WO2005058756A1 - Device for producing endohedral fullerene and method for procuring endohedral fullerene - Google Patents

Device for producing endohedral fullerene and method for procuring endohedral fullerene Download PDF

Info

Publication number
WO2005058756A1
WO2005058756A1 PCT/JP2004/018934 JP2004018934W WO2005058756A1 WO 2005058756 A1 WO2005058756 A1 WO 2005058756A1 JP 2004018934 W JP2004018934 W JP 2004018934W WO 2005058756 A1 WO2005058756 A1 WO 2005058756A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
deposition
substrate
endohedral
producing
Prior art date
Application number
PCT/JP2004/018934
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Kasama
Kenji Omote
Noriaki Takahashi
Yoshimi Endoh
Original Assignee
Ideal Star Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Star Inc. filed Critical Ideal Star Inc.
Publication of WO2005058756A1 publication Critical patent/WO2005058756A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0898Hot plasma

Definitions

  • the present invention relates to an internal fullerene producing apparatus for introducing fullerene into a plasma flow of atoms to be included in a vacuum vessel and depositing the internal fullerene on a deposition substrate disposed downstream of the plasma flow,
  • the present invention relates to an endohedral fullerene manufacturing apparatus provided with a multiloader capable of exchanging deposition substrates in a vacuum vessel.
  • Non-Patent Document 1 Plasma 'Journal of the Fusion Society of Japan, Vol.75, No.8, 1999, 8 p.927— 933
  • Encapsulated fullerenes are used in electronic and medical applications in which spherical carbon molecules such as C, C, C, C, C, and C, which are known as fullerenes, include atoms to be included such as alkali metals. It is a material that is expected to be applied.
  • spherical carbon molecules such as C, C, C, C, C, C, and C
  • fullerenes include atoms to be included such as alkali metals. It is a material that is expected to be applied.
  • plasma is generated by injecting metal vapor onto a hot plate heated in a vacuum chamber, and then the generated metal plasma stream is injected with fullerene vapor and placed downstream of the plasma stream.
  • a method for depositing an endohedral fullerene on a deposited substrate is known.
  • a conventional apparatus for producing fullerenes includes a main chamber 101, a unit for forming a plasma flow of atoms to be included, and a unit for introducing fullerenes into the plasma flow. And a deposition substrate 115 disposed downstream of the plasma flow.
  • the means for forming the alkali metal plasma flow includes a hot plate 107, an alkali metal evaporation oven 108, and an alkali metal introduction tube 109.
  • a hot plate 107 an alkali metal evaporation oven 108
  • an alkali metal introduction tube 109 When the alkali metal vapor generated in the evaporating oven 108 is sprayed onto the hot plate 107 from the alkali metal introduction tube 109, plasma consisting of alkali metal ions and electrons is generated by contact ionization.
  • the means for introducing fullerenes is a fullerene sublimation oven 110 and a sublimation circle. And a tube 111.
  • fullerene vapor such as C sublimated from the fullerene sublimation oven 110 is jetted into the plasma flow, electrons constituting the plasma flow adhere to C having a high electron affinity to generate C negative ions.
  • sodium is used as the alkali metal
  • the plasma flow becomes a plasma flow in which alkali metal ions, fullerene ions, and residual electrons are mixed.
  • Non-Patent Document 1 When the deposition substrate 115 is arranged downstream of such a plasma flow and a positive bias voltage is applied to the deposition substrate 115, the alkali metal ions having a small mass are decelerated, and the fullerene ions having a large mass are accelerated. As a result, the interaction between the alkali metal ion and the fullerene ion is increased, and the encapsulation is likely to occur. Further, the bias voltage can be controlled by the noise voltage control device 118 to improve the inclusion rate. (Non-Patent Document 1)
  • FIGS. 7 (a) to 7 (f) are cross-sectional views illustrating a procedure for loading and unloading a deposition substrate using a conventional endohedral fullerene manufacturing apparatus.
  • the main chamber 121 is connected to a load lock chamber 123 via a gate valve 122.
  • the main chamber 121 and the load lock chamber 123 are evacuated by vacuum pumps 124 and 125, respectively.
  • the gate valve 122 is opened, and the deposition substrate 128 is introduced into the main chamber 121 (FIG. 7C).
  • the gate valve 122 is closed, plasma 130 is generated, and the endohedral fullerene film is deposited on the deposition substrate 128 (FIG. 7 (d)).
  • the plasma 130 is stopped, the gate vane lever 122 is opened, and the deposition substrate 128 is moved to the load lock chamber 123 (FIG. 7 (e)).
  • the gate valve 122 is closed, the evacuation of the load lock chamber 123 is stopped, and the load lock chamber 123 is purged with nitrogen gas. Then, the gate valve 127 is opened and the deposition substrate 128 is exposed to air. And perform work such as replacing the board (Fig. 7 (f)).
  • FIG. 4A is a diagram showing the ion density distribution in the radial direction when no bias voltage is applied to the deposition substrate.
  • the Na ion density has a peak at the center of the plasma flow, and the ion density becomes lower toward the periphery.
  • the density of fullerene ions has a peak on the circumference outside the center of the plasma flow.
  • alkali metals are likely to be included in one fullerene molecule depends on the types of fullerene and alkali metal, production conditions, and the like. For example, in the case of Na-containing C, there is a high probability that one C molecular force contains Na atoms. In this case, the portion of the deposition substrate where the density of the alkali metal ion and the fullerene ion do not match each other does not contribute to the generation of endohedral fullerene, and the number of ions increases, which lowers the generation efficiency of the endohedral fullerene. Become. In addition, even when two or more atoms are included in one fullerene, the generation efficiency will still be low unless the ion density distribution is appropriate for the number of included atoms.
  • a deposition substrate divided into a plurality of plates along the radial direction of the plasma flow as shown in FIG. 4 (c) is used, and each plate is controlled independently.
  • Methods for applying possible bias voltages are known.
  • FIG. 4C shows an example in which the deposition substrate is divided into three divided plates 43, 44, and 45.
  • the bias voltage applied to the split plate is controlled as shown in Fig. 4 (d).
  • Fig. 4 (d) For example, when the split plates 44 and 45 are set to the floating potential (the same potential as the plasma) and a bias voltage of +1 V is applied to the central plate 43 with respect to the floating potential, as shown in FIG.
  • the distribution of Na ions as ions spreads outside the plasma flow, and the distribution of C ions as negative ions changes to a shape with a peak at the center of the plasma flow, which can improve the efficiency of generating endohedral fullerenes .
  • the shape of the deposition substrate a shape divided into three plates is not always optimal.
  • the substrate is divided into two, as shown in Fig. 4 (e), or into five, as shown in Fig. 4 (f).
  • a substrate other than the three-divided substrate can perform superior deposition of fullerenes.
  • grid electrodes are provided on the front surface of the plate, and a bias voltage different from that of the plate is applied, for example, to control the ion velocity in the plasma, It is also possible to improve the efficiency of the generation.
  • deposition substrates of various shapes are required depending on the type of endohedral fullerene, structural factors of a manufacturing apparatus, and the like. In addition, it is necessary to perform a deposition experiment in which deposition conditions are changed.
  • a disk-shaped member called a pallet on which a plurality of deposition substrates can be mounted is arranged in a housing.
  • the chiller is connected to the vacuum chamber of the endohedral fullerene manufacturing equipment via a gate valve, and the pallet is rotated in the evacuated housing to change the deposition substrate, thereby continuously depositing the endohedral fullerene film on a plurality of substrates. Decided to do.
  • a nitrogen purge box was placed at the position where the substrate was taken out of the multiloader. Furthermore, in order to minimize the contamination of the vacuum chamber by the plasma and the raw material of the plasma, a shielding member is arranged in the multiloader and a shielding shutter is arranged in the main chamber.
  • FIG. 1 (a) and (b) are cross-sectional views of a multiloader according to the endohedral fullerene manufacturing apparatus of the present invention.
  • FIG. 2 (a) is a side view of a multiloader according to the present invention
  • FIG. 2 (b) is a front view of the multiloader according to the present invention.
  • FIG. 3 is a cross-sectional view according to a first embodiment of the endohedral fullerene manufacturing apparatus of the present invention.
  • FIG. 4_1 (a) and (b) are diagrams showing a radial ion density distribution in a plasma flow.
  • FIG. 4_2] (e) to (h) are diagrams for explaining another embodiment of the deposition substrate.
  • FIG. 5_1 (a), (c), and (e) are cross-sectional views for explaining a loading / unloading procedure of a deposition substrate using the endohedral fullerene manufacturing apparatus of the present invention.
  • (D) and (f) are (a), (c),
  • FIG. 5-2 (g), (i), and (k) are cross-sectional views for explaining a loading / unloading procedure of a deposition substrate using the endohedral fullerene manufacturing apparatus of the present invention. ), (J) and (1) are front views of pallets corresponding to (g), (i) and (k), respectively.
  • FIG. 6 is a cross-sectional view of a conventional endohedral fullerene manufacturing apparatus.
  • FIG. 7_l (a), (b), and (c) are cross-sectional views illustrating a loading / unloading procedure using a conventional endohedral fullerene manufacturing apparatus.
  • FIG. 7_2 (d), (e), and (f) are cross-sectional views for explaining a loading / unloading procedure using a conventional endohedral fullerene manufacturing apparatus.
  • FIG. 8 is a cross-sectional view according to a second embodiment of the endohedral fullerene manufacturing apparatus of the present invention.
  • FIG. 10 (a), (b), (c) are diagrams for explaining a shielding member for preventing contamination of an apparatus for producing an endohedral fullerene according to the present invention.
  • FIG. 11 is a cross-sectional view according to a third embodiment of the endohedral fullerene manufacturing apparatus of the present invention.
  • FIG. 3 is a cross-sectional view according to a first embodiment of the endohedral fullerene manufacturing apparatus of the present invention.
  • a multiloader 22 is connected to a main chamber 21 via a gate vanoleb 23.
  • Means for forming a plasma flow of an alkali metal such as Na as an encapsulating atom is constituted by a hot plate 27, an alkali metal evaporation oven 28, and an alkali metal introduction pipe 29.
  • the alkali metal vapor generated in the evaporating oven 28 is jetted from the alkali metal introduction pipe 29 onto the hot plate 27, plasma consisting of alkali metal ions and electrons is generated by contact ionization.
  • the means for introducing fullerenes includes a fullerene sublimation oven 30 and a sublimation cylinder 31.
  • fullerene vapor such as C sublimated from the fullerene sublimation oven 30 is jetted into the plasma flow, electrons constituting the plasma flow adhere to C having a high electron affinity to generate C negative ions. . as a result,
  • the plasma flow 32 becomes a plasma flow 39 in which alkali metal ions, fullerene ions, and residual electrons are mixed.
  • the encapsulated fullerene film is deposited on the deposition substrate 35 disposed downstream of the plasma flow 39.
  • the via controlled by the bias voltage controller 38 on the deposition substrate 35 A voltage is applied to optimize the generation efficiency of endohedral fullerenes.
  • the pallet 40 stored in the multiloader 22 can mount a plurality of deposition substrates and can rotate about a rotation axis 41.
  • the transfer of the deposition substrate 35 between the pallet 40 and the main chamber 21 is performed by the substrate introduction rod 36.
  • the pallet 40 and the substrate loading rod 36 are driven by a motor, and the loading and unloading operations can be automatically performed by computer control.
  • deposition of endohedral fullerene films on multiple deposition substrates and substrate exchange can be performed continuously in a vacuum chamber.
  • FIGS. L (a) and (b) are cross-sectional views of a multiloader according to the endohedral fullerene manufacturing apparatus of the present invention.
  • the multiloader includes a disk-shaped pallet 2 on which a deposition substrate 3 is mounted, and a housing 1 for storing the pallet.
  • the pallet 2 and the housing 1 are made of a material such as stainless steel, and are connected via a flange 7 to the main chamber 1 of the endohedral fullerene manufacturing apparatus. At the bottom of the housing 1, there is an exhaust flange (not shown) for connecting to a vacuum pump. In the embodiment, ten pallets can be mounted on the pallet 2.
  • the pallet 2 has a rotating shaft 5 mounted at the center, and is driven to rotate via a bevel gear by a pallet rotating motor 6 mounted outside the housing.
  • FIG. 2 (a) is a side view of a multiloader according to the endohedral fullerene manufacturing apparatus of the present invention.
  • the multiloader 13 is attached to the main chamber 10 via a flange 12 arranged on the side.
  • a magnetic field coil 11 is arranged around the main chamber 10.
  • the multi loader 13 performs evacuation by a vacuum pump 14 attached to a lower part.
  • the driving device of the multi-header includes a motor 17 for moving the board insertion rod and a motor 16 for attaching and detaching the board, in addition to the motor 15 for rotating the pallet.
  • FIG. 2 (b) is a front view of the multiloader on the side where the deposition substrate is taken out of the multiloader into the atmosphere.
  • An openable / closable lid 18 is provided on the housing of the multi-loader. The lid 18 can be opened to take out the substrate from the pallet.
  • FIGS. 5 (a), (c), (e), (g), (i), and (k) show the loading and unloading procedures of a deposition substrate using the endohedral fullerene manufacturing apparatus of the present invention.
  • 5 (b), (d), (f), (h), (j), and (1) are cross-sectional views, respectively, of FIGS. 5 (a), (c), (e), and (g).
  • FIG. 3 is a front view of a pallet corresponding to (i) and (k). The work of mounting the deposition substrate on the pallet from the outside of the manufacturing apparatus is performed by purging the multi-loader housing 63 with nitrogen gas while the gate chamber 16 is closed and the main chamber 61 is evacuated. Open the lid, for example, by hand.
  • up to ten deposition substrates can be mounted on the pallet. After the mounting of the deposition substrate is completed, the lid of the case is closed, the introduction of nitrogen gas is stopped, and the case is evacuated.
  • an endohedral fullerene film is deposited on the deposition substrate A (FIG. 5 (a)).
  • the substrate insertion rod 67 is protruded, and after fixing the substrate insertion rod 67 to the deposition substrate, the insertion rod 67 is rotated by a set angle.
  • the deposition substrate 65 rotates by the same angle, and the pallet 64 can be detached.
  • the gate valve 62 is opened (FIG. 5 (c)), and the insertion rod 67 is further protruded to transfer the deposition substrate 65 to the main chamber 61 (FIG. 5 (e)).
  • plasma 68 is irradiated to the deposition substrate 65, and an endohedral fullerene film is deposited on the deposition substrate 65 (FIG. 5 (g)).
  • the plasma 68 is stopped, and the insertion rod 67 is moved to the position of the pallet.
  • the insertion rod 67 is rotated by the set angle to fix the deposition substrate 65 to the pallet 64 (FIG. 5 (i)).
  • the pallet 64 is rotated to move the deposition substrate B to the transfer position by the insertion rod 67 (FIG. 5 (k)).
  • the same procedure described above for substrate A is performed for the deposition substrates on other pallets, including substrate B, and when the set deposition on the deposition substrates on the pallets is completed, the gate Close 62.
  • the lid of the housing is opened. Then, the deposition substrate is taken out of the manufacturing apparatus.
  • the work of mounting the deposition substrate on the pallet from the outside of the manufacturing apparatus can be performed while rotating the pallet by step driving with the pallet rotation motor.
  • the cross-sectional view showing the loading / unloading procedure of the deposited substrate shown in Fig. 5 describes the case where the plasma is stopped except during the deposition of the endohedral fullerene shown in Fig. 5 (g). It is also possible to change the deposited substrate as it is, and in this case, there is an effect that the time required to start or stop the plasma can be reduced.
  • the pallet 218 is disposed between the magnetic field coil 204 and the magnetic field coil 205.
  • non-magnetic materials such as stainless steel (non-magnetic) and molybdenum are used as materials for the pallets and peripheral device members. Therefore, the plasma is irradiated onto the deposition substrate also on the pallet 218, and the deposition of the endohedral fullerene film on the pallet is possible.
  • the mounting of the substrate on the pallet is performed through the mouthpiece chamber 202 and the gate valve 203.
  • the lid attached to the case of the multiloader is opened, and the deposition substrate is directly attached to and detached from the pallet from outside the apparatus.
  • some of the endohedral fullerene films are extremely reactive, and may react with moisture or oxygen in the air to deteriorate.
  • FIGS. 9A and 9B are cross-sectional views of the purge box according to the endohedral fullerene manufacturing apparatus of the present invention.
  • the purge box 231 is a box attached to the multiloader 234, and supplies and supplies nitrogen from the introduction pipe 241.
  • the purge box allows external work Work bags 239, 247 protruding into the purge box from the openings 236, 237, 238, 246 are attached.
  • the operator can insert the desiccator 245 into the purge box 231 through the purge box opening / closing lid 240, operate the external force of the purge box, and attach and remove the deposition substrate to and from the pallet.
  • FIGS. 10 (a), (b) and (c) are diagrams for explaining a shielding member for preventing contamination of the apparatus according to the present invention.
  • a shielding member is arranged in the multiloader 256.
  • the shielding member 260 is attached to the side of the inner wall of the multiloader 256 adjacent to the gate valve 255, and is arranged so as to shield the gap between the pallet 257 and the inner wall of the housing. There is a gap of about 3 mm to 10 mm between the shielding member 260 and the pallet 257, and the pallet can rotate freely.
  • a shielding member is arranged in the main chamber 261.
  • the shielding shutter 264 is attached to the vicinity of the fullerene film forming position in the main chamber so that it can be taken in and out by an operation from the outside.
  • the plasma 262 when irradiating the deposition substrate with the plasma 262 to generate the encapsulated fullerene film, the plasma 262 is stored in the storage unit so that the shutter 264 does not hinder the flow of the plasma 262. Keep it.
  • FIG. 10 (c) when the deposition substrate is pulled out by the insertion rod 269 and the deposition substrate is exchanged, the plasma 262 is shielded by exposing the shutter 264 inside the main chamber 1. Deposition substrates can be replaced without stopping plasma, and contamination of the multiloader can be prevented. Therefore, there is no need to stop and restart the plasma, which is effective in shortening the working time and improving the efficiency of the experiment. (Third Embodiment of Encapsulated Fullerene Production Apparatus)
  • a raw material gas such as CF is introduced into a vacuum chamber and distributed around the vacuum chamber.
  • An alternating current is passed through the placed high-frequency induction coil 304 to excite the particles constituting the source gas and generate a high-frequency plasma comprising ions and electrons such as CF + and F—.
  • a plasma conducting method is known.
  • a positive bias voltage to the grid electrode 310 through which the plasma flow passes, only negative charges such as electrons and fluorine ions are selectively passed.
  • the electrons accelerated by the grid electrode have an energy of 10 eV or more, and collide with the fullerene molecules ejected from the fullerene sublimation oven 305, thereby depriving the fullerene molecules of the electrons, thereby causing the fullerene positive ions C Generate + .
  • a multi-loader 311 is attached to the main chamber 301 via a gate valve 312.
  • a pallet 313 on which a plurality of deposition substrates can be mounted is disposed in the multiloader, and the rotation of the pallet and the operation of the substrate insertion rod 315 allow the exchange of the deposition substrates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

In order to optimize the deposition condition of an endohedral fullerene producing device, it is necessary to perform deposition experiments using deposition substrates having various shapes under various deposition conditions. However, conventional endohedral fullerene producing devices are of the type where a single substrate is loaded and deposition is performed. Therefore it takes much time for evacuation, purging, and start and stop of plasma, thereby degrading the experimental efficiency. According to the invention, a rotary disk on which substrates can be mounted is used and replacement of substrate can be performed in a vacuum chamber. Without taking out a substrate into the air, a film of endohedral fullerene can be continuously formed. Optimum deposition substrates and optimum deposition conditions for high efficiency of production of endohedral fullerene can be found out in a short period of time.

Description

明 細 書  Specification
内包フラーレンの製造装置、及び、内包フラーレンの製造方法  Device for producing endohedral fullerene and method for producing endohedral fullerene
技術分野  Technical field
[0001] 本発明は、真空容器内において、内包対象原子のプラズマ流に、フラーレンを導 入し、プラズマ流の下流に配置した堆積基板に内包フラーレンを堆積させる内包フラ 一レン製造装置に係り、特に、真空容器内で堆積基板を交換可能なマルチローダを 備えた内包フラーレン製造装置に関する。  The present invention relates to an internal fullerene producing apparatus for introducing fullerene into a plasma flow of atoms to be included in a vacuum vessel and depositing the internal fullerene on a deposition substrate disposed downstream of the plasma flow, In particular, the present invention relates to an endohedral fullerene manufacturing apparatus provided with a multiloader capable of exchanging deposition substrates in a vacuum vessel.
背景技術  Background art
[0002] 非特許文献 1 :プラズマ '核融合学会誌 第 75卷第 8号 1999年 8年 p.927— 933 [0002] Non-Patent Document 1: Plasma 'Journal of the Fusion Society of Japan, Vol.75, No.8, 1999, 8 p.927— 933
「フラーレンプラズマの性質と応用」 "Properties and applications of fullerene plasma"
[0003] 内包フラーレンは、フラーレンとして知られる C 、 C 、 C 、 C 、 C 、 C などの球 状炭素分子に、例えば、アルカリ金属などの内包対象原子を内包した、エレクトロニ タス、医療などへの応用が期待される材料である。内包フラーレンの製造方法として は、真空室中で加熱したホットプレートに対し金属蒸気を噴射してプラズマを発生さ せ、さらに、発生した金属プラズマ流にフラーレン蒸気を噴射し、プラズマ流の下流 に配置した堆積基板に内包フラーレンを堆積させる方法が知られている。 [0003] Encapsulated fullerenes are used in electronic and medical applications in which spherical carbon molecules such as C, C, C, C, C, C, and C, which are known as fullerenes, include atoms to be included such as alkali metals. It is a material that is expected to be applied. As a method of producing endohedral fullerenes, plasma is generated by injecting metal vapor onto a hot plate heated in a vacuum chamber, and then the generated metal plasma stream is injected with fullerene vapor and placed downstream of the plasma stream. A method for depositing an endohedral fullerene on a deposited substrate is known.
[0004] 従来の内包フラーレンの製造装置は、図 6に示すように、メインチャンバ一 101と、 内包対象原子のプラズマ流を形成するための手段と、プラズマ流にフラーレンを導入 するための手段と、プラズマ流の下流に配置した堆積基板 115とを有している。  As shown in FIG. 6, a conventional apparatus for producing fullerenes includes a main chamber 101, a unit for forming a plasma flow of atoms to be included, and a unit for introducing fullerenes into the plasma flow. And a deposition substrate 115 disposed downstream of the plasma flow.
[0005] アルカリ金属のプラズマ流の形成手段は、ホットプレート 107と、アルカリ金属蒸発 用オーブン 108と、アルカリ金属導入管 109とから構成されている。蒸発用オーブン 108で発生させたアルカリ金属蒸気をアルカリ金属導入管 109からホットプレート 10 7上に噴射すると、接触電離によってアルカリ金属イオンと電子からなるプラズマが生 成する。生成したプラズマは電磁コイル 104により形成された均一磁場(B = 2— 7kG )に沿ってメインチャンバ一 101内の軸方向に閉じ込められ、ホットプレート 107から 堆積基板 115に向かつて流れるプラズマ流となる。  [0005] The means for forming the alkali metal plasma flow includes a hot plate 107, an alkali metal evaporation oven 108, and an alkali metal introduction tube 109. When the alkali metal vapor generated in the evaporating oven 108 is sprayed onto the hot plate 107 from the alkali metal introduction tube 109, plasma consisting of alkali metal ions and electrons is generated by contact ionization. The generated plasma is confined in the axial direction in the main chamber 101 along the uniform magnetic field (B = 2 to 7 kG) formed by the electromagnetic coil 104, and becomes a plasma flow flowing from the hot plate 107 to the deposition substrate 115. .
[0006] フラーレンを導入するための手段は、フラーレン昇華用オーブン 110と、再昇華円 筒 111とから構成されている。再昇華円筒 111において、フラーレン昇華用オーブン 110から昇華した C などのフラーレン蒸気をプラズマ流に噴射すると、電子親和力 が大きい C にプラズマ流を構成する電子が付着して C の負イオンが発生する。その 結果、アルカリ金属として、例えば、ナトリウムを用いた場合に、 [0006] The means for introducing fullerenes is a fullerene sublimation oven 110 and a sublimation circle. And a tube 111. In the resublimation cylinder 111, when fullerene vapor such as C sublimated from the fullerene sublimation oven 110 is jetted into the plasma flow, electrons constituting the plasma flow adhere to C having a high electron affinity to generate C negative ions. As a result, for example, when sodium is used as the alkali metal,
Na→ Na+ + e—  Na → Na + + e—
C + e—→ C  C + e— → C
60 60  60 60
の反応により、プラズマ流は、アルカリ金属イオン、フラーレンイオン、及び残留電子 が混在するプラズマ流となる。  Due to the reaction, the plasma flow becomes a plasma flow in which alkali metal ions, fullerene ions, and residual electrons are mixed.
[0007] このようなプラズマ流の下流に堆積基板 115を配置し、堆積基板 115に正のバイァ ス電圧を印加すると、質量の小さいアルカリ金属イオンが減速され、質量の大きいフ ラーレンイオンが加速されることでアルカリ金属イオンとフラーレンイオンの相互作用 が大きくなり、内包化が起こりやすくなる。また、ノ ィァス電圧制御装置 118により、バ ィァス電圧を制御して内包率を向上させることが可能である。 (非特許文献 1)  [0007] When the deposition substrate 115 is arranged downstream of such a plasma flow and a positive bias voltage is applied to the deposition substrate 115, the alkali metal ions having a small mass are decelerated, and the fullerene ions having a large mass are accelerated. As a result, the interaction between the alkali metal ion and the fullerene ion is increased, and the encapsulation is likely to occur. Further, the bias voltage can be controlled by the noise voltage control device 118 to improve the inclusion rate. (Non-Patent Document 1)
[0008] (堆積基板のロード'アンロード) [0008] (Loading and unloading of deposited substrate)
従来の内包フラーレン製造装置では、堆積基板挿入ロッド 116の先端に取り付けた 一枚の堆積基板 115をメインチャンバ一 101に挿入して堆積を行っていた。また、堆 積基板 115を出し入れする作業は、手作業で挿入ロッド 116を操作することにより、 大気中からロードロックチャンバ一 102に、及び、ロードロックチャンバ一 102力 メイ ンチャンバ一 101に堆積基板を移動することにより行っていた。図 7(a)— (f)は、従来 の内包フラーレン製造装置を使用した堆積基板のロード 'アンロード手順を説明する ための断面図である。  In the conventional endohedral fullerene manufacturing apparatus, one deposition substrate 115 attached to the tip of the deposition substrate insertion rod 116 is inserted into the main chamber 101 to perform deposition. In addition, when the depositing substrate 115 is taken in and out, the depositing substrate is moved from the atmosphere to the load lock chamber-102 and the load lock chamber-102 force main chamber-101 by manually operating the insertion rod 116. I was going by moving. FIGS. 7 (a) to 7 (f) are cross-sectional views illustrating a procedure for loading and unloading a deposition substrate using a conventional endohedral fullerene manufacturing apparatus.
[0009] 図 7(a)において、メインチャンバ一 121は、ゲートバルブ 122を介してロードロックチ ヤンバー 123に接続されている。メインチャンバ一 121、ロードロックチャンバ一 123 の真空引きは、それぞれ、真空ポンプ 124、 125により行う。  In FIG. 7A, the main chamber 121 is connected to a load lock chamber 123 via a gate valve 122. The main chamber 121 and the load lock chamber 123 are evacuated by vacuum pumps 124 and 125, respectively.
[0010] 大気中からロードロックチャンバ一に堆積基板を導入する時は、最初に、メインチヤ ンバー 121は真空排気されており、ゲートバルブ 122は閉じられており、ロードロック チャンバ一 123は、窒素導入管 126から導入した窒素ガスでパージしている。堆積 基板導入ロッド 129の先端には堆積基板 128が取り付けられている。 [0011] 次に、堆積基板 128をロードロックチャンバ一 123に挿入し、ゲートバルブ 127を閉 じる。窒素ガスの導入を停止し、ロードロックチャンバ一の真空排気を行う(図 7(b))。 [0010] When introducing a deposition substrate into the load lock chamber from the atmosphere, first, the main chamber 121 is evacuated, the gate valve 122 is closed, and the load lock chamber 123 is supplied with nitrogen. Purge with nitrogen gas introduced from line 126. A deposition substrate 128 is attached to the tip of the deposition substrate introduction rod 129. [0011] Next, the deposition substrate 128 is inserted into the load lock chamber 123, and the gate valve 127 is closed. The introduction of nitrogen gas is stopped, and the load lock chamber is evacuated (Fig. 7 (b)).
[0012] ロードロックチャンバ一 123の真空排気が完了した時点で、ゲートバルブ 122を開 き、堆積基板 128をメインチャンバ一 121に導入する(図 7(c))。  When the evacuation of the load lock chamber 123 is completed, the gate valve 122 is opened, and the deposition substrate 128 is introduced into the main chamber 121 (FIG. 7C).
[0013] 次に、ゲートバルブ 122を閉じ、プラズマ 130を発生させ、堆積基板 128上に内包 フラーレン膜を堆積する(図 7(d))。堆積終了後、プラズマ 130を停止し、ゲートバノレ ブ 122を開き、堆積基板 128をロードロックチャンバ一 123に移動する(図 7(e))。  Next, the gate valve 122 is closed, plasma 130 is generated, and the endohedral fullerene film is deposited on the deposition substrate 128 (FIG. 7 (d)). After the deposition is completed, the plasma 130 is stopped, the gate vane lever 122 is opened, and the deposition substrate 128 is moved to the load lock chamber 123 (FIG. 7 (e)).
[0014] 次に、ゲートバルブ 122を閉じ、ロードロックチャンバ一 123の真空排気を停止し、 窒素ガスでロードロックチャンバ一 123をパージした後、ゲートバルブ 127を開き、堆 積基板 128を大気中に取り出し、例えば、基板交換などの作業を行う(図 7(f))。  [0014] Next, the gate valve 122 is closed, the evacuation of the load lock chamber 123 is stopped, and the load lock chamber 123 is purged with nitrogen gas. Then, the gate valve 127 is opened and the deposition substrate 128 is exposed to air. And perform work such as replacing the board (Fig. 7 (f)).
[0015] (イオン密度分布と堆積基板)  [0015] (Ion density distribution and deposition substrate)
堆積基板近傍でプラズマ流の半径方向におけるイオン密度分布を測定すると、ァ ルカリ金属イオンとフラーレンイオンの密度分布は必ずしも一致するわけではない。 図 4(a)は、堆積基板にバイアス電圧を印加しない場合の、半径方向のイオン密度分 布を示す図である。  When the ion density distribution in the radial direction of the plasma flow is measured near the deposition substrate, the density distributions of alkali metal ions and fullerene ions do not always match. FIG. 4A is a diagram showing the ion density distribution in the radial direction when no bias voltage is applied to the deposition substrate.
[0016] Naイオンの密度は、プラズマ流の中心部分にピークを持ち、周辺にいくに従ってィ オン密度が低くなる。一方、フラーレンイオンの密度は、プラズマ流の中心よりも外側 の円周上にピークを持つ。  [0016] The Na ion density has a peak at the center of the plasma flow, and the ion density becomes lower toward the periphery. On the other hand, the density of fullerene ions has a peak on the circumference outside the center of the plasma flow.
[0017] 1個のフラーレン分子に何個のアルカリ金属が内包される確率が大きいかは、フラ 一レンとアルカリ金属の種類や製造条件などに依存する。例えば、 Na内包 C の場合 には、 1個の C 分子力 個の Na原子を内包する確率が高い。この場合、堆積基板上 で、アルカリ金属イオンとフラーレンイオンの密度が不一致となる部分では、内包フラ 一レンの生成に寄与しなレ、イオンが多くなり、内包フラーレンの生成効率を低くする 原因になる。また、 1個のフラーレンに 2個以上の原子が内包される場合でも、イオン 密度分布が内包される原子数に対応した適切な分布になっていないと、やはり、生 成効率が低くなる。  [0017] How many alkali metals are likely to be included in one fullerene molecule depends on the types of fullerene and alkali metal, production conditions, and the like. For example, in the case of Na-containing C, there is a high probability that one C molecular force contains Na atoms. In this case, the portion of the deposition substrate where the density of the alkali metal ion and the fullerene ion do not match each other does not contribute to the generation of endohedral fullerene, and the number of ions increases, which lowers the generation efficiency of the endohedral fullerene. Become. In addition, even when two or more atoms are included in one fullerene, the generation efficiency will still be low unless the ion density distribution is appropriate for the number of included atoms.
[0018] この問題を解決する方法として、図 4(c)に示すようなプラズマ流の半径方向に沿つ て複数のプレートに分割した形状の堆積基板を使用し、各プレートに独立して制御 可能なバイアス電圧を印加する方法が知られている。 As a method for solving this problem, a deposition substrate divided into a plurality of plates along the radial direction of the plasma flow as shown in FIG. 4 (c) is used, and each plate is controlled independently. Methods for applying possible bias voltages are known.
[0019] 図 4(c)は、堆積基板を 3枚の分割プレート 43、 44、 45に分割した例である。図 4(d) に示すように分割プレートに印加するバイアス電圧を制御する。例えば、分割プレー ト 44、 45を浮遊電位(プラズマと同じ電位)にして、中央のプレート 43には浮遊電位 に対し +1Vのバイアス電圧を印加すると、図 4(b)に示すように、正イオンである Naィォ ンの分布はプラズマ流の外側に広がり、負イオンである C イオンの分布はプラズマ 流の中心にピークを持つ形状に変化し、内包フラーレンの生成効率を向上すること ができる。  FIG. 4C shows an example in which the deposition substrate is divided into three divided plates 43, 44, and 45. The bias voltage applied to the split plate is controlled as shown in Fig. 4 (d). For example, when the split plates 44 and 45 are set to the floating potential (the same potential as the plasma) and a bias voltage of +1 V is applied to the central plate 43 with respect to the floating potential, as shown in FIG. The distribution of Na ions as ions spreads outside the plasma flow, and the distribution of C ions as negative ions changes to a shape with a peak at the center of the plasma flow, which can improve the efficiency of generating endohedral fullerenes .
[0020] 堆積基板の形状としては、必ずしも 3枚のプレートに分割した形状が最適なわけで はない。内包フラーレン製造装置の形状や大きさ、堆積条件、内包原子、フラーレン の種類によっては、図 4(e)に示す 2枚に分割した堆積基板や、図 4(f)に示す 5枚に分 割した堆積基板に例を示すように、 3分割基板以外の基板の方が、優れた内包フラ 一レンの堆積を行える可能'性もある。また、図 4(g)、(h)に示すように、プレート前面に グリッド電極を設け、プレートとは異なるバイアス電圧を印加することにより、例えば、 プラズマ中のイオン速度を制御して、内包フラーレンの生成効率を向上することも可 能である。  [0020] As the shape of the deposition substrate, a shape divided into three plates is not always optimal. Depending on the shape and size of the endohedral fullerene manufacturing equipment, the deposition conditions, the type of endogenous atoms, and the type of fullerene, the substrate is divided into two, as shown in Fig. 4 (e), or into five, as shown in Fig. 4 (f). As shown in the example of the deposited substrate, there is a possibility that a substrate other than the three-divided substrate can perform superior deposition of fullerenes. Also, as shown in Fig. 4 (g) and (h), grid electrodes are provided on the front surface of the plate, and a bias voltage different from that of the plate is applied, for example, to control the ion velocity in the plasma, It is also possible to improve the efficiency of the generation.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] プラズマ中のイオン密度分布を制御して基板に堆積される内包フラーレンの生成 効率を最適化するには、内包フラーレンの種類、製造装置の構造的要因などにより、 さまざまな形状の堆積基板や、堆積条件を変化させた堆積実験を行う必要がある。  [0021] In order to optimize the generation efficiency of endohedral fullerene deposited on a substrate by controlling the ion density distribution in plasma, deposition substrates of various shapes are required depending on the type of endohedral fullerene, structural factors of a manufacturing apparatus, and the like. In addition, it is necessary to perform a deposition experiment in which deposition conditions are changed.
[0022] しかし、従来の内包フラーレン製造装置では、一枚の基板をロードして、真空引き 後、薄膜を堆積し、堆積が終了するとロードロックチャンバ一をパージして大気中に 基板を取り出し、他の基板に交換するという作業を繰り返すために、真空引きとパー ジ、及び、プラズマの停止や立ち上げに時間がかかり、実験効率が悪いという問題が あった。  However, in a conventional endohedral fullerene manufacturing apparatus, one substrate is loaded, a thin film is deposited after evacuation, and after the deposition is completed, the load lock chamber is purged and the substrate is taken out into the atmosphere. Since the work of replacing with another substrate is repeated, it takes a long time to evacuate and purge, and to stop and start the plasma, so that there is a problem that the experimental efficiency is poor.
課題を解決するための手段  Means for solving the problem
[0023] 複数の堆積基板を装着可能なパレットと呼ぶ円板状部材を筐体内に配置したマル チローダを内包フラーレン製造装置の真空室にゲートバルブを介して接続し、真空 引きした筐体内でパレットを回転させて堆積基板を交換することにより、複数の基板 上に連続して内包フラーレン膜の堆積を行うことにした。 [0023] A disk-shaped member called a pallet on which a plurality of deposition substrates can be mounted is arranged in a housing. The chiller is connected to the vacuum chamber of the endohedral fullerene manufacturing equipment via a gate valve, and the pallet is rotated in the evacuated housing to change the deposition substrate, thereby continuously depositing the endohedral fullerene film on a plurality of substrates. Decided to do.
また、マルチローダからの基板の取り出し部分に窒素パージボックスを配置すること にした。さらに、プラズマやプラズマの原料物質による真空室の汚染を最小限にする ため、マルチローダ内に遮蔽部材を配置したり、メインチャンバ一に遮蔽用シャッター を配置することにした。  In addition, a nitrogen purge box was placed at the position where the substrate was taken out of the multiloader. Furthermore, in order to minimize the contamination of the vacuum chamber by the plasma and the raw material of the plasma, a shielding member is arranged in the multiloader and a shielding shutter is arranged in the main chamber.
発明の効果  The invention's effect
[0024] (1)種類の異なる堆積基板を使用したり、バイアス電圧などの堆積条件を変更した複 数の条件だし用の堆積を、各堆積ごとに基板を大気中に取り出すことなぐ真空室中 で連続して行うことが可能になった。内包フラーレンの生成効率が高い最適の堆積 基板や堆積条件を、短期間でみつけることができる。条件だしに携わるエンジニアや オペレータの作業時間を短縮することも可能になる。  [0024] (1) Deposition for a plurality of conditions using different types of deposition substrates or changing deposition conditions such as bias voltage is performed in a vacuum chamber in which the substrates are not taken out to the atmosphere for each deposition. It became possible to perform continuously. The optimal deposition substrate and deposition conditions with high efficiency of endohedral fullerene generation can be found in a short time. It can also reduce the working time of engineers and operators who work on conditions.
[0025] (2)大気と反応して変質しやすい内包フラーレンを製造する場合には、窒素パージ ボックスを使用することにより、堆積した内包フラーレンを大気に触れさせることなぐ 溶剤に溶力 たり分析を行ったりする処理室に搬送することが可能になり、より精度の 高い堆積膜の評価を行うことができる。  [0025] (2) When producing endohedral fullerenes that are liable to be degraded by reacting with the atmosphere, use a nitrogen purge box to analyze the solvent or analyze the solvent for solvents without exposing the deposited endohedral fullerenes to the atmosphere. It is possible to carry the film to a processing chamber where the deposition is performed, and to evaluate the deposited film with higher accuracy.
[0026] (3) Naなどの反応性、腐食性の高い材料を使用する場合に、マルチローダ内に遮蔽 部材を配置すれば、マルチローダ内の汚染防止に効果が高い。また、メインチャンバ 一に遮蔽用シャッターを配置した場合には、真空室の汚染防止効果があるだけでな ぐプラズマを停止せずに基板のロード 'アンロードを行うことが可能になり、作業時間 の短縮が可能になる。  (3) When a highly reactive and corrosive material such as Na is used, disposing a shielding member in the multiloader is highly effective in preventing contamination in the multiloader. In addition, when a shielding shutter is arranged in the main chamber, it is possible to load and unload the substrate without stopping the plasma, not only to prevent contamination of the vacuum chamber, but also to reduce the work time. Can be shortened.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 l](a)、(b)は、本発明の内包フラーレン製造装置に係るマルチローダの断面図で ある。  [FIG. 1] (a) and (b) are cross-sectional views of a multiloader according to the endohedral fullerene manufacturing apparatus of the present invention.
[図 2](a)は、本発明の内包フラーレン製造装置に係るマルチローダの側面図であり、 (b)は、本発明の内包フラーレン製造装置に係るマルチローダの正面図である。  FIG. 2 (a) is a side view of a multiloader according to the present invention, and FIG. 2 (b) is a front view of the multiloader according to the present invention.
[図 3]本発明の内包フラーレン製造装置の第一実施例に係る断面図である。 [図 4_l](a)、(b)は、プラズマ流における半径方向のイオン密度分布を示す図である。 FIG. 3 is a cross-sectional view according to a first embodiment of the endohedral fullerene manufacturing apparatus of the present invention. [FIG. 4_1] (a) and (b) are diagrams showing a radial ion density distribution in a plasma flow.
(c)、(d)は、堆積基板の第一実施例を説明するための図であり、  (c), (d) is a diagram for explaining a first embodiment of the deposition substrate,
[図 4_2](e)乃至 (h)は、堆積基板の他の実施例を説明するための図である。  [FIG. 4_2] (e) to (h) are diagrams for explaining another embodiment of the deposition substrate.
[図 5_l](a)、(c)、(e)は、本発明の内包フラーレン製造装置を使用した堆積基板のロー ド 'アンロード手順を説明するための断面図であり、(b)、(d)、(f)は、それぞれ(a)、(c)、 [FIG. 5_1] (a), (c), and (e) are cross-sectional views for explaining a loading / unloading procedure of a deposition substrate using the endohedral fullerene manufacturing apparatus of the present invention. (D) and (f) are (a), (c),
(e)に対応するパレットの正面図である。 It is a front view of the pallet corresponding to (e).
[図 5- 2](g)、(i)、(k)は、本発明の内包フラーレン製造装置を使用した堆積基板のロー ド 'アンロード手順を説明するための断面図であり、 (h)、(j)、(1)は、それぞれ(g)、(i)、 (k)に対応するパレットの正面図である。  [FIG. 5-2] (g), (i), and (k) are cross-sectional views for explaining a loading / unloading procedure of a deposition substrate using the endohedral fullerene manufacturing apparatus of the present invention. ), (J) and (1) are front views of pallets corresponding to (g), (i) and (k), respectively.
[図 6]従来の内包フラーレン製造装置に係る断面図である。 FIG. 6 is a cross-sectional view of a conventional endohedral fullerene manufacturing apparatus.
[図 7_l](a)、(b)、(c)は、従来の内包フラーレン製造装置を使用したロード 'アンロード 手順を説明するための断面図である。  [FIG. 7_l] (a), (b), and (c) are cross-sectional views illustrating a loading / unloading procedure using a conventional endohedral fullerene manufacturing apparatus.
[図 7_2](d)、(e)、(f)は、従来の内包フラーレン製造装置を使用したロード 'アンロード 手順を説明するための断面図である。  [FIG. 7_2] (d), (e), and (f) are cross-sectional views for explaining a loading / unloading procedure using a conventional endohedral fullerene manufacturing apparatus.
[図 8]本発明の内包フラーレン製造装置の第二実施例に係る断面図である。  FIG. 8 is a cross-sectional view according to a second embodiment of the endohedral fullerene manufacturing apparatus of the present invention.
[図 9](a)、(b)は、本発明の内包フラーレン製造装置に係るパージボックスの断面図で ある。  9] (a) and (b) are cross-sectional views of a purge box according to the endohedral fullerene manufacturing apparatus of the present invention. [FIG.
[図 10](a)、(b)、(c)は、本発明の内包フラーレン製造装置に係る装置汚染防止用の遮 蔽部材を説明するための図である。  [FIG. 10] (a), (b), (c) are diagrams for explaining a shielding member for preventing contamination of an apparatus for producing an endohedral fullerene according to the present invention.
[図 11]本発明の内包フラーレン製造装置の第三実施例に係る断面図である。  FIG. 11 is a cross-sectional view according to a third embodiment of the endohedral fullerene manufacturing apparatus of the present invention.
符号の説明 Explanation of symbols
1 筐体 1 housing
2 ノヽ。レット  2 No. Let
3 堆積基板 3 Deposition substrate
4 支柱 4 props
5 パレット回転軸  5 Pallet rotation axis
6 パレット回転用モータ  6 Pallet rotation motor
7、 12 フランジ メインチャンバ一 7, 12 flange Main chamber one
磁場コイル  Magnetic field coil
マ/レチローダ  Ma / reticle loader
真空ポンプ  Vacuum pump
パレット回転用モータ  Pallet rotation motor
基板着脱用モータ  Board mounting / dismounting motor
基板挿入ロッド移動用モータ  Board insertion rod moving motor
マルチローダ開閉蓋  Multi loader opening / closing lid
基板揷入ロッド揷入部  Substrate input rod input section
、 101、 121、 201、 301 メインチャンノ ー , 101, 121, 201, 301 Main channel
、 31 1 マノレチローダ, 31 1 Manolechi loader
2、 123、 202 ロードロックチャンノ ー 2, 123, 202 Road Rock channel
、 103、 122、 127、 203、 312 ゲート/くノレフ、、 , 103, 122, 127, 203, 312 Gate / Knoref,
、 104、 204、 205、 302 磁場コィノレ , 104, 204, 205, 302 Magnetic field
、 26、 105、 106、 124、 125、 206、 207、 208、 308、 309 真空ポンプ6 窒素導入管 , 26, 105, 106, 124, 125, 206, 207, 208, 308, 309 Vacuum pump 6 Nitrogen inlet tube
、 107、 209 ホットプレート , 107, 209 hot plate
、 108、 210 アルカリ金属蒸発用オーブン , 108, 210 Alkali metal evaporation oven
、 109、 211 アルカリ金属蒸気導入管 , 109, 211 Alkali metal vapor introduction pipe
、 110、 212、 305 フラーレン昇華用オーブン , 110, 212, 305 Fullerene sublimation oven
、 111、 213、 306 再昇華用円筒 , 111, 213, 306 Resublimation cylinder
、 112、 214 アルカリ金属プラズマ , 112, 214 alkali metal plasma
、 113、 216 ラングミュア 'プローブ , 113, 216 Langmuir 'probe
、 114、 217 プローブ電流測定装置 , 114, 217 probe current measuring device
、 115、 128、 215、 307 堆積基板 , 115, 128, 215, 307 Deposition substrate
、 116、 129、 220、 315 堆積基板揷入ロッド , 116, 129, 220, 315 Deposition substrate loading rod
、 117、 221 バイアス電圧供給用配線 , 117, 221 Wiring for bias voltage supply
、 118、 222 バイアス電圧制御装置 223 アルカリ金属.フラーレンプラズマ , 118, 222 bias voltage controller 223 Alkali metal fullerene plasma
130 プラズマ 130 Plasma
40、 218、 313 ノ、。レット  40, 218, 313 no. Let
41、 219、 314 ノ、。レット回転軸  41, 219, 314 no. Let rotation axis
43、 44、 45、 46、 47、 48、 49、 50、 51 分害 'Jプレー卜 43, 44, 45, 46, 47, 48, 49, 50, 51 Harmful 'J plate
52 メッシュ電極 52 mesh electrode
53 電極支持部材 53 Electrode support
303 内包原子導入管 303 Incorporated atom introduction tube
304 高周波誘導コイル 304 high frequency induction coil
310 グリッド電極310 grid electrode
1 メインチャンバ一 1 Main chamber
2 ゲートバノレブ 2 Gate vanolev
3 筐体 3 housing
4 ノヽ。レット 4 No. Let
5 堆積基板 5 Deposition substrate
6 堆積基板支持部材 6 Deposition substrate support
7 堆積基板挿入ロッド 7 Deposition substrate insertion rod
8 プラズマ 8 Plasma
31、 243 ノ ージボックス 31, 243 message box
32、 251、 261 メインチャンバ一 32, 251, 261 Main chamber
33、 255、 265 ゲートノくノレフ、、 33, 255, 265
34、 256、 266 マノレチローダ 34, 256, 266 Manolet loader
35、 244 マルチローダ開閉蓋 35, 244 Multi-loader opening / closing lid
39、 247 基板取り扱い用手袋 39, 247 Board handling gloves
36、 237, 238, 246 基板取り扱レヽ用開口部 40 パージボックス開閉蓋 36, 237, 238, 246 Substrate handling opening 40 Purge box opening / closing lid
41、 242 窒素導入管 41, 242 Nitrogen inlet tube
45 デシケータ 252、 262 プラズマ流 45 desiccator 252, 262 Plasma flow
253、 263 堆積基板  253, 263 Deposition substrate
254 原料元素ガス  254 Raw material gas
257、 267 ノ レツ卜  257, 267 notes
258、 268 ノ レツ卜回転軸  258, 268 Rotating shaft
259、 269 堆積基板揷入ロッド  259, 269 Deposition substrate loading rod
260 遮蔽部材  260 shielding material
264 遮蔽用シャッター  264 Shutter for shielding
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 図 3は、本発明の内包フラーレン製造装置の第一実施例に係る断面図であり、メイ ンチャンバ一 21にゲートバノレブ 23を介してマルチローダ 22を接続している。内包原 子である Naなどのアルカリ金属のプラズマ流の形成手段は、ホットプレート 27と、アル カリ金属蒸発用オーブン 28と、アルカリ金属導入管 29とから構成されている。蒸発用 オーブン 28で発生させたアルカリ金属蒸気をアルカリ金属導入管 29からホットプレ ート 27上に噴射すると、接触電離によってアルカリ金属イオンと電子からなるプラズ マが生成する。生成したプラズマは電磁コイル 24により形成された均一磁場 (B = 2 一 7kG)に沿ってメインチャンバ一 21内の軸方向に閉じ込められ、ホットプレート 27 力 堆積基板 35に向かって流れるプラズマ流 32となる。フラーレンを導入するため の手段は、フラーレン昇華用オーブン 30と、再昇華円筒 31とから構成されている。再 昇華円筒 31において、フラーレン昇華用オーブン 30から昇華した C などのフラーレ ン蒸気をプラズマ流に噴射すると、電子親和力が大きい C にプラズマ流を構成する 電子が付着して C の負イオンが発生する。その結果、 FIG. 3 is a cross-sectional view according to a first embodiment of the endohedral fullerene manufacturing apparatus of the present invention. A multiloader 22 is connected to a main chamber 21 via a gate vanoleb 23. Means for forming a plasma flow of an alkali metal such as Na as an encapsulating atom is constituted by a hot plate 27, an alkali metal evaporation oven 28, and an alkali metal introduction pipe 29. When the alkali metal vapor generated in the evaporating oven 28 is jetted from the alkali metal introduction pipe 29 onto the hot plate 27, plasma consisting of alkali metal ions and electrons is generated by contact ionization. The generated plasma is confined in the axial direction in the main chamber 21 along a uniform magnetic field (B = 2 to 7 kG) formed by the electromagnetic coil 24, and the hot plate 27 forces a plasma flow 32 flowing toward the deposition substrate 35. Become. The means for introducing fullerenes includes a fullerene sublimation oven 30 and a sublimation cylinder 31. In the sublimation cylinder 31, when fullerene vapor such as C sublimated from the fullerene sublimation oven 30 is jetted into the plasma flow, electrons constituting the plasma flow adhere to C having a high electron affinity to generate C negative ions. . as a result,
Na→ Na + e—  Na → Na + e—
C + e—→ C ―  C + e— → C —
60 60  60 60
の反応により、プラズマ流 32は、アルカリ金属イオン、フラーレンイオン、及び残留電 子が混在するプラズマ流 39となる。  Due to this reaction, the plasma flow 32 becomes a plasma flow 39 in which alkali metal ions, fullerene ions, and residual electrons are mixed.
[0030] プラズマの照射により、プラズマ流 39の下流に配置した堆積基板 35上に内包フラ 一レン膜が堆積する。堆積基板 35にバイアス電圧制御装置 38により制御したバイァ ス電圧を印加して、内包フラーレンの生成効率を最適化する。 [0030] By the plasma irradiation, the encapsulated fullerene film is deposited on the deposition substrate 35 disposed downstream of the plasma flow 39. The via controlled by the bias voltage controller 38 on the deposition substrate 35 A voltage is applied to optimize the generation efficiency of endohedral fullerenes.
[0031] マルチローダ 22に格納されたパレット 40は、複数の堆積基板を装着することができ 、回転軸 41を中心に回転可能である。堆積基板 35のパレット 40とメインチャンバ一 2 1間の搬送は、基板揷入ロッド 36により行う。パレット 40、基板揷入ロッド 36は、モー タで駆動され、コンピュータ制御によりロード 'アンロードの作業を自動的に行うことが できる。マルチローダを使用することにより、複数の堆積基板に対する内包フラーレン 膜の堆積と基板交換を真空室中で連続して行うことが可能である。 実施例  The pallet 40 stored in the multiloader 22 can mount a plurality of deposition substrates and can rotate about a rotation axis 41. The transfer of the deposition substrate 35 between the pallet 40 and the main chamber 21 is performed by the substrate introduction rod 36. The pallet 40 and the substrate loading rod 36 are driven by a motor, and the loading and unloading operations can be automatically performed by computer control. By using a multiloader, deposition of endohedral fullerene films on multiple deposition substrates and substrate exchange can be performed continuously in a vacuum chamber. Example
[0032] (マルチローダの構造)  [0032] (Structure of multi loader)
図 l(a)、(b)は、本発明の内包フラーレン製造装置に係るマルチローダの断面図で ある。マルチローダは、堆積基板 3を装着する円板状のパレット 2と、パレットを格納す る筐体 1から構成されている。  FIGS. L (a) and (b) are cross-sectional views of a multiloader according to the endohedral fullerene manufacturing apparatus of the present invention. The multiloader includes a disk-shaped pallet 2 on which a deposition substrate 3 is mounted, and a housing 1 for storing the pallet.
[0033] パレット 2、筐体 1は、ステンレスなどの材料で作製されており、フランジ 7を介して、 内包フラーレン製造装置のメインチャンバ一と接続する。筐体 1の下部には、真空ポ ンプと接続するための図示しない排気用のフランジがある。実施例では、パレット 2に 、 10枚の堆積基板が装着可能である。パレット 2は中心に回転軸 5が取り付けられて おり、筐体外部に取り付けられたパレット回転用モータ 6により、ベベルギアを介して 回転駆動を行う。  The pallet 2 and the housing 1 are made of a material such as stainless steel, and are connected via a flange 7 to the main chamber 1 of the endohedral fullerene manufacturing apparatus. At the bottom of the housing 1, there is an exhaust flange (not shown) for connecting to a vacuum pump. In the embodiment, ten pallets can be mounted on the pallet 2. The pallet 2 has a rotating shaft 5 mounted at the center, and is driven to rotate via a bevel gear by a pallet rotating motor 6 mounted outside the housing.
[0034] 図 2(a)は、本発明の内包フラーレン製造装置に係るマルチローダの側面図である。  FIG. 2 (a) is a side view of a multiloader according to the endohedral fullerene manufacturing apparatus of the present invention.
マルチローダ 13は、側面に配置したフランジ 12を介してメインチャンバ一 10に取り 付けられている。メインチャンバ一 10の周囲には磁場コイル 11が配置されている。マ ルチローダ 13は、下部に取り付けた真空ポンプ 14により真空排気を行う。マルチ口 ーダの駆動装置は、パレット回転用モータ 15以外に、基板揷入ロッド移動用モータ 1 7、基板着脱用モータ 16により構成される。  The multiloader 13 is attached to the main chamber 10 via a flange 12 arranged on the side. A magnetic field coil 11 is arranged around the main chamber 10. The multi loader 13 performs evacuation by a vacuum pump 14 attached to a lower part. The driving device of the multi-header includes a motor 17 for moving the board insertion rod and a motor 16 for attaching and detaching the board, in addition to the motor 15 for rotating the pallet.
[0035] 基板挿入ロッド移動用モータ 17により、基板挿入ロッドを水平移動させ、パレットか らメインチャンバ一までの基板の移動を行う。また、基板着脱用モータ 16により、基板 をパレット上で回転させることで、パレット上の基板支持部に基板を挟んで固定したり 、基板支持部から取り外す操作を行う。 [0036] 図 2(b)は、堆積基板をマルチローダから大気中に取り出す側のマルチローダの正 面図である。マルチローダの筐体には、開閉可能な蓋 18が配置されており、蓋 18を 開いて、パレットから基板を取り出すことができる。 The substrate insertion rod is horizontally moved by the substrate insertion rod moving motor 17 to move the substrate from the pallet to the main chamber. In addition, by rotating the substrate on the pallet by the substrate attaching / detaching motor 16, an operation of fixing the substrate to the substrate supporting portion on the pallet or removing the substrate from the substrate supporting portion is performed. FIG. 2 (b) is a front view of the multiloader on the side where the deposition substrate is taken out of the multiloader into the atmosphere. An openable / closable lid 18 is provided on the housing of the multi-loader. The lid 18 can be opened to take out the substrate from the pallet.
[0037] (ロード/アンロード手順)  [0037] (Load / Unload procedure)
図 5(a)、(c)、(e)、(g)、(i)、(k)は、本発明の内包フラーレン製造装置を使用した堆積 基板のロード 'アンロード手順を説明するための断面図であり、図 5(b)、(d)、(f)、(h)、 (j)、(1)は、それぞれ図 5(a)、(c)、(e)、(g)、(i)、(k)に対応するパレットの正面図である。 製造装置外部から堆積基板をパレット上に装着する作業は、ゲートバノレブ 62が閉じ られ、メインチャンバ一 61が真空引きされた状態で、マルチローダの筐体 63を窒素 ガスでパージした後、筐体の蓋を開き、例えば、手作業で行う。  FIGS. 5 (a), (c), (e), (g), (i), and (k) show the loading and unloading procedures of a deposition substrate using the endohedral fullerene manufacturing apparatus of the present invention. 5 (b), (d), (f), (h), (j), and (1) are cross-sectional views, respectively, of FIGS. 5 (a), (c), (e), and (g). FIG. 3 is a front view of a pallet corresponding to (i) and (k). The work of mounting the deposition substrate on the pallet from the outside of the manufacturing apparatus is performed by purging the multi-loader housing 63 with nitrogen gas while the gate chamber 16 is closed and the main chamber 61 is evacuated. Open the lid, for example, by hand.
[0038] 図 5(b)に示す実施例では、パレットに最大 10枚の堆積基板を装着することができる 。堆積基板の装着完了後、筐体の蓋を閉じて、窒素ガス導入を停止し、筐体の真空 排気を行う。  In the embodiment shown in FIG. 5B, up to ten deposition substrates can be mounted on the pallet. After the mounting of the deposition substrate is completed, the lid of the case is closed, the introduction of nitrogen gas is stopped, and the case is evacuated.
[0039] 最初に、堆積基板 A上に、内包フラーレン膜の堆積を行う (図 5(a))。まず、基板挿入 ロッド 67を突き出し、堆積基板に対し基板挿入ロッド 67を固定した後、挿入ロッド 67 を設定角度だけ回転させる。同時に堆積基板 65も同じ角度だけ回転し、パレット 64 力 脱離可能になる。ゲートバルブ 62を開き(図 5(c))、次に、挿入ロッド 67をさらに 突き出し、堆積基板 65をメインチャンバ一 61に搬送する(図 5(e))。所定位置に堆積 基板を搬送した状態で、プラズマ 68を堆積基板 65に照射し、堆積基板 65上に内包 フラーレン膜を堆積する(図 5(g))。  First, an endohedral fullerene film is deposited on the deposition substrate A (FIG. 5 (a)). First, the substrate insertion rod 67 is protruded, and after fixing the substrate insertion rod 67 to the deposition substrate, the insertion rod 67 is rotated by a set angle. At the same time, the deposition substrate 65 rotates by the same angle, and the pallet 64 can be detached. The gate valve 62 is opened (FIG. 5 (c)), and the insertion rod 67 is further protruded to transfer the deposition substrate 65 to the main chamber 61 (FIG. 5 (e)). In a state where the deposition substrate is transported to a predetermined position, plasma 68 is irradiated to the deposition substrate 65, and an endohedral fullerene film is deposited on the deposition substrate 65 (FIG. 5 (g)).
[0040] 次に、プラズマ 68を停止して、挿入ロッド 67をパレットの位置まで移動させる。パレ ット位置で揷入ロッド 67を設定角度だけ回転して堆積基板 65をパレット 64に固定す る(図 5(i))。  Next, the plasma 68 is stopped, and the insertion rod 67 is moved to the position of the pallet. At the pallet position, the insertion rod 67 is rotated by the set angle to fix the deposition substrate 65 to the pallet 64 (FIG. 5 (i)).
[0041] 次に、パレット 64を回転させ、堆積基板 Bを揷入ロッド 67による搬送位置まで移動さ せる(図 5(k))。基板 Aに対して説明した以上の手順を、基板 Bを含め他のパレット上 の堆積基板に対しても同様に行い、パレット上の堆積基板に対し、設定した堆積を完 了した時点で、ゲートバノレブ 62を閉じる。  Next, the pallet 64 is rotated to move the deposition substrate B to the transfer position by the insertion rod 67 (FIG. 5 (k)). The same procedure described above for substrate A is performed for the deposition substrates on other pallets, including substrate B, and when the set deposition on the deposition substrates on the pallets is completed, the gate Close 62.
[0042] 次に、筐体 63の真空排気を停止して、窒素パージを行った後、筐体の蓋を開けて 、堆積基板を製造装置外部に取り出す。 Next, after stopping the evacuation of the housing 63 and performing a nitrogen purge, the lid of the housing is opened. Then, the deposition substrate is taken out of the manufacturing apparatus.
[0043] 製造装置外部からパレットに対する堆積基板の装着作業は、パレットをパレット回転 モータによりステップ駆動で回転させながら行うことも可能である。また、図 5に示す堆 積基板のロード 'アンロード手順を示す断面図では、図 5(g)に示す内包フラーレンの 堆積時以外はプラズマを停止する場合について説明してあるが、プラズマを流したま ま堆積基板の交換を行うことも可能であり、その場合、プラズマを立ち上げたり、停止 するのに要する時間を短縮できるという効果がある。  The work of mounting the deposition substrate on the pallet from the outside of the manufacturing apparatus can be performed while rotating the pallet by step driving with the pallet rotation motor. Also, the cross-sectional view showing the loading / unloading procedure of the deposited substrate shown in Fig. 5 describes the case where the plasma is stopped except during the deposition of the endohedral fullerene shown in Fig. 5 (g). It is also possible to change the deposited substrate as it is, and in this case, there is an effect that the time required to start or stop the plasma can be reduced.
[0044] (内包フラーレン製造装置の第二実施例)  (Second embodiment of endohedral fullerene manufacturing apparatus)
図 3に示す本発明の内包フラーレン製造装置の第一実施例では、マルチローダ 22 の位置では磁場コイル 24による磁界が作用せずにプラズマが広がってしまうため、 内包フラーレン膜の堆積を行うことはできなレ、。そのため、パレット 40の位置から基板 揷入ロッド 36を用いて堆積基板 35を磁界の作用する位置まで搬送して、プラズマを 照射し膜の堆積を行う必要があり、基板挿入ロッド 36の出し入れに要する時間が堆 積実験の効率を下げる要因であった。  In the first embodiment of the endohedral fullerene manufacturing apparatus of the present invention shown in FIG. 3, since the magnetic field generated by the magnetic field coil 24 does not act at the position of the multiloader 22 and the plasma spreads, it is not possible to deposit the endohedral fullerene film. I can't do it. Therefore, it is necessary to transport the deposition substrate 35 from the position of the pallet 40 to the position where the magnetic field acts by using the substrate insertion rod 36 and irradiate the plasma to deposit the film. Time was a factor in reducing the efficiency of the deposition experiment.
[0045] 図 8に示す本発明の内包フラーレン製造装置の第二実施例では、パレット 218を磁 場コイル 204と磁場コイル 205の間に配置している。また、パレット、及び、その周辺 の装置部材の材料は、ステンレス(非磁性)やモリブデンなどの非磁性材料を使用し ている。そのため、パレット 218上においてもプラズマが堆積基板上に照射され、パレ ット上での内包フラーレン膜の堆積が可能である。パレットに対する基板の装着は、口 一ドロツクチャンバー 202、ゲートバルブ 203を介して行う。  In the second embodiment of the endohedral fullerene manufacturing apparatus of the present invention shown in FIG. 8, the pallet 218 is disposed between the magnetic field coil 204 and the magnetic field coil 205. In addition, non-magnetic materials such as stainless steel (non-magnetic) and molybdenum are used as materials for the pallets and peripheral device members. Therefore, the plasma is irradiated onto the deposition substrate also on the pallet 218, and the deposition of the endohedral fullerene film on the pallet is possible. The mounting of the substrate on the pallet is performed through the mouthpiece chamber 202 and the gate valve 203.
[0046] (パージボックス)  [0046] (Purge box)
図 3に示す本発明の内包フラーレン製造装置の第一実施例では、マルチローダの 筐体に取り付けられた蓋を開けて装置外部から直接パレットに堆積基板の着脱を行 つていた。しかし、内包フラーレン膜の中には極めて反応性の高いものもあり、空気 中の水分や酸素と反応して変質する場合もある。  In the first embodiment of the endohedral fullerene manufacturing apparatus of the present invention shown in FIG. 3, the lid attached to the case of the multiloader is opened, and the deposition substrate is directly attached to and detached from the pallet from outside the apparatus. However, some of the endohedral fullerene films are extremely reactive, and may react with moisture or oxygen in the air to deteriorate.
[0047] 図 9(a)、(b)は、本発明の内包フラーレン製造装置に係るパージボックスの断面図で ある。パージボックス 231は、マルチローダ 234に取り付けられたボックスであり、導入 管 241から窒素を供給レ、 °ージしている。パージボックスには、外部から作業ができ るように、開口部 236、 237、 238、 246からパージボックス内部に突き出た作業用手 袋 239、 247が取り付けられている。作業者は、パージボックス開閉蓋 240からデシ ケータ 245をパージボックス 231内部に入れてパージボックスの外部力も操作をおこ なレ、、堆積基板のパレットへの取り付けや取り外しを行うことができる。 FIGS. 9A and 9B are cross-sectional views of the purge box according to the endohedral fullerene manufacturing apparatus of the present invention. The purge box 231 is a box attached to the multiloader 234, and supplies and supplies nitrogen from the introduction pipe 241. The purge box allows external work Work bags 239, 247 protruding into the purge box from the openings 236, 237, 238, 246 are attached. The operator can insert the desiccator 245 into the purge box 231 through the purge box opening / closing lid 240, operate the external force of the purge box, and attach and remove the deposition substrate to and from the pallet.
[0048] (装置汚染防止用の遮蔽部材) [0048] (Shielding member for preventing device contamination)
内包フラーレンを構成する内包原子の中には、極めて反応性の高い材料や腐食性 の高い材料がある。例えば、内包原子として Naを用いた場合は、 Naが水に対し爆発 を伴う激しい反応をするので、真空容器内部に付着した Naの取り扱いには細心の注 意が必要である。  Among the encapsulating atoms that make up the endohedral fullerene, there are highly reactive materials and highly corrosive materials. For example, when Na is used as an encapsulated atom, it must be handled with great care when handling Na adhering to the inside of a vacuum vessel because Na reacts violently with explosion to water.
[0049] 図 10(a)、(b)、(c)は、本発明の内包フラーレン製造装置に係る装置汚染防止用の 遮蔽部材を説明するための図である。  [0049] FIGS. 10 (a), (b) and (c) are diagrams for explaining a shielding member for preventing contamination of the apparatus according to the present invention.
[0050] 図 10(a)に示す実施例では、マルチローダ 256に遮蔽部材を配置している。遮蔽部 材 260は、マルチローダ 256の筐体内壁のゲートバルブ 255に隣接する側に取り付 けられ、パレット 257と筐体内壁との隙間を遮蔽するように配置されている。遮蔽部材 260とパレット 257との間には 3mmから 10mm程度の隙間があり、パレットは自由に回 転すること力 Sできる。遮蔽部材 260を配置することにより、 Naなどから構成される気体 、または、プラズマが、マルチローダ 256の筐体内に拡散してくることを最小限に防止 することができ、作業の安全性向上、装置のクリーニングの簡略化に効果がある。  In the embodiment shown in FIG. 10A, a shielding member is arranged in the multiloader 256. The shielding member 260 is attached to the side of the inner wall of the multiloader 256 adjacent to the gate valve 255, and is arranged so as to shield the gap between the pallet 257 and the inner wall of the housing. There is a gap of about 3 mm to 10 mm between the shielding member 260 and the pallet 257, and the pallet can rotate freely. By arranging the shielding member 260, it is possible to minimize the gas composed of Na or the like or the plasma from diffusing into the housing of the multiloader 256, thereby improving work safety, This is effective in simplifying the cleaning of the device.
[0051] 図 10(b)、(c)に示す実施例では、メインチャンバ一 261に遮蔽部材を配置している。  In the embodiment shown in FIGS. 10B and 10C, a shielding member is arranged in the main chamber 261.
遮蔽用シャッター 264は、メインチャンバ一の内包フラーレン膜生成位置近傍に、外 部からの操作で出し入れ可能なように取り付けられている。  The shielding shutter 264 is attached to the vicinity of the fullerene film forming position in the main chamber so that it can be taken in and out by an operation from the outside.
[0052] 図 10(b)に示すように、プラズマ 262を堆積基板に照射して内包フラーレン膜を生 成する時は、シャッター 264がプラズマ 262の流れを妨げないように、格納部に格納 しておく。図 10(c)に示すように、堆積基板を揷入ロッド 269により引き出し、堆積基板 の交換を行う時は、メインチャンバ一の内部にシャッター 264を出してプラズマ 262を 遮蔽する。プラズマを停止しなくても堆積基板の交換が可能であり、マルチローダの 汚染も防止できる。従って、プラズマを停止し、再度立ち上げるという操作が不要なた め作業時間の短縮、実験の効率化に効果がある。 [0053] (内包フラーレン製造装置の第三実施例) As shown in FIG. 10 (b), when irradiating the deposition substrate with the plasma 262 to generate the encapsulated fullerene film, the plasma 262 is stored in the storage unit so that the shutter 264 does not hinder the flow of the plasma 262. Keep it. As shown in FIG. 10 (c), when the deposition substrate is pulled out by the insertion rod 269 and the deposition substrate is exchanged, the plasma 262 is shielded by exposing the shutter 264 inside the main chamber 1. Deposition substrates can be replaced without stopping plasma, and contamination of the multiloader can be prevented. Therefore, there is no need to stop and restart the plasma, which is effective in shortening the working time and improving the efficiency of the experiment. (Third Embodiment of Encapsulated Fullerene Production Apparatus)
フラーレンに内包する原子が気体の場合、例えば、フッ素を内包する内包フラーレ ンの製造方法としては、真空室中に CFなどの原料ガスを導入し、真空室周囲に配  When the atoms contained in the fullerene are gases, for example, as a method for producing a fullerene containing fluorine, a raw material gas such as CF is introduced into a vacuum chamber and distributed around the vacuum chamber.
4  Four
置した高周波誘導コイル 304に交流電流を流すことにより、前記原料ガスを構成する 粒子を励起し、 CF +、 F—などのイオンや電子からなるプラズマを発生させる高周波誘 An alternating current is passed through the placed high-frequency induction coil 304 to excite the particles constituting the source gas and generate a high-frequency plasma comprising ions and electrons such as CF + and F—.
3  Three
導プラズマ方式が知られている。  A plasma conducting method is known.
[0054] 生成したプラズマは磁場コイル 302により形成された均一磁場(B = 2— 7kG)に沿 つてメインチャンバ一 301内の軸方向に閉じ込められ、プラズマ発生部から堆積基板 307に向かって流れるプラズマ流となる。プラズマ流が通るグリッド電極 310に正のバ ィァス電圧を印加することにより、電子やフッ素イオンなどの負電荷のみを選択的に 通過させる。また、グリッド電極により加速された電子は 10eV以上のエネルギーを持 ち、フラーレン昇華用オーブン 305から噴射されるフラーレン分子に衝突することによ り、フラーレン分子から電子を奪うことでフラーレンの正イオン C +を発生させる。プラ [0054] The generated plasma is confined in the axial direction in the main chamber 301 along a uniform magnetic field (B = 2 to 7 kG) formed by the magnetic field coil 302, and the plasma flowing from the plasma generation part toward the deposition substrate 307. It becomes a flow. By applying a positive bias voltage to the grid electrode 310 through which the plasma flow passes, only negative charges such as electrons and fluorine ions are selectively passed. The electrons accelerated by the grid electrode have an energy of 10 eV or more, and collide with the fullerene molecules ejected from the fullerene sublimation oven 305, thereby depriving the fullerene molecules of the electrons, thereby causing the fullerene positive ions C Generate + . Plastic
60  60
ズマを構成する C +と F—は反応してフッ素内包フラーレンとなり堆積基板 307上に堆 The C + and F— constituents of the zuma react to form fluorine-containing fullerene and deposit on the deposition substrate 307.
60  60
ゃ責 ^ 。  Blame ^.
[0055] メインチャンバ一 301には、ゲートバルブ 312を介してマルチローダ 311が取り 付けられてレ、る。マルチローダの中には複数の堆積基板を装着可能なパレット 313 が配置されており、パレットの回転と基板挿入ロッド 315の操作により堆積基板の交 換ができる。  A multi-loader 311 is attached to the main chamber 301 via a gate valve 312. A pallet 313 on which a plurality of deposition substrates can be mounted is disposed in the multiloader, and the rotation of the pallet and the operation of the substrate insertion rod 315 allow the exchange of the deposition substrates.
[0056] 図 11に示すような高周波誘導プラズマによる内包フラーレンの生成においては、プ ラズマ中のイオン密度分布がプラズマ流の半径方向において均一であるため、堆積 基板を分割してバイアス電圧の面内分布を制御する必要がない。従って、一枚の連 続した円板状の堆積基板を用レ、、堆積基板上に均一のバイアス電圧を印加して内 包フラーレンの生成を行う。  In the generation of endohedral fullerenes by high-frequency induction plasma as shown in FIG. 11, since the ion density distribution in the plasma is uniform in the radial direction of the plasma flow, the deposition substrate is divided and the in-plane bias voltage is reduced. There is no need to control the distribution. Therefore, a single continuous disk-shaped deposition substrate is used, and a uniform bias voltage is applied to the deposition substrate to generate endohedral fullerenes.
[0057] このような高周波誘導プラズマによる内包フラーレンの生成においても、堆積条件 をさまざまに変化させて、堆積条件を最適化する実験は必要であり、マルチローダを 用いて堆積基板を交換することにより、堆積実験の効率を向上することが可能である [0057] In the generation of endohedral fullerenes by such a high-frequency induction plasma, it is necessary to carry out experiments for optimizing the deposition conditions by changing the deposition conditions in various ways, and by exchanging the deposition substrates using a multiloader. , It is possible to improve the efficiency of deposition experiments

Claims

請求の範囲 The scope of the claims
[1] 第一の真空容器内において、内包対象原子のプラズマ発生部で発生したプラズマ 流に、フラーレン導入部からフラーレンを導入し、該プラズマ流の下流に配置した堆 積基板に内包フラーレンを堆積させる内包フラーレンの製造装置において、前記第 一の真空容器にゲートバルブを介して接続した第二の真空容器内に複数の堆積基 板を装着可能な基板装着部材を配置し、前記基板装着部材を回転することにより、 真空室内において前記堆積基板の交換を行うことを特徴とする内包フラーレンの製 造装置。  [1] In the first vacuum vessel, fullerene is introduced from a fullerene introduction part into a plasma flow generated by a plasma generation part of atoms to be included, and the fullerene is deposited on a deposition substrate arranged downstream of the plasma flow. In a fullerene manufacturing apparatus, a substrate mounting member capable of mounting a plurality of deposition substrates is disposed in a second vacuum container connected to the first vacuum container via a gate valve, and the substrate mounting member is mounted on the first vacuum container. An apparatus for manufacturing an endohedral fullerene, wherein the deposition substrate is exchanged in a vacuum chamber by rotating.
[2] 第一の真空容器内において、内包対象原子のプラズマ発生部で発生したプラズマ 流に、フラーレン導入部からフラーレンを導入し、該プラズマ流の下流に配置した堆 積基板に内包フラーレンを堆積させる内包フラーレンの製造装置において、前記第 一の真空容器内に複数の堆積基板を装着可能な基板装着部材を配置し、前記基板 装着部材を回転することにより、真空室内において前記堆積基板の交換を行うことを 特徴とする内包フラーレンの製造装置。  [2] In the first vacuum vessel, fullerene is introduced from the fullerene introduction part into the plasma flow generated by the plasma generation part of the atom to be included, and the fullerene is deposited on the deposition substrate disposed downstream of the plasma flow. In the fullerene manufacturing apparatus, a substrate mounting member capable of mounting a plurality of deposition substrates is disposed in the first vacuum vessel, and the substrate mounting member is rotated to exchange the deposition substrate in a vacuum chamber. An apparatus for producing endohedral fullerenes.
[3] 前記フラーレンが Cn(n=60— 84)であることを特徴とする請求項 1又は 2のいずれか 1 項記載の内包フラーレンの製造装置。 3. The apparatus for producing an endohedral fullerene according to claim 1, wherein the fullerene is Cn (n = 60-84).
[4] 前記内包対象原子がアルカリ金属であることを特徴とする請求項 1乃至 3のいずれ 力、 1項記載の内包フラーレンの製造装置。 4. The apparatus for producing an endohedral fullerene according to claim 1, wherein the atom to be included is an alkali metal.
[5] 前記内包対象原子がハロゲン元素であることを特徴とする請求項 1乃至 3のいずれ 力、 1項記載の内包フラーレンの製造装置。 [5] The apparatus for producing an endohedral fullerene according to any one of [1] to [3], wherein the atom to be included is a halogen element.
[6] 前記基板装着部材が円板状部材であることを特徴とする請求項 1又は 2のいずれ 力、 1項記載の内包フラーレンの製造装置。 6. The apparatus for producing an endohedral fullerene according to claim 1, wherein the substrate mounting member is a disk-shaped member.
[7] 前記堆積基板の取り出し部に不活性ガスを内部に導入したパージボックスを接続し[7] A purge box in which an inert gas is introduced is connected to the take-out portion of the deposition substrate.
、前記パージボックス内で前記堆積基板の取り出し作業、又は、装着作業を行うこと を特徴とする請求項 1又は 2のいずれか 1項記載の内包フラーレンの製造装置。 3. The apparatus for producing an endohedral fullerene according to claim 1, wherein an operation of taking out or mounting the deposition substrate is performed in the purge box.
[8] 前記第二の真空容器の内壁と前記基板装着部材との間に、プラズマ、又は、前記 内包原子からなる気体の拡散を防止するための遮蔽部材を配置したことを特徴とす る請求項 1記載の内包フラーレンの製造装置。 [8] A shielding member arranged between the inner wall of the second vacuum vessel and the substrate mounting member for preventing diffusion of plasma or gas comprising the contained atoms. Item 1. An apparatus for producing an endohedral fullerene according to item 1.
[9] 前記第一の真空容器内に、突き出し時にプラズマ流を遮蔽するシャッター、及び前 記シャッターの格納部を配置し、前記堆積基板上に内包フラーレン膜を堆積する時 は前記シャッターを格納部に入れて、前記堆積基板を交換する時は前記シャッター を突き出し、プラズマ流を遮蔽することを特徴とする請求項 1又は 2のいずれか 1項記 載の内包フラーレンの製造装置。 [9] A shutter for blocking a plasma flow at the time of protrusion and a storage part of the shutter are arranged in the first vacuum vessel, and the storage part is stored when the endohedral fullerene film is deposited on the deposition substrate. The apparatus for producing an endohedral fullerene according to any one of claims 1 to 2, wherein the shutter is protruded to replace a plasma flow when the deposition substrate is replaced in a storage chamber.
[10] 真空容器内において、内包対象原子のプラズマ発生部で発生したプラズマ流に、 フラーレン導入部からフラーレンを導入し、該プラズマ流の下流に配置した堆積基板 に内包フラーレンを堆積させる内包フラーレンの製造方法において、真空室内にお いて前記堆積基板の交換を行うことを特徴とする内包フラーレンの製造方法。  [10] In a vacuum vessel, a fullerene is introduced from a fullerene introduction section into a plasma flow generated by a plasma generation section of atoms to be included, and the fullerene is deposited on a deposition substrate disposed downstream of the plasma flow. A method for producing an endohedral fullerene, comprising exchanging the deposition substrate in a vacuum chamber.
[11] 前記フラーレン力 Cn(n=60— 84)であることを特徴とする請求項 10項記載の内包フ ラーレンの製造方法。 11. The method for producing an endohedral fullerene according to claim 10, wherein the fullerene force is Cn (n = 60-84).
[12] 前記内包対象原子がアルカリ金属であることを特徴とする請求項 10乃至 11のいず れか 1項記載の内包フラーレンの製造方法。  12. The method for producing an encapsulated fullerene according to any one of claims 10 to 11, wherein the atom to be included is an alkali metal.
[13] 前記内包対象原子がハロゲン元素であることを特徴とする請求項 10乃至 11のい ずれか 1項記載の内包フラーレンの製造方法。 13. The method for producing an encapsulated fullerene according to any one of claims 10 to 11, wherein the atom to be included is a halogen element.
PCT/JP2004/018934 2003-12-17 2004-12-17 Device for producing endohedral fullerene and method for procuring endohedral fullerene WO2005058756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-419058 2003-12-17
JP2003419058A JP2005179090A (en) 2003-12-17 2003-12-17 Apparatus for manufacturing doped fullerene, and method for manufacturing doped fullerene

Publications (1)

Publication Number Publication Date
WO2005058756A1 true WO2005058756A1 (en) 2005-06-30

Family

ID=34697160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018934 WO2005058756A1 (en) 2003-12-17 2004-12-17 Device for producing endohedral fullerene and method for procuring endohedral fullerene

Country Status (2)

Country Link
JP (1) JP2005179090A (en)
WO (1) WO2005058756A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734074A (en) * 2019-01-31 2019-05-10 华中科技大学 A kind of interior packet metal nitride cluster fullerene and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057994A1 (en) * 2005-11-16 2007-05-24 Ideal Star Inc. Derived fullerene production apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225031A (en) * 1988-07-13 1990-01-26 Sumitomo Electric Ind Ltd Ecr type plasma cvd system
JPH02132657U (en) * 1989-04-10 1990-11-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225031A (en) * 1988-07-13 1990-01-26 Sumitomo Electric Ind Ltd Ecr type plasma cvd system
JPH02132657U (en) * 1989-04-10 1990-11-05

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HATAKEYAMA R. ET AL: "Arc Hoden ni yoru Tanso Cluster no Gosei to Oyo.", JOURNAL OF PLASMA AND FUSION RESEARCH., vol. 75, no. 8, 1999, pages 927 - 933, XP002976400 *
HIRATA T. ET AL: "The K+-C60 plasma for material processing.", PLASMA SOURCES SCI.TECHNOL., vol. 5, 1996, pages 288 - 292, XP002976398 *
WATANABE S. ET AL: "Synthesis of endohedral 133Xe-fullerene by ion implantation.", JAPAN ATOMIC ENERGY RESEARCH INSTITUTE JAERI-REVIEW., 2001, pages 228 - 229, XP008040726 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734074A (en) * 2019-01-31 2019-05-10 华中科技大学 A kind of interior packet metal nitride cluster fullerene and preparation method thereof

Also Published As

Publication number Publication date
JP2005179090A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US5366555A (en) Chemical vapor deposition under a single reactor vessel divided into separate reaction regions with its own depositing and exhausting means
JP3700793B2 (en) Vacuum processing apparatus, method for processing substrate in vacuum processing apparatus, and lock for vacuum processing apparatus
TWI406809B (en) Manufacturing device and manufacturing method of carbon structure
KR100367340B1 (en) Method of removing accumulated films from the surfaces of substrate holders in film deposition apparatus, and film deposition apparatus, and thin film deposition apparatus
JP2009184892A (en) Carbon nanotube forming device, and carbon nanotube forming method
JP5480290B2 (en) Sputtering apparatus and electronic device manufacturing method
JPH03120362A (en) Apparatus and method for plasma treatment
TWI385717B (en) Plasma doping method and plasma processing device
CN107923037A (en) Vacuum treatment device and the method for application of vacuum substrate
CN1931714A (en) Carbon nanotube preparing apparatus and process
JP4473410B2 (en) Sputtering apparatus and film forming method
JP4428873B2 (en) Sputtering equipment
WO2005058756A1 (en) Device for producing endohedral fullerene and method for procuring endohedral fullerene
JPH11256327A (en) Forming method of metallic compound thin film and film forming device
JP2000273615A (en) Method for removing deposit film on surface of substrate holder in film forming device, and the film forming device
JP5619028B2 (en) Vacuum deposition apparatus and maintenance method thereof
JPH06279998A (en) Dry coating method for inside surface of cylinder
JP2011135010A (en) Apparatus for processing substrate
JP2004043880A (en) Film deposition method, film deposition apparatus, optical element, and projection aligner
JP2010251282A (en) Reproduction method of light emitting device, and reproduction device of light emitting device
JP2009283794A (en) Substrate processing apparatus
JP2020050939A (en) Film deposition apparatus and method of manufacturing film deposition product
CN118222994B (en) Self-cleaning high-flux magnetron sputtering equipment and operation method
WO2010050453A1 (en) Ion implanting apparatus
JP7325278B2 (en) Sputtering method and sputtering apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase