WO2005058538A1 - Method of recirculating high-performance gases for a reflow oven - Google Patents

Method of recirculating high-performance gases for a reflow oven Download PDF

Info

Publication number
WO2005058538A1
WO2005058538A1 PCT/FR2004/050663 FR2004050663W WO2005058538A1 WO 2005058538 A1 WO2005058538 A1 WO 2005058538A1 FR 2004050663 W FR2004050663 W FR 2004050663W WO 2005058538 A1 WO2005058538 A1 WO 2005058538A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
filtration
oven
reflow
performance
Prior art date
Application number
PCT/FR2004/050663
Other languages
French (fr)
Inventor
Patrick Kae-Nune
Jérôme Perrin
Claude Carsac
Original Assignee
L'Air Liquide Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'Air Liquide Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude filed Critical L'Air Liquide Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude
Publication of WO2005058538A1 publication Critical patent/WO2005058538A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/10Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated by hot air or gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0012Monitoring the composition of the atmosphere or of one of their components
    • F27D2019/0015Monitoring the composition of the exhaust gases or of one of its components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Definitions

  • the present invention relates to the field of assembly of electronic cards by the reflow soldering process.
  • the electronic card on which the components have been previously positioned on pads covered with solder cream is introduced into a passage oven.
  • This solder cream contains the solder and the flux used to make the solder, but also ensures the maintenance of the components on the board before soldering.
  • a reflow oven generally consists of a tunnel, open at both ends, inside which the electronic card runs, carried by a chain conveyor system or carpet.
  • the oven generally comprises a succession of convective heating zones where the electronic card undergoes a thermal cycle ensuring brazing.
  • This thermal cycle generally comprises a phase of gradual rise in temperature, whether or not followed by a plateau at a temperature known as preheating, then a rapid rise at a temperature called reflow peak of value greater than the melting temperature of the solder, and finally rapid cooling of the card to a temperature close to ambient temperature.
  • preheating a temperature known as preheating
  • reflow peak a temperature greater than the melting temperature of the solder
  • rapid cooling of the card to a temperature close to ambient temperature.
  • the present invention aims to provide a method and a device for efficiently recycling an inert gas with high performance inside a reflow furnace, thereby making it possible to significantly lower the cost of using such a gas. inert with high thermal performance.
  • a new principle of a high performance gas recycling circuit successively comprising the following steps (which will be detailed in connection with FIG. 3 below): - A suction device gas inside the oven.
  • a pre-filtration or "coarse" filtration step (Filtration 1). - A compressor. - A fine filtration stage (Filtration 2).
  • a step of analyzing the oxygen content in order to direct downstream of the purification cycle only a gas mixture having an oxygen content below a predefined limit.
  • a purification operation comprising at least one of the following stages: an oxygen purification stage, a membrane separation stage.
  • - A re-injection device in the oven comprising suction orifices preferably arranged in the vicinity of the inlets and outlets of the oven so as to capture the maximum of parasitic air inlets into the oven.
  • the purpose of the pre-filtration stage is to eliminate most of the fumes and vapors emitted during the remelting. It uses all known technologies for eliminating such fumes and vapors, and in particular coalescing filters and / or condensation on a cold wall.
  • This pre-filtration step is preferably designed, according to known methods, so as to be able to easily eliminate the fumes and vapors condensed by standard exchange of cartridge and / or of the pre-filtration device itself, condensation in an easily removable container. , or any other process allowing rapid and easy elimination without interrupting production.
  • the compressor ensures the circulation of gas in the recycling circuit and provides the pressure necessary for the operation of the second filtration step. It is preferably placed, on the recycling circuit, between the two filtration stages.
  • the unconventional fine filtration step (2d filtration) aims to protect and increase the reliability of the following purification steps. It is carried out for example: - by condensation on one or more cold walls which are maintained at a judiciously chosen temperature. Maintaining the cold wall (s) at this temperature is obtained by any known method such as mechanical cold, circulation of cryogenic fluid, Pelletier effect or any other. This temperature is chosen so that the vapor pressure of the organic compounds emitted during the reflow peak, at this temperature, is low enough for the membrane to be able to function in optimal conditions.
  • a dust filter is fitted at the outlet of the tower in order to stop any carbon particles coming from the tower.
  • a step of drying the residual water in the gas mixture is then carried out by desiccant or automatic drain.
  • the analysis step - particularly recommended - makes it possible to determine the oxygen content of the impure high-performance gas recovered at the outlet of second filtration and to compare this value with a pre-set threshold value so as not to recycle this gas towards the stages subsequent purification only when this value is lower than the threshold value and to purge in the ambient atmosphere if it exceeds this threshold value.
  • the gaseous mixture obtained at the output of second filtration certainly includes high performance gas but also residues in number and in particular air (nitrogen and oxygen).
  • the purpose of the oxygen purification step located downstream of the second filtration is to allow an oxygen concentration inside the furnace not to exceed a limit value of the order of 500 ppm volume and , preferably, of 200 ppm volume.
  • This step can be carried out by any known means, for example adsorption on a copper oxide and manganese bed or any other known adsorbent or also by any “deoxo” type system, preferably operating on methane. It is preferable to have a two-way system, one for adsorption and the other for regenerating said adsorbent.
  • the control of this two-way system can for example be controlled by the oxygen analyzer which is generally equipped with a reflow oven operating under an inert atmosphere.
  • the water and the carbon dioxide possibly resulting from the combustion of oxygen can be filtered conventionally by an automatic drainer and a lime filter.
  • the gaseous mixture obtained at the outlet of the purification stage comprises high-performance gas, but also oxygen (in general less than 200 ppm vol., Or even less than a few tens of ppm), without also forgetting in general of nitrogen (depending on the performance of the tunnel entry-exit barriers).
  • the purpose of the membrane separation step is therefore in particular to separate the high-performance gas, originating from the purification step, from the nitrogen in the air which could enter the passage oven and from the gas from the gas barriers. which serve to prevent the ingress of air into the oven passing through the inlet and outlet openings. Indeed, production constraints favoring so-called "continuous" ovens, the use of such gaseous barriers is essential.
  • this step also makes it possible to eliminate the residual methane in the case where a deoxo operating on methane was used in the previous step, or else the CO 2 resulting from such a deoxo, which has an additional advantage in terms of operational safety of the recycling system.
  • the efficiency of gas barriers and the tightness of passage ovens are dependent on the technologies implemented by the various furnace manufacturers.
  • air contamination is subject to variation and will therefore require the implementation of one or each of the means mentioned above: - if the effectiveness of the gas barriers and the tightness of the furnace are optimal, we could consider use only the membrane separation step, in particular to separate the high-performance gas from the barrier gas.
  • the first stage of purification of the followed by the membrane separation step also has the advantage of effectively separating the nitrogen from the air from the high performance gas.
  • the high performance gas enrichment step which is particularly recommended, is intended to limit the acceptable rate any contaminants likely to accumulate gradually in the oven and which would not be eliminated by the recycling system and / or to compensate for any losses of gas linked to the purification.
  • the final stage of the process which is the subject of the invention involves re-injecting the purified high-performance gas into the furnace.
  • the present invention therefore relates to a process for recycling the reflow gas implemented in a reflow soldering oven, reflow gas comprising at least one gas with high thermal performance, according to which: a) suction is carried out at less part of the gas contained inside the oven; b) a pre-filtration of the gas thus aspirated is carried out (filtration 1); c) the gas from said pre-filtration is recompressed before directing the gas thus recompressed to a fine filtration operation (filtration 2).
  • the gas from said fine filtration is treated by a purification operation comprising one or each of the following stages arranged in series: - an oxygen purification stage, - a membrane separation stage.
  • a step of adding at least one of said high-performance gases to the gas resulting from said purification operation is carried out.
  • the gas from step e) is reinjected into the oven.
  • the method according to the invention can also adopt one or more of the following technical characteristics: - a step of analyzing the oxygen content of the gas from the second filtration step is carried out, the value thus measured is compared with a preset threshold value, and the following measures are implemented: i) if the measured value is less than or equal to the preset threshold value, the gas from the second filtration is directed to said purification operation; j) if the measured value is greater than the prefixed threshold value, the gas from the second filtration is directed towards the ambient atmosphere.
  • the oxygen purification step is carried out by adsorption.
  • the oxygen purification step is carried out by passage through a deoxo system.
  • Said at least one high performance gas is helium.
  • FIG. 1 provides a schematic representation of a continuous brazing furnace by reflow.
  • FIG. 2 provides a schematic representation of an example of installation for recycling the reflow gas implemented in a reflow soldering furnace (comparison).
  • - Figure 3 provides a schematic representation of an example of installation for recycling the reflow gas implemented in a reflow soldering oven according to the invention.
  • the Applicant first proposed a first recycling scheme, that shown in FIG. 2.
  • This preliminary solution implemented a gas recycling circuit comprising successively the following steps: - A gas suction device inside the oven.
  • FIG. 3 illustrates an installation in accordance with the invention, using helium or a nitrogen / helium mixture as a brazing gas. The following elements or steps are recognized in the figure: - A sampling point for at least part of the gas inside the oven.
  • the gas thus sampled (comprising in particular helium, fumes, and traces of air which are inevitable given the air inlets into the oven (depending on the efficiency of the gas barriers with which this oven is equipped) is directed towards a pre-filtration stage (Filtration 1 in the figure).
  • This pre-filtration stage aims in particular to eliminate most of the fumes and vapors emitted during reflow. It uses all the known technologies of elimination of such fumes and vapors and in particular coalescing filters or even condensation on a cold wall.
  • This pre-filtration step is preferably designed so as to be able to easily eliminate the fumes and vapors condensed by standard exchange of cartridge and / or from the pre-filtration device itself, condensation in an easily removable container, or any other process allowing rapid and easy elimination without interrupting the process.
  • a compressor located just downstream of the pre-filtration The compressor is preferably placed between the two filtration stages 1 and 2, not only to provide the pressure necessary for the correct operation of the second filtration step but also in order to protect it from the fumes and other vapors emitted in the oven, the progressive accumulation of these fumes and vapors in the compressor would be likely to seriously impair its proper functioning.
  • the fine filtration step designated filtration 2 in the figure.
  • This unconventional step aims to protect and increase the reliability of the subsequent purification steps. It is preferably carried out: -> by condensation on one or more cold walls which are maintained at a judiciously chosen temperature. Maintaining the cold wall (s) at this temperature is obtained by any known method such as mechanical cold, circulation of cryogenic fluid, Pelletier effect or any other. This temperature is chosen so that the vapor pressure of the organic compounds emitted during the reflow peak, at this temperature, is low enough for the membrane to be able to function under optimal conditions. It is preferable to have a two-way system, one for condensing and the other for evacuating condensed liquids or solids -> By trapping organic compounds in an activated carbon tower.
  • a dust filter is advantageously mounted at the outlet of the tower in order to stop any carbon particles coming from the tower. -> By washing with water in a cyclonic washer of known technology. A step of drying the residual water in the gas mixture is then carried out by dissicant or automatic drainer. At the end of the fine filtration, a mixture is obtained here comprising in particular helium, but also air.
  • a step of analysis of the oxygen content obtained at the end of fine filtration making it possible to compare the value thus measured with a prefixed threshold value, and to make the following choice: i) if the measured value is less than or equal to the prefixed threshold value, the gas from the second filtration is directed to the purification operation located downstream; j) if the measured value is greater than the prefixed threshold value, the gas from the second filtration is directed towards the ambient atmosphere as shown by the down arrow in the figure.
  • a step of purifying oxygen for example by adsorption or again by deoxo reaction on methane or hydrogen
  • the step of purifying oxygen by adsorption provides a gas typically comprising less than 200 ppm of oxygen or even less than a few tens of ppm.
  • the subsequent membrane separation step is very particularly advantageous for eliminating other residues, with, as the case may be: nitrogen due to the air inlets in the oven, methane coming from deoxo, or H 2 O, CO 2 etc ... also according to the composition of the gaseous mixture used in the furnace itself but also in the gaseous barriers, the two mixtures being able to be of different nature (one could refer on this subject to patent application FR-03 50664 of October 9, 2003 in the name of the Claimant).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a method of recirculating the reflow gas used in a reflow soldering oven, whereby the reflow gas comprises at least one high-thermal-performance gas. The inventive method comprises the following steps consisting in: a) drawing off at least one portion of the gas contained inside the oven; b) pre-filtering the gas thus drawn off (filtration 1); c) recompressing the gas resulting from the aforementioned pre-filtration and, subsequently, directing the gas thus recompressed towards a fine filtration operation (filtration 2); d) treating the gas resulting from the fine filtration using a cleaning operation consisting of one or each of the following successive steps, namely an oxygen cleaning step and a membrane separation step; e) adding at least one of the above-mentioned high-performance gases to the gas resulting from the cleaning step; and f) re-injecting the gas from step (e) into the oven.

Description

PROCÉDÉ DERECYCLAGEDEGAZHAUTESPERFORMANCESPOURFOUR DEREFUSION DERECYCLAGEDEGAZHAUTESPERFORMANCESPOURFOUR DEREFUSION PROCESS
La présente invention concerne le domaine de l'assemblage de cartes électroniques par le procédé de brasage par refusion. Dans ce procédé on introduit dans un four à passage la carte électronique sur laquelle les composants ont été préalablement positionnés sur des plages recouvertes de crème à braser. Cette crème à braser contient la brasure et le flux permettant de réaliser la brasure, mais assure également le maintient des composants sur la carte avant brasage. Comme on le verra plus loin en liaison avec la figure 1 , un tel four de refusion est généralement constitué d'un tunnel, ouvert aux deux extrémités, à l'intérieur duquel la carte électronique défile, portée par un système de convoyage à chaîne ou à tapis. Le four comporte généralement une succession de zones de chauffage convectif où la carte électronique subit un cycle thermique assurant le brasage. Ce cycle thermique comporte généralement une phase de montée progressive en température, suivie ou non d'un palier à une température dite de préchauffage, puis une montée rapide à une température appelée pic de refusion de valeur supérieure à la température de fusion de la brasure, et enfin un refroidissement rapide de la carte à une température proche de la température ambiante. Pour améliorer la qualité de ce brasage et notamment éviter les défauts sur les cartes complexes et/ou difficiles à braser en raison de leur conception ou de la difficulté de mouillage par la brasure de certaines surfaces à braser, on injecte dans certains cas à l'intérieur du four un gaz inerte à hautes performances thermiques, par exemple de l'hélium ou des mélanges à base d'hélium. L'utilisation d'un tel gaz inerte à hautes performances n'est pas, pour nombre d'applications, justifiée économiquement, car la consommation de ce gaz, qui doit être renouvelé en permanence, représente un coût trop important. En effet, le renouvellement permanent du gaz à l'intérieur du four à passage est indispensable en raison essentiellement : - Des entrées d'air inévitables par les extrémités ouvertes du four. Ces entrées d'air, et plus particulièrement d'oxygène, rendraient peu à peu, sans renouvellement, l'atmosphère du four trop riche en oxygène et par conséquent impropre aux conditions requises pour un brasage en atmosphère inerte. - De la pollution de l'atmosphère du four par les fumées et vapeurs que dégagent la crème à braser, la carte et les composants portés à haute température notamment lors du passage au pic de refusion. Ces fumées et vapeurs se déposent progressivement sur les parties froides du four, entravant son fonctionnement normal. Habituellement on se débarrasse de ces fumées et vapeurs en augmentant le débit de gaz à l'intérieur du four, ce qui augmente la consommation de gaz et par conséquent le coût de fonctionnement de l'opération. La présente invention vise à proposer un procédé et un dispositif permettant de recycler efficacement un gaz inerte à hautes performances à l'intérieur d'un four de refusion à passage, permettant ainsi d'abaisser notablement le coût d'utilisation d'un tel gaz inerte à hautes performances thermiques. Pour ce faire, on propose selon la présente invention, un nouveau principe de circuit de recyclage du gaz hautes performances comprenant successivement les étapes suivantes (que l'on détaillera en liaison avec la figure 3 ci-après) : - Un dispositif d'aspiration de gaz à l'intérieur du four. - Une étape de pré-filtration ou filtration « grossière » (Filtration 1). - Un compresseur. - Une étape de filtration fine (Filtration 2). - Avantageusement, une étape d'analyse de la teneur en oxygène, afin de ne diriger vers l'aval du cycle d'épuration qu'un mélange gazeux ayant une teneur en oxygène inférieure à une limite prédéfinie. - Une opération d'épuration comportant l'une au moins des étapes suivantes : une étape d'épuration en oxygène, une étape de séparation membranaire. - Une étape d'enrichissement en gaz haute performance du gaz issu de l'opération d'épuration précédente. - Un dispositif de ré-injection dans le four. Le dispositif d'aspiration de gaz à l'intérieur du four comporte des orifices d'aspiration disposés préférentiellement au voisinage des entrées et sorties du four de façon à capter le maximum des entrées parasites d'air dans le four. L'étape de pré-filtration a pour but d'éliminer la plus grande partie des fumées et vapeurs émises lors de la refusion. Elle fait appel à toutes les technologies connues d'élimination de telles fumées et vapeurs et notamment les filtres à coalescence et/ou la condensation sur paroi froide. Cette étape de pré-filtration est préférentiellement conçue, selon des procédés connus, de façon à pouvoir éliminer facilement les fumées et vapeurs condensées par échange standard de cartouche et/ou du dispositif de pré-filtration lui-même, condensation dans un récipient facilement amovible, ou tout autre procédé permettant une élimination rapide et aisée sans interruption de la production. Le compresseur, permet d'assurer la circulation du gaz dans le circuit de recyclage et fournit la pression nécessaire au fonctionnement de la seconde étape de filtration. Il est préférentiellement placé, sur le circuit de recyclage, entre les deux étapes de filtration. Cette disposition a pour but de le protéger des fumées et vapeurs émises dans le four. En effet l'accumulation progressive de ces fumées et vapeurs dans le compresseur serait de nature à nuire gravement à son bon fonctionnement. L'étape de filtration fine (2d filtration), non conventionnelle, a pour but de protéger et d'augmenter la fiabilité des étapes suivantes d'épuration. Elle est réalisée par exemple : - par condensation sur une ou des parois froides qui sont maintenues à une température judicieusement choisie. Le maintien de la ou des parois froides à cette température est obtenu par tout procédé connu tel que froid mécanique, circulation de fluide cryogénique, effet Pelletier ou tout autre. Cette température est choisie de façon à ce que la tension de vapeur des composés organiques émis lors du pic de refusion, à cette température, soit suffisamment basse pour que la membrane puisse fonctionner dans des conditions optimales. On peut disposer, préférentiellement, d'un système à deux voies, l'une pour la condensation et l'autre permettant de d'évacuer les liquides ou solides condensés - Par piégeage des composés organiques dans un tour à charbon actif. Une filtre anti-poussières est montée en sortie du tour afin de stopper les éventuelles particules de carbone provenant du tour. - Par lavage à l'eau dans un laveur cyclonique de technologie connue. Une étape de séchage de l'eau résiduelle dans le mélange gazeux est ensuite réalisée par dessicant ou purgeur automatique. L'étape d'analyse - tout particulièrement recommandée- permet de déterminer la teneur en oxygène du gaz à hautes performances impur récupéré en sortie de seconde filtration et de comparer cette valeur à une valeur de seuil préfixée afin de ne recycler ce gaz vers les étapes ultérieures d'épuration que lorsque cette valeur est inférieure à la valeur seuil et de purger à l'atmosphère ambiante si elle dépassait cette valeur seuil. En effet le mélange gazeux obtenu en sortie de seconde filtration comporte certes le gaz à haute performance mais également des résidus en nombre et en particulier de l'air (azote et oxygène). L'étape d'épuration de l'oxygène située en aval de la seconde filtration a pour but de permettre d'avoir une concentration en oxygène à l'intérieur du four ne dépassant pas une valeur limite de l'ordre de 500 ppm volume et, préférentiellement, de 200 ppm volume. Cette étape peut être réalisée partout moyen connu, par exemple adsorption sur lit d'oxyde de cuivre et manganèse ou tout autre adsorbant connu ou encore par tout système de type « déoxo », fonctionnant préférentiellement au méthane. On peut disposer, préférentiellement, d'un système à deux voies, l'une pour l'adsorption et l'autre permettant de régénérer le dit adsorbant. La commande de ce système à deux voies peut par exemple être commandée par l'analyseur d'oxygène dont est généralement équipé un four de refusion fonctionnant sous atmosphère inerte. Dans le cas d'un « deoxo », l'eau et le dioxyde carbone éventuellement issus de la combustion de l'oxygène peuvent être filtrés classiquement par un purgeur automatique et un filtre à chaux. Le mélange gazeux obtenu en sortie d'étape d'épuration comprend le gaz à haute performances, mais également de l'oxygène (en général moins de 200 ppm vol., voire moins de quelques dizaines de ppm), sans oublier également en général de l'azote (selon les performances des barrières d'entrée-sortie du tunnel). L'étape de séparation membranaire a alors pour but notamment de séparer le gaz à hautes performances, issu de l'étape d'épuration, de l'azote de l'air qui pourraient pénétrer dans le four à passage et du gaz des barrières gazeuses qui servent à empêcher la pénétration de l'air dans le four à passage par les ouvertures d'entrées et de sorties. En effet, les contraintes de production favorisant les fours dits « continus », l'utilisation de telles barrières gazeuses s'avère indispensable. En outre, cette étape permet aussi d'éliminer le méthane résiduel dans le cas où un deoxo fonctionnant au méthane a été utilisé dans l'étape précédente, ou encore le CO2 résultant d'un tel deoxo, ce qui présente un avantage supplémentaire en termes de sécurité de fonctionnement du système de recyclage. Cependant, l'efficacité des barrières gazeuses et l'étanchéité des fours à passages sont tributaires des technologies mises en œuvre par les différents fabricants de four. Ainsi, la contamination en air est sujette à variation et nécessitera donc la mise en œuvre d'un ou chacun des moyens cités ci- dessus : - si l'efficacité des barrières gazeuses et l'étanchéité du four sont optimales, on pourra envisager de ne mettre en œuvre que l'étape de séparation membranaire, pour notamment séparer le gaz à hautes performances du gaz des barrières. - En revanche, si l'efficacité des barrières gazeuses et/ou l'étanchéité du four sont moyennes et qu'en conséquence de l'air pénètre dans le four, il sera recommandé de mettre en œuvre la première étape d'épuration de l'oxygène suivi de l'étape de séparation membranaire. Cette étape présente aussi l'avantage de séparer efficacement l'azote de l'air du gaz à hautes performances. L'étape d'enrichissement en gaz hautes performances tout particulièrement recommandée, elle a pour but de limiter à un taux acceptable les contaminants éventuels susceptibles de s'accumuler progressivement dans le four et qui ne seraient pas éliminés par le système de recyclage et/ou de compenser les pertes éventuelles de gaz liées à la purification. L'étape finale du procédé objet de l'invention comporte la ré-injection dans le four du gaz haute performance ainsi épuré. Ceci s'effectue à l'aide d'un dispositif de ré-injection préférentiellement conçu pour que le gaz épuré soit injecté dans une zone du four proche de celle correspondant au pic de refusion. La présente invention concerne alors un procédé de recyclage du gaz de refusion mis en œuvre dans un four de brasage par refusion, gaz de refusion comportant au moins un gaz à haute performance thermique, selon lequel : a) on procède à une aspiration d'au moins une partie du gaz contenu à l'intérieur du four ; b) on effectue une pré-filtration du gaz ainsi aspiré (filtration 1 ); c) on procède à une recompression du gaz issu de ladite pre- filtration avant de diriger le gaz ainsi recomprimé vers une opération de filtration fine (filtration 2). d) on traite le gaz issu de ladite filtration fine par une opération d'épuration comportant une ou chacune des étapes suivantes disposées en série : - une étape d'épuration en oxygène, - une étape de séparation membranaire . e) on procède à une étape d'ajout d'au moins un des dits gaz à haute performance dans le gaz issu de ladite opération d'épuration. f)) on procède à la réinjection du gaz issu de l'étape e) dans le four. Le procédé selon l'invention peut également adopter l'une ou plusieurs des caractéristiques techniques suivantes : - on procède à une étape d'analyse de la teneur en oxygène du gaz issu de la seconde étape de filtration, on compare la valeur ainsi mesurée à une valeur de seuil préfixée, et on met en œuvre les mesures suivantes : i) si la valeur mesurée est inférieure ou égale à la valeur de seuil préfixée on dirige le gaz issu de la seconde filtration vers ladite opération d'épuration ; j) si la valeur mesurée est supérieure à la valeur de seuil préfixée on dirige le gaz issu de la seconde filtration vers l'atmosphère ambiante. - l'étape d'épuration en oxygène est réalisée par adsorption. - l'étape d'épuration en oxygène est réalisée par passage dans un système deoxo. - ledit au moins un gaz à haute performance est de l'hélium. L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels : - la figure 1 fournit une représentation schématique d'un four continu de brasage par refusion. - la figure 2 fournit une représentation schématique d'un exemple d'installation de recyclage du gaz de refusion mis en œuvre dans un four de brasage par refusion (comparatif). - la figure 3 fournit une représentation schématique d'un exemple d'installation de recyclage du gaz de refusion mis en œuvre dans un four de brasage par refusion conforme à l'invention. En effet, lors de la mise au point de la présente invention, la Demanderesse a tout d'abord proposé un premier schéma de recyclage, celui représenté sur la figure 2. Cette solution préliminaire mettait en œuvre un circuit de recyclage du gaz comprenant successivement les étapes suivantes : - Un dispositif d'aspiration de gaz à l'intérieur du four. - Une étape de pré-filtration (Filtration 1). - Un compresseur. - Une étape de filtration fine ( filtration 2 sur la figure). - Une membrane de séparation. - Une étape d'adsorption des traces résiduelles d'oxygène. - Une étape d'enrichissement du gaz issu de l'étape d'adsorption en gaz hautes performances. - Un dispositif de ré-injection du gaz ainsi constitué dans le four. Cette solution technique présentait certes de nombreux mérites, néanmoins, des études plus détaillées montrent qu'elle présente des inconvénients en termes de pression de fonctionnement pour l'étape de séparation membranaire. En effet, pour vaincre la perte de charge liée au passage du mélange gazeux dans l'étape d'adsorption d'oxygène, la pression en sortie de membrane - côté permeat (riche en gaz à hautes performances) doit être de quelques bars, de préférence entre 1 et 3 bars. Cette élévation de pression entraîne par conséquent une baisse des performances de séparation de la membrane. Une solution technologique aurait été de mettre un second compresseur entre la sortie de la membrane - côté permeat et l'étape d'adsorption mais ceci présente l'inconvénient de nécessiter un investissement financier supplémentaire et non négligeable. La figure 3 illustre alors une installation conforme à l'invention, mettant en œuvre à titre de gaz de brasage de l'hélium ou un mélange azote/hélium. On reconnaît sur la figure les éléments ou étapes suivantes : - Une prise de prélèvement d'au moins une partie du gaz se trouvant à l'intérieur du four. - le gaz ainsi prélevé (comportant notamment de l'hélium, des fumées, et des traces d'air inévitables compte tenu des entrées d'air dans le four (selon l'efficacité des barrières gazeuses dont est équipé ce four) est dirigé vers une étape de pré-filtration ( Filtration 1 sur la figure). Cette étape de pré-filtration a notamment pour but d'éliminer la plus grande partie des fumées et vapeurs émises lors de la refusion. Elle fait appel à toutes les technologies connues d'élimination de telles fumées et vapeurs et notamment les filtres a coalescence ou encore la condensation sur paroi froide. Cette étape de pré-filtration est préférentiellement conçue, de façon à pouvoir éliminer facilement les fumées et vapeurs condensées par échange standard de cartouche et/ou du dispositif de pré-filtration lui-même, condensation dans un récipient facilement amovible, ou tout autre procédé permettant une élimination rapide et aisée sans interruption du procédé. - un compresseur, situé juste en aval de la pre-filtration Le compresseur est préférentiellement placé entre les deux étapes de filtration 1 et 2, non seulement pour fournir la pression nécessaire au bon fonctionnement de la seconde étape de filtration mais également afin de le protéger lui des fumées et autres vapeurs émises dans le four, l'accumulation progressive de ces fumées et vapeurs dans le compresseur serait de nature à nuire gravement à son bon fonctionnement. - l'étape de filtration fine, désignée filtration 2 sur la figure. Cette étape, non conventionnelle, a pour but de protéger et d'augmenter la fiabilité des étapes ultérieures de purification. Elle est réalisée préférentiellement : - > par condensation sur une ou des parois froides qui sont maintenues à une température judicieusement choisie. Le maintien de la ou des parois froides à cette température est obtenu par tout procédé connu tel que froid mécanique, circulation de fluide cryogénique, effet Pelletier ou tout autre. Cette température est choisie de façon à ce que la tension de vapeur des composés organiques émis lors du pic de refusion, à cette température, soit suffisamment basse pour que la membrane puisse fonctionner dans des conditions optimales. On peut disposer, préférentiellement, d'un système à deux voies, l'une pour la condensation et l'autre permettant de d'évacuer les liquides ou solides condensés - > Par piégeage des composés organiques dans une tour à charbon actif. Un filtre anti-poussières est avantageusement monté en sortie de la tour afin de stopper les éventuelles particules de carbone provenant de la tour. - > Par lavage à l'eau dans un laveur cyclonique de technologie connue. Une étape de séchage de l'eau résiduelle dans le mélange gazeux est ensuite réalisée par dissicant ou purgeur automatique. On obtient alors en sortie de filtration fine un mélange comportant ici notamment de l'hélium, mais aussi de l'air. - une étape d'analyse de la teneur en oxygène obtenue en sortie de filtration fine permettant de comparer la valeur ainsi mesurée à une valeur de seuil préfixée, et d'effectuer le choix suivant : i) si la valeur mesurée est inférieure ou égale à la valeur de seuil préfixée on dirige le gaz issu de la seconde filtration vers opération d'épuration située en aval; j) si la valeur mesurée est supérieure à la valeur de seuil préfixée on dirige le gaz issu de la seconde filtration vers l'atmosphère ambiante comme figuré par la flèche vers le bas sur la figure. - on trouve en sortie d'analyse, et en série, une étape d'épuration d'oxygène (par exemple par adsorption ou encore par réaction deoxo sur méthane ou hydrogène) puis un séparateur membranaire. L'étape d'épuration d'oxygène par adsorption fournit un gaz comportant typiquement moins de 200 ppm d'oxygène voire moins de quelques dizaines de ppm. L'étape ultérieure de séparation membranaire est tout particulièrement avantageuse pour éliminer d'autres résidus, avec selon les cas : l 'azote du aux entrées d'air dans le four, le méthane provenant du deoxo, ou encore H2O, CO2 etc...selon également la composition du mélange gazeux mis en œuvre dans le four lui même mais aussi dans les barrières gazeuses, les deux mélanges pouvant être de nature différente (on pourra se reporter à ce propos à la demande de brevet FR-03 50664 du 9 octobre 2003 au nom de la Demanderesse). - on injecte avantageusement dans le gaz issu du séparateur membranaire, coté permeat, de l'hélium (le gaz haute performance utilisé dans le mode de réalisation exemplifié ici). Cette étape d'injection de gaz haute performance a pour but de limiter à un taux acceptable les contaminants éventuels susceptibles de s'accumuler progressivement dans le four et qui ne seraient pas éliminés par le système de recyclage et/ou de compenser les pertes éventuelles de gaz liées à la purification. - on procède ensuite à la re-injection du gaz ainsi obtenu dans le four, préférentiellement dans une zone du four proche de celle correspondant au pic de refusion où le gaz haute performance joue pleinement son rôle.. The present invention relates to the field of assembly of electronic cards by the reflow soldering process. In this process, the electronic card on which the components have been previously positioned on pads covered with solder cream is introduced into a passage oven. This solder cream contains the solder and the flux used to make the solder, but also ensures the maintenance of the components on the board before soldering. As will be seen below in connection with FIG. 1, such a reflow oven generally consists of a tunnel, open at both ends, inside which the electronic card runs, carried by a chain conveyor system or carpet. The oven generally comprises a succession of convective heating zones where the electronic card undergoes a thermal cycle ensuring brazing. This thermal cycle generally comprises a phase of gradual rise in temperature, whether or not followed by a plateau at a temperature known as preheating, then a rapid rise at a temperature called reflow peak of value greater than the melting temperature of the solder, and finally rapid cooling of the card to a temperature close to ambient temperature. To improve the quality of this soldering and in particular to avoid faults on complex cards and / or difficult to solder because of their design or the difficulty of wetting by soldering of certain surfaces to be soldered, in some cases injected with inside the oven an inert gas with high thermal performance, for example helium or helium-based mixtures. The use of such a high performance inert gas is not, for many applications, economically justified, since the consumption of this gas, which must be constantly renewed, represents too great a cost. In fact, the permanent renewal of the gas inside the pass-through oven is essential, mainly because: - Inevitable air inlets through the open ends of the oven. These air inlets, and more particularly oxygen, would gradually make the atmosphere of the furnace too rich in oxygen, without renewal, and therefore unsuitable for the conditions required for brazing in an inert atmosphere. - Pollution of the furnace atmosphere by the fumes and vapors released by the soldering cream, the card and the components brought to high temperature, especially during the transition to the reflow peak. These fumes and vapors are gradually deposited on the cold parts of the oven, hampering its normal operation. Usually we get rid of these fumes and vapors by increasing the gas flow inside the oven, which increases the gas consumption and therefore the operating cost of the operation. The present invention aims to provide a method and a device for efficiently recycling an inert gas with high performance inside a reflow furnace, thereby making it possible to significantly lower the cost of using such a gas. inert with high thermal performance. To do this, there is proposed according to the present invention, a new principle of a high performance gas recycling circuit successively comprising the following steps (which will be detailed in connection with FIG. 3 below): - A suction device gas inside the oven. - A pre-filtration or "coarse" filtration step (Filtration 1). - A compressor. - A fine filtration stage (Filtration 2). Advantageously, a step of analyzing the oxygen content, in order to direct downstream of the purification cycle only a gas mixture having an oxygen content below a predefined limit. - A purification operation comprising at least one of the following stages: an oxygen purification stage, a membrane separation stage. - A stage of enrichment in high performance gas of the gas resulting from the previous purification operation. - A re-injection device in the oven. The gas suction device inside the oven comprises suction orifices preferably arranged in the vicinity of the inlets and outlets of the oven so as to capture the maximum of parasitic air inlets into the oven. The purpose of the pre-filtration stage is to eliminate most of the fumes and vapors emitted during the remelting. It uses all known technologies for eliminating such fumes and vapors, and in particular coalescing filters and / or condensation on a cold wall. This pre-filtration step is preferably designed, according to known methods, so as to be able to easily eliminate the fumes and vapors condensed by standard exchange of cartridge and / or of the pre-filtration device itself, condensation in an easily removable container. , or any other process allowing rapid and easy elimination without interrupting production. The compressor ensures the circulation of gas in the recycling circuit and provides the pressure necessary for the operation of the second filtration step. It is preferably placed, on the recycling circuit, between the two filtration stages. The purpose of this provision is to protect it from the fumes and vapors emitted in the oven. Indeed, the gradual accumulation of these fumes and vapors in the compressor would be likely to seriously affect its proper functioning. The unconventional fine filtration step (2d filtration) aims to protect and increase the reliability of the following purification steps. It is carried out for example: - by condensation on one or more cold walls which are maintained at a judiciously chosen temperature. Maintaining the cold wall (s) at this temperature is obtained by any known method such as mechanical cold, circulation of cryogenic fluid, Pelletier effect or any other. This temperature is chosen so that the vapor pressure of the organic compounds emitted during the reflow peak, at this temperature, is low enough for the membrane to be able to function in optimal conditions. It is preferable to have a two-way system, one for the condensation and the other for evacuating the condensed liquids or solids - By trapping the organic compounds in an activated carbon tower. A dust filter is fitted at the outlet of the tower in order to stop any carbon particles coming from the tower. - By washing with water in a cyclonic washer of known technology. A step of drying the residual water in the gas mixture is then carried out by desiccant or automatic drain. The analysis step - particularly recommended - makes it possible to determine the oxygen content of the impure high-performance gas recovered at the outlet of second filtration and to compare this value with a pre-set threshold value so as not to recycle this gas towards the stages subsequent purification only when this value is lower than the threshold value and to purge in the ambient atmosphere if it exceeds this threshold value. Indeed, the gaseous mixture obtained at the output of second filtration certainly includes high performance gas but also residues in number and in particular air (nitrogen and oxygen). The purpose of the oxygen purification step located downstream of the second filtration is to allow an oxygen concentration inside the furnace not to exceed a limit value of the order of 500 ppm volume and , preferably, of 200 ppm volume. This step can be carried out by any known means, for example adsorption on a copper oxide and manganese bed or any other known adsorbent or also by any “deoxo” type system, preferably operating on methane. It is preferable to have a two-way system, one for adsorption and the other for regenerating said adsorbent. The control of this two-way system can for example be controlled by the oxygen analyzer which is generally equipped with a reflow oven operating under an inert atmosphere. In the case of a “deoxo”, the water and the carbon dioxide possibly resulting from the combustion of oxygen can be filtered conventionally by an automatic drainer and a lime filter. The gaseous mixture obtained at the outlet of the purification stage comprises high-performance gas, but also oxygen (in general less than 200 ppm vol., Or even less than a few tens of ppm), without also forgetting in general of nitrogen (depending on the performance of the tunnel entry-exit barriers). The purpose of the membrane separation step is therefore in particular to separate the high-performance gas, originating from the purification step, from the nitrogen in the air which could enter the passage oven and from the gas from the gas barriers. which serve to prevent the ingress of air into the oven passing through the inlet and outlet openings. Indeed, production constraints favoring so-called "continuous" ovens, the use of such gaseous barriers is essential. In addition, this step also makes it possible to eliminate the residual methane in the case where a deoxo operating on methane was used in the previous step, or else the CO 2 resulting from such a deoxo, which has an additional advantage in terms of operational safety of the recycling system. However, the efficiency of gas barriers and the tightness of passage ovens are dependent on the technologies implemented by the various furnace manufacturers. Thus, air contamination is subject to variation and will therefore require the implementation of one or each of the means mentioned above: - if the effectiveness of the gas barriers and the tightness of the furnace are optimal, we could consider use only the membrane separation step, in particular to separate the high-performance gas from the barrier gas. - On the other hand, if the efficiency of the gas barriers and / or the tightness of the furnace are average and that consequently air enters the furnace, it will be recommended to implement the first stage of purification of the followed by the membrane separation step. This step also has the advantage of effectively separating the nitrogen from the air from the high performance gas. The high performance gas enrichment step, which is particularly recommended, is intended to limit the acceptable rate any contaminants likely to accumulate gradually in the oven and which would not be eliminated by the recycling system and / or to compensate for any losses of gas linked to the purification. The final stage of the process which is the subject of the invention involves re-injecting the purified high-performance gas into the furnace. This is done using a re-injection device preferably designed so that the purified gas is injected into an area of the furnace close to that corresponding to the reflow peak. The present invention therefore relates to a process for recycling the reflow gas implemented in a reflow soldering oven, reflow gas comprising at least one gas with high thermal performance, according to which: a) suction is carried out at less part of the gas contained inside the oven; b) a pre-filtration of the gas thus aspirated is carried out (filtration 1); c) the gas from said pre-filtration is recompressed before directing the gas thus recompressed to a fine filtration operation (filtration 2). d) the gas from said fine filtration is treated by a purification operation comprising one or each of the following stages arranged in series: - an oxygen purification stage, - a membrane separation stage. e) a step of adding at least one of said high-performance gases to the gas resulting from said purification operation is carried out. f)) the gas from step e) is reinjected into the oven. The method according to the invention can also adopt one or more of the following technical characteristics: - a step of analyzing the oxygen content of the gas from the second filtration step is carried out, the value thus measured is compared with a preset threshold value, and the following measures are implemented: i) if the measured value is less than or equal to the preset threshold value, the gas from the second filtration is directed to said purification operation; j) if the measured value is greater than the prefixed threshold value, the gas from the second filtration is directed towards the ambient atmosphere. - the oxygen purification step is carried out by adsorption. - the oxygen purification step is carried out by passage through a deoxo system. - Said at least one high performance gas is helium. The invention will be better understood on reading the description which follows, given solely by way of example and made with reference to the accompanying drawings, in which: - Figure 1 provides a schematic representation of a continuous brazing furnace by reflow. - Figure 2 provides a schematic representation of an example of installation for recycling the reflow gas implemented in a reflow soldering furnace (comparison). - Figure 3 provides a schematic representation of an example of installation for recycling the reflow gas implemented in a reflow soldering oven according to the invention. In fact, during the development of the present invention, the Applicant first proposed a first recycling scheme, that shown in FIG. 2. This preliminary solution implemented a gas recycling circuit comprising successively the following steps: - A gas suction device inside the oven. - A pre-filtration stage (Filtration 1). - A compressor. - A fine filtration step (filtration 2 in the figure). - A separation membrane. - A step of adsorption of residual traces of oxygen. - A gas enrichment step from the high performance gas adsorption step. - A device for re-injecting the gas thus formed in the furnace. This technical solution certainly had many merits, however, more detailed studies show that it has drawbacks in terms of operating pressure for the membrane separation step. In fact, to overcome the pressure drop linked to the passage of the gas mixture in the oxygen adsorption step, the pressure at the outlet of the membrane - on the permeat side (rich in high performance gases) must be a few bars, preferably between 1 and 3 bars. This increase in pressure consequently causes a reduction in the separation performance of the membrane. A technological solution would have been to put a second compressor between the outlet of the membrane - permeate side and the adsorption stage, but this has the disadvantage of requiring an additional and significant financial investment. FIG. 3 then illustrates an installation in accordance with the invention, using helium or a nitrogen / helium mixture as a brazing gas. The following elements or steps are recognized in the figure: - A sampling point for at least part of the gas inside the oven. - the gas thus sampled (comprising in particular helium, fumes, and traces of air which are inevitable given the air inlets into the oven (depending on the efficiency of the gas barriers with which this oven is equipped) is directed towards a pre-filtration stage (Filtration 1 in the figure). This pre-filtration stage aims in particular to eliminate most of the fumes and vapors emitted during reflow. It uses all the known technologies of elimination of such fumes and vapors and in particular coalescing filters or even condensation on a cold wall. This pre-filtration step is preferably designed so as to be able to easily eliminate the fumes and vapors condensed by standard exchange of cartridge and / or from the pre-filtration device itself, condensation in an easily removable container, or any other process allowing rapid and easy elimination without interrupting the process. - a compressor, located just downstream of the pre-filtration The compressor is preferably placed between the two filtration stages 1 and 2, not only to provide the pressure necessary for the correct operation of the second filtration step but also in order to protect it from the fumes and other vapors emitted in the oven, the progressive accumulation of these fumes and vapors in the compressor would be likely to seriously impair its proper functioning. - the fine filtration step, designated filtration 2 in the figure. This unconventional step aims to protect and increase the reliability of the subsequent purification steps. It is preferably carried out: -> by condensation on one or more cold walls which are maintained at a judiciously chosen temperature. Maintaining the cold wall (s) at this temperature is obtained by any known method such as mechanical cold, circulation of cryogenic fluid, Pelletier effect or any other. This temperature is chosen so that the vapor pressure of the organic compounds emitted during the reflow peak, at this temperature, is low enough for the membrane to be able to function under optimal conditions. It is preferable to have a two-way system, one for condensing and the other for evacuating condensed liquids or solids -> By trapping organic compounds in an activated carbon tower. A dust filter is advantageously mounted at the outlet of the tower in order to stop any carbon particles coming from the tower. -> By washing with water in a cyclonic washer of known technology. A step of drying the residual water in the gas mixture is then carried out by dissicant or automatic drainer. At the end of the fine filtration, a mixture is obtained here comprising in particular helium, but also air. a step of analysis of the oxygen content obtained at the end of fine filtration making it possible to compare the value thus measured with a prefixed threshold value, and to make the following choice: i) if the measured value is less than or equal to the prefixed threshold value, the gas from the second filtration is directed to the purification operation located downstream; j) if the measured value is greater than the prefixed threshold value, the gas from the second filtration is directed towards the ambient atmosphere as shown by the down arrow in the figure. - At the end of the analysis, and in series, there is a step of purifying oxygen (for example by adsorption or again by deoxo reaction on methane or hydrogen) then a membrane separator. The step of purifying oxygen by adsorption provides a gas typically comprising less than 200 ppm of oxygen or even less than a few tens of ppm. The subsequent membrane separation step is very particularly advantageous for eliminating other residues, with, as the case may be: nitrogen due to the air inlets in the oven, methane coming from deoxo, or H 2 O, CO 2 etc ... also according to the composition of the gaseous mixture used in the furnace itself but also in the gaseous barriers, the two mixtures being able to be of different nature (one could refer on this subject to patent application FR-03 50664 of October 9, 2003 in the name of the Claimant). - It is advantageously injected into the gas from the membrane separator, on the permeat side, of helium (the high performance gas used in the embodiment exemplified here). The purpose of this high-performance gas injection step is to limit to an acceptable rate the possible contaminants likely to gradually accumulate in the oven and which would not be eliminated by the recycling system and / or to compensate for the possible losses of gases related to purification. - The gas thus obtained is then re-injected into the oven, preferably in an area of the oven close to that corresponding to the reflow peak where the high performance gas fully plays its role.

Claims

REVENDICATIONS
1. Procédé de recyclage du gaz de refusion mis en œuvre dans un four de brasage par refusion, gaz de refusion comportant au moins un gaz à haute performance thermique, selon lequel : a) on procède à une aspiration d'au moins une portion du gaz contenu à l'intérieur du four ; b) on effectue une pré-filtration du gaz ainsi aspiré (filtration 1); c) on procède à une recompression du gaz issu de ladite pre- filtration avant de diriger le gaz ainsi recomprimé vers une opération de filtration fine (filtration 2). d) on traite le gaz issu de ladite filtration fine par une opération d'épuration comportant une ou chacune des étapes suivantes disposées en série : - une étape d'épuration en oxygène, - une étape de séparation membranaire . e) on procède à une étape d'ajout d'au moins un des dits gaz à haute performance dans le gaz issu de ladite étape d'épuration. f) on procède à la réinjection du gaz issu de l'étape e) dans le four.1. Process for recycling the reflow gas used in a reflow soldering oven, reflow gas comprising at least one gas with high thermal performance, according to which: a) suction is carried out of at least a portion of the gas inside the oven; b) a pre-filtration of the gas thus aspirated is carried out (filtration 1); c) the gas from said pre-filtration is recompressed before directing the gas thus recompressed to a fine filtration operation (filtration 2). d) the gas from said fine filtration is treated by a purification operation comprising one or each of the following stages arranged in series: - an oxygen purification stage, - a membrane separation stage. e) a step of adding at least one of said high-performance gases to the gas resulting from said purification step is carried out. f) the gas from step e) is reinjected into the oven.
2. Procédé de recyclage selon la revendication 1 , caractérisé en ce que l'on procède à une étape d'analyse de la teneur en oxygène du gaz issu de la seconde étape de filtration, on compare la valeur ainsi mesurée à une valeur de seuil préfixée, et on met en œuvre les mesures suivantes : i) si la valeur mesurée est inférieure ou égale à la valeur de seuil préfixée on dirige le gaz issu de la seconde filtration vers ladite opération d'épuration ; j) si la valeur mesurée est supérieure à la valeur de seuil préfixée on dirige le gaz issu de la seconde filtration vers l'atmosphère ambiante.2. Recycling method according to claim 1, characterized in that one proceeds to a step of analysis of the oxygen content of the gas from the second filtration step, the value thus measured is compared to a threshold value prefixed, and the following measures are implemented: i) if the measured value is less than or equal to the prefixed threshold value, the gas from the second filtration is directed to said purification operation; j) if the measured value is greater than the prefixed threshold value, the gas from the second filtration is directed towards the ambient atmosphere.
3. Procédé de recyclage selon la revendication 1 ou 2, caractérisé en ce que ladite étape d'épuration en oxygène est réalisée par adsorption. 3. Recycling method according to claim 1 or 2, characterized in that said oxygen purification step is carried out by adsorption.
4. Procédé de recyclage selon la revendication 1 ou 2, caractérisé en ce que ladite étape d'épuration en oxygène est réalisée par passage dans un système deoxo.4. Recycling method according to claim 1 or 2, characterized in that said oxygen purification step is carried out by passage through a deoxo system.
5. Procédé de recyclage selon l'une des revendications précédentes, caractérisé en ce que ledit au moins un gaz à haute performance est de l'hélium. 5. Recycling method according to one of the preceding claims, characterized in that said at least one high performance gas is helium.
PCT/FR2004/050663 2003-12-17 2004-12-08 Method of recirculating high-performance gases for a reflow oven WO2005058538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0351086 2003-12-17
FR0351086A FR2863922B1 (en) 2003-12-17 2003-12-17 HIGH PERFORMANCE GAS RECYCLING METHOD FOR REFUELING OVEN

Publications (1)

Publication Number Publication Date
WO2005058538A1 true WO2005058538A1 (en) 2005-06-30

Family

ID=34630567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050663 WO2005058538A1 (en) 2003-12-17 2004-12-08 Method of recirculating high-performance gases for a reflow oven

Country Status (2)

Country Link
FR (1) FR2863922B1 (en)
WO (1) WO2005058538A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911881B1 (en) * 2007-01-29 2009-04-17 Air Liquide METHOD FOR RECYCLING HELIUM AND DEVICE FOR IMPLEMENTING SAID METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598367A1 (en) * 1992-11-17 1994-05-25 Matsushita Electric Industrial Co., Ltd. Reflow apparatus and method
EP0999007A1 (en) * 1998-11-02 2000-05-10 Vitronics Soltec B.V. Flux management system for a solder reflow oven
US6576030B2 (en) * 2001-05-30 2003-06-10 Btu International, Inc. Filtering apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598367A1 (en) * 1992-11-17 1994-05-25 Matsushita Electric Industrial Co., Ltd. Reflow apparatus and method
EP0999007A1 (en) * 1998-11-02 2000-05-10 Vitronics Soltec B.V. Flux management system for a solder reflow oven
US6576030B2 (en) * 2001-05-30 2003-06-10 Btu International, Inc. Filtering apparatus

Also Published As

Publication number Publication date
FR2863922A1 (en) 2005-06-24
FR2863922B1 (en) 2006-05-05

Similar Documents

Publication Publication Date Title
EP3393621B1 (en) Method for producing biomethane by purifying biogas from non-hazardous waste storage facilities and facility for implementing the method
EP0930089B1 (en) Process for air purification using adsorpion before cryogenic distillation
EP0995477B1 (en) Process for purifying a gas stream containing N2O as an impurity
WO2009010690A2 (en) Method for the purification of a gas containing co2
EP0922480A1 (en) Adsorption process for the purification of inert fluids on zeolite LSX
EP2235443A2 (en) Method for burning carbonated fuels with combustion smoke filtration before compression
EP0948458B1 (en) Method for purifying a cryogenic fluid by filtration and adsorption
CA2443233C (en) Method for treating a gas mixture by adsorption
EP0662595A1 (en) Process and apparatus for the preparation of high purity liquid nitrogen
EP2477720B1 (en) Method for purifying a gas stream including mercury
WO2005058538A1 (en) Method of recirculating high-performance gases for a reflow oven
EP0820960B1 (en) Removal of O2 and/or CO from inert gas using adsorption on porous metal oxide
FR2975307A1 (en) METHOD OF ADSORPTION PURIFICATION WITH REGENERATION USING A GAS COMPRISING AN UN DESIRED COMPONENT IN PURIFIED GAS
EP1916024A1 (en) Unit and process for treating refinery process wastewater
WO2012007673A1 (en) Adsorber having inner coating
EP1450935A1 (en) Method for separating a gas mixture with a permeation membrane unit
EP0894522A1 (en) Process and apparatus for the production of ultra-pure inert gas
WO2021115719A1 (en) Gas purification method and device
FR2793310A1 (en) Cryogenic separation of air containing impurities in the form of aerosols
WO2003090907A1 (en) Method and installation for purification of fumes containing mercury
FR3120232A3 (en) Ultra-purification process of a fraction of hydrogen from a PSA H2
FR2967359A1 (en) Method for recovering carbon dioxide contained in waste incinerator fumes, involves providing permeate outlet with carbon monoxide fraction of specific percent, specific absolute pressure and specific quantity of carbon monoxide
FR2764523A1 (en) METHOD AND DEVICE FOR SUPPLYING MULTIPLE WORKING GASES, AND ITS APPLICATION TO AN ELECTRONIC COMPONENT ASSEMBLY INSTALLATION
FR2837722A1 (en) Process for the purification of hydrogen contained in a low hydrogen-content gaseous mixture by a PSA technique with two adsorbents
FR2784604A1 (en) Incomplete regeneration of adsorbing particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase