préférence entre 25% et 35% environ, - le second composant est un module comportant un film-support sur la face interne duquel est rapporté le microcircuit et les contacts internes tandis que sur la face externe sont ménagés des contacts externes ; en variante, ce second composant peut être un capteur d'empreintes digitales, un écran de visualisation, etc., - le composant est une antenne réalisée dans l'épaisseur du corps de carte, - les bornes de connexion comportent des brins qui ont une largeur qui est sensiblement égale à celle des pistes de l'antenne, - la largeur des brins des bornes de connexion est comprise entre 100 microns et 400 microns, - la largeur des brins des contacts internes est comprise entre 150 microns et 500 microns.Deformation of plastic sheets due to connection terminals. During the lamination leading to the assembly of the sheets forming the card body, the heat flow in the thickness direction of the sheets to be assembled meets, either only PVC (or other polymer) or the electrically conductive material, copper most often inserted on the inlay to form the tracks or the connection terminals. Copper, not having the same thermal conductivity as the plastic materials of the sheets, acts as a radiator and modifies the temperature gradient (this is also true for other conductive materials). When cooling, constraints are created in the stacking of plastic sheets between the 100% plastic areas and the plastic + Copper areas, hence the appearance of reliefs corresponding to the shape of the antenna and its connection terminals. This poses a double problem: • aesthetic problem, and • difficulties for the correct realization of the subsequent graphic personalization of the card (printing on the non-flat outer surface of the stack). The subject of the invention is a microcircuit card comprising, in the thickness of its card body, terminals (at least one terminal) for connection to a component which have a geometry leading to good reliability of the electrical contact between these terminals of connection and internal contacts of one or of the module carrying this microcircuit, while ensuring a good mechanical connection, by eliminating the problem of positioning the connection terminals in the card body (or even the positioning tolerance of the internal contacts of the module when inserting), and minimizing the deformations likely to appear when laminating the sheets to form the card body. The aforementioned problems with regard to the reliability of the electrical connection arise both for the internal contacts and for the connection terminals (as regards the adhesion of the facing surfaces), so that, quite generally , the invention relates to a microcircuit card comprising, in its thickness, at least one terminal for connection to a first component and / or at least one internal contact of a second component comprising this microcircuit, the geometry of which leads to a good reliability of the electrical contact between these connection terminals and these internal contacts. It should be noted that these problems, described above with regard to “Dual Interface” cards are very generally found when one seeks, in a microcircuit card, to connect internal contacts of a module to component connection terminals which are arranged in the thickness of the body of this card. This is how these problems are likely to arise when trying to connect to an antenna, but also to a display screen, a heat sensor, a battery, a fingerprint sensor, etc. . More generally, the problems cited arise when one wants to connect a first component (antenna, sensor or other) to a second component (module, other sensor or other) comprising a microcircuit. Furthermore, the above problems are sensitive not only with an anisotropic adhesive, but also, although perhaps to a lesser extent, with other types of mechanical and electrical bonding materials. DESCRIPTION OF THE INVENTION The invention proposes for this purpose a microcircuit card comprising a card body in the thickness of which are provided terminals for connection to a first component, and a second component comprising this microcircuit and internal contacts connected to these connection terminals by a mechanical and electrical connection material, characterized in that at least one of the connection zones constituted by the connection terminals and the internal contacts has a geometry comprising strands of conductive track separated by spaces at the less as wide as these strands. It should be noted that the only difference between the first and second components is that one arbitrarily chooses to designate the component comprising the microcircuit as being the second component and that, in particular, both the connection terminals and the internal contacts are in the thickness of the card body. By strand is meant according to the invention a portion of conductive track, that is to say a thin or thick layer in the sense of microelectronic technologies, for example deposited by lithography, the width of which is substantially less than their length, in a ratio of at least 3. Thus defined, the invention may appear to have similarities with the teaching of document WO-98/38598 which relates to the connection of a module to a wire antenna whose ends are folded back into pins hair. It should however be noted that, if this document mentions the possibility of making connection zones by filing and delimitation, it is to reject this technology which is deemed to lead to connection terminals of too large dimensions. This is why he teaches to use a wire which is placed on one side of a layer but which, in the connection area, is forced to pass through this layer from place to place to allow connection with a module; in fact, the wire antenna is formed on a face opposite to the one where the connections are made. It follows that the connection zone facing the internal contacts of the module is formed of small conductive islands; these are simple dots and certainly not strands. Currently the shape of the connection terminals is very often rectangular or circular, and the massive surface of conductive material (most often copper) is several mm 2 . According to the invention, these massive shapes are replaced, over an at least equal connection area, by geometries (of combs, loops or grids, in particular) forming an alternation of conductive strands and free zones. Insofar as the problems that the invention aims to solve are mainly related to the geometry of the connection terminals, a particularly advantageous case is that where it is the connection terminals which have a geometry comprising such strands of track separated by spaces at least as wide as these runways. This solves in particular the problem linked to the extra thicknesses due to the massive connection zones, while leaving free, in the area of the connection terminal, zones of better adhesion than the conductive material constituting the track strands. The fact that the connection zones are formed of conductive strands and of free zones (allowing access, for the fixing material, to the material on which the track strands are formed) makes it possible to provide connection zones (i.e. - say areas where a connection will be possible, even if, after mounting, the connection is actually made on a smaller area) very large. It is therefore possible to provide that the connection terminals are contiguous, which does not pose any particular problem from the point of view of insulating the terminals from one another when an adhesive or anisotropic adhesive as a mechanical and electrical bonding material. It can be noted in this regard that such an anisotropic adhesive cannot be used in practice with a wire because, with a wire, the area available for connection in the direction of connection is too small. Preferably the track strands are electrically mounted in parallel. It is clear that such parallel mounting would be impossible with a wire antenna as proposed in the aforementioned document WO-98/38598. But a parallel assembly has the advantage over a series assembly that, in the event of deterioration of a strand, the consequences are much less on the overall performance in the event of parallel assembly than in the case of an assembly in series: in one case, the other strands remain available to participate in the connection, while in the other case, only part of them remains available. One of the consequences is that it is possible to provide for the strands of the track of small thicknesses, typically thinner than those conventionally used for antenna tracks (typically of the order of 35 microns) without too great risk (linked to operations of forming tracks or inserting, that is to say mounting the module in the card body) on the quality of the connection within the final card: this results in less geometric disturbances in the thickness of the final card, and contributes to solving the technical problem targeted by the invention. Thus, advantageously, the conductive strands have a thickness at most equal to 30 microns, preferably at most equal to 15 microns (for example of the order of 12 microns). According to other preferred characteristics of the invention, possibly combined: - these strands cross at least one other conductive strand transversely to these: the fact of connecting these strands has the advantage of increasing the possible points of connection to the internal contacts of the module, while minimizing the consequences of the degradation of one of these strands, - these strands cross this other strand at their ends, which corresponds to maximum occupancy of the mechanical connection surface, - these strands cross a plurality other conductive strands so as to form a conductive grid, which corresponds to an optimum from the point of view of electrical conduction, without having to cover the entire bonding surface with conductive material, - this conductive grid comprises meshes of at least two different sizes, defining areas with different relationships between the strand surface and the total surface, which makes it possible to adapt to the geometry of the internal contacts with which these connection terminals must cooperate, - these strands close on them so as to " form loops, which corresponds to a another configuration which is easy to implement, - these loops intersect, which makes it possible to obtain the same advantages as with a mesh of rectilinear strands, - at least some of the strands have a periodic arrangement, which is common to the above-mentioned configurations grids or loops, - these conductive strands are divided into two batches substantially symmetrical to each other, which simplifies the configuration of the connection terminals (the drawing of one gives the other) while balancing the mechanical strength of the two terminals, - the second component is advantageously mounted in a cavity, which makes it possible to accommodate the microcircuit satisfactorily without having to set too severe constraints on it. size, - this cavity is preferably through, which corresponds in particular to the case where the second component is a module, - these connection terminals include strands mounted in parallel and oriented towards the center of the cavity, which allows in particular good conduction with the internal contacts when they are arranged, on the other hand, in a ring configuration, - these connection terminals are arranged facing each other of this cavity, - these connection terminals are arranged on steps bordering the cavity, which allows the attachment of modules comprising a large microcircuit, it being recalled (see above) that they can be contiguous so as to jointly occupy almost the entire surface of the step when it is desired to maximize the available area to make the connection, - the internal contacts of the second component have a geometry comprising conductive track strands (regardless of whether the terminals of c whether or not they are formed); it is clear that most of the advantages mentioned above about advantageous features connection terminals formed of track strands can be found for the internal contacts, in particular when these are preferably mounted in parallel, - of course it is particularly advantageous that both the connection terminals and the internal contacts have conductive track strands: it is recommended that these strands have different directions so that they intersect, - the total surface of the internal contacts is less than the total surface of the connection terminals, - the strands of the connection terminals and those of the internal contacts are opposite in zones whose overall surface is at least 1.8 mm 2 , - the ratio between the surface of conductive material and the free surface of underlying material is between 20% and 40% , preferably between about 25% and 35%, - the second component is a module comprising a support film on the internal face of which the microcircuit and the internal contacts are attached while on the external face are provided external contacts; as a variant, this second component can be a fingerprint sensor, a display screen, etc., - the component is an antenna made in the thickness of the card body, - the connection terminals include strands which have a width which is substantially equal to that of the antenna tracks, - the width of the strands of the connection terminals is between 100 microns and 400 microns, - the width of the strands of the internal contacts is between 150 microns and 500 microns.
Description de l'invention Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre indicatif non limitatif en regard des dessins annexé sur lesquels : - la figure 1 est une vue schématique en perspective éclatée du corps d'une carte selon l'invention, dans une étape intermédiaire de fabrication de cette carte,Description of the invention Objects, characteristics and advantages of the invention appear from the following description, given by way of non-limiting illustration with reference to the appended drawings in which: FIG. 1 is a schematic exploded perspective view of the body of a card according to the invention, in an intermediate stage of manufacturing this card,
- la figure 2 est une vue en coupe éclatée de ce corps, dans cette étape,FIG. 2 is an exploded sectional view of this body, in this step,
- la figure 3 est une vue en perspective de ce corps avant mise en place d'un module,FIG. 3 is a perspective view of this body before fitting a module,
- la figure 4 est une vue en coupe de ce corps, avant cette mise en place, - la figure 5 est une vue schématique montrant ce corps et le module sur le point d'y être mis en place,- Figure 4 is a sectional view of this body, before this installation, - Figure 5 is a schematic view showing this body and the module about to be put in place,
- la figure 6 est une vue en coupe de détail montrant la cavité du corps de carte dans laquelle le module a été mis en place,FIG. 6 is a detailed sectional view showing the cavity of the card body in which the module has been put in place,
- la figure 7 est une vue de dessous de cette carte, montrant les bornes de connexion et les contacts internes, par transparence au travers du corps de carte,FIG. 7 is a bottom view of this card, showing the connection terminals and the internal contacts, by transparency through the card body,
- la figure 8A est une vue de détail d'une autre géométrie de bornes de connexion, en forme de grille,FIG. 8A is a detail view of another geometry of connection terminals, in the form of a grid,
- la figure 8B est une vue de détail d'une variante de cette géométrie, avec la même épaisseur de brins conducteurs qu'à la figure 8A mais avec une plus petite taille de maille,FIG. 8B is a detailed view of a variant of this geometry, with the same thickness of conductive strands as in FIG. 8A but with a smaller mesh size,
- la figure 8C est une vue de détail d'encore une autre variante de cette géométrie, avec la même épaisseur de brins qu'aux figures 8A et 8B, mais avec une taille de maille encore plus petite, - la figure 9 est une vue de détail d'une autre géométrie de bornes de connexion, avec des tailles de maille différentes, à l'intérieur du contour de la cavité du corps de carte,- Figure 8C is a detail view of yet another variant of this geometry, with the same thickness of strands as in Figures 8A and 8B, but with an even smaller mesh size, - Figure 9 is a view detail of another geometry of connection terminals, with different mesh sizes, inside the contour of the cavity of the card body,
- la figure 10 est une vue représentant schématiquement la superposition de contacts internes d'un module et des bornes de connexion selon un autre mode de réalisation, en forme de grilles formées sur un gradin bordant la cavité, - la figure 11 est une autre vue représentant la superposition de contacts internes d'un module avec des bornes de connexion, selon un autre mode de réalisation, avec des brins globalement orientés vers le centre de la cavité, - la figure 12 est une autre vue représentant la superposition des contacts internes d'un module et des bornes de connexion selon encore un autre mode de réalisation, avec des brins en boucles, et - la figure 13 est une autre vue représentant la superposition des contacts internes d'un module et des bornes de connexion selon encore un autre mode de réalisation, avec des brins en zig-zag. Les figures 1 à 7 représentent des étapes de réalisation d'une carte à microcircuit du type « Dual Interface » selon un mode de réalisation selon l'invention. Les figures 1 et 2 représentent un empilement de feuilles destiné, par son assemblage, à former le corps de cette carte. A l'intérieur de cet empilement est disposée une feuille 1 appelée inlay sur laquelle a été déposée une antenne unitaire 2, sous la forme de pistes sensiblement planes 2A, terminées par deux bornes de connexion 3 et 4. Selon l'invention, l'une au moins des zones de connexion constituées par ces bornes de connexion ou par les contacts internes avec lesquels ces bornes doivent coopérer ont une géométrie comportant des brins de piste conducteurs séparés par des espaces au moins aussi larges que ces brins. Plus particulièrement, dans l'exemple ici considéré, ces bornes de connexion ont une géométrie comprenant des brins conducteurs 3A et 4A avantageusement montés en parallèle, en étant séparés par des espaces au moins aussi larges que ces brins. En effet, ces bornes de connexion sont formées de brins partant d'un contour externe, ici de forme globalement rectangulaire et formé de deux C se faisant face, repérés 3B ou 4B. Les brins de chaque borne s'étendent ici jusqu'à un autre brin conducteur 3C ou 4C qu'ils croisent en leurs extrémités. Cet autre brin de chaque borne est ici parallèle à l'autre brin de l'autre borne. Dans l'exemple considéré, ces brins sont même disposés, géométriquement, parallèlement les uns aux autres, selon des directions différentes au sein de la borne 3 et au sein de la borne 4, respectivement. Ces brins sont avantageusement des pistes de même nature que les pistes constituant les spires de l'antenne, du cuivre en pratique. Et leur largeur ainsi que leur épaisseur sont de préférence égales à celles de ces spires. En variante ces brins de piste sont en aluminium. L'antenne 2 est ici représentée à titre individuel. En réalité ces antennes sont reçues sous forme de grandes planches rectangulaires, par exemple de 591 mm x 370mm comportant 36 antennes (6x6) réparties avec un pas en X de 91.2mm et un pas en Y de 57mm. L'inlay 1 est classiquement réalisé en PVC de 200μm d'épaisseur et les spires sont formées d'une couche de cuivre de 35μm d'épaisseur et de 120μm de largeur, photogravée représentant le dessin de l'antenne. D'autres matériaux sont possibles pour l'inlay, notamment verre époxy, polyéthylène téréphtalate (PET ou PETS), polycarbonate, polyimide, ABS, etc. tandis que les spires peuvent être en un autre matériau conducteur tel que l'aluminium. Les pistes constituant ici l'antenne s'interrompent en deux points 2B et 2C destinés à être reliés électriquement sous le plan de ces pistes, par un pont non représenté de tout type connu approprié réalisé sur la face inférieure de l'inlay. Les feuilles entre lesquelles l'inlay 1 est disposé à la figure 1 sont en fait multiples, ainsi que cela ressort clairement à la figure 2. Cet inlay est tout d'abord interposé entre deux couches 11 et 11' ayant un rôle de compensation, elles-mêmes longées par deux couches d'impression 12 et 12' recouvertes de deux couches de couverture 13 et 13', généralement transparentes. Ces couches 11-13 et 11 '-13' sont par exemple réalisées en PVC ou matériau équivalent. Les couches de compensation ont notamment pour fonction d'absorber les reliefs dus à la présence des pistes de cuivre, tandis que les couches d'impression sont destinées à recevoir de façon durable des images ou des caractères imprimés. Les couches 11 et 11 ' ont par exemple une épaisseur de 100 microns, les couches 12 et 12' une épaisseur de 140 microns et les couches 13 et 13' une épaisseur de l'ordre de 40 à 80 microns. L'épaisseur finale est par exemple de l'ordre de 800 microns. L'assemblage de ces couches se fait par un traitement de lamination à chaud, avec en principe l'application d'une pression schématisée par les flèches apparaissant sur les figures 1 et 2. Au terme de cette lamination, l'antenne n'est plus visible. Comme indiqué ci-dessus, cette lamination se fait en pratique sur des feuilles de grande surface. Une opération de calandrage permet ensuite d'isoler chaque corps de carte unitaire. Les figures 3 et 4 représentent une étape de réalisation d'une cavitéFIG. 10 is a view schematically showing the superimposition of internal contacts of a module and connection terminals according to another embodiment, in the form of grids formed on a step bordering the cavity, - Figure 11 is another view showing the superposition of internal contacts of a module with connection terminals, according to another embodiment, with strands generally oriented towards the center of the cavity, - Figure 12 is another view representing the superposition of the internal contacts of a module and the connection terminals according to yet another embodiment, with strands in loops, and - FIG. 13 is another view showing the superposition of the internal contacts of a module and connection terminals according to yet another embodiment, with zig-zag strands. FIGS. 1 to 7 represent stages in the production of a microcircuit card of the “Dual Interface” type according to an embodiment according to the invention. Figures 1 and 2 show a stack of sheets intended, by its assembly, to form the body of this card. Inside this stack is a sheet 1 called an inlay on which a unitary antenna 2 has been deposited, in the form of substantially planar tracks 2A, terminated by two connection terminals 3 and 4. According to the invention, the at least one of the connection zones formed by these connection terminals or by the internal contacts with which these terminals must cooperate have a geometry comprising strands of conductive track separated by spaces at least as wide as these strands. More particularly, in the example considered here, these connection terminals have a geometry comprising conductive strands 3A and 4A advantageously mounted in parallel, being separated by spaces at least as wide as these strands. Indeed, these connection terminals are formed of strands starting from an external contour, here of generally rectangular shape and formed of two C facing each other, marked 3B or 4B. The strands of each terminal here extend to another conductive strand 3C or 4C which they cross at their ends. This other strand of each terminal is here parallel to the other strand of the other terminal. In the example considered, these strands are even arranged, geometrically, parallel to each other, in different directions within the terminal 3 and within the terminal 4, respectively. These strands are advantageously tracks of the same nature as the tracks constituting the turns of the antenna, copper in practice. And their width and their thickness are preferably equal to those of these turns. As a variant, these runway strands are made of aluminum. The antenna 2 is here represented on an individual basis. In reality these antennas are received in the form of large rectangular boards, for example of 591 mm x 370mm comprising 36 antennas (6x6) distributed with an X pitch of 91.2mm and a Y pitch of 57mm. The inlay 1 is conventionally made of PVC 200 μm thick and the turns are formed from a copper layer 35 μm thick and 120 μm wide, photo-etched representing the design of the antenna. Other materials are possible for the inlay, in particular epoxy glass, polyethylene terephthalate (PET or PETS), polycarbonate, polyimide, ABS, etc. while the turns can be made of another conductive material such as aluminum. The tracks constituting here the antenna are interrupted at two points 2B and 2C intended to be electrically connected under the plane of these tracks, by a bridge (not shown) of any suitable known type made on the underside of the inlay. The sheets between which the inlay 1 is arranged in FIG. 1 are in fact multiple, as is clear from FIG. 2. This inlay is first of all interposed between two layers 11 and 11 ′ having a compensating role, themselves bordered by two printing layers 12 and 12 'covered with two covering layers 13 and 13', generally transparent. These layers 11-13 and 11 '-13' are for example made of PVC or equivalent material. The function of the compensation layers is in particular to absorb the reliefs due to the presence of the copper tracks, while the printing layers are intended to receive images or printed characters in a lasting manner. The layers 11 and 11 'have for example a thickness of 100 microns, the layers 12 and 12' a thickness of 140 microns and the layers 13 and 13 'a thickness of the order of 40 to 80 microns. The final thickness is for example of the order of 800 microns. The assembly of these layers is done by a hot lamination treatment, with in principle the application of a pressure shown diagrammatically by the arrows appearing in FIGS. 1 and 2. At the end of this lamination, the antenna is not more visible. As indicated above, this lamination is done in practice on large area sheets. A calendering operation then makes it possible to isolate each unitary card body. Figures 3 and 4 show a step of making a cavity
15 destinée à recevoir un module (voir figures 5 à 7). L'usinage de cette cavité est classiquement réalisé par fraisage. Dans l'exemple représenté ici, la cavité comporte deux zones 15A et 15B superposées mais de dimensions différentes. Il apparaît ainsi un gradin 16 bordant cette cavité. Ainsi que cela apparaît clairement sur la figure 4, la zone supérieure 15A est découpée dans les couches 11-13 situées au-dessus de l'inlay, tandis que la zone inférieure 15B, de plus petites dimensions, est creusée dans ces couches 11-13, mais aussi dans l'inlay et dans la couche de compensation inférieure 11 '. L'usinage de cette cavité se traduit par l'enlèvement d'une partie centrale du motif formé conjointement par les bornes de connexion 3 et 4 de la figure 1 , mais il subsiste, sur le gradin, des brins conducteurs montés en parallèle et s'étendant jusqu'au bord interne du gradin. Ce gradin est par exemple situé à 270 microns sous la face supérieure du corps de carte, tandis que la profondeur totale de cette cavité est par exemple 580 microns. La figure 5 représente, en perspective, le corps de carte des figures 3 et 4, ainsi qu'un module 20 prêt à y être encarté. Ce module comporte notamment un film-support 21 ici représenté avec sa face interne tournée vers le haut, de sorte qu'on y voit le microcircuit 22, ainsi que des brins conducteurs montés en parallèle formant des contacts internes 23 et 24 de ce module. Ainsi que cela ressort de la figure 6, ce film-support 21 porte des zones électriquement conductrices sur ses deux faces, à savoir des contacts externes 25 sur sa face externe destinée à être accessible de l'extérieur, et des pistes sur la face interne connectées au microcircuit 22 par des fils conducteurs 26, par exemple en or, et raccordés aux contacts internes 23 et 24. Ces contacts internes sont par exemple en or, voire en palladium ou en cuivre. Le fait que la cavité comporte un gradin séparant deux zones 15A et 15B facilite la mise en place du module en sorte que ses contacts internes soient en contact avec les bornes de connexion de l'antenne, tout en permettant de loger le microcircuit qui fait saillie vers le bas par rapport au film- support. La zone profonde 15B permet en outre de loger une résine 27 encapsulant ce microcircuit. Cette résine s'étend de préférence jusqu'au fond de cette portion profonde 15B de manière à contribuer à la fixation du module dans la cavité. La liaison entre les contacts internes du module et les bornes de connexion est assurée par un adhésif 28 dans lequel sont noyées des billes électriquement conductrices. L'opération d'encartage consiste à déposer la résine dans le fond de la cavité centrale (voir deux gouttes 27A sur la figure 5) et l'adhésif sur l'une des faces à coller (par exemple sur le gradin), et à placer le module préalablement préparé et découpé, dans la cavité et de la coller par pression et chauffage (réactivation de l'adhésif anisotrope). L'adhésif ou colle anisotrope permet à la fois de relier électriquement les bornes de connexion de l'antenne aux contacts internes du module et de fixer mécaniquement ce module, par sa périphérie, dans la cavité. La figure 7 montre par en dessous, par transparence au travers des couches inférieures du corps de carte, les brins constitutifs des bornes de connexion et des contacts internes du module. On observe que les brins 3A constituant la borne de connexion la plus près du bord extérieur du corps de carte croisent les brins 23A constituant le contact interne correspondant du module, tandis que les brins 4A croisent les brins 24A de l'autre contact interne du module. Chaque croisement de ces brins constitue une liaison électrique entre ces bornes et ces contacts. On comprend aisément que, grâce à cette configuration des bornes de connexion un écart de position de l'antenne par rapport à sa position de consigne par rapport aux bords de carte n'empêche pas la formation d'un nombre significatif de contacts élémentaires entre antenne et module. Les contraintes de tolérance concernant le positionnement de l'antenne dans l'empilement lors de la lamination sont donc beaucoup moins strictes qu'avec les géométries classiques des bornes de connexion. Ces contraintes sont d'autant moins sévères qu'ici, les contacts internes du module sont eux aussi constitués de brins montés électriquement en parallèle. D'autre part, un décollement local du module vis-à-vis du gradin ne rend pas nécessairement la carte inopérante puisque d'autres sites de contacts subsistent. Par contre, la zone de gradin occupée conjointement par les brins conducteurs formant l'une des bornes de connexion (ici toute la surface du gradin) est significative, tout en laissant subsister une fraction importante de surface disponible pour une bonne adhérence avec les zones en regard sur le module. La tenue mécanique de la liaison entre la zone de cavité portant les brins conducteurs et la zone du module portant les contacts internes est donc améliorée par rapport au cas de bornes de connexion massives classiques. Il mérite d'être noté que cet avantage est déjà obtenu dès lors que les bornes de connexion ont une géométrie comportant des brins montés en parallèle, indépendamment de la géométrie des contacts internes du module, dans la mesure où la tenue mécanique des zones « matériau plastique+matériau conducteur » entre de tels brins est déjà meilleure qu'entre des zones « matériau conducteur+matériau conducteur ». Mais la tenue mécanique globale est bien sûr encore meilleure lorsqu'il existe aussi bien dans les bornes de connexion que dans les contacts internes des zones de matériau plastique en regard d'autres zones de matériau plastique. Par ailleurs, les brins constituant ces bornes de connexion étant généralement étroits, ils génèrent, lors de la lamination, bien moins de déformation des couches de compensation que des bornes de connexion massives classiques. Ainsi que cela vient d'être détaillé, les avantages précités sont déjà obtenus dès lors que les bornes de connexion sont formés de brins conducteurs montés en parallèle, indépendamment de la géométrie des contacts internes du module, mais sont bien sûr renforcés lorsque ces contacts internes sont eux aussi formés de brins conducteurs montés en parallèle. On comprend aisément qu'en jouant sur les importances relatives de la largeur des brins conducteurs et la largeur des espaces les séparant, surtout s'il y a de tels brins conducteurs sur le module, on peut définir à volonté un compromis entre conduction électrique et adhérence mécanique : un espacement relativement important correspond à une très bonne adhérence, tandis qu'une plus forte densité surfacique de matériau conducteur conduit une très bonne conduction électrique. Ce qui précède a été exposé dans le cas où le module est fixé à la cavité au moyen d'un adhésif anisotrope, mais il faut bien comprendre que des avantages similaires se retrouvent avec d'autres agents de liaison, tels que des colles conductrices, ne serait-ce qu'en ce qui concerne les déformations des couches de compensation dues à la présence des bornes de connexion. Il mérite d'être noté que lorsque le second composant a une hauteur constante, il n'est plus nécessaire de prévoir un gradin bordant la cavité, et celle-ci peut avoir une forme simple, avec une section horizontale constante sur toute sa profondeur. Après que le module a été fixé dans la cavité, la carte est complète du point physique, et il ne reste plus, de manière connue, à procéder à des opérations de personnalisation. Les figures qui précèdent représentent des géométries de bornes de connexion (et de contacts internes) particulièrement simples, puisque ces bornes (ou ces contacts internes) ont une forme de peigne. Mais bien d'autres formes sont possibles selon l'invention. C'est ainsi que les figures 8A à 8C représentent des bornes 33, 33' et 33" formées chacune d'une grille. Une telle grille peut être analysée comme étant formée de brins conducteurs montés en parallèle (tous les brins parallèles à un côté donné de la grille) qui croisent au moins un autre brin disposé transversalement. Dans la mesure où les grilles ici représentées sont carrées, les brins « principaux » croisent un nombre égai d'autres brins conducteurs. Ces trois figures représentent trois grilles dont la taille de maille est de plus en plus importante, pour une même largeur des brins. On constate que sur la figure 8A, la fraction surfacique laissée dégagée par les brins conducteurs est maximale, tandis que sur la figure 8C cette fraction est minimale. Sur la figure 8A, le rapport entre la taille de maille et la largeur des brins est de l'ordre de 6.6 (taille de maille de 0.80 mm pour des brins de 0.12 mm de large) tandis que ce rapport est de l'ordre de 3.3 (taille de maille de 0.40 mm pour des brins de 0.12 mm) à la figure 8B et de l'ordre de 2.5 (taille de maille de 0.30 mm pour des brins de 0.12 mm de large) pour la figure 8C. On choisira la configuration de la figure 8A si l'on veut privilégier l'adhérence mécanique, ou au contraire celle de la figure 8C si l'on veut privilégier la conduction électrique, tandis que l'on choisira celle de la figure 8B si l'on veut à la fois une bonne adhérence et une bonne conduction électrique. On peut noter que, dans les exemples donnés ci-dessus, la largeur des brins conducteurs est égale à la largeur des pistes constituant les spires de l'antenne. Plus généralement, la largeur de ces brins est de préférence choisie entre 120 microns et 250 microns. En variante non représentée, on peut prévoir des anneaux conducteurs à l'emplacement des croisements de brins, ce qui réduit les risques de décollement. La figure 9 représente un ensemble de deux bornes de connexion 43 et 44 toutes deux formées de deux grilles dont l'écartement entre les brins prend, selon les endroits, au moins deux valeurs différentes : cet écartement est ici minimum aux extrémités et en partie centrale, tandis que cet écartement est maximum entre les extrémités et la partie centrale. On observe que la quasi-totalité de ces grilles est contenue à l'intérieur du contour maximum du trou. En variante non représentée, la variation de l'espacement (on peut aussi parler de pas) est continue entre les zones d'écartement minimum et les zones d'écartement maximum. Il est rappelé que la grille est séparée en deux parties pour tenir compte de ce qu'il faut établir le contact avec deux contacts internes du module. La figure 10 représente une autre paire de bornes de connexion 53 et 54 formées à partir d'une grille à mailles carrées et à faible espacement. Les contours du gradin sont visualisés sur cette figure, et une boucle blanche représente des contacts internes 23' ou 24'du module qui sont conformés en anneau. Ici encore, il n'est pas nécessaire que l'inlay soit positionné avec précision dans le corps de carte pour garantir qu'il y ait de nombreux points de contact entre cet anneau et les portions droite ou gauche de la grille. La figure 11 représente une autre géométrie de bornes de connexion 63 et 64, qui diffère de celle des figures 1 à 7 par le fait que, après creusement de la cavité, les brins 63A et 64A, qui sont orientés vers le centre de la cavité, s'étendent entre un brin d'alimentation extérieur 63B ou 64B et un brin intérieur 63C ou 64C auquel ils se raccordent par leurs extrémités. Sur cette figure apparaissent en outre les contacts internes 73 et 74 du module, comportant chacun, à droite ou à gauche, trois disques 73A ou 74A destinés à une connexion à des fils (non recouverts par les bornes de connexion) raccordés à deux ailes 73B ou 74B situées respectivement à droite ou à gauche de ces disques, ainsi que deux ailes extrêmes 73C ou 74C disposées au dessus et au dessous de ces disques. On peut noter que les brins 63A ou 64A sont plus rapprochés en regard de ces ailes qu'à l'écart de celles- ci. On peut noter que ces contacts internes peuvent être analysés comme étant formés par des brins de piste conducteurs séparés par des espaces au moins aussi larges que ces brins, et que certains de ces brins sont montés en parallèle. La figure 12 représente schématiquement une variante de réalisation dans laquelle les bornes de connexion 83 et 84 comportent des brins ne sont pas rectilignes comme dans les exemples considérés ci-dessus, mais sont refermés sur eux-mêmes en sorte de former des boucles. Bien entendu, dans leur réalisation, ces boucles sont dissociées de toute manière appropriée en sorte de permettre que les bornes 83 et 84 soient isolées l'une par rapport à l'autre. Comme précédemment, elles coopèrent avec des contacts internes d'un module formant conjointement un anneau entre les bords interne et externe d'un gradin bordant la cavité. La figure 13 représente une autre variante de réalisation dans laquelle les bornes de connexion 93 et 94 sont formées non plus à partir de brins conducteurs rectilignes ou courbes mais en zig-zag (avec une dissociation appropriée pour séparer les bornes 93 et 94). On peut noter dans ce qui précède que les zones conductrices sont étroites par rapport à leur longueur, et qu'elles sont en pratique environnées de zones non conductrices se prêtant bien à une bonne adhérence. En faisant varier les largeurs de brins et/ou des espaces les séparant on peut "spécialiser" différentes zones de collage du module sur la carte en jouant sur le rapport surface cuivre/surface totale. C'est ainsi que, par exemple, les coins des zones formant les bornes de connexion pourront être recouverts de peu de cuivre (on privilégie l'adhérence) alors que dans les zones médianes on privilégiera la conduction électrique (plus de cuivre). Le rapport entre la surface de matériau conducteur et la surface totale de la zone de collage est avantageusement inférieur à 40%, de préférence compris entre 10% et 30%, avantageusement entre 10 et 20%. 15 intended to receive a module (see FIGS. 5 to 7). The machining of this cavity is conventionally carried out by milling. In the example shown here, the cavity comprises two zones 15A and 15B superimposed but of different dimensions. It thus appears a step 16 bordering this cavity. As can be clearly seen in FIG. 4, the upper zone 15A is cut out in the layers 11-13 situated above the inlay, while the lower zone 15B, of smaller dimensions, is hollowed out in these layers 11- 13, but also in the inlay and in the lower compensation layer 11 ′. The machining of this cavity results in the removal of a central part of the pattern formed jointly by the connection terminals 3 and 4 of FIG. 1, but there remain, on the step, conductive strands mounted in parallel and s extending to the internal edge of the step. This step is for example located at 270 microns under the upper face of the card body, while the total depth of this cavity is for example 580 microns. FIG. 5 represents, in perspective, the card body of FIGS. 3 and 4, as well as a module 20 ready to be inserted therein. This module notably includes a support film 21 here shown with its internal face turned upwards, so that the microcircuit 22 can be seen there, as well as conductive strands mounted in parallel forming internal contacts 23 and 24 of this module. As can be seen from FIG. 6, this support film 21 carries electrically conductive zones on its two faces, namely external contacts 25 on its external face intended to be accessible from the outside, and tracks on the internal face. connected to the microcircuit 22 by conductive wires 26, for example made of gold, and connected to the internal contacts 23 and 24. These internal contacts are for example made of gold, even palladium or copper. The fact that the cavity has a step separating two zones 15A and 15B facilitates the positioning of the module so that its internal contacts are in contact with the connection terminals of the antenna, while making it possible to accommodate the protruding microcircuit down relative to the support film. The deep zone 15B also makes it possible to house a resin 27 encapsulating this microcircuit. This resin preferably extends to the bottom of this deep portion 15B so as to contribute to the fixing of the module in the cavity. The connection between the internal contacts of the module and the connection terminals is ensured by an adhesive 28 in which are embedded electrically conductive balls. The inserting operation consists of depositing the resin in the bottom of the central cavity (see two drops 27A in FIG. 5) and the adhesive on one of the faces to be bonded (for example on the step), and place the previously prepared and cut module in the cavity and stick it by pressure and heating (reactivation of the anisotropic adhesive). The anisotropic adhesive or glue makes it possible both to electrically connect the antenna connection terminals to the internal contacts of the module and to mechanically fix this module, by its periphery, in the cavity. FIG. 7 shows from below, by transparency through the lower layers of the card body, the strands constituting the connection terminals and internal contacts of the module. It is observed that the strands 3A constituting the connection terminal closest to the outer edge of the card body cross the strands 23A constituting the corresponding internal contact of the module, while the strands 4A cross the strands 24A of the other internal contact of the module . Each crossing of these strands constitutes an electrical connection between these terminals and these contacts. It is easy to understand that, thanks to this configuration of the connection terminals, a deviation of the antenna position from its set position relative to the edges of the card does not prevent the formation of a significant number of elementary contacts between antenna and module. The tolerance constraints concerning the positioning of the antenna in the stack during lamination are therefore much less strict than with the conventional geometries of the connection terminals. These constraints are all the less severe since here, the internal contacts of the module also consist of strands electrically mounted in parallel. On the other hand, a local detachment of the module vis-à-vis the tier does not necessarily render the card inoperative since other contact sites remain. On the other hand, the step area occupied jointly by the conductive strands forming one of the connection terminals (here the entire area of the step) is significant, while leaving a significant fraction of the area available for good adhesion with the areas in question. look at the module. The mechanical strength of the connection between the cavity zone carrying the conductive strands and the zone of the module carrying the internal contacts is therefore improved compared to the case of conventional solid connection terminals. It should be noted that this advantage is already obtained when the connection terminals have a geometry comprising strands mounted in parallel, independently of the geometry of the internal contacts of the module, insofar as the mechanical strength of the "material" zones plastic + conductive material "between such strands is already better than between zones" conductive material + conductive material ". But the overall mechanical strength is of course even better when there are both in the connection terminals and in the internal contacts of the zones of plastic material opposite other zones of plastic material. Furthermore, the strands constituting these connection terminals being generally narrow, they generate, during lamination, much less deformation of the compensation layers than connection terminals massive classics. As has just been detailed, the aforementioned advantages are already obtained when the connection terminals are formed of conductive strands mounted in parallel, independently of the geometry of the internal contacts of the module, but are of course reinforced when these internal contacts are also formed of conductive strands mounted in parallel. It is easy to understand that by playing on the relative importance of the width of the conductive strands and the width of the spaces separating them, especially if there are such conductive strands on the module, it is possible to define at will a compromise between electrical conduction and mechanical adhesion: a relatively large spacing corresponds to very good adhesion, while a higher surface density of conductive material leads to very good electrical conduction. The above has been explained in the case where the module is fixed to the cavity by means of an anisotropic adhesive, but it should be understood that similar advantages are found with other binding agents, such as conductive adhesives, if only with regard to the deformations of the compensation layers due to the presence of the connection terminals. It should be noted that when the second component has a constant height, it is no longer necessary to provide a step bordering the cavity, and the latter can have a simple shape, with a constant horizontal section over its entire depth. After the module has been fixed in the cavity, the card is complete with the physical point, and it no longer remains, in a known manner, to carry out personalization operations. The preceding figures represent geometries of connection terminals (and internal contacts) which are particularly simple, since these terminals (or these internal contacts) have the shape of a comb. But many other forms are possible according to the invention. This is how FIGS. 8A to 8C represent terminals 33, 33 ′ and 33 "each formed by a grid. Such a grid can be analyzed as being formed by conductive strands mounted in parallel (all the parallel strands at a given side of the grid) which cross at least one other strand arranged transversely. Insofar as the grids shown here are square, the "main" strands cross an equal number of other conductive strands. These three figures represent three grids whose mesh size is increasingly large, for the same width of the strands. It can be seen that in FIG. 8A, the surface fraction left free by the conductive strands is maximum, while in FIG. 8C this fraction is minimum. In FIG. 8A, the ratio between the mesh size and the width of the strands is of the order of 6.6 (mesh size of 0.80 mm for strands of 0.12 mm wide) while this ratio is of the order of 3.3 (mesh size of 0.40 mm for strands of 0.12 mm) in Figure 8B and of the order of 2.5 (mesh size of 0.30 mm for strands of 0.12 mm wide) for Figure 8C. We will choose the configuration of Figure 8A if we want to favor mechanical adhesion, or on the contrary that of Figure 8C if we want to favor electrical conduction, while we will choose that of Figure 8B if l '' we want both good adhesion and good electrical conduction. It can be noted that, in the examples given above, the width of the conductive strands is equal to the width of the tracks constituting the turns of the antenna. More generally, the width of these strands is preferably chosen between 120 microns and 250 microns. In a variant not shown, it is possible to provide conductive rings at the location of the crossings of strands, which reduces the risks of detachment. FIG. 9 represents a set of two connection terminals 43 and 44 both formed by two grids, the spacing between the strands taking, depending on the location, at least two different values: this spacing is here minimum at the ends and in the central part , while this spacing is maximum between the ends and the central part. We observe that almost all of these grids are contained within the maximum contour of the hole. In a variant not shown, the variation in the spacing (one can also speak of steps) is continuous between the zones of minimum spacing and the zones of maximum spacing. It is recalled that the grid is separated into two parts to take into account that it is necessary to establish contact with two internal contacts of the module. FIG. 10 shows another pair of connection terminals 53 and 54 formed from a square mesh grid with small spacing. The contours of the step are shown in this figure, and a white loop represents internal contacts 23 'or 24' of the module which are shaped as a ring. Here again, the inlay need not be precisely positioned in the card body to guarantee that there are many points of contact between this ring and the right or left portions of the grid. FIG. 11 represents another geometry of connection terminals 63 and 64, which differs from that of FIGS. 1 to 7 by the fact that, after digging of the cavity, the strands 63A and 64A, which are oriented towards the center of the cavity , extend between an external supply strand 63B or 64B and an internal strand 63C or 64C to which they are connected by their ends. In this figure also appear the internal contacts 73 and 74 of the module, each comprising, on the right or on the left, three discs 73A or 74A intended for connection to wires (not covered by the connection terminals) connected to two wings 73B or 74B located respectively to the right or to the left of these discs, as well as two end wings 73C or 74C arranged above and below these discs. It can be noted that the strands 63A or 64A are closer together opposite these wings than apart from them. It can be noted that these internal contacts can be analyzed as being formed by strands of conductive track separated by spaces at least as wide as these strands, and that some of these strands are mounted in parallel. FIG. 12 schematically represents an alternative embodiment in which the connection terminals 83 and 84 comprise strands are not rectilinear as in the examples considered above, but are closed in on themselves so as to form loops. Of course, in their production, these loops are dissociated in any appropriate manner so as to allow the terminals 83 and 84 to be isolated from one another. As before, they cooperate with internal contacts of a module jointly forming a ring between the internal and external edges of a step bordering the cavity. FIG. 13 represents another alternative embodiment in which the connection terminals 93 and 94 are no longer formed from straight or curved conductive strands but in a zig-zag fashion (with an appropriate dissociation to separate the terminals 93 and 94). It can be noted in the foregoing that the conductive zones are narrow with respect to their length, and that they are in practice surrounded by non-conductive zones which lend themselves well to good adhesion. By varying the widths of strands and / or the spaces separating them, it is possible to "specialize" different bonding zones of the module on the card by playing on the copper surface / total surface ratio. Thus, for example, the corners of the zones forming the connection terminals can be covered with little copper (we prefer adhesion) while in the middle zones we prefer electric conduction (more copper). The ratio between the surface of conductive material and the total surface of the bonding zone is advantageously less than 40%, preferably between 10% and 30%, advantageously between 10 and 20%.

Claims

REVENDICATIONS 1. Carte à microcircuit comportant un corps de carte dans l'épaisseur duquel sont ménagées des bornes (3, 4, 33, 33', 33", 43, 44, 53, 54, 63, 64, 83, 84) de connexion à un premier composant, et un second composant (20) comprenant ce microcircuit (22) et des contacts internes (23, 24, 23', 24', 73, 74) connectés à ces bornes de connexion par un matériau de liaison mécanique et électrique, caractérisée en ce que l'une au moins des zones de connexion constituées par les bornes de connexion et les contacts internes a une géométrie comprenant des brins de piste conducteurs (3A, 4B, 63A, 64A) séparés par des espaces au moins aussi larges que ces brins de piste. CLAIMS 1. A microcircuit card comprising a card body in the thickness of which are provided terminals (3, 4, 33, 33 ', 33 ", 43, 44, 53, 54, 63, 64, 83, 84) of connection to a first component, and a second component (20) comprising this microcircuit (22) and internal contacts (23, 24, 23 ', 24', 73, 74) connected to these connection terminals by a mechanical connection material and electrical, characterized in that at least one of the connection zones formed by the connection terminals and the internal contacts has a geometry comprising conductive track strands (3A, 4B, 63A, 64A) separated by spaces at least as wide as these runways.
2. Carte à microcircuit selon la revendication 1 , caractérisée en ce que les bornes de connexion ont une géométrie comprenant de tels brins conducteurs séparés par des espaces au moins aussi larges que ces brins. 2. A microcircuit card according to claim 1, characterized in that the connection terminals have a geometry comprising such conductive strands separated by spaces at least as wide as these strands.
3. Carte à microcircuit selon la revendication 2, caractérisée en ce que les bornes de connexion sont contiguës et le matériau de liaison mécanique et électrique est une colle anisotrope. 3. A microcircuit card according to claim 2, characterized in that the connection terminals are contiguous and the mechanical and electrical connection material is an anisotropic adhesive.
4. Carte à microcircuit selon la revendication 2 ou la revendication 3, caractérisée en ce que les brins conducteurs sont montés en parallèle. 4. A microcircuit card according to claim 2 or claim 3, characterized in that the conductive strands are mounted in parallel.
5. Carte à microcircuit selon la revendication 4, caractérisée en ce que les brins ont une épaisseur au plus égale à 30 microns. 5. A microcircuit card according to claim 4, characterized in that the strands have a thickness at most equal to 30 microns.
6. Carte à microcircuit selon la revendication 5, caractérisée en ce que les brins ont une épaisseur au plus égale à 15 microns. 6. A microcircuit card according to claim 5, characterized in that the strands have a thickness at most equal to 15 microns.
7. Carte à microcircuit selon l'une quelconque des revendications 4 à 6, caractérisée en ce que ces brins croisent au moins un autre brin conducteur transversalement à ceux-ci. 7. A microcircuit card according to any one of claims 4 to 6, characterized in that these strands cross at least one other conductive strand transversely thereto.
8. Carte à microcircuit selon la revendication 7, caractérisée en ce que ces brins croisent cet autre brin en leurs extrémités. 8. A microcircuit card according to claim 7, characterized in that these strands cross this other strand at their ends.
9. Carte à microcircuit selon l'une quelconque des revendications 4 à 6, caractérisée en ce que ces brins croisent une pluralité d'autres brins conducteurs en sorte de former une grille conductrice (33, 33', 33", 43, 44, 53, 54). 9. Microcircuit card according to any one of claims 4 to 6, characterized in that these strands cross a plurality of other conductive strands so as to form a conductive grid (33, 33 ', 33 ", 43, 44, 53, 54).
10. Carte à microcircuit selon la revendication 9, caractérisée en ce que cette grille conductrice (43, 44) comporte des mailles d'au moins deux tailles différentes, définissant des zones présentant des" rapports différents entre la surface de brins et la surface totale. 10. A microcircuit card according to claim 9, characterized in that this conductive grid (43, 44) comprises meshes of at least two different sizes, defining zones having " different relationships between the strand surface and the total surface .
11. Carte à microcircuit selon l'une quelconque des revendications 1 à 6, caractérisée en ce que ces brins se referment sur eux en sorte de former des boucles (83, 84). 11. A microcircuit card according to any one of claims 1 to 6, characterized in that these strands close on them so as to form loops (83, 84).
12. Carte à microcircuit selon la revendication 11 , caractérisée en ce que ces boucles se coupent. 12. A microcircuit card according to claim 11, characterized in that these loops intersect.
13. Carte à microcircuit selon l'une quelconque des revendications 4 à 6, caractérisée en ce que certains au moins des brins ont une disposition périodique. 13. A microcircuit card according to any one of claims 4 to 6, characterized in that at least some of the strands have a periodic arrangement.
14. Carte à microcircuit selon l'une quelconque des revendications 1 à 13, caractérisée en ce que ces brins conducteurs sont répartis en deux lots sensiblement symétriques l'un de l'autre (3A, 4A, 43, 44, 53, 54, 63, 64, 83, 84, 93, 94). 14. A microcircuit card according to any one of claims 1 to 13, characterized in that these conductive strands are distributed in two batches substantially symmetrical to one another (3A, 4A, 43, 44, 53, 54, 63, 64, 83, 84, 93, 94).
15. Carte à microcircuit selon l'une quelconque des revendications 1 à 14, caractérisée en ce que le second composant est monté dans une cavité. 15. A microcircuit card according to any one of claims 1 to 14, characterized in that the second component is mounted in a cavity.
16. Carte à microcircuit selon la revendication 15, caractérisée en ce que cette cavité est débouchante. 16. A microcircuit card according to claim 15, characterized in that this cavity opens out.
17. Carte à microcircuit selon la revendication 15 ou la revendication 16, caractérisée en ce que ces bornes de connexion comportent des brins montés en parallèle et orientés vers le centre de la cavité (63A, 64A). 17. A microcircuit card according to claim 15 or claim 16, characterized in that these connection terminals include strands mounted in parallel and oriented towards the center of the cavity (63A, 64A).
18. Carte à microcircuit selon l'une quelconque des revendications 15 à 17, caractérisée en ce que deux bornes de connexion sont disposées en regard l'une de l'autre de part et d'autre de cette cavité. 18. A microcircuit card according to any one of claims 15 to 17, characterized in that two connection terminals are arranged opposite one another on either side of this cavity.
19. Carte à microcircuit selon l'une quelconque des revendications 15 à 18, caractérisée en ce que ces bornes de connexion sont disposées sur des gradins bordant la cavité. 19. A microcircuit card according to any one of claims 15 to 18, characterized in that these connection terminals are arranged on steps bordering the cavity.
20. Carte à microcircuit selon l'une quelconque des revendications 1 à 19, caractérisée en ce que les contacts internes (23, 24, 73, 74) ont une géométrie comportant des brins conducteurs 20. A microcircuit card according to any one of claims 1 to 19, characterized in that the internal contacts (23, 24, 73, 74) have a geometry comprising conductive strands
21. Carte à microcircuit selon la revendication 20, caractérisée en ce que ces brins sont montés électriquement en parallèle. 21. A microcircuit card according to claim 20, characterized in that these strands are electrically mounted in parallel.
22. Carte à microcircuit selon l'une quelconque des revendications 1 à 21 , caractérisée en ce qu'aussi bien les bornes de connexion que les contacts internes comportent des brins conducteurs qui ont des directions différentes en sorte de se croiser. 22. Microcircuit card according to any one of claims 1 to 21, characterized in that both the connection terminals and the internal contacts comprise conductive strands which have different directions so as to cross.
23. Carte à microcircuit selon la revendication 22, caractérisée en ce que la surface totale des contacts internes est inférieure à la surface totale des bornes de connexion. 23. A microcircuit card according to claim 22, characterized in that the total area of the internal contacts is less than the total area of the connection terminals.
24. Carte à microcircuit selon la revendication 22 ou la revendication24. A microcircuit card according to claim 22 or claim
23, caractérisée en ce que les brins des bornes de connexion et ceux des contacts internes sont en regard en des zones dont la surface globale est d'au moins 1.8 mm2. 23, characterized in that the strands of the connection terminals and those of the internal contacts face each other in zones whose overall surface is at least 1.8 mm 2 .
25. Carte à microcircuit selon l'une quelconque des revendications 1 à 24, caractérisée en ce que le rapport entre la surface de matériau conducteur et la surface de matériau sous-jacent est comprise entre 10% et 30%. 25. A microcircuit card according to any one of claims 1 to 24, characterized in that the ratio between the surface of conductive material and the surface of underlying material is between 10% and 30%.
26. Carte à microcircuit selon la revendication 25, caractérisée en ce que ce rapport vaut entre 10% et 20% environ. 26. A microcircuit card according to claim 25, characterized in that this ratio is between 10% and 20% approximately.
27. Carte à microcircuit selon l'une quelconque des revendications 1 à 26, caractérisée en ce que le second composant est un module comportant un film-support sur la face interne duquel est rapporté le microcircuit et les contacts internes tandis que sur la face externe sont ménagés des contacts externes. 27. Microcircuit card according to any one of claims 1 to 26, characterized in that the second component is a module comprising a support film on the internal face of which the microcircuit and the internal contacts are attached while on the external face external contacts are provided.
28. Carte à microcircuit selon l'une quelconque des revendications 1 à 27, caractérisée en ce que le composant est une antenne (2) réalisée dans l'épaisseur du corps de carte. 28. A microcircuit card according to any one of claims 1 to 27, characterized in that the component is an antenna (2) made in the thickness of the card body.
29. Carte à microcircuit selon la revendication 28, caractérisée en ce que les bornes de connexion comportent des brins qui ont une largeur qui est sensiblement égale à celles des pistes de l'antenne. 29. A microcircuit card according to claim 28, characterized in that the connection terminals include strands which have a width which is substantially equal to those of the tracks of the antenna.
30. Carte à microcircuit selon la revendication 28 ou la revendication30. A microcircuit card according to claim 28 or claim
29, caractérisée en ce que la largeur des brins des bornes de connexion est comprise entre 100 microns et 400 microns. 29, characterized in that the width of the strands of the connection terminals is between 100 microns and 400 microns.
31. Carte à microcircuit selon l'une quelconque des revendications 28 à 30, caractérisée en ce que la largeur des brins des contacts internes est comprise entre 150 microns et 500 microns. 31. A microcircuit card according to any one of claims 28 to 30, characterized in that the width of the strands of the internal contacts is between 150 microns and 500 microns.
PCT/FR2004/003187 2003-12-11 2004-12-10 Burning in dual interface cards by internal continuos grid contacts WO2005059818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0314536A FR2863747B1 (en) 2003-12-11 2003-12-11 RELIABILITY OF DUAL INTERFACE CARDS BY GRID CONTINUES
FR0314536 2003-12-11

Publications (1)

Publication Number Publication Date
WO2005059818A1 true WO2005059818A1 (en) 2005-06-30

Family

ID=34610583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/003187 WO2005059818A1 (en) 2003-12-11 2004-12-10 Burning in dual interface cards by internal continuos grid contacts

Country Status (2)

Country Link
FR (1) FR2863747B1 (en)
WO (1) WO2005059818A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114889A1 (en) * 2005-11-21 2007-05-24 Honeywell International Chip level packaging for wireless surface acoustic wave sensor
EP2000957A1 (en) * 2007-05-21 2008-12-10 Gemplus Method of manufacturing a device comprising a radiofrequency transponder antenna with two terminal portions made on a single medium and device obtained
FR3020548B1 (en) * 2014-04-24 2020-02-14 Linxens Holding METHOD FOR MANUFACTURING A CHIP CARD STRUCTURE AND CHIP CARD STRUCTURE OBTAINED BY THIS METHOD
FR3026529B1 (en) * 2014-09-30 2017-12-29 Linxens Holding METHOD FOR MANUFACTURING CHIP CARD AND CHIP CARD OBTAINED THEREBY
FR3034952B1 (en) * 2015-04-08 2020-11-13 Linxens Holding PROCESS FOR MANUFACTURING A FLEXIBLE CIRCUIT, FLEXIBLE CIRCUIT OBTAINED BY THIS PROCESS AND CHIP CARD CONTAINING SUCH FLEXIBLE CIRCUIT
FR3049739B1 (en) * 2016-03-30 2021-03-12 Linxens Holding METHODS OF MANUFACTURING CHIP CARDS AND ANTENNA BRACKETS FOR CHIP CARDS
FR3051063B1 (en) 2016-05-06 2021-02-12 Linxens Holding PROCESS FOR MANUFACTURING CHIP CARDS AND CHIP CARD OBTAINED BY THIS PROCESS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967570A2 (en) * 1998-06-25 1999-12-29 PAV Card GmbH Fabrication method for transponder chips
WO2000002160A1 (en) * 1998-07-06 2000-01-13 Schlumberger Systemes Open-worked antenna for integrated circuit card, and integrated circuit card comprising same
DE10210841A1 (en) * 2002-03-12 2003-10-16 Martin Michalk Production of electrical switches or modules comprises arranging semiconductor chips and/or electronic components on circuit support with an etching resist, structuring the resist and producing circuit structure from the circuit support

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967570A2 (en) * 1998-06-25 1999-12-29 PAV Card GmbH Fabrication method for transponder chips
WO2000002160A1 (en) * 1998-07-06 2000-01-13 Schlumberger Systemes Open-worked antenna for integrated circuit card, and integrated circuit card comprising same
DE10210841A1 (en) * 2002-03-12 2003-10-16 Martin Michalk Production of electrical switches or modules comprises arranging semiconductor chips and/or electronic components on circuit support with an etching resist, structuring the resist and producing circuit structure from the circuit support

Also Published As

Publication number Publication date
FR2863747B1 (en) 2006-03-24
FR2863747A1 (en) 2005-06-17

Similar Documents

Publication Publication Date Title
EP1016036B1 (en) Method for producing a contactless electronic chip card
EP3201842B1 (en) Electronic document having angled antenna ends, antenna holder for such an electronic document and method for manufacturing such a document
WO2012007659A1 (en) Polycarbonate radiofrequency identification device, and method for manufacturing same
EP1989664B1 (en) Method for producing a number of chip cards
EP2591498A1 (en) Method for assembling a chip in a flexible substrate
EP1673715B1 (en) Method for production of a card with a double interface and microcircuit card obtained thus
WO2005059818A1 (en) Burning in dual interface cards by internal continuos grid contacts
EP3920091B1 (en) Biometric sensor module for a smart card and method for manufacturing such a module
EP0072759B1 (en) Electronic module for an automatic-transaction card, and card comprising such a module
EP2866173B1 (en) Method for manufacturing an electric circuit and electric circuit manufactured by said method
WO2007025913A1 (en) Identity and security document consisting in an adhesive label
FR2846446A1 (en) CHIP CARD COMPRISING A CAPABLE COMPONENT AND A MANUFACTURING METHOD
FR3013872A1 (en) METHOD FOR MANUFACTURING AN RELIEF RELATED CARD
EP1210690B1 (en) Electronic device comprising a chip fixed on a support and method for making same
WO2005064533A1 (en) Methods for the production of an external-contact-free card and card thus obtained
FR2801122A1 (en) Non contact memory card, includes micro-module and associated antenna with directly-superposed connection points
WO2000077852A1 (en) Method for making devices comprising a chip associated with a circuit element and resulting devices
FR2915009A1 (en) RADIOFREQUENCY IDENTIFICATION MODULE, AND SECURITY DOCUMENT INCORPORATING IT, IN PARTICULAR ELECTRONIC PASSPORT
WO2001018862A1 (en) Electronic micromodule and method for making and incorporating same to produce portable devices
FR3061406A1 (en) PROCESS FOR PRODUCING A CENTRAL LAYER OF A MICROCIRCUIT CARD

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase