WO2005058757A1 - Silica porous body and method of manufacturing the same - Google Patents

Silica porous body and method of manufacturing the same Download PDF

Info

Publication number
WO2005058757A1
WO2005058757A1 PCT/JP2004/004701 JP2004004701W WO2005058757A1 WO 2005058757 A1 WO2005058757 A1 WO 2005058757A1 JP 2004004701 W JP2004004701 W JP 2004004701W WO 2005058757 A1 WO2005058757 A1 WO 2005058757A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
producing
plate
porous silica
slurry
Prior art date
Application number
PCT/JP2004/004701
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Tsunematsu
Kozo Inoue
Kinue Tsunematsu
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2005058757A1 publication Critical patent/WO2005058757A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/124Preparation of adsorbing porous silica not in gel form and not finely divided, i.e. silicon skeletons, by acidic treatment of siliceous materials

Definitions

  • the present invention relates to a catalyst carrier, an adsorbent, a deodorant, a filter aid, a light diffusion sheet, an ink jet recording sheet, cosmetics, a toner, a photosensitive material, a pigment, a solar cell substrate, a liquid crystal display, and a dye.
  • the present invention relates to a plate-like or fibrous porous silica having a wide range of uses as a material or a compounding component such as a thermal transfer sheet, a heat-resistant resin, an ultraviolet shielding agent, a gas detection element, and a filler, and a method for producing the same. ⁇ Support 1 ⁇ 4
  • the silicate-based plate-like crystal has a mythic power and is used as a component of fillers and cosmetics for various uses (see JP-A-5-262514 and JP-A-2000-247630). ).
  • many of my strengths contain a large amount of aluminum, have a small specific surface area, and have a strong crystal structure, so that a functional group necessary for imparting hydrophobicity or hydrophilicity is provided. It is difficult to introduce and the amount of oil absorption is small, so it is unavoidable that its use is limited.
  • this flaky silica has a structure in which flaky thin flakes are laminated, it is bent or twisted, is distorted, has a small specific surface area, and its use range is limited.
  • a method has been proposed in which titanium dioxide is dispersed in advance during the preparation of silica gel and the photocatalytic activity is improved by utilizing the adsorptive power of the silica gel (see Japanese Patent Application Publication No. 11-138017, JP).
  • JP Japanese Patent Application Publication No. 11-138017
  • Fine powdered silica gel is also known, but because of its high resistance to air flow, it is difficult to use as a gas adsorbent, and when it is used for water treatment, solid-liquid separation after treatment Has the disadvantage that it becomes difficult.
  • Calcium silicate is also known as a silicate-based material.
  • calcium silicate is mixed in a predetermined ratio of a raw material of silica and a raw material of lime and subjected to a hydrothermal reaction in the presence of water to form a plate.
  • the primary particles of the fiber dog are obtained as aggregates in which the primary particles are entangled three-dimensionally to form secondary particles (refer to Japanese Patent Application Laid-Open No. H8-245215, Japanese Patent Application Laid-Open No. H10-192700, Japanese Patent Application No. 10-323559, Japanese Unexamined Patent Publication No. 7-242409), and even if this aggregate is subjected to acid treatment or carbonation treatment, plate-like or fibrous calcium silicate cannot be obtained.
  • silica gel produced by treating sodium silicate with sulfuric acid to remove sodium can be used as an adsorbent to adsorb and remove proteins and polyphenols in beer suspension in the brewing process.
  • silica gel does not have a function as a filter aid and has micropores, so that the particle surface shows excellent adsorptivity, but the adsorptivity inside the particles is low.
  • the present invention provides a plate-shaped or a novel material which is suitable as an adsorbent and has excellent adsorption performance and does not cause clogging of a filter medium in a solid-liquid separation step after use.
  • the purpose of the present invention is to provide a fibrous porous silica material.
  • the present inventors have demonstrated that, by first mixing a relatively coarse particle of a caylic acid raw material and a lime raw material and performing a hydrothermal reaction in the presence of water, they exhibit excellent adsorption performance and do not cause clogging of the filter medium after use.
  • a method for obtaining a plate-like porous silica that can be easily separated into a solid and a liquid was proposed.
  • Length 5 to 50 ⁇ ( ⁇ 1, width 1 to 20 ⁇ 1, thickness 0.05 to 0.5 ⁇ 1, length to thickness aspect ratio 70 to 300, average pore diameter 1 to 20nm, total pore volume 0 "! ⁇ 1.5 ml / g, BET specific surface area 200 ⁇ 500 m 2 / g, and in X-ray diffraction spectrum (GuKa)
  • a plate-like siliceous porous body characterized in that there is no peak at a diffraction angle of 20 in the vicinity.
  • Kei acid raw material and the lime material grain diameter comprising particles of less than 10 ⁇ than 30 wt%, a molar ratio CaO / Si 0 2 when converted into Si 0 2 and CaO respectively in a ratio to become 0.6 to 5.0
  • a hydrothermal reaction is carried out in the presence of water or an aqueous solution of sodium hydroxide to prepare a plate-like calcium silicate-containing aqueous slurry.
  • an acidic substance is introduced into the slurry, and the calcium oxide in the slurry is gradually removed. Dissolving and removing to form a plate-like porous silica material, a method for producing a porous dog-like silica material, and
  • FIG. 1 is an X-ray diffraction pattern diagram of the porous silica plate (A) obtained in Example 1 and the porous silica plate (B) for comparison.
  • FIG. 2 is an X-ray diffraction pattern diagram of the plate-shaped porous silica (A) obtained in Example 4 and a plate-shaped porous silica (B) for comparison.
  • the plate-like or fibrous silica porous material of the present invention is a novel substance which has not been described in the literature. 20 angles 21 in the X-ray diffraction spectrum measured using X-rays. This is characterized by showing no such peaks, while showing 20 prominent peaks near and around 26.5 °.
  • the porous silica plate of the present invention has a length of 5 to 50 ⁇ , preferably 10 to 30 ⁇ 1, a width of 1 to 20 ⁇ , preferably 5 to 10 ⁇ , and a thickness of 0.05 to 0.5 ⁇ , preferably 0.1 to 0.3 ⁇ . The size and the ratio of length to thickness are in the range 70-300, preferably 100-250.
  • It has pores with an average pore diameter of 1-20 nm, preferably 3-10 nm, a total pore volume of 0.1-1.5 ml / g, preferably 0.3-1.0 ml / g, and a BET specific surface area It has from 200 to 500 m 2 / g, preferably from 300 to 450 m 2 / g.
  • fibrous porous silica material fiber length of 5 ⁇ 50 ⁇ ⁇ , preferably. 10 to 30Mip, fiber diameter 0.05 to 0.5 (11, and preferably a size of 0.1 ⁇ 0.3Miti, fiber length and fiber diameter
  • the plate-like or fibrous porous silica of the present invention is comparable to conventional silica gel. For example, it has an adsorption rate of 20-60% of the amount of porous body C, and an oil absorption of 200-400 ml per 100 g of the porous body.
  • such a plate-like or fibrous porous silica material can be produced as follows.
  • the molar ratio CaOZSi Oz when converted and Kei acid raw material and the lime material grain diameter comprising particles of less than 10 ⁇ ⁇ least 30 mass%, respectively Si 0 2 and CaO 0
  • a plate-like aqueous calcium silicate slurry is first formed, After the thermal reaction is continued, the slurry is converted into an aqueous slurry containing calcium calcium silicate, then an acidic substance is introduced into the slurry, and calcium oxide in the calcium calcium silicate is gradually removed. By doing so, a fibrous porous silica material can be produced.
  • plate-like calcium silicate is produced, and when this is further heated in the presence of water, the plate-like body is gradually divided to form a fibrous body.
  • the raw material of the caic acid used in the method of the present invention is not particularly limited as long as it is a material usually used as a raw material of calcium silicate.
  • a raw material of a silicate include quartz, silicate sand, amorphous silicate, finely dispersed silica filler (white carbonate), sodium feldspar, potassium feldspar, glass, pottery stone, and siliceous volcanic products ( Examples thereof include silicate-containing substances such as shirasu), fly ash, steel slag, and perlite. This They may be used alone or in combination of two or more.
  • these raw materials of the caic acid have a particle size of 10 ⁇ m (powder containing 30% by mass or more of particles having a particle size of less than 1), but the dispersibility in the slurry, hydrothermal reactivity, economical efficiency, etc.
  • the powder having an average particle diameter of 0.01 to 50 ⁇ , preferably 0.1 to 20 ⁇ is selected from the viewpoint of plate-like and fibrous formation of the dispersed calcium silicate.
  • powders such as quick lime (calcium oxide) and slaked lime (calcium hydroxide), which are used as a normal lime raw material, can be used. These may be used alone or in combination of two or more.
  • the silica raw material and lime raw material Ca0 / Si0 2 molar ratio of 0.6 to 5.0, preferably desirable and Mochiiruko in proportions such that a range of 1.0 to 4.0.
  • Ca0 / Si0 2 molar ratio less than 0.6, or the large but Kei acid strength Rushiumu than 5.0 is obtained, the remaining unreacted silica or lime a large amount, since this must be divided, it is not economical.
  • the hydrothermal reaction in the present invention is carried out by dispersing the above-mentioned raw material of silicate and lime at a predetermined ratio in water or an aqueous solution of alkali hydroxide.
  • aqueous solution of alkali metal hydroxide for example, a solution prepared by dissolving alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, or hydroxide hydroxide in water is used. .
  • alkali hydroxides may be used alone or as a mixture of two or more.
  • the concentration of the aqueous alkali solution is preferably from 0.01 to 1.0 mol / 1. If the concentration of the aqueous alkali solution is less than 0.01 mol / 1, the effect of alkali addition that changes the crystal form of the calcium silicate formed or promotes the hydrothermal reaction is not sufficiently exhibited. Further, even if it is higher than 1.0 mol / 1, no further improvement in the effect by the alkali addition is observed.
  • said the CaOZSi 0 2 molar ratio 1.8 or more, particularly 2.0 is preferably chosen in the vicinity, and if it is intended to fibrous porous silica It is preferable that the molar ratio of CaOZSiOz is selected to be 1.6 or less, especially around 1.5.
  • the hydrothermal reaction in the method of the present invention is carried out at a temperature in the range of 100 to 250 ° C. in a lab.
  • this hydrothermal reaction proceeds under autogenous pressure, the reaction may be performed by appropriately applying pressure as needed. During the reaction, stirring may be performed as necessary to increase the reaction rate.
  • the hydrothermal reaction temperature is lower than 100 ° C, the reaction rate is too slow and requires a long time, which is not practical.
  • the temperature exceeds 250 ° C the autogenous pressure becomes too high, and the pressure resistance and heat It is economically disadvantageous in energy costs.
  • the reaction time depends on the slurry concentration, the type and particle size of the raw materials, the reaction temperature, etc., and cannot be determined unconditionally, but the reaction is usually completed in about 0.5 to 24 hours.
  • the calcium silicate slurry obtained in the hydrothermal reaction is treated with an acidic substance, for example, an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or carbonic acid, formic acid, oxalic acid, acetic acid, or propion.
  • an acidic substance for example, an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or carbonic acid, formic acid, oxalic acid, acetic acid, or propion.
  • organic acids such as acids, maleic acid, lactic acid, and acidic cation exchangers.
  • salts such as ammonium nitrate can be used as the acidic substance.
  • inorganic acids such as hydrochloric acid and nitric acid have a high ionization degree and rapidly increase the pH.
  • inorganic acids such as hydrochloric acid and nitric acid have a high ionization degree and rapidly increase the pH.
  • When treating calcium silicate with hydrochloric acid, nitric acid, etc. gradually add diluted acid so that the pH does not drop sharply.
  • calcium oxide is removed without changing the form of calcium silicate.
  • the calcium silicate slurry should be at room temperature or 100, depending on the crystallinity of calcium gayate. By heating in the range of C, calcium oxide can be removed more efficiently.
  • Examples of the acid used for removing calcium oxide from calcium maleate include inorganic acids such as hydrochloric acid and nitric acid, and organic acids such as acetic acid and carbonic acid. it can.
  • a method of blowing carbon dioxide gas into a calcium silicate slurry obtained by a hydrothermal reaction is advantageous in that calcium oxide can be gradually dissolved and removed.
  • the plate-like or fibrous siliceous porous body obtained by removing calcium oxide from the ice-thermally synthesized calcium silicate is subjected to solid-liquid separation, and the dried solid is
  • the crystal form, water content, specific surface area, pore volume, and pore diameter can be arbitrarily adjusted by heating at a temperature in the range of 300 to U00 ° C, and if physical and chemical stability increases, At the same time, the filtration characteristics are improved, and the protein adsorption capacity is better than silica gel. And a plate-like and fibrous porous silica having oil absorbing ability.
  • the heat treatment temperature is lower than 300 eC , the above characteristics cannot be sufficiently changed. If the heat treatment temperature exceeds 1400 ° C, the solid content is melted and the characteristics are impaired. According to the present invention, it is possible to obtain a stable supply of a gay acid raw material and a lime raw material by simply selecting the particle size of the caiic acid raw material, which has physical properties comparable to or superior to silica gel, and has good filterability. There is provided a plate-like or fibrous porous silica which is a novel substance and is suitable as an auxiliary agent.
  • the average particle size (median size) and the particle size distribution were determined on a volume basis using a laser diffraction / scattering type particle size distribution analyzer.
  • the specific surface area, total pore volume, and average pore diameter were measured by a multipoint method for adsorbing nitrogen gas on the sample sufficiently heated and degassed at 250 ° C.
  • Gay acid content was measured using a fluorescent X-ray analyzer.
  • cytochrome C 100 ml of a 500 g / ml aqueous solution of cytochrome C adjusted to pH 4 was collected, and 0.3 g of the porous sample was placed in the container and allowed to infiltrate for 1 hour in a constant temperature incubator at 30 ° C. And filtered. The residual amount of cytochrome C in the obtained filtrate was determined by measuring the absorbance (wavelength: 410 nm) using a spectrophotometer, and the adsorption rate was calculated from the difference from the initial concentration.
  • Example 1 According to JIS K5101, measurement was performed using 1 g of a sample.
  • Example 1 According to JIS K5101, measurement was performed using 1 g of a sample.
  • Amorphous Kei acid starting material (mean particle size 17.2 ⁇ ⁇ , particles less than 10Myupaiiota 33 mass% content) and the quicklime raw materials were mixed so CaOZSi0 2 molar ratio of 2.0, relative to the starting total volume
  • a slurry was prepared by adding an aqueous NaOH solution having a concentration of 0.2 mol / 1, which was 10 times the mass ratio, and stirring. This slurry was placed in a crepe and stirred for 200 minutes. The mixture was heated at C for 8 hours to carry out a hydrothermal reaction to obtain a calcium silicate slurry. 70 this slurry.
  • Example 1 The sample obtained in Example 1 was heated in an electric furnace at 1000 ° C. for 1 hour to obtain a plate-like porous silica.
  • Table 1 shows the average size, BET specific surface area, total pore volume, and average pore diameter of the porous body, and Table 2 shows the gay acid content, transmittance, adsorption rate of cytochrome C, and oil absorption.
  • Example 3 shows the gay acid content, transmittance, adsorption rate of cytochrome C, and oil absorption.
  • Amorphous Kei acid starting material (average particle diameter 3.9Myuiotaita, particles less than Iotaomikuronmyupaiiota 71 wt% content) and the quicklime raw materials were mixed so CaOZSi0 2 molar ratio is 2, with respect to raw materials the total amount, A 0.2 mol / 1 NaOH aqueous solution (12 times by mass) was added and stirred to prepare a slurry. This slurry was placed in a storage container and heated at 200 ° C. for 8 hours with stirring to carry out a hydrothermal reaction to obtain a calcium silicate slurry.
  • the slurry was cooled to 50 ° C, gradually adjusted to pH 4 using a 0.2 mol / 1 hydrochloric acid aqueous solution, and maintained for 10 minutes.Then, the pH was lowered to 2 and maintained for 1 hour. By drying at 120 ° C., a plate-like porous silica was obtained.
  • Table 1 shows the average size, BET specific surface area, total pore volume, and average pore size of the porous body, and Table 2 shows the content of keic acid, the transmittance, the adsorption rate of cytochrome C, and the oil absorption.
  • Crystalline raw material of caic acid (average particle size 2.3 ⁇ 1, containing 83% by mass of particles less than 10 ⁇ 1) and calcined lime raw material are mixed so that the molar ratio of CaOZSiOz becomes 2.0, and the mass ratio is 12 times the total amount of raw material
  • a 0.2 mol / 1 aqueous solution of NaOH was added and stirred to prepare a slurry. This slurry was placed in a crepe and stirred for 200 minutes. The mixture was heated at C for 8 hours to carry out a hydrothermal reaction to obtain a calcium silicate slurry.
  • Amorphous gay acid material mixed (average particle Kai 3.9 ⁇ ⁇ , particles less than 10Myupaiiota 71 wt% content) of the quicklime material as CaOZSiOz molar ratio is 2.0, the raw material total amount, in weight ratio
  • a 12-fold 0.2 mol / 1 NaOH aqueous solution was added and stirred to prepare a slurry.
  • the slurry was placed in a storage container and heated at 200 ° C. for 4 hours with stirring to carry out a hydrothermal reaction to obtain a calcium silicate slurry. 50 this slurry.
  • Kei acid starting material of crystalline (average particle diameter 4.0Myuiotatau1, particles less than 10MiP 71 wt% content) and the quicklime raw materials were mixed so CaOZSi0 2 molar ratio is 1.5, the raw material total amount, the weight ratio Then, 20 times the amount of water was added and stirred to prepare a slurry. Place this slurry in a storage container and stir to 200. The mixture was heated at C for 4 hours to carry out a hydrothermal reaction to obtain a calcium silicate slurry.
  • Kei acid starting material of crystalline (average particle diameter 4. 0 ⁇ ⁇ , 1 particle 71 mass% content of less than 0Myupaiiota) and the quicklime raw materials were mixed so Ca0 / Si 0 2 molar ratio is 2.0 Then, the slurry was prepared by adding 12 times by weight of water to the entire raw material and stirring the mixture. This slurry was placed in a storage container and heated at 200 ° C. for 4 hours with stirring to carry out a hydrothermal reaction to obtain a calcium gayate slurry.
  • the slurry was cooled to 30 ° C, and carbon dioxide gas was blown into the slurry so that the internal pressure of the tokalef was 2 kg / cm 2 for 2 hours, and then 2 mol / l CD
  • the plate was treated with hydrochloric acid, washed, filtered, and dried at 120 ° C. to obtain a plate-like porous silica.
  • Table 1 shows the average size, BET specific surface area, total pore volume, and average pore diameter of this porous body
  • Table 2 shows the content of keic acid, the transmittance, the adsorption rate of tetrachrome C, and the oil absorption.
  • Tables 1 and 2 show the performance of a commercially available heat-treated diatomaceous earth filter aid (Reference Example 1) and a commercially available heat-treated beer-stabilizing silica gel (Reference Example 2).
  • the average particle size of diatomaceous earth and silica gel is shown in the section of average size (length) in Table 1.
  • the plate-like and fibrous siliceous porous bodies obtained by the present invention have a filtration property comparable to conventional filtration aids, a protein adsorption ability comparable to silica gel, and an oil absorption more than my force. Particularly, it is suitable as a filter aid for beer production or as a compounding component of cosmetics. In addition, it can also be used as a photocatalyst carrier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Cosmetics (AREA)

Abstract

A plate-like or a fiber-like silica porous body having excellent adsorbing performance, not causing the clogging of a filter medium in a solid-liquid separating process after being used as a filter aid, and suitably used as an adsorbing material. The plate-like silica porous body has a length of 5 to 50 μm, a width of 1 to 20 μm, a thickness of 0.05 to 0.5 μm, an aspect ratio of length to thickness of 70 to 300, an average pore diameter of 1 to 20 nm, a total pore volume of 0.1 to 1.5 ml/g, and a BET specific surface of 200 to 500 m2/g. The fiber-like silica porous body has a fiber length of 5 to 50 μm, a fiber diameter of 0.05 to 0.5 μm, an aspect ratio of fiber length to fiber diameter of 70 to 300, an average pore diameter of 1 to 20 nm, a total pore volume of 0.1 to 1.5 ml/s, and a BET specific surface of 300 to 800 m2/g. These porous bodies are characterized in that the peak of a diffraction angle 2θ is not present near 21° and 26.5° in X-ray diffraction spectrum.

Description

明 細 書 シリカ多孔体及びその製造方法 技術分野  Description Porous silica and method for producing the same
本発明は、 触媒担体、 吸着剤、 脱臭剤、 濾過助剤、 光拡散シー卜、 ィ ンクジェヅ 卜記録用シー ト、 化粧品、 トナー、 感光材料、 顔料、 太陽電 池用基板、 液晶表示装置、 染料熱転写シー卜、 耐熱樹脂、 紫外線遮蔽剤、 ガス検出素子、 フィラ一などの材料又は配合成分として広い範囲の用途 をもつ板状又は繊維状シリカ多孔体とその製造方法に関する。 冃 支 ¼  The present invention relates to a catalyst carrier, an adsorbent, a deodorant, a filter aid, a light diffusion sheet, an ink jet recording sheet, cosmetics, a toner, a photosensitive material, a pigment, a solar cell substrate, a liquid crystal display, and a dye. The present invention relates to a plate-like or fibrous porous silica having a wide range of uses as a material or a compounding component such as a thermal transfer sheet, a heat-resistant resin, an ultraviolet shielding agent, a gas detection element, and a filler, and a method for producing the same.冃 Support ¼
ケィ酸塩系板状結晶としてはマイ力があり、 種々の用途のフイラ一や 化粧品の成分として利用されている (日本国特開平 5— 262514号公報、 日本国特開 2000— 247630号公報参照)。 しかしながら、 マイ力には、 ァ ルミ二ゥ厶を多量に含むものが多く、 比表面積が小さく、 しかも結晶構 造が強固なために、 疎水性又は親水性を付与するのに必要な官能基を導 入することが困難であり、 吸油量も小さいことから、 用途が限定される のを免れない。  The silicate-based plate-like crystal has a mythic power and is used as a component of fillers and cosmetics for various uses (see JP-A-5-262514 and JP-A-2000-247630). ). However, many of my strengths contain a large amount of aluminum, have a small specific surface area, and have a strong crystal structure, so that a functional group necessary for imparting hydrophobicity or hydrophilicity is provided. It is difficult to introduce and the amount of oil absorption is small, so it is unavoidable that its use is limited.
他方、 水ガラスを水で希釈した溶液について電気透析を行い、 得られ たシリカゾルを水熱処理して鱗片状の低結晶性シリカを製造する方法が 知られている (特開平 11一 29317号公報参照)。 この方法は、 原料として 水ガラスを使用し、 しかもシリカゾルを得るには電気透析を行わなけれ ばならないので、 経済的に不利である上に、 シリカゾルを水熱処理して 鱗片状シリカを得る過程で析出してくる結晶性シリカがケィ肺病の原因 となるため使用範囲が著しく制限されざるを得ない。 また、 この鱗片状 シリカは鱗状の薄片が積層した構造を有するため、 曲がりや捩れを生じ、 歪んだ形になっている上、 比表面積が小さく、 利用範囲が制限される。 そのほか、 シリカゲルの調製時に、 あらかじめ二酸化チタンを分散さ せ、 シリカゲルの吸着力を利用して、 光触媒活性を向上させる方法が提 案されている (日本国特開平 11— 138017号公幸 参照)。 しかしながら、 このようにして得られるシリカゲル粒子をガス吸着に使用すると、 細孔 径が小さいため粒子内部は吸着は利用されず、 表層部分がガス分子を吸 着するだけなので、 二酸化チタンによる分解効果も表層のみに限定され、 所望の効果の効率が劣ることを免れない。 微粉末状シリカゲルも知られ ているが、 これは空気流に対する抵抗が大きいため、 ガス吸着剤として は使用しにくし、し、 またこれを水処理に使用した場合は処理後の固液分 離が困難になるという欠点がある。 On the other hand, a method is known in which a solution obtained by diluting water glass with water is subjected to electrodialysis, and the resulting silica sol is subjected to hydrothermal treatment to produce scaly low-crystalline silica (see Japanese Patent Application Laid-Open No. 11-29317). ). This method uses water glass as a raw material and requires electrodialysis in order to obtain silica sol, which is economically disadvantageous.In addition, it is precipitated in the process of hydrothermally treating silica sol to obtain flaky silica. The range of use must be severely restricted since the crystalline silica causes Ca-lung disease. In addition, since this flaky silica has a structure in which flaky thin flakes are laminated, it is bent or twisted, is distorted, has a small specific surface area, and its use range is limited. In addition, a method has been proposed in which titanium dioxide is dispersed in advance during the preparation of silica gel and the photocatalytic activity is improved by utilizing the adsorptive power of the silica gel (see Japanese Patent Application Publication No. 11-138017, JP). However, when the silica gel particles obtained in this way are used for gas adsorption, adsorption is not used inside the particles due to the small pore size, and only the surface layer adsorbs gas molecules, so the decomposition effect of titanium dioxide is also reduced. It is limited to only the surface layer, and the efficiency of the desired effect is inevitable. Fine powdered silica gel is also known, but because of its high resistance to air flow, it is difficult to use as a gas adsorbent, and when it is used for water treatment, solid-liquid separation after treatment Has the disadvantage that it becomes difficult.
さらに、 球状シリカゲルを水処理に利用する ことが知られているが、 細孔径が小さいために粒子内部は吸着に寄与しないため効率が低い上に、 水中で球状粒子が崩壊しゃすいという欠点がある。  In addition, it is known that spherical silica gel is used for water treatment, but the small pore size does not contribute to adsorption due to its small pore size, and it has low efficiency and also has the disadvantage that spherical particles collapse in water .
ケィ酸塩系材料としてケィ酸カルシウムも知られているが、 このもの は、 通常、 シリカ原料と石灰原料とを所定の割合で混合し、 水の存在下 で水熱反応させることによって、 板状又は繊維 犬の一次粒子が三次元的 に絡み合って二次粒子となった凝集体として得られるが(曰本国特開平 8 — 245215号公報、 日本国特開平 10— 192700号公報、 日本国特開平 10— 323559号公報、 日本国特開平 7 - 242409号公報参照)、 この凝集体を酸処 理又は炭酸化処理しても板状又は繊維状のケィ酸カルシウムを得ること はできない。  Calcium silicate is also known as a silicate-based material. Usually, calcium silicate is mixed in a predetermined ratio of a raw material of silica and a raw material of lime and subjected to a hydrothermal reaction in the presence of water to form a plate. Alternatively, the primary particles of the fiber dog are obtained as aggregates in which the primary particles are entangled three-dimensionally to form secondary particles (refer to Japanese Patent Application Laid-Open No. H8-245215, Japanese Patent Application Laid-Open No. H10-192700, Japanese Patent Application No. 10-323559, Japanese Unexamined Patent Publication No. 7-242409), and even if this aggregate is subjected to acid treatment or carbonation treatment, plate-like or fibrous calcium silicate cannot be obtained.
ケィ酸ナトリゥムを硫酸で処理してナ卜リゥ厶を除去することにより 製造したシリカゲルを、 醸造工程においてビール懸濁液中のタンパク質 やポリフエノールを吸着除去するための吸着剤として使用することが知 られている (日本国特開平 5— 97421号公報、 日本国特開平 7— 138013号 公報、 日本国特開平 8— 173137号公報、 日本国特開平 8— 198616号公報、 日本国特開平 9一 173045号公報参照)。 しかしながら、 このようなシリカゲルは濾過助剤としての機能がない 上に、 ミクロ細孔を有するものであるため、 粒子表面は優れた吸着性を 示すが、 粒子内部の吸着性は低い。 吸着能力を向上させる目的でシリカ ゲルを微粉砕することが考えられるが、 そのような微粉砕したシリカゲ ルは、 ビール懸濁液からタンパク質やポリフエノールを吸着除去するの に使用した後で固液分離する際、 濾材の目詰りを生じるので、 これを防 止するために濾過圧力を上昇したり、 濾過助剤の添加量を増加しなけれ ばならず、 それによつてコス ト高になったり、 また処理後の廃棄物処分 について考慮しなければならないという問題を生じた。 発明の開示 It is known that silica gel produced by treating sodium silicate with sulfuric acid to remove sodium can be used as an adsorbent to adsorb and remove proteins and polyphenols in beer suspension in the brewing process. (JP-A-5-97421, JP-A-7-138013, JP-A-8-173137, JP-A-8-198616, JP-A-91 No. 173045). However, such silica gel does not have a function as a filter aid and has micropores, so that the particle surface shows excellent adsorptivity, but the adsorptivity inside the particles is low. It is conceivable to pulverize silica gel for the purpose of improving adsorption capacity, but such pulverized silica gel is used to remove proteins and polyphenols from beer suspensions after solid-liquid separation. At the time of separation, clogging of the filter media occurs.To prevent this, it is necessary to increase the filtration pressure or increase the amount of the filter aid, thereby increasing the cost. In addition, there was a problem that waste disposal after treatment had to be considered. Disclosure of the invention
本発明は、 このような事情のもとで、 吸着性能が優れ、 しかも使用後 の固液分離工程において濾材の目詰りを生じることのない、 吸着材とし て好適な新規材料である板状又は繊維状シリカ多孔体を提供することを 目的としてなされたものである。  Under such circumstances, the present invention provides a plate-shaped or a novel material which is suitable as an adsorbent and has excellent adsorption performance and does not cause clogging of a filter medium in a solid-liquid separation step after use. The purpose of the present invention is to provide a fibrous porous silica material.
本発明者らは、 先に比較的粗い粒子のケィ酸原料と石灰原料とを混合 し、水の存在下で水熱反応させることにより、 優れた吸着性能を示し、 使用後濾材に対する目詰りなしに容易に固液分離しうる板状シリカ多孔 体を得る方法を提案した。  The present inventors have demonstrated that, by first mixing a relatively coarse particle of a caylic acid raw material and a lime raw material and performing a hydrothermal reaction in the presence of water, they exhibit excellent adsorption performance and do not cause clogging of the filter medium after use. A method for obtaining a plate-like porous silica that can be easily separated into a solid and a liquid was proposed.
しかしながら、 さらに研究を重ねた結果、 石灰原料として上記の方法 では好ましくないとされていた比較的細かい粒子のもの、 すなわち粒径 However, as a result of further research, it was found that the lime raw material had relatively small particles that were considered unfavorable in the above method,
10μΠ1未満の粒子を 30質量%ょりも多く含むケィ酸原料を用いても優れ た吸着能、 例えばチトクローム Cに対する高い吸着能力をもつ新規な板 状又は繊維状のシリカ多孔体が得られること、 このシリカ多孔体は、 前 記の比較的粗い粒子のケィ酸原料を用いた場合に比べ、 未反応原料の含 有量が著しく低いため、 比較的粗い粒子のケィ酸原料を用いた場合に必 要とされている未反応原料除去のための工程を省略しうることを見出し、 この知見に基づいて本発明をなすに至った。 すなわち、 本発明は、 Even if using a raw material containing 30% by mass of particles of less than 10μΠ1 as much as 30% by mass, it is possible to obtain a novel plate-like or fibrous silica porous material having excellent adsorption capacity, for example, high adsorption capacity for cytochrome C. This porous silica material has an extremely low content of unreacted raw material as compared with the case of using the above-described relatively coarse particles of the caic acid raw material, and thus is necessary when using the relatively coarse particles of the viscous acid raw material. It has been found that a step for removing unreacted raw materials, which is required, can be omitted, and the present invention has been made based on this finding. That is, the present invention
長さ 5〜50μ(Ι1、 幅 1〜20μΠ1、 厚さ 0. 05〜0. 5μΠ1、 長さと厚さのァスぺク 卜 比 70〜300、 平均細孔径 1〜20nm、 全細孔体積 0. "!〜 1 . 5 ml /g、 BET比表面 積 200〜500 m2/gを有し、 かつ X線回折スぺク トル(GuKa)において、 Length 5 to 50μ (Ι1, width 1 to 20μΠ1, thickness 0.05 to 0.5μΠ1, length to thickness aspect ratio 70 to 300, average pore diameter 1 to 20nm, total pore volume 0 "! ~ 1.5 ml / g, BET specific surface area 200 ~ 500 m 2 / g, and in X-ray diffraction spectrum (GuKa)
2Γ 付近及び 26. 5。 付近に回折角 20のピークが存在 しないことを特徴 とする板状シリ力多孔体、 Around 2Γ and 26.5. A plate-like siliceous porous body characterized in that there is no peak at a diffraction angle of 20 in the vicinity.
繊維長 5〜50 μΠ1、 繊維径 0.05〜0.5 μΠ1、 繊維長と繊維径とのァスぺク 卜 比 70~300、 平均細孔径 1〜20nm、 全細孔体積 0. 1〜1 . 5 ml /g、 BET比表面 積 300~800 m2/gを有し、 かつ X線回折スぺク トルにおいて、 21。 付近 及び 26.5° 付近に回折角 20のピークが存在しないこ とを特徴とする繊 維状シリカ多孔体、 Fiber length 5-50 μΠ1, fiber diameter 0.05-0.5 μΠ1, fiber-to-fiber ratio 70-300, average pore diameter 1-20 nm, total pore volume 0.1-1.5 ml / g, a BET specific surface area of 300 to 800 m 2 / g, and 21 in the X-ray diffraction spectrum. A fibrous silica porous material characterized by the absence of a peak with a diffraction angle of 20 near and around 26.5 °.
粒子径が 10μηι未満の粒子を 30質量%以上含むケィ酸原料と石灰原料と を、 それぞれ Si 02及び CaOに換算したときのモル比 CaO/Si 02が 0.6〜5.0 になる割合で混合し、 水又は水酸化アル力リ水溶液の存在下で水熱反応 を行わせて、 板状ケィ酸カルシウム含有水性スラリーを調製したのち、 これに酸性物質を導入し、 この中の酸化カルシウムを徐々に溶解除去し、 板状シリカ多孔体を形成させることを特徴とする板犬シリカ多孔体の製 造方法、 及び And Kei acid raw material and the lime material grain diameter comprising particles of less than 10μηι than 30 wt%, a molar ratio CaO / Si 0 2 when converted into Si 0 2 and CaO respectively in a ratio to become 0.6 to 5.0 Then, a hydrothermal reaction is carried out in the presence of water or an aqueous solution of sodium hydroxide to prepare a plate-like calcium silicate-containing aqueous slurry. Then, an acidic substance is introduced into the slurry, and the calcium oxide in the slurry is gradually removed. Dissolving and removing to form a plate-like porous silica material, a method for producing a porous dog-like silica material, and
粒子径が 10μπι未満の粒子を 30質量%以上含むゲイ酸原料と石灰原料と を、 それぞれ Si 02及び CaOに換算したときのモル比 CaO/Si 02が 0 · 6〜5 · 0 になる割合で混合し、 水又は水酸化アル力リ水溶液の存在下で水熱反応 を行わせて、 まず板状ゲイ酸カルシウム含有水性スラリ一を生成させ、 さらに水熱反応を継続して繊維状ケィ酸カルシウム含有水性スラリーへ と転換させたのち、 これに酸性物質を導入し、 この中の酸化カルシウム を徐々に溶解除去して、 繊維状シリカ多孔体を形成させることを特徴と する繊維状シリカ多孔体の製造方法 Molar ratio CaO / Si 0 2 0 · 6-5 · 0 when the particle diameter is a gay acid raw material and lime material comprising particles of less than 10 μ πι least 30 mass%, in terms of Si 0 2 and CaO, respectively And a hydrothermal reaction is performed in the presence of water or an aqueous solution of aluminum hydroxide.First, an aqueous slurry containing plate-like calcium geate is formed. After converting into a calcium silicate-containing aqueous slurry, an acidic substance is introduced into the slurry, and calcium oxide therein is gradually dissolved and removed to form a fibrous silica porous material. Method for producing porous silica
を提供する。 図面の簡単な説明 I will provide a. Brief Description of Drawings
図 1 は、 実施例 1で得られた板状シリカ多孔体(A)と比較のための板 状シリカ多孔体(B)の X線回折パターン図である。  FIG. 1 is an X-ray diffraction pattern diagram of the porous silica plate (A) obtained in Example 1 and the porous silica plate (B) for comparison.
図 2は、 実施例 4で得られた板状シリ力多孔体(A)と比較のための板 状シリカ多孔体(B)の X線回折パターン図である。 発明を実施するための最良の形態  FIG. 2 is an X-ray diffraction pattern diagram of the plate-shaped porous silica (A) obtained in Example 4 and a plate-shaped porous silica (B) for comparison. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の板状又は繊維状シリカ多孔体は、 文献未載の新規物質であつ て、 前記の比較的大きい粒径の粒子からなるケィ酸原料を用いて得られ る板状シリカ多孔体が CuKcx線を用いて測定した X線回折スぺク 卜ルに おいて 20角度 21。 付近及び 26.5° 付近に顕著な 20ピークを示すのに対 し、 このものはこのようなピークを全く示さないことで特徴付けられる。 本発明の板状シリカ多孔体は、 長さが 5〜50μπι、 好ましくは 10〜30μΐί1、 幅が 1〜20μπι、 好ましくは 5~10μΐη、 厚さが 0.05〜0.5μπι、 好ましくは 0.1〜0.3μπιのサイズであり、 長さと厚さのァスぺク 卜比が 70〜300、 好 ましくは 100〜250の範囲にある。 このものは平均細孔径 1〜20nm、 好ま しくは 3〜10nmの細孔を有し、 全細孔体積は 0.1〜1.5 ml/g、 好ましくは 0.3〜1.0 ml/gであり、 かつ BET比表面積 200〜500 m2/g、 好ましくは 300 〜450 m2/gを有している。 The plate-like or fibrous silica porous material of the present invention is a novel substance which has not been described in the literature. 20 angles 21 in the X-ray diffraction spectrum measured using X-rays. This is characterized by showing no such peaks, while showing 20 prominent peaks near and around 26.5 °. The porous silica plate of the present invention has a length of 5 to 50 μπι, preferably 10 to 30 μΐί1, a width of 1 to 20 μπι, preferably 5 to 10 μπη, and a thickness of 0.05 to 0.5 μπι, preferably 0.1 to 0.3 μπι. The size and the ratio of length to thickness are in the range 70-300, preferably 100-250. It has pores with an average pore diameter of 1-20 nm, preferably 3-10 nm, a total pore volume of 0.1-1.5 ml / g, preferably 0.3-1.0 ml / g, and a BET specific surface area It has from 200 to 500 m 2 / g, preferably from 300 to 450 m 2 / g.
—方、 繊維状シリカ多孔体は、 繊維長が 5~50μπι、 好ましくは 10〜 30μΐπ、 繊維径が0.05〜0.5 (11、 好ましくは 0.1〜0.3μΐτιのサイズであり、 繊維長と繊維径のァスぺク 卜比が 70〜300、 好ましくは 100〜250の範囲 にある。 また、 このものは平均細孔径 1〜20nm、 好ましくは 3〜10nmの細 孔を有し、 全細孔体積は 0.1~1.5 ml/g、 好ましくは 0,3〜1.Oml/gであ り、 かつ BET比表面積 300〜800 m2/g、 好ましくは 450〜550 m2/gを有し ている。 - How, fibrous porous silica material, fiber length of 5 ~ 50 μ πι, preferably. 10 to 30Mip, fiber diameter 0.05 to 0.5 (11, and preferably a size of 0.1~0.3Miti, fiber length and fiber diameter Has an average pore diameter of 1 to 20 nm, preferably 3 to 10 nm, and a total pore volume of 70 to 300, preferably 100 to 250. Has a BET specific surface area of 300 to 800 m 2 / g, preferably 450 to 550 m 2 / g, preferably 0.1 to 1.5 ml / g, preferably 0.3 to 1.0 ml / g.
本発明の板状又は繊維状シリカ多孔体は、 従来のシリカゲルに匹敵す る優れた吸着性能を有し、 例えばチ卜クロ一厶 Cの吸着率は、 多孔体量 の 20〜60%、 吸油量は多孔体 100g当り 200〜400mlである。 The plate-like or fibrous porous silica of the present invention is comparable to conventional silica gel. For example, it has an adsorption rate of 20-60% of the amount of porous body C, and an oil absorption of 200-400 ml per 100 g of the porous body.
このような板状又は繊維状シリカ多孔体は、 本発明方法によれば、 以 下のようにして製造することができる。  According to the method of the present invention, such a plate-like or fibrous porous silica material can be produced as follows.
すなわち、 板状シリカの場合は、 粒子径が Ι Ομιη未満の粒子を 30質 量%以上含むゲイ酸原料と石灰原料とを、 それぞれ Si 02及び CaOに換算 したときのモル比 CaOZSi Oが 0. 6〜5.0になる割合で混合し、 水又は水 酸化アル力リ水溶液の存在下で水熱反応を行わせて、 板状ケィ酸カルシ ゥム含有水性スラリーを調製したのち、 該スラリーに酸性物質を導入し、 ケィ酸カルシウム中の酸化カルシウムを徐々に溶解除去することによつ て、 板状シリ力多孔体を製造することができる。 繊維:! シリ力多孔体の 場合は、 粒子径が 10μηι未満の粒子を 30質量%以上含むケィ酸原料と石 灰原料とを、 それぞれ Si 02及び CaOに換算したときのモル比 CaOZSi Ozが 0. 6〜5. 0になる割合で混合し、 水又は水酸化アル力リ 7k溶液の存在下で 水熱反応を行わせると、 まず板状ケィ酸カルシウム含有水性スラリーが 生成するが、 さらに水熱反応を継続することで、 繊維伏ケィ酸カルシゥ 厶含有水性スラリ—へと転換させたのち、 該スラリーに酸性物質を導入 し、 ケィ酸カルシゥ厶中の酸化カルシゥ厶を徐々に溶角军除去することに よって、 繊維状シリカ多孔体を製造することができる。 That is, in the case of plate-like silica, and a gay acid raw material and lime material comprising a particle size Ι the Ομιη particles of less than 30 mass% or more, the molar ratio CaOZSi O when converted into Si 0 2 and CaO respectively 0 6 to 5.0, and a hydrothermal reaction is carried out in the presence of water or an aqueous solution of hydroxide hydroxide to prepare an aqueous slurry containing plate calcium silicate. By introducing the substance and gradually dissolving and removing the calcium oxide in the calcium silicate, a plate-like siliceous porous material can be produced. fiber:! For silica force porous body, the molar ratio CaOZSi Oz when converted and Kei acid raw material and the lime material grain diameter comprising particles of less than 10 μ ηι least 30 mass%, respectively Si 0 2 and CaO 0 When mixed at a ratio of 6 to 5.0 and subjected to a hydrothermal reaction in the presence of water or a 7k solution of alkaline hydroxide, a plate-like aqueous calcium silicate slurry is first formed, After the thermal reaction is continued, the slurry is converted into an aqueous slurry containing calcium calcium silicate, then an acidic substance is introduced into the slurry, and calcium oxide in the calcium calcium silicate is gradually removed. By doing so, a fibrous porous silica material can be produced.
このように、 本発明方法においては、 先ず板状ケィ酸カルシウムを生 成するが、 さらにこれを水の存在下で加熱すると、 この板状体が次第に 分割して繊維状体が形成される。  As described above, in the method of the present invention, first, plate-like calcium silicate is produced, and when this is further heated in the presence of water, the plate-like body is gradually divided to form a fibrous body.
本発明方法において用いられるケィ酸原料としては、 通常ケィ酸カル シゥ厶の原料として用いられているものであればよく、 特に制限はない。 このようなケィ酸原料としては、 例えば石英、 ケィ砂、 非晶質ケィ酸、 微細分散シリカフイラ一(ホワイ トカ一ボン)、 ナトリウム長石、 カリ長 石、 ガラス、 陶石、 シリカ質火山噴出物(シラス)、 フライアッシュ、 製 鉄スラグ、 パーライ 卜などのケィ酸含有物質を挙げることができる。 こ れらは単独で用いてもよいし、 2種類以上を組み合わせて用いてもよし、。 これらのケィ酸原料は、 粒径 10μ(Ι1未満の粒子を 30質量%以上含む粉 未状であることが必要であるが、 スラリー中の分散性、 水熱反応性、 経 済性など、 特に分散したケィ酸カルシウムの板状化及び繊維状化の面か ら、 平均粒子径 0.01〜50μΐπ、 好ましくは 0.1〜20μπιの範囲の粉末が選ば れ 。 The raw material of the caic acid used in the method of the present invention is not particularly limited as long as it is a material usually used as a raw material of calcium silicate. Examples of such a raw material of a silicate include quartz, silicate sand, amorphous silicate, finely dispersed silica filler (white carbonate), sodium feldspar, potassium feldspar, glass, pottery stone, and siliceous volcanic products ( Examples thereof include silicate-containing substances such as shirasu), fly ash, steel slag, and perlite. This They may be used alone or in combination of two or more. It is necessary that these raw materials of the caic acid have a particle size of 10 μm (powder containing 30% by mass or more of particles having a particle size of less than 1), but the dispersibility in the slurry, hydrothermal reactivity, economical efficiency, etc. The powder having an average particle diameter of 0.01 to 50 μππ, preferably 0.1 to 20 μπι is selected from the viewpoint of plate-like and fibrous formation of the dispersed calcium silicate.
次に、 このケィ酸原料と併用される石灰原料としては、 通常の石灰原 料として用いられるもの、 例えば生石灰 (酸化カルシウム)、 消石灰 (水酸化カルシウム) などの粉未を用いることができる。 これらは単独 で用いてもよいし、 2種類以上を組み合わせて用いてもよい。  Next, as the lime raw material to be used in combination with the caic acid raw material, powders such as quick lime (calcium oxide) and slaked lime (calcium hydroxide), which are used as a normal lime raw material, can be used. These may be used alone or in combination of two or more.
本発明方法において、 前記シリカ原料と石灰原料は、 Ca0/Si02モル 比が0.6〜5.0、 好ましくは 1.0〜4.0の範囲になるような割合で用いるこ とが望ましい。 Ca0/Si02モル比 0.6未満、 又は 5.0より大でもケィ酸力 ルシゥムは得られるが、 未反応シリカ又は石灰が多量に残り、 これを除 去しなければならないため、 経済的でない。 In the process of the present invention, the silica raw material and lime raw material, Ca0 / Si0 2 molar ratio of 0.6 to 5.0, preferably desirable and Mochiiruko in proportions such that a range of 1.0 to 4.0. Ca0 / Si0 2 molar ratio less than 0.6, or the large but Kei acid strength Rushiumu than 5.0 is obtained, the remaining unreacted silica or lime a large amount, since this must be divided, it is not economical.
本発明における水熱反応は、 上記のケィ酸原料と石灰原料とを所定の 割合で水又は水酸化アル力リ水溶液中に分散させて行う。 この際の水酸 化アル力リ水溶液としては、 例えば水酸化リチウム、 水酸化ナ卜リゥム、 水酸化力リゥムのようなアル力リ金属水酸化物を水に溶解して調製した 溶液が用いられる。 これらのアルカリ水酸化物は、 単独で用いてもよい し、 2種類以上の混合物として用いてもよい。  The hydrothermal reaction in the present invention is carried out by dispersing the above-mentioned raw material of silicate and lime at a predetermined ratio in water or an aqueous solution of alkali hydroxide. As the aqueous solution of alkali metal hydroxide, for example, a solution prepared by dissolving alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, or hydroxide hydroxide in water is used. . These alkali hydroxides may be used alone or as a mixture of two or more.
この場合のアルカリ水溶液の濃度は、 0.01〜1.0 mol/1が好ましい。 アルカリ水溶液の濃度が 0.01 mol/1未満では、 生成するケィ酸カルシゥ ムの結晶形態を変化させたり、 水熱反応を促進させるアルカリ添加効果 が十分に発揮されない。 また、 1.0 mol/1より高く しても、 アルカリ添 加による効果のそれ以上の向上は認められない。  In this case, the concentration of the aqueous alkali solution is preferably from 0.01 to 1.0 mol / 1. If the concentration of the aqueous alkali solution is less than 0.01 mol / 1, the effect of alkali addition that changes the crystal form of the calcium silicate formed or promotes the hydrothermal reaction is not sufficiently exhibited. Further, even if it is higher than 1.0 mol / 1, no further improvement in the effect by the alkali addition is observed.
シリ力原料と石灰原料の、 水又は水酸化アル力リ氷溶液スラリ一中に おける含量については特に制限はないが、 水熱反応性及び体積効率など を考慮すると、 ケィ酸原料と石灰原料との合計量に対し、 水性媒体を 2 〜30倍質量の割合で含むスラリ一が好ましい。 There are no particular restrictions on the content of the raw materials for sili and lime in the water or ice hydroxide slurry, but the hydrothermal reactivity, volumetric efficiency, etc. In consideration of the above, a slurry containing an aqueous medium at a ratio of 2 to 30 times the mass of the total amount of the raw material of silicate and lime is preferable.
板状シリカ多孔体を目的とする場合は、 前記した CaOZSi 02モル比を 1 . 8以上、 特には 2 . 0付近に選ぶことが好ましく、 また繊維状シリカ多孔 体を目的とする場合には、 CaOZSi Ozモル比を 1 . 6以下、 特には 1 . 5付近 に選ぶのが好ましい。 When intended for plate-shaped porous silica body, said the CaOZSi 0 2 molar ratio 1.8 or more, particularly 2.0 is preferably chosen in the vicinity, and if it is intended to fibrous porous silica It is preferable that the molar ratio of CaOZSiOz is selected to be 1.6 or less, especially around 1.5.
しかしながら、 CaOZSi 02モル比を 1 . 6よりも大きく しても、 スラリ一 固形分含量を小さくすることにより、 繊維状シリカ多孔体が生成しやす くなるし、 Ca0/Si 02モル比を 1 . 8よりも小さく してもスラリ一の固形分 含量を大きくすることにより板状シリカ多孔体が生成しやすくなるので、 これらの条件を適宜調整することにより板状シリカ多孔体と繊維状シリ 力多孔体の生成条件を制御することができる。 However, even if greater than one. 6. CaOZSi 0 2 molar ratio, by reducing the slurry one solids content, the fibrous porous silica body is produced ease Kunar, the Ca0 / Si 0 2 molar ratio Even if it is smaller than 1.8, a plate-like porous silica can be easily formed by increasing the solid content of the slurry. Therefore, by appropriately adjusting these conditions, the plate-like porous silica and the fibrous silica are adjusted. It is possible to control the conditions for forming the porous material.
次に、 本発明方法における水熱反応は、 才一 トクレーブ中において、 100〜250°Cの範囲の温度で実施される。 この水熱反応は自生圧力下で進 行するが、 必要に応じ適当に加圧して反応を行ってもよい。 また、 反応 中は反応速度を増大させるために、 必要に応じて撹拌を行ってもよい。 水熱反応温度が 100°Cよりも低いときは反応速度が遅すぎて長時間を 要し、 実用的でなく、 また 250°Cを超えると自生圧力が高くなりすぎ、 装置の耐圧性及び熱エネルギーコス 卜において経済的に不利になる。 反 応時間は、 スラリー濃度、 原料の種類や粒度、 反応温度などに左右され、 一概に定めることはできないが、 通常は 0 . 5〜24時間程度で反応が完了 する。  Next, the hydrothermal reaction in the method of the present invention is carried out at a temperature in the range of 100 to 250 ° C. in a lab. Although this hydrothermal reaction proceeds under autogenous pressure, the reaction may be performed by appropriately applying pressure as needed. During the reaction, stirring may be performed as necessary to increase the reaction rate. When the hydrothermal reaction temperature is lower than 100 ° C, the reaction rate is too slow and requires a long time, which is not practical.When the temperature exceeds 250 ° C, the autogenous pressure becomes too high, and the pressure resistance and heat It is economically disadvantageous in energy costs. The reaction time depends on the slurry concentration, the type and particle size of the raw materials, the reaction temperature, etc., and cannot be determined unconditionally, but the reaction is usually completed in about 0.5 to 24 hours.
水熱反応に続く酸処理は、 水熱反応で得られたケィ酸カルシウムスラ リーに酸性物質、 例えば塩酸、 硫酸、 硝酸、 リン酸、 炭酸のような無機 酸ゃギ酸、 シユウ酸、 酢酸、 プロピオン酸、 マレイン酸、 乳酸、 酸性陽 イオン交換剤のような有機酸を導入することによって行われる。 この場 合、 硝酸アンモニゥ厶のような塩類も酸性物質として使用できる。  In the acid treatment following the hydrothermal reaction, the calcium silicate slurry obtained in the hydrothermal reaction is treated with an acidic substance, for example, an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or carbonic acid, formic acid, oxalic acid, acetic acid, or propion. This is done by introducing organic acids such as acids, maleic acid, lactic acid, and acidic cation exchangers. In this case, salts such as ammonium nitrate can be used as the acidic substance.
この場合、 塩酸、 硝酸などの無機酸は、 電離度が大きく、 急激に pHを 降下させるので、 塩酸、 硝酸などでケィ酸カルシウムを処理する場合、 pHが急激に降下しないように希釈した酸を徐々に添加する。 このように すれば、 ケィ酸カルシウムの形態を変化させることなく、 酸化カルシゥ 厶が除去される。 なお、 ゲイ酸カルシウムの結晶性にもよるが、 ケィ酸 カルシウムスラリ一を室温ないし 100。Cの範囲で加熱することによって、 より効率的に酸化カルシウムを除去する ことができる。 In this case, inorganic acids such as hydrochloric acid and nitric acid have a high ionization degree and rapidly increase the pH. When treating calcium silicate with hydrochloric acid, nitric acid, etc., gradually add diluted acid so that the pH does not drop sharply. In this way, calcium oxide is removed without changing the form of calcium silicate. The calcium silicate slurry should be at room temperature or 100, depending on the crystallinity of calcium gayate. By heating in the range of C, calcium oxide can be removed more efficiently.
これに対し、 電離度が小さい酢酸、 炭酸などの場合、 高濃度の酸で直 接ケィ酸カルシウムを処理しても、 酸化カルシウムの除去も徐々に進行 し、 ケィ酸カルシゥ厶の形態が維持された板状及び繊維状シリ力多孔体 となる。 また、 ケィ酸カルシウムスラリ 一を室温ないし 100。Cの範囲で 加熱すると電離度が大きくなり、 酸化力ルシゥムの除去が促進される。 なお、 炭酸で処理したケィ酸カルシウムは、 板状及び繊維状シリカ多 孔体と水に難溶性の炭酸カルシゥムが得られるため、 炭酸力ルシゥ厶を 塩酸などで溶解除去する必要がある。 この酸処理に必要な時間は、 ゲイ 酸カルシウムの結晶化度、 使用する酸の種類、 濃度、 処理条件などによ り左右されるが、 通常は 1〜120分間の範囲である。  On the other hand, in the case of acetic acid or carbonic acid with a low ionization degree, even if calcium silicate is directly treated with a high concentration of acid, the removal of calcium oxide gradually progresses, and the form of calcium silicate is maintained. It becomes a plate-like and fibrous porous material. The calcium silicate slurry should be at room temperature to 100. Heating in the range of C increases the degree of ionization and promotes the removal of oxidizing calcium. In addition, calcium carbonate treated with carbonic acid provides calcium carbonate which is poorly soluble in water and in the form of plate-like and fibrous silica porous materials. Therefore, it is necessary to dissolve and remove calcium carbonate with hydrochloric acid or the like. The time required for the acid treatment depends on the crystallinity of calcium gayate, the type and concentration of the acid used, the treatment conditions, and the like, but is usually in the range of 1 to 120 minutes.
ゲイ酸カルシウムから酸化カルシウムを除去するために用いる酸とし ては、 例えば塩酸、 硝酸などの無機酸、 酢酸、 炭酸などの有機酸を挙げ ることができるが、 酸性陽イオン交換剤も用いることができる。  Examples of the acid used for removing calcium oxide from calcium maleate include inorganic acids such as hydrochloric acid and nitric acid, and organic acids such as acetic acid and carbonic acid. it can.
この酸処理としては、 水熱反応により得られるケィ酸カルシウムスラ リーに、 二酸化炭素ガスを吹き込む方法が、 酸化カルシウムを徐々に溶 解除去しうる点で有利である。  As the acid treatment, a method of blowing carbon dioxide gas into a calcium silicate slurry obtained by a hydrothermal reaction is advantageous in that calcium oxide can be gradually dissolved and removed.
次に、 本発明方法においては、 前記の氷熱合成したケィ酸カルシウム から酸化カルシウムを除去して得られた板状又は繊維状シリ力多孔体を 固液分離後、 乾燥処理した固形分を、 所望により 300〜U00°Cの範囲の 温度で加熱処理することにより、 結晶形態、 含水率、 比表面積、 細孔容 積、 細孔径を任意に調整でき、 物理的及び化学的安定性が増大すると同 時に、 濾過特性も改善され、 シリカゲルより優れたタンパク質の吸着能 や吸油能を有する板状及び繊維状シリカ多孔体が得られる。 Next, in the method of the present invention, the plate-like or fibrous siliceous porous body obtained by removing calcium oxide from the ice-thermally synthesized calcium silicate is subjected to solid-liquid separation, and the dried solid is If desired, the crystal form, water content, specific surface area, pore volume, and pore diameter can be arbitrarily adjusted by heating at a temperature in the range of 300 to U00 ° C, and if physical and chemical stability increases, At the same time, the filtration characteristics are improved, and the protein adsorption capacity is better than silica gel. And a plate-like and fibrous porous silica having oil absorbing ability.
上記の熱処理温度が 300eC未満では、 上記の特性を十分に変化させる ことができず、 1400°Cを超えると固形分が溶融して特性が損なわれる。 本発明によれば、 単にケィ酸原料の粒度を選ぶだけで、 安定供給の可 能なゲイ酸原料及び石灰原料から、 シリカゲルに匹敵あるいはそれより も優れた物性をもち、 かつ濾過性のよい濾過助剤として好適な、 新規物 質である板状又は繊維状シリカ多孔体が提供される。 If the heat treatment temperature is lower than 300 eC , the above characteristics cannot be sufficiently changed. If the heat treatment temperature exceeds 1400 ° C, the solid content is melted and the characteristics are impaired. According to the present invention, it is possible to obtain a stable supply of a gay acid raw material and a lime raw material by simply selecting the particle size of the caiic acid raw material, which has physical properties comparable to or superior to silica gel, and has good filterability. There is provided a plate-like or fibrous porous silica which is a novel substance and is suitable as an auxiliary agent.
以上本発明の課題を解決するための手段について一般的な説明を記述 したが、 次に実施例により本発明を実施するための最良の形態を説明す る。 なお、 各例中の物性は以下の方法によって測定した結果である。  The general description of the means for solving the problems of the present invention has been described above. Next, the best mode for carrying out the present invention will be described with reference to examples. The physical properties in each example are the results measured by the following methods.
( 1 ) シリカ原料の平均粒子径と粒度分布 (1) Average particle size and particle size distribution of silica raw material
レーザー回折■散乱式粒度分布測定装置を用い、 体積基準で平均粒子 径 (メジアン径) 及び粒度分布を求めた。  The average particle size (median size) and the particle size distribution were determined on a volume basis using a laser diffraction / scattering type particle size distribution analyzer.
( 2 ) 寸法測定  (2) Dimension measurement
走査型電子顕微鏡(SEM )を用い、 約 30個の寸法測定を行い、 得られた 数値から平均寸法を算出した。  Using a scanning electron microscope (SEM), about 30 dimensions were measured, and the average dimension was calculated from the obtained values.
( 3 ) 比表面積など  (3) Specific surface area, etc.
BET比表面積、 全細^ ^体積及び平均細孔径  BET specific surface area, total fine ^ ^ volume and average pore size
BET比表面積測定装置を用い、 250°Cで十分に加熱脱気した試料につい て、 窒素ガスを吸着させる多点法による比表面積、 全細孔体積及び平均 細孔径の測定を行った。  Using a BET specific surface area measuring device, the specific surface area, total pore volume, and average pore diameter were measured by a multipoint method for adsorbing nitrogen gas on the sample sufficiently heated and degassed at 250 ° C.
( 4 ) ケィ酸含有率  (4) Caic acid content
ゲイ酸含有率は、 蛍光 X線分析装置を用いて測定した。  Gay acid content was measured using a fluorescent X-ray analyzer.
( 5 ) 透過率 ( darcy )  (5) Transmittance (darcy)
濾過面積 9 . 6cm2の円柱状加圧濾過器を用い、 濾過板の上に約 3cmのケ 一ク層を形成させ、 次にケ一ク層を崩さないように 200mlの水を注ぎ込 み、 0 . 5 kg/cm2で加圧し、 濾液の採取量から透過率 (darcy ) を求めた ( 6 ) チトクロ一ム Cの吸着率 Using a 9.6 cm 2 columnar pressure filter, form a cake layer of about 3 cm on the filter plate, and then pour 200 ml of water so as not to disturb the cake layer. , 0.5 kg / cm 2 , and the transmittance (darcy) was determined from the amount of filtrate collected. (6) Adsorption rate of cytochrome C
pHを 4に調整した 500 g/mlのチ卜クローム C水溶液を 100ml採取し、 これに試料多孔体 0.3gを投入して 30°Cの恒温ィンキュベータ一で 1時間 浸透させた後、 5Cの濾紙を用いて濾過した。 得られた濾液中のチ卜クロ —ム Cの残量を、 分光光度計を用いた吸光度 (波長 410nm) 測定によつ て求め、 初期濃度との差から吸着率を算出した。  100 ml of a 500 g / ml aqueous solution of cytochrome C adjusted to pH 4 was collected, and 0.3 g of the porous sample was placed in the container and allowed to infiltrate for 1 hour in a constant temperature incubator at 30 ° C. And filtered. The residual amount of cytochrome C in the obtained filtrate was determined by measuring the absorbance (wavelength: 410 nm) using a spectrophotometer, and the adsorption rate was calculated from the difference from the initial concentration.
( 7 ) 吸油量  (7) Oil absorption
JIS K5101に従い、 試料 1gを使用して測定した。 実施例 1  According to JIS K5101, measurement was performed using 1 g of a sample. Example 1
非晶質のケィ酸原料 (平均粒子径 17.2μπι、 10μπι未満の粒子を 33質 量%含有) と生石灰原料とを、 CaOZSi02モル比が 2.0になるように混合 し、 原料全量に対して、 質量比で 10倍の 0.2 mol/1濃度の NaOH水溶液を 加えてかきまぜ、 スラリ一を調製した。 このスラリーを才一 卜クレープ 中に入れ、 撹拌しながら 200。Cで 8時間加熱して水熱反応を行い、 ケィ酸 カルシウムスラリーを得た。 このスラリーを 70。Cまで冷却して、 0.2 mol/1の NaOH水溶液の中和及びケィ酸力ルシゥム中の酸化カルシウムを 除去するのに必要な高濃度の酢酸 (濃度 99.7%) を添加し、 60分間撹拌 しながら同温度に保持した後、 洗浄濾過し、 120。Cで乾燥処理すること により、 板状シリカ多孔体を得た。 この多孔体の平均寸法、 BET比表面 積、 全細孔体積及び平均細孔径を表 1 に、 ケィ酸含有率、 透過率、 チト クローム Cの吸着率及び吸油量を表 2に示す。 この多孔体の X線回折パ ターンを図 1 に Aとして示す。 J=匕較のために、 ケィ酸原料として平均粒 子径 70μιで、 10μΐϊΐ又はそれより も粗い粒子を 97質量%含むケィ酸原料 を用いて調製した板状シリ力多孑し体の X線回折パターンを Βとして図 1 に示した。 実施例 2 Amorphous Kei acid starting material (mean particle size 17.2 μ πι, particles less than 10Myupaiiota 33 mass% content) and the quicklime raw materials were mixed so CaOZSi0 2 molar ratio of 2.0, relative to the starting total volume A slurry was prepared by adding an aqueous NaOH solution having a concentration of 0.2 mol / 1, which was 10 times the mass ratio, and stirring. This slurry was placed in a crepe and stirred for 200 minutes. The mixture was heated at C for 8 hours to carry out a hydrothermal reaction to obtain a calcium silicate slurry. 70 this slurry. Cool to C, add the high concentration of acetic acid (concentration 99.7%) necessary to neutralize 0.2 mol / 1 NaOH aqueous solution and remove calcium oxide in the silicate solution, and stir for 60 minutes. After maintaining at the same temperature, the mixture was washed and filtered. By carrying out a drying treatment with C, a plate-like porous silica material was obtained. Table 1 shows the average size, BET specific surface area, total pore volume, and average pore diameter of the porous body, and Table 2 shows the content, transmittance, cytochrome C adsorption rate, and oil absorption of cytochrome C. The X-ray diffraction pattern of this porous body is shown as A in Fig. 1. J = For X-ray comparison, X-rays of a plate-shaped silica gel prepared using a caicic acid raw material having an average particle diameter of 70 μιη and containing 10 μm or 97% by mass of coarser particles as a raw material for caicic acid. Figure 1 shows the diffraction pattern as Β. Example 2
実施例 1で得られた試料を、 電気炉中で 1000°Cで 1時間加熱処理し、 板状シリカ多孔体を得た。 この多孔体の平均寸法、 BET比表面積、 全細 孔体積及び平均細孔径を表 1 に、 ゲイ酸含有率、 透過率、 チ卜クローム Cの吸着率及び吸油量を表 2に示す。 実施例 3  The sample obtained in Example 1 was heated in an electric furnace at 1000 ° C. for 1 hour to obtain a plate-like porous silica. Table 1 shows the average size, BET specific surface area, total pore volume, and average pore diameter of the porous body, and Table 2 shows the gay acid content, transmittance, adsorption rate of cytochrome C, and oil absorption. Example 3
非晶質のケィ酸原料 (平均粒子径 3.9μιη、 ΙΟμπι未満の粒子を 71質量% 含有) と生石灰原料とを、 CaOZSi02モル比が 2になるように混合し、 原 料全量に対して、 質量比で 12倍の 0.2 mol/1の NaOH水溶液を加えてかき まぜ、 スラリ一を調製した。 このスラリーを才一トクレーブ中に入れ、 撹拌しながら 200°Cで 8時間加熱して水熱反応を行い、 ケィ酸カルシウム スラリーを得た。 このスラリーを 50°Cまで冷却し、 0.2 mol/1の塩酸水 溶液を用い、 徐々に pH 4に調整して 10分間保持し、 さらに pHを 2に下げ て 1時間保持した後、 洗浄濾過し、 120°Cで乾燥処理することにより、 板 状シリカ多孔体を得た。 この多孔体の平均寸法、 BET比表面積、 全細孔 体積及び平均細孔怪を表 1 に、 ケィ酸含有率、 透過率、 チ卜クローム C の吸着率及び吸油量を表 2に示す。 実施例 4 Amorphous Kei acid starting material (average particle diameter 3.9Myuiotaita, particles less than Iotaomikuronmyupaiiota 71 wt% content) and the quicklime raw materials were mixed so CaOZSi0 2 molar ratio is 2, with respect to raw materials the total amount, A 0.2 mol / 1 NaOH aqueous solution (12 times by mass) was added and stirred to prepare a slurry. This slurry was placed in a storage container and heated at 200 ° C. for 8 hours with stirring to carry out a hydrothermal reaction to obtain a calcium silicate slurry. The slurry was cooled to 50 ° C, gradually adjusted to pH 4 using a 0.2 mol / 1 hydrochloric acid aqueous solution, and maintained for 10 minutes.Then, the pH was lowered to 2 and maintained for 1 hour. By drying at 120 ° C., a plate-like porous silica was obtained. Table 1 shows the average size, BET specific surface area, total pore volume, and average pore size of the porous body, and Table 2 shows the content of keic acid, the transmittance, the adsorption rate of cytochrome C, and the oil absorption. Example 4
結晶質のケィ酸原料 (平均粒子径 2.3μΠ1、 10μΐί1未満の粒子を 83質量% 含有) と生石灰原料を CaOZSiOzモル比が 2.0になるように混合し、 原料 全量に対して、 質量比で 12倍の 0.2 mol/1の NaOH水溶液を加えてかきま ぜ、 スラリ一を調製した。 このスラリーを才一トクレープ中に入れ、 撹 拌しながら 200。Cで 8時間加熱して水熱反応を行い、 ケィ酸カルシウムス ラリ—を得た。 このスラリ一を 70°Cまで冷却して、 0.2 mol/1の NaOH水 溶液の中和及びケィ酸カルシウム中の酸化カルシゥムを除去するのに必 要な高濃度の酢酸 (濃度 99.7%) を添加し、 60分間撹拌しながら同温度 に保持した後、 洗浄濾過して 120°Cで乾燥処理することにより、 板状シ リカ多孔体を得た。 この多孔体の平均寸法、 BET比表面積、 全細孔体積 及び平均細孔径を表 1 に、 ゲイ酸含有率、 透過率、 チ卜クローム Cの吸 着率及び吸油量を表 2に示す。 この多孔体の X線回折パターンを図 2に Aとして示す。 なお、 比較のために、 ケィ酸原料として平均粒子径 150μΙΏで、 10μΐη又はそれよりも粗い粒子を 98質量%含む結晶質シリカ原 料を用いて調製した板状シリカ多孔体の X線回折パターンを Βとして図 2に示した。 実施例 5 Crystalline raw material of caic acid (average particle size 2.3μΠ1, containing 83% by mass of particles less than 10μΐί1) and calcined lime raw material are mixed so that the molar ratio of CaOZSiOz becomes 2.0, and the mass ratio is 12 times the total amount of raw material A 0.2 mol / 1 aqueous solution of NaOH was added and stirred to prepare a slurry. This slurry was placed in a crepe and stirred for 200 minutes. The mixture was heated at C for 8 hours to carry out a hydrothermal reaction to obtain a calcium silicate slurry. The slurry was cooled to 70 ° C, and high-concentration acetic acid (concentration 99.7%) necessary to neutralize 0.2 mol / 1 NaOH aqueous solution and remove calcium oxide in calcium silicate was added. At the same temperature while stirring for 60 minutes. After washing, filtration and drying at 120 ° C., a plate-like porous silica was obtained. Table 1 shows the average size, BET specific surface area, total pore volume, and average pore diameter of this porous body, and Table 2 shows the gay acid content, the transmittance, the absorption rate of cytochrome C, and the oil absorption. The X-ray diffraction pattern of this porous body is shown as A in FIG. For comparison, the X-ray diffraction pattern of a plate-like porous silica prepared using a crystalline silica raw material containing an average particle diameter of 150 μΙΏ and 10 μΐη or 98% by mass of coarser particles as a raw material of a caic acid was used for comparison. Β is shown in Fig. 2. Example 5
非晶質のゲイ酸原料 (平均粒子怪 3.9μπι、 10μπι未満の粒子を 71質量% 含有) と生石灰原料を CaOZSiOzモル比が 2.0になるように混合し、 原料 全量に対して、 質量比で 12倍の 0.2 mol/1の NaOH水溶液を加えてかきま ぜ、 スラリ一を調製した。 このスラリーを才一 トクレーブ中に入れ、 撹 拌しながら 200°Cで 4時間加熱して水熱反応を行い、 ケィ酸カルシウムス ラリーを得た。 このスラリーを 50。Cまで冷却し、 0.2 mol /1の塩酸水溶 液を用い、 徐々に pHを 4に調整して 10分間保持し、 さらに pHを 2に下げて 1時間保持した後、 洗浄濾過して 120°Cで乾燥処理することにより、 板状 シリカ多孔体を得た。 この多孔体の平均寸法、 BET比表面積、 全細孔体 積及び平均細孔径を表 1 に、 ケィ酸含有率、 透過率、 チ卜クローム Cの 吸着率及び吸油量を表 2に示す。 実施例 6 Amorphous gay acid material mixed (average particle Kai 3.9 μ πι, particles less than 10Myupaiiota 71 wt% content) of the quicklime material as CaOZSiOz molar ratio is 2.0, the raw material total amount, in weight ratio A 12-fold 0.2 mol / 1 NaOH aqueous solution was added and stirred to prepare a slurry. The slurry was placed in a storage container and heated at 200 ° C. for 4 hours with stirring to carry out a hydrothermal reaction to obtain a calcium silicate slurry. 50 this slurry. Cool down to C, gradually adjust the pH to 4 using 0.2 mol / 1 hydrochloric acid aqueous solution, hold for 10 minutes, further lower the pH to 2, hold for 1 hour, wash and filter to 120 ° C By drying in the above, a plate-like porous silica material was obtained. Table 1 shows the average size, BET specific surface area, total pore volume, and average pore diameter of this porous body, and Table 2 shows the content of keic acid, transmittance, adsorption rate of cytochrome C, and oil absorption. Example 6
結晶質のケィ酸原料 (平均粒子径 4.0μΙΤ1、 10μίΠ未満の粒子を 71質量% 含有) と生石灰原料とを、 CaOZSi02モル比が 1.5になるように混合し、 原料全量に対して、 質量比で 20倍の水を加えてかきまぜ、 スラリーを調 製した。 このスラリーを才一トクレーブ中に入れ、 撹拌しながら 200。C で 4時間加熱して水熱反応を行い、 ケィ酸カルシウムスラリ一を得た。 このスラリーを 70°Cまで冷却して、 0. 2 mol /1の NaOH水溶液の中和及び ケィ酸カルシウム中の酸化カルシウムを除去するのに必要な高濃度の酢 酸 (濃度 99 . 7% ) を添加し、 60分間撹拌しながら同温度に保持した後、 洗浄濾過して 1 20°Cで乾燥処理することにより、 繊維状シリカ多孔体を 得た。 この多孔体の平均寸法、 BET比表面積、 全細孔体積及び平均細孔 径を表 1に、 ゲイ酸含有率、 透過率、 チトクローム Cの吸着率及び吸油 量を表 2に承す。 実施例 7 Kei acid starting material of crystalline (average particle diameter 4.0Myuiotatau1, particles less than 10MiP 71 wt% content) and the quicklime raw materials were mixed so CaOZSi0 2 molar ratio is 1.5, the raw material total amount, the weight ratio Then, 20 times the amount of water was added and stirred to prepare a slurry. Place this slurry in a storage container and stir to 200. The mixture was heated at C for 4 hours to carry out a hydrothermal reaction to obtain a calcium silicate slurry. This slurry is cooled to 70 ° C, and the high concentration of acetic acid (concentration 99.7%) required to neutralize 0.2 mol / 1 NaOH aqueous solution and to remove calcium oxide in calcium silicate Was added, and the mixture was maintained at the same temperature with stirring for 60 minutes, washed, filtered, and dried at 120 ° C. to obtain a fibrous porous silica material. Table 1 shows the average size, BET specific surface area, total pore volume, and average pore diameter of this porous body, and Table 2 shows the gay acid content, transmittance, adsorption rate of cytochrome C, and oil absorption. Example 7
結晶質のケィ酸原料 (平均粒子径 4. 0μηι、 1 0μπι未満の粒子を 71質量% 含有) と生石灰原料とを、 Ca0/Si 02モル比が 2 . 0になるように混合し、 原料全量に文ォして、 質量比で 1 2倍の水を加えてかきまぜ、 スラリーを調 製した。 このスラリーを才一 トクレーブ中に入れ、 撹拌しながら 200°C で 4時間加熱 して水熱反応を行い、 ゲイ酸カルシウムスラリ一を得た。 このスラリーを 30°Cまで冷却し、 このスラリーに、 二酸化炭素ガスを才 — トクレ—フ'の内圧が 2 kg/cm2になるように調整して 2時間吹き込んだ 後、 2 mol /l CD塩酸で処理し、 洗浄濾過して 120°Cで乾燥処理することに より、 板状シリカ多孔体を得た。 この多孔体の平均寸法、 BET比表面積、 全細孔体積及び平均細孔径を表 1 に、 ケィ酸含有率、 透過率、 チ卜クロ ー厶 Cの吸着率及び吸油量を表 2に示す。 参考例 1、 2 Kei acid starting material of crystalline (average particle diameter 4. 0 μ ηι, 1 particle 71 mass% content of less than 0Myupaiiota) and the quicklime raw materials were mixed so Ca0 / Si 0 2 molar ratio is 2.0 Then, the slurry was prepared by adding 12 times by weight of water to the entire raw material and stirring the mixture. This slurry was placed in a storage container and heated at 200 ° C. for 4 hours with stirring to carry out a hydrothermal reaction to obtain a calcium gayate slurry. The slurry was cooled to 30 ° C, and carbon dioxide gas was blown into the slurry so that the internal pressure of the tokalef was 2 kg / cm 2 for 2 hours, and then 2 mol / l CD The plate was treated with hydrochloric acid, washed, filtered, and dried at 120 ° C. to obtain a plate-like porous silica. Table 1 shows the average size, BET specific surface area, total pore volume, and average pore diameter of this porous body, and Table 2 shows the content of keic acid, the transmittance, the adsorption rate of tetrachrome C, and the oil absorption. Reference Examples 1 and 2
市販の加熱処理されたケイソゥ土系濾過助剤 (参考例 1 ) 及び市販の 加熱処理されたビールの安定化処理用シリカゲル (参考例 2 ) の性能を 表 1及び表 2 に示す。 表 1の平均寸法 (長さ) の項にケイソゥ土及びシ リカゲルの平均粒子径を表示する。 表 1 Tables 1 and 2 show the performance of a commercially available heat-treated diatomaceous earth filter aid (Reference Example 1) and a commercially available heat-treated beer-stabilizing silica gel (Reference Example 2). The average particle size of diatomaceous earth and silica gel is shown in the section of average size (length) in Table 1. table 1
Figure imgf000016_0001
表 2 ケィ酸含有率 透過率 チ卜クローム Cの 吸油量
Figure imgf000016_0001
Table 2 Caic acid content Permeability Oil absorption of cytochrome C
(質量%) (Darcy) 吸着率(%/0.3g) (ml/100g) 実施例 1 98.2 0.74 28.0 320 実施例 2 98.8 1.12 48.4 260 実施例 3 97.4 0.47 33.8 270 実施例 4 98.4 1.04 53.6 240 実施例 5 98.7 0.44 22.0 300 実施例 6 98.4 0.27 39.4 370 実施例 7 98.5 0.53 29.6 230 参考例 1 - 0.29 - 180 参考例 2 - 0.21 11.8 200 産業上の利用可能性 (% By mass) (Darcy) Adsorption rate (% / 0.3g) (ml / 100g) Example 1 98.2 0.74 28.0 320 Example 2 98.8 1.12 48.4 260 Example 3 97.4 0.47 33.8 270 Example 4 98.4 1.04 53.6 240 Example 5 98.7 0.44 22.0 300 Example 6 98.4 0.27 39.4 370 Example 7 98.5 0.53 29.6 230 Reference example 1-0.29-180 Reference example 2-0.21 11.8 200 Industrial applicability
本発明により得られる板状及び繊維状シリ力多孔体は、 従来の濾過助 に匹敵する濾過特性と、 シリカゲルに匹敵するタンパク吸着能を有し、 さらにマイ力以上の吸油量を有するもので、 特にビール製造用の濾過助 斉 ϋや化粧品の配合成分として好適である。 また、 そのほか光触媒担持体 としても用いることができる。  The plate-like and fibrous siliceous porous bodies obtained by the present invention have a filtration property comparable to conventional filtration aids, a protein adsorption ability comparable to silica gel, and an oil absorption more than my force. Particularly, it is suitable as a filter aid for beer production or as a compounding component of cosmetics. In addition, it can also be used as a photocatalyst carrier.

Claims

1 . 長さ 5〜50μπι、 幅 1〜20μπι、 厚さ 0.05〜0.5μΐϊΐ、 長さと厚さのァス ぺク 卜比 70〜300、 平均細孔怪 1〜20nm、 全細孔体積 0.1~1.5 ml/g、 BET 比表面積 200~500 m2/gを有し、 かつ X線回折スぺク トルにおいて、 21° 付近及び 26.5。 付近に回折角 20のピークが存在しないことを特徴 とする板状シリカ多孔体。 1.Length 5 ~ 50μπι, width 1 ~ 20μπι, thickness 0.05 ~ 0.5μΐϊΐ, length-thickness ratio 70 ~ 300, average pore size 1 ~ 20nm, total pore volume 0.1 ~ 1.5 ml / g, BET specific surface area 200-500 m 2 / g, and around 21 ° and 26.5 in X-ray diffraction spectrum. A plate-like porous silica material characterized by having no peak at a diffraction angle of 20 in the vicinity.
二口-凊  Two mouth- 凊
2. 繊維長 5〜50μΐη、 繊維径0.05〜0.5 1!1、 繊維長と繊維径とのァス の 2. Fiber length 5 ~ 50μΐη, fiber diameter 0.05 ~ 0.5 1! 1, fiber length and fiber diameter
ぺク ト比 70〜300、 平均細孔径 1〜20nm、 全細孔体積 0.1〜1.5 ml/g、 BET 比表面積 300〜800 m2/gを有し、 かつ X線回折スぺク トルにおいて、 21° 付近及び 26.5。 付近に回折角 20のピー囲クが存在しないことを特徴 とする繊維状シリカ多孔体。 It has a power ratio of 70 to 300, an average pore diameter of 1 to 20 nm, a total pore volume of 0.1 to 1.5 ml / g, a BET specific surface area of 300 to 800 m 2 / g, and in the X-ray diffraction spectrum, Around 21 ° and 26.5. A fibrous porous silica material characterized by the absence of a peak having a diffraction angle of 20 in the vicinity.
3. 粒子径が 10μπι未満の粒子を 30質量%以上含むケィ酸原料と石灰 原料とを、 それぞれ Si02及び CaOに換算したときのモル比 Ca0/Si02が 0.6〜5.0になる割合で混合し、 水又は水酸化アル力リ水溶液の存在下で 水熱反応を行わせて、 板状ケィ酸カルシウム含有水性スラリ一を調製し たのち、 該スラリーに酸性物質を導入し、 ケィ酸カルシウム中の酸化力 ルシゥ厶を溶解除去することを特徴とする板状シリカ多孔体の製造方法。 3. a Kei acid raw material and the lime material grain diameter comprising particles of less than 10μπι least 30 mass%, the molar ratio Ca0 / Si0 2 when converted into each Si0 2 and CaO are mixed at a ratio to be 0.6 to 5.0 Then, a hydrothermal reaction is performed in the presence of water or an aqueous solution of sodium hydroxide to prepare a plate-shaped calcium silicate-containing aqueous slurry. Then, an acidic substance is introduced into the slurry, A process for producing a plate-like porous silica, comprising dissolving and removing oxidizing power.
4 · 粒子径が 10μΐη未満の粒子を 30質量%以上含むケィ酸原料と石灰 原料とを、 それぞれ Si 02及び CaOに換算したときのモル比 CaO/SiOzが 0.6〜5.0になる割合で混合し、 水又は水酸化アル力リ水溶液の存在下で 水熱反応を行わせて、 まず板状ケィ酸カルシウム含有水性スラリーを生 成させ、 さらに水熱反応を継続して繊維状ケィ酸カルシウム含有水性ス ラリーに転換させたのち、 該スラリーに酸性物質を導入し、 ケィ酸カル シゥム中の酸化カルシウムを溶解除去することを特徴とする繊維状シリ 力多孔体の製造方法。 4 and particle size and Kei acid raw material and lime material comprising particles of less than 10μΐη than 30 wt%, a molar ratio CaO / SiO z when converted into Si 0 2 and CaO respectively in a ratio to become 0.6 to 5.0 First, a hydrothermal reaction is performed in the presence of water or an aqueous solution of alkali hydroxide to produce a plate-like aqueous calcium silicate slurry, and the hydrothermal reaction is further continued to produce an aqueous fibrous calcium silicate-containing aqueous slurry. After converting into slurry, an acidic substance is introduced into the slurry, and calcium oxide in calcium silicate is dissolved and removed. A method for producing a porous material.
5 . ケィ酸カルシウム除去後のシリカ多孔体を水性スラリ一から分離 し、 乾燥し、 さらに 300〜1400。Cの温度で加熱処理する請求の範囲第 3 項記載の板状シリカ多孔体の製造方法。 5. Separate the porous silica from the aqueous slurry after removing the calcium silicate, dry, and further 300-1400. 4. The method for producing a plate-like porous silica according to claim 3, wherein the heat treatment is performed at a temperature of C.
6 . ケィ酸カルシウム除去後のシリカ多孔体を水性スラリ一から分離 し、 乾燥し、 さらに 300〜1400。Cの温度で加熱処理する請求の範囲第 4 項記載の繊維状シリカ多孔体の製造方法。 6. Separate the porous silica from the aqueous slurry from which the calcium silicate has been removed, dry, and further 300-1400. 5. The method for producing a fibrous porous silica according to claim 4, wherein the heat treatment is performed at a temperature of C.
7 . ケィ酸原料が、 石英、 ケィ砂、 非晶質ケィ酸、 微細分散シリカフ イラ一 (ホワイ 卜力一ボン)、 長石、 陶石、 ガラス、 シリカ質火山噴出 物 (シラス)、 フライアッシュ、 製鉄スラグ及びパ一ライ 卜からなる群 から選ばれる請求の範囲第 3項記載の板状シリカ多孔体の製造方法。 7. The raw material of quartz acid is quartz, sand, amorphous caic acid, finely dispersed silica filler (white lime), feldspar, pottery stone, glass, siliceous volcanic products (silas), fly ash, 4. The method for producing a plate-like porous silica according to claim 3, wherein the method is selected from the group consisting of ironmaking slag and pearlite.
8 . ケィ酸原料が、 石英、 ケィ砂、 非晶質ケィ酸、 微細分散シリカフ イラ一 (ホワイ 卜力一ボン)、 長石、 陶石、 ガラス、 シリカ質火山噴出 物 (シラス)、 フライアッシュ、 製鉄スラグ及びパ一ライ 卜からなる群 から選ばれる請求の範囲第 4項記載の繊維状シリカ多孔体の製造方法。 8. The raw material of quartz acid is quartz, sand, amorphous caic acid, finely dispersed silica fiber (white lime), feldspar, pottery stone, glass, siliceous volcanic products (silas), fly ash, 5. The method for producing a fibrous porous silica material according to claim 4, wherein the method is selected from the group consisting of ironmaking slag and pearlite.
9 . 石灰原料が生石灰及び消石灰から選ばれる請求の範囲第 3項に記 載の板状シリ力多孔体の製造方法。 9. The method for producing a plate-shaped porous silicon body according to claim 3, wherein the lime raw material is selected from quicklime and slaked lime.
10 . 石灰原料が生石灰及び消石灰から選ばれる請求の範囲第 4項に記 載の繊維状シリカ多孔体の製造方法。 10. The method for producing a fibrous porous silica according to claim 4, wherein the lime raw material is selected from quicklime and slaked lime.
1 1 . 酸性物質が無機酸である請求の範囲第 3項に記載の板状シリカ多 孔体の製造方法。 11. The method for producing a plate-like porous silica according to claim 3, wherein the acidic substance is an inorganic acid.
12 . 酸性物質が無機酸である請求の範囲第 4項に記載の繊維状シリ力 多孔体の製造方法。 12. The method for producing a fibrous siliceous porous material according to claim 4, wherein the acidic substance is an inorganic acid.
13 . 無機酸が塩酸、 硫酸、 硝酸、 炭酸及びリン酸からなる群から選ば れる請求の範囲第 1 1項記載の板状シリカ多孔体の製造方法。 13. The method for producing a plate-like porous silica according to claim 11, wherein the inorganic acid is selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, and phosphoric acid.
14. 無機酸が塩酸、 硫酸、 硝酸、 炭酸及びリン酸からなる群から選ばれ る請求の範囲第 12項記載の繊維状シリカ多孔体の製造方法。 14. The method for producing a fibrous porous silica according to claim 12, wherein the inorganic acid is selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, carbonic acid and phosphoric acid.
15 . 酸性物質が有機酸である請求の範囲第 3項に記載の板状シリカ多 孔体の製造方法。 15. The method for producing a plate-like silica porous material according to claim 3, wherein the acidic substance is an organic acid.
16 . 酸性物質が有機酸である請求の範囲第 4項に記載の繊維状シリ力 多孔体の製造方法。 16. The method for producing a fibrous siliceous porous material according to claim 4, wherein the acidic substance is an organic acid.
17 . 有機酸が、 ギ酸、 酢酸、 シユウ酸、 プロピオン酸、 マレイン酸、 乳酸及び酸性陽イオン交換剤からなる群から選ばれる請求の範囲第 1 5項 に記載の板状シリカ多孔体の製造方法。 17. The method for producing a plate-like porous silica according to claim 15, wherein the organic acid is selected from the group consisting of formic acid, acetic acid, oxalic acid, propionic acid, maleic acid, lactic acid, and an acidic cation exchange agent. .
18. 有機酸が、 ギ酸、 酢酸、 シユウ酸、 プロピオン酸、 マレイン酸、 乳酸及び酸性陽イオン交換剤からなる群から選ばれる請求の範囲第 1 6項 に記載の繊維状シリカ多孔体の製造方法。 18. The method for producing a fibrous porous silica according to claim 16, wherein the organic acid is selected from the group consisting of formic acid, acetic acid, oxalic acid, propionic acid, maleic acid, lactic acid and an acidic cation exchange agent. .
19 . 酸性物質がガス状二酸化炭素である請求の範囲第 3項に記載の板 状シリカ多孔体の製造方法。 19. The method for producing a plate-like porous silica according to claim 3, wherein the acidic substance is gaseous carbon dioxide.
20 . 酸性物質がガス状二酸化炭素である請求の範囲第 4項に記載の繊 維状シリ力多孔体の製造方法。 20. The method for producing a fibrous siliceous porous material according to claim 4, wherein the acidic substance is gaseous carbon dioxide.
PCT/JP2004/004701 2003-12-16 2004-03-31 Silica porous body and method of manufacturing the same WO2005058757A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003418740A JP2005179086A (en) 2003-12-16 2003-12-16 Planar silica porous body, fibrous silica porous body and their manufacturing method
JP2003-418740 2003-12-16

Publications (1)

Publication Number Publication Date
WO2005058757A1 true WO2005058757A1 (en) 2005-06-30

Family

ID=34697145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004701 WO2005058757A1 (en) 2003-12-16 2004-03-31 Silica porous body and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2005179086A (en)
WO (1) WO2005058757A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923722A (en) * 2012-11-22 2013-02-13 株洲兴隆化工实业有限公司 Preparation method for white carbon black
CN112919482A (en) * 2021-02-25 2021-06-08 广西大学 Preparation method of porous silicon dioxide with high specific surface area

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613348B2 (en) * 2005-03-31 2011-01-19 独立行政法人産業技術総合研究所 Method for producing thin plate-like porous silica
US20070017195A1 (en) * 2005-07-21 2007-01-25 Withiam Michael C Air filtration media comprising metal-doped precipitated silica materials
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water
GB201803983D0 (en) 2017-09-13 2018-04-25 Unifrax I Llc Materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192700A (en) * 1997-01-10 1998-07-28 Agency Of Ind Science & Technol Production of acid-resistant filter aid
JPH10323559A (en) * 1997-05-26 1998-12-08 Agency Of Ind Science & Technol Production of acid resistant siliceous filter assistant
JP2000034118A (en) * 1998-07-15 2000-02-02 Agency Of Ind Science & Technol Production of high-purity amorphous silicic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192700A (en) * 1997-01-10 1998-07-28 Agency Of Ind Science & Technol Production of acid-resistant filter aid
JPH10323559A (en) * 1997-05-26 1998-12-08 Agency Of Ind Science & Technol Production of acid resistant siliceous filter assistant
JP2000034118A (en) * 1998-07-15 2000-02-02 Agency Of Ind Science & Technol Production of high-purity amorphous silicic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923722A (en) * 2012-11-22 2013-02-13 株洲兴隆化工实业有限公司 Preparation method for white carbon black
CN112919482A (en) * 2021-02-25 2021-06-08 广西大学 Preparation method of porous silicon dioxide with high specific surface area
CN112919482B (en) * 2021-02-25 2023-09-08 广西大学 Preparation method of porous silica with high specific surface area

Also Published As

Publication number Publication date
JP2005179086A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP1106574B1 (en) Scaly silica particles and hardenable composition containing them
US20190270067A1 (en) Composite filter aids and methods of using composite filter aids
Agarwal et al. Adsorption of tannic acid from aqueous solution onto chitosan/NaOH/fly ash composites: equilibrium, kinetics, thermodynamics and modeling
Yuan et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag
WO2001064585A1 (en) Silica-calcium carbonate composite particle
JP2001163613A (en) Flaky silica particle, curable composition, hardened body formed therefrom and manufacturing method thereof
JPWO2010026975A1 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
CN105050677A (en) Diatomaceous earth filter aid containing a law crystalline silica content
JP4613348B2 (en) Method for producing thin plate-like porous silica
US8580226B2 (en) Synthesis of sodium titanate and ion exchange use thereof
Alizadeh Arasi et al. Extraction of nano‐porous silica from hydrosodalite produced via modification of low‐grade kaolin for removal of methylene blue from wastewater
WO2005058757A1 (en) Silica porous body and method of manufacturing the same
Niu et al. Unrolling the tubes of halloysite to form dickite and its application in heavy metal ions removal
Shah et al. Green approach towards the synthesis of MCM-41 from siliceous sugar industry waste
Siahpoosh et al. Synthesis of γ-Alumina nanoparticles with high-surface-area via Sol-Gel method and their performance for the removal of Nickel from aqueous solution
JP2007204293A (en) Porous particle and method for producing the same
JP4096055B2 (en) Plate-like calcium silicate and method for producing the same, plate-like silica porous material obtained from plate-like calcium silicate and method for producing the same
JP6023554B2 (en) Method for producing scaly silica particles
JP4512689B2 (en) Hydroxyapatite-coated silica porous material and method for producing the same
JP4729725B2 (en) Silica-based highly active adsorbent material and method for producing the same
JP2001226657A (en) Adhesive containing scaly silica particle and method of producing adhesion structural body
JP4421343B2 (en) Method for producing silica-calcium carbonate composite particles
Nijpanich et al. Floating Adsorbent for Organic Removal Fabricated Through Crystallization of Silicalite-1 on Hollow Glass Microspheres
Rusmili et al. Rapid synthesis and characterization of nanosodalite synthesized using rice husk ash
Turhan et al. Adsorption of methylene blue on imine modified sepiolite from aqueous solutions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase