WO2005057260A1 - Optical fiber coupler and process and device for producing the same - Google Patents

Optical fiber coupler and process and device for producing the same Download PDF

Info

Publication number
WO2005057260A1
WO2005057260A1 PCT/JP2004/017148 JP2004017148W WO2005057260A1 WO 2005057260 A1 WO2005057260 A1 WO 2005057260A1 JP 2004017148 W JP2004017148 W JP 2004017148W WO 2005057260 A1 WO2005057260 A1 WO 2005057260A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
fibers
optical fibers
fiber
Prior art date
Application number
PCT/JP2004/017148
Other languages
French (fr)
Japanese (ja)
Inventor
Shunji Hirayama
Yoshiaki Takeuchi
Fuyuki Miura
Shigeru Uzawa
Katsuo Mabuchi
Original Assignee
Osaki Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaki Electric Co., Ltd. filed Critical Osaki Electric Co., Ltd.
Publication of WO2005057260A1 publication Critical patent/WO2005057260A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Definitions

  • the present invention relates to an optical fiber force bra used for branching / coupling / multiplexing of an optical signal in an optical communication system, an optical sensor system or the like, a method of manufacturing the same, and an apparatus for manufacturing the same. It relates to a power bra type optical coupler (optical fiber splitter).
  • an optical communication system in order to perform large-capacity communication, a wavelength division multiplex communication system in which transmission and reception are performed using light of a plurality of wavelengths has been proposed.
  • optical signals of a plurality of respective wavelengths are equally branched in an optical fiber power bra used for monitoring and distributing optical signals, that is, light of each wavelength is It is considered as an important factor in system construction that the branching ratio 'coupling ratio (hereinafter referred to as the optical coupling degree) does not change.
  • An optical fiber force bra having such a flat wavelength characteristic is a component suitable for application to an optical sensor system or the like whose application range is wide apart from optical communication systems. Therefore, various optical fiber power bras with low wavelength dependence have been proposed for use in such optical communication systems.
  • the wavelength dependence is reduced by making the propagation constant different between the optical fibers. That is done (see Patent Document 1). If the propagation constants of the two optical coupling parts are different from each other, the optical coupling is incomplete and the maximum coupling degree is 100% or less. Therefore, by controlling the difference in the propagation constants, it is possible to control the maximum degree of coupling in the optical coupling section to 50% or less, and as a result, it is possible to realize a wide band and nearly uniform branching ratio. In order to make the transmission constants different, it is necessary that the outer diameter of each optical fiber, the core diameter, the relative refractive index difference (cutoff), etc. be mutually different in the optical coupling portion.
  • the force to differentiate the propagation constant at the optical coupling portion by the same optical fiber by the pretreatment becomes the force of either using a different optical fiber.
  • one optical fiber of the same two optical fibers is heated and drawn to form a small diameter portion having a tapered portion, and then the small diameter portion of one heated optical fiber is formed.
  • the dopant is thermally diffused in the core of one of the two optical fibers.
  • Patent Document 4 There is a core diffusion method (refer to Patent Document 4) in which both optical fibers are fused and drawn after adjusting the refractive index distribution, an etching method, a polishing method and the like.
  • an optical fiber in which the outer diameter, the core diameter, the relative refractive index difference (cutoff), etc. are different beforehand.
  • the former method and the latter method are combined in which a part of two optical fibers having different relative refractive index differences in advance are fusion-drawn (see Patent Document 5).
  • a fiber force bra can be created and applied to the creation of a tap force bra or the like.
  • This configuration is also applicable to multi-branch and equal-branch optical fiber force bra ⁇ 1 XN (N> 2) ⁇ , and one N input optical fibers are surrounded by N other output optical fibers.
  • Patent Document 2 Japanese Patent Publication No. 6-040167
  • Patent Document 3 Patent No. 2645458
  • Patent Document 4 Patent No. 2958179
  • Patent Document 5 Patent No. 2848832
  • Patent Document 6 US Patent No. 5,751,873
  • Patent Document 7 US Patent No. 5883992
  • an optical fiber power bra provided with an optical coupling portion that couples propagation light of one optical fiber to one or more other optical fibers.
  • the length of one optical fiber and the other one or more optical fibers in the optical coupling portion are different from each other, and the length of the optical coupling portion is different for each optical fiber at at least two specific wavelengths. It is characterized in that it has a minimum length such that the degree of optical coupling of the propagating light of the beam is approximately equal.
  • one optical fiber is disposed linearly or substantially linearly, and the other one or more optical fibers are meandered.
  • Asymmetry can be introduced between the optical fibers in the optical coupling portion by making the lengths of the optical fibers in the optical coupling portion different from each other by means such as
  • the present invention is also applicable to a general 1 XN unequally-branched optical fiber force bra, which is only divided by the IX 2 unequally-branched fiber optic power bra. Furthermore, there is no problem that the wavelength dependence of the excess loss becomes large in principle, as in the conventional broadband ⁇ method using N + 1 optical fibers to obtain a 1 ⁇ N broadband 'etc. branched optical fiber power bra. . Furthermore, since one optical fiber can be used for input and output of signal light, it is possible to obtain a 1 XN wide-band optical fiber power bra using N less optical fibers.
  • the present invention is characterized in that one optical fiber and one or more other optical fibers have the same optical fiber power.
  • the present invention also includes an alignment step of aligning a plurality of optical fibers with one another, and a fusion drawing step of fusion bonding and drawing each optical fiber aligned by this alignment step to form an optical coupling part.
  • an alignment step of aligning a plurality of optical fibers with one another and a fusion drawing step of fusion bonding and drawing each optical fiber aligned by this alignment step to form an optical coupling part.
  • an aligning step is a brazing step in which one or more other optical fibers are wound around it. And the like.
  • the difference in length of each optical fiber at the optical coupling portion can be obtained by changing the amount of adhesion of the other optical fiber to the linear or almost linear optical fiber. It can be adjusted.
  • the present invention is characterized in that the tension applied to the optical fiber disposed in a straight line or substantially in a straight line is greater than the tension applied to the other optical fibers wound around the optical fiber. Do.
  • the tension of a larger tensioned linear or nearly linear optical fiber is used, and another optical fiber having a small tension is provided around the optical fiber. Wrapping allows straight or nearly straight optical fiber forces to minimize bending due to forces from other optical fibers that wrap around it. It becomes.
  • an alignment mechanism for aligning a plurality of optical fibers with each other, and a fusion / stretching mechanism for fusion-stretching each optical fiber aligned by this alignment mechanism to form an optical coupling portion
  • a manufacturing apparatus for an optical fiber force bra having a and a winding mechanism for winding one or more other optical fibers around at least one optical fiber arranged in a straight line or a substantially straight line, and a straight line
  • a tension applying mechanism for keeping the tension applied to the optical fiber arranged in a substantially or substantially straight shape larger than the tension applied to the optical fiber wound around the optical fiber.
  • the brazing mechanism winds another optical fiber around the linear or nearly linear optical fiber.
  • a predetermined tension is applied to each optical fiber by the tensioning mechanism so that the straight or nearly straight optical fiber is not bent by the force received from the other optical fino wrapped around it.
  • the amount by which the optical fiber wraps around a straight or nearly straight optical fiber is constant.
  • an apparatus for manufacturing a fiber optic force bra which can easily control the asymmetry between the optical fibers in the optical coupling portion by the difference in their lengths.
  • each light beam can be changed by changing the amount of brazing of the other optical fiber to one optical fiber.
  • a method of manufacturing an optical fiber power bra and an apparatus for manufacturing the same by which asymmetry between fibers can be controlled and an optical fiber power bra having branch characteristics having a desired wide band characteristic can be manufactured with high productivity.
  • FIG. 1 is a perspective view showing an outline of a configuration around an optical coupling portion of an optical fiber force bra according to an embodiment of the present invention.
  • FIG. 2 is a side view showing an optical fiber brazed state prior to fusion drawing of the optical fiber force bra of FIG.
  • FIG. 3 is a graph showing the relationship between the wavelength of the optical fiber force bra shown in FIG. 1 and the insertion loss.
  • FIG. 4 is a plan view and a side view showing an outline of the configuration of a fiber holding mechanism and a heating mechanism of an optical fiber force bra manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 5 A perspective view showing an outline of a fiber rotating mechanism constituting the optical fiber force bra manufacturing apparatus shown in FIG. 4 before and at the time of brazing.
  • FIG. 6 is a graph showing the relationship between the fusion drawing time of the optical coupling part of the optical fiber force bra shown in FIG. 1 and the optical coupling degree of each optical fiber.
  • FIG. 7 is a perspective view showing an outline of a configuration around an optical coupling portion of a fiber optic force bra according to another embodiment of the present invention.
  • FIG. 8 A side view showing a brazing state of the optical fiber before fusion drawing of the optical fiber power bra shown in FIG.
  • FIG. 9 is a cross-sectional view of the optical coupling portion of the optical fiber force bra shown in FIG. 7 before heating and drawing.
  • FIG. 10 is a graph showing the relationship between the wavelength of the optical fiber force bra shown in FIG. 7 and the insertion loss.
  • FIG. 1 is a perspective view of an optical fiber force bra light coupling part periphery 2 a according to a first embodiment of the present invention.
  • This optical fiber coupler is a fused and drawn IX2 broadband optical fiber power bra that splits or couples propagating light between the optical fiber la and the optical fiber lb.
  • Both optical fibers la and lb are identical single-mode optical fibers that are commercially available, respectively.
  • Both optical fibers The la and lb have different outer diameters and waveguide parameters, and they are not pretreated to introduce anisotropy such as prestretching or etching.
  • signal light of a plurality of wavelengths such as a wavelength of 1.31 m and a wavelength of 1.55 m propagate, for example, and wavelength division multiplexing communication is performed.
  • This optical fiber coupler comprises an optical coupling portion 21 for branching or coupling the propagating light between the optical fiber la and the optical fiber lb.
  • the optical coupling portion 21 is fused in a serpentine state in which a part of the optical fiber lb is wound around the linear or almost linear optical fiber la. It is configured to be stretched. Therefore, the lengths of the optical fibers la and lb at the light coupling portion 21 are different from each other.
  • the amount of optical fiber lb applied to the optical fiber la is the difference between the lengths of both optical fibers la and lb at the optical coupling portion 21.
  • Two specific wavelengths used in wavelength division multiplexing communication 1.31 m and 1 At 55 m, the degree of coupling of the propagation light of each optical fiber la, 1 b is adjusted to be approximately equal.
  • FIG. 3 is a graph showing the wavelength characteristics of the optical fiber force bra, and the horizontal axis of the graph represents the wavelength of the signal light [/ z mL vertical axis represents the insertion loss [dB] of the signal path.
  • the characteristic line A represents the output wavelength characteristic of the optical fiber la when the optical signal is input from the optical fiber la
  • the characteristic line B represents the output wavelength characteristic of the optical fiber lb.
  • the fiber optic force bra has a branching ratio of approximately 50:50 with an insertion loss of approximately 3 dB at both wavelengths of 1. 31 111 and 1.5 5 m, and it is used at both of these wavelengths A possible, wideband equal-branching feature is provided.
  • the branching ratio can be controlled by changing the amount of wire bonding of the optical fiber lb to the optical fiber la, and it is possible to control the branching ratio other than the equal branch optical fiber power bra, for example, the wavelength 1. 31 It is also possible to easily make an IX 2 unequally branched optical fiber Bragg bra (5% tap force bra) with a branching ratio of 95: 5 that can be used at both wavelengths of / zm and 1.55 m.
  • optical fiber force bra manufacturing apparatus for manufacturing the optical fiber force bra will be described.
  • FIGS. 4 (a) and 4 (b) are a plan view and a side view of a fiber holding mechanism and a heating mechanism 3 of the optical fiber force bra manufacturing apparatus.
  • the fiber holding mechanism and the heating mechanism 3 of the optical fiber force bra manufacturing apparatus are provided with a pair of drawing stages 4a and 4b, and the microtorch 5 is placed between the drawing stages 4a and 4b.
  • a torch stage 6 is provided.
  • the microtorch 5 is for heating the light coupling portion 21 of the optical fibers la and 1b, and can be moved between the drawing stages 4a and 4b by the torch stage 6.
  • the drawing stages 4a and 4b are for drawing the heated and melted optical fibers la and lb, and are structured so as to be able to move back and forth on a predetermined linear trajectory.
  • the drawing stages 4a and 4b form, together with the microtorch 5, the optical drawing section 21 by fusion-bonding and drawing the optical fiber la and the optical fiber lb wound around the optical fiber la. Ru.
  • optical fiber clamp 7 for gripping one end of each of the optical fibers la and lb is provided at an end on the drawing stage 4a, and an optical fiber clamp 7 is provided on both the drawing stages 4a and 4b.
  • Iber holders 8a and 8b and fiber rotation mechanisms 9a and 9b for winding the optical fiber lb around the optical fiber la are provided.
  • optical fiber guides 10a and 10b are provided on the drawing stage 4b. The optical fiber guides 10a and 10b are configured so as to have roller forces rotatably provided on the drawing stage 4b for each of the optical fibers la and lb.
  • an optical fiber supporting cylinder 11a, l ib is provided in a pair with the optical fiber guides 10a, 10b, and supported by the optical fiber supporting cylinder 11a, l ib Weights 12a and 12b are fixed to the optical fibers la and lb.
  • the weight of the weight 12a is 30 g
  • the weight of the weight 12b is 25 g.
  • the weights 12a and 12b, together with the optical fiber clamp 7 described above, maintain the tension applied to the linearly or almost linearly disposed optical fiber la more than the tension applied to the optical fiber lb wound around the optical fiber la. are configured.
  • the tension generated by the weights 12a and 12b is smoothly transmitted from the optical fiber clamp 7 to the optical fiber la and lb located on the right side.
  • the optical fiber supporting cylinders 11a and lib change the direction of tension by the weights 12a and 12b to smoothly transmit the tension to the optical fibers la and lb, and also constitute a roller force which does not cause excessive bending of the optical fibers la and lb. ing.
  • the optical fiber clamp 7, the optical fiber support 10a and 10b, and the optical fiber support cylinders 11a and 1b constitute an alignment mechanism for aligning the optical fibers la and lb with each other on the extension stages 4a and 4b.
  • the optical fiber holders 8a and 8b are for holding the optical fibers la and lb during the fusion drawing operation of the optical fibers la and lb, and are provided on the center side of the drawing stages 4a and 4b. The There is.
  • the fiber rotation mechanism 9a is provided substantially at the center of the drawing stage 4a.
  • the fiber rotating mechanism 9b is provided substantially at the center of the drawing stage 4b.
  • the fiber rotating mechanisms 9a and 9b respectively have a pair of substrates 91 and a pair of cylindrical rotating members rotatably held by the respective substrates 91. And 92.
  • the rotating bodies 92 arranged in the opposite direction are rotated in opposite directions to each other by a rotational driving mechanism (not shown).
  • the rotor 92 has a reference hole 93 through which the optical fiber la is inserted at a position coinciding with the axial center which is the center of rotational movement, and is separated from the axial center by a predetermined distance.
  • a rotational insertion hole 94 is formed at the position where the optical fiber lb opened along the axial center is inserted.
  • optical fiber holders 8a and 8b and the fiber rotation mechanisms 9a and 9b described above constitute a brazing mechanism for winding another optical fiber lb around the optical fiber 1a.
  • the coating of the optical fibers la and lb to be the optical coupling portion 21 is removed, and the portion is disposed at the center of the drawing stages 4a and 4b, and one end of the optical fibers la and lb is as it is.
  • the fiber optic clamp 7. Next, as shown in FIG. 5 (a), one optical fiber la is inserted into the reference through hole 93 of the rotating body 92 constituting the fiber rotating mechanism 9a, 9b, and the other optical fiber lb is rotated Pass through the 92 holes of through hole 94. Then, the optical fiber la and lb are supported on the drawing stages 4a and 4b by the optical fiber support bases 10a and 10b and the optical fiber support cylinders 11a and 1b. As a result, as shown in FIG.
  • two optical fibers la and lb are aligned on the extension stages 4a and 4b.
  • the optical fiber holders 8a and 8b are opened so that tension transmitted from the weights 12a and 12b is applied to the optical fibers la and lb located on the right side of the optical fiber clamp 7.
  • weights 12a and 12b are attached to the other ends of the optical fibers la and lb, respectively.
  • the tension by the weights 12a and 12b is smoothly transmitted to the respective optical fibers la and lb through the rollers constituting the optical fiber guides 10a and 10b and the optical fiber supporting cylinders 11a and l ib. Different tensions are applied to each optical fiber la and lb.
  • the rotating bodies 92 of both the fiber rotating mechanisms 9a, 9b are You rotate only one. Since the optical fiber la inserted into the reference through hole 93 of the rotary body 92 is disposed at the center of the rotation axis of the rotary body 92, it does not revolve even when the rotary body 92 is rotated. On the other hand, the optical fiber lb inserted into the rotary through hole 94 rotates around the axial center of the rotary 92 as the rotary 92 rotates. Along with this rotation, as shown in FIG. 5 (b), the coating removal portion of the optical fiber lb of the optical coupling portion 21 located between the two fiber rotating mechanisms 9a and 9b is disposed linearly or almost linearly.
  • the rotator 92 of the fiber rotation mechanism 9b is rotated about 260 degrees.
  • This rotation amount is a value obtained from the relationship between the maximum coupling degree of the propagation light of the optical fiber la and lb and the rotation angle, and this value is the type of the optical fiber and the structure of the manufacturing apparatus. This is a relative value that largely depends on the structure and mounting position of the optical fiber, the torch structure, etc.) and the preparation conditions (tension applied to the optical fiber, degree of fusion, etc.), not absolute values.
  • the force of rotating only the fiber rotation mechanism 9b may rotate both of the fiber rotation mechanisms 9a and 9b in the opposite direction, particularly when the amount of rotation is large.
  • each of the optical fibers la and lb is held and held by the optical fiber holders 8a and 8b.
  • the microtorch 5 is ignited, the microtorch 5 is moved to a predetermined position by the torch stage 6 and the sheath removing portions of the optical coupling portion 21 are heated and fused to each other, and then the drawing stages 4a and 4b are performed.
  • the film was heated and drawn while gently pulling it apart from side to side, and the heating and drawing was stopped at a predetermined position to form a light coupling part 21.
  • the whole was removed from the manufacturing apparatus, and no cage was performed to complete an optical fiber force bra.
  • FIG. 6 shows the heating and drawing time of the optical fiber la and lb (horizontal axis) and the respective optical couplings for the signal lights of the wavelengths 1.31 m and 1.55 m input from the optical fiber la. It is a graph showing the relationship with degrees (vertical axis).
  • the heating and drawing are stopped at the time when the characteristics at the point where the degree of optical coupling at both wavelengths first agrees (point A in the figure) is obtained. Therefore, the difference in lengths of the two optical fibers la and 1b at the light coupling part 21 formed by the fusion drawing in this way is the two specific wavelengths 1.31 m and 1. 55 At / zm, it is set to the minimum length such that the coupling degree of the propagation light of each of the optical fibers la and lb is substantially equal.
  • the optical fiber lb is wound around the linear or substantially linear optical fiber la, and each optical fiber la at the optical coupling portion 21 is wound.
  • lb can be made to have asymmetry between the optical fibers 1a and 1b at the light coupling portion 21 simply by making the lengths of Lb and Lb different from each other.
  • the optical fiber power bra makes the yield higher. Can do.
  • the optical fiber power bra according to the present embodiment is excellent in economic efficiency because it is not necessary to prepare different optical fibers having exactly the same characteristics as in the conventional case.
  • the characteristics of the optical fiber bra does not deteriorate during production, and the yield may be lowered. Absent.
  • the force described in the case where the optical fiber force bra is composed of the same optical fibers la and lb is the optical fiber power using the different optical fibers which need not necessarily be composed of the same optical fiber.
  • a bra may be configured. That is, when using the same optical fibers la and 1b and different optical fibers, by making the lengths of the respective optical fibers in the optical coupling portion 21 different from each other, the propagation constant can be calculated between the respective optical fibers. Asymmetry can be introduced into the light coupling portion 21 easily without making a difference. For this reason, even when different optical fibers are used, it is possible to easily obtain the above-mentioned optical fiber QB with a wide branching ratio.
  • the alignment step of aligning the optical fibers la and lb with each other is linear or substantially linear for one optical fiber la.
  • the other optical fiber lb same as that of the optical fiber la is placed around it, and the optical fiber la and lb at the optical coupling portion 21 have a brazing step to make the lengths of the optical fibers la and lb different from each other. There is.
  • the amount of brazing of the optical fiber lb relative to the optical fiber la By changing it, the difference in length of each optical fiber la and lb at the optical coupling portion 21 can be adjusted. Therefore, the asymmetry between each optical fiber la and lb is controlled by changing the amount of bias of the optical fiber lb with respect to the optical fiber la, and an optical fiber power bra having a desired wide band characteristic of the branching ratio is obtained. It can be easily obtained.
  • the optical fiber is wound around the optical fiber la, which is disposed linearly or almost linearly with the welding process. This is done by applying a tension greater than the tension applied to the fiber lb. Therefore, by using the tension of the large tensioned optical fiber la and winding the small tensioned optical fiber lb around the optical fiber la, the optical fiber la can be wound around it. Fiber to wrap lb Force does not bend under stress. For this reason, when the optical fiber lb is wound around the optical fiber la, the optical fiber la is prevented from being bent and the brazing amount of the optical fiber lb is not constant.
  • the amount by which the optical fiber 1b is wound around the optical fiber la becomes constant, and it becomes possible to easily realize a reproducible wrinkle state. Therefore, it is possible to easily manufacture an optical fiber force bra having a wide band characteristic of the branching ratio and to increase the yield.
  • the apparatus for manufacturing an optical fiber force bra has the same optical fiber as the optical fiber la, which is disposed around the linear or almost linear optical fiber la.
  • the apparatus includes a bending mechanism for winding Iber lb and a tension applying mechanism for keeping tension applied to the optical fiber la larger than tension applied to the optical fiber lb wound on the optical fiber la. Therefore, when the optical fiber lb is wound around the optical fiber la by the brazing mechanism, the optical fiber la is wound around the optical fiber la by applying a predetermined tension to the optical fibers la and lb by the tensioning mechanism. The amount by which the optical fiber lb wraps around the optical fiber la is constant without bending due to the force received from the fiber lb. For this reason, an apparatus for manufacturing an optical fiber force bra is provided which can easily control the asymmetry between the optical fibers la and lb at the optical coupling portion 21 by the difference in their lengths.
  • FIG. 7 is a perspective view of a fusion drawing type 1 ⁇ 4 wide band optical fiber power bra light coupling part periphery 2b according to the present embodiment.
  • the optical fiber force bra around the optical coupling section 2b is an input / output dual-purpose optical fiber that is a straight optical fiber la located at the center, and the other optical fiber lb, lc, Id is an output that is spirally wound on it It is a dedicated optical fiber.
  • Each of these optical fibers la-Id is also the same single mode optical fiber that is commercially available as a standard, as in the first embodiment.
  • the optical fiber force bra may be configured using different optical fibers that are not identical.
  • the optical fiber force bra coupler 22 is, as shown in FIG. 8, a part of the other three optical fibers lb, lc, and Id with respect to the linear or nearly linear optical fiber la.
  • optical fiber for optical fiber la The application amount of the fiber lb, lc, Id is the difference in length between the optical fiber la and the other optical fiber lc 1 Id at the optical coupling part 22.
  • Two specific wavelengths used in wavelength multiplexing communication 1. 31 m and 1 are adjusted so that the coupling degree of the propagation light of each optical fiber la, lb, lc, Id is almost equal.
  • the apparatus for manufacturing the optical fiber force bra has a configuration substantially similar to that of the optical fiber force bra manufacturing apparatus according to the first embodiment.
  • three rotational through holes 94 are opened symmetrically at the center of rotation, and the optical fibers la, lb, lc, Id pass through each of a total of four holes.
  • four mechanisms (fiber guide 10a-10d, optical fiber supporting cylinder 11a-id) independent of each other are provided, and in addition to the weight 12a, 3 Two weights 12b-12d force mounted on the end of each optical fiber la, lb, lc, Id.
  • the weight of the weight 12a added to the optical fiber la is, for example, about 35 g
  • the weight of the weights 12b to 12d added to the other optical fiber lb-Id is, for example, about 20 g.
  • the tension applied to the optical fiber la is larger than the tension applied to the other three optical fibers lb, lc, and Id, even in the present embodiment, the rectilinearity of the optical fiber la is ensured with a good yield. .
  • the optical fibers lb, lc, and Id are helically wound around the optical fiber la as shown in FIG. 8, but in the present embodiment, the optical fiber rotation mechanism 9a , 9b were wound in opposite directions by 270 degrees.
  • the amount of rotation can also be determined from the relationship between the rotation angle of each optical fiber la, lb, lc, and Id and the maximum coupling degree. The degree of optical coupling of the propagating light of lc and Id is almost equal. This value is also a relative value that largely depends on the type of optical fiber, the structure of the manufacturing apparatus, the preparation conditions, and the like, and is not an absolute value.
  • the optimum value of the rotation angle is a value that largely depends on the number of branches, and it is natural that the rotation conditions are completely different in the case of, for example, an I x 8 optical fiber power bra.
  • the rotation amounts of the optical fiber rotation mechanisms 9a and 9b need to be the same, and only the rotation mechanism 9a or the rotation mechanism 9b may be rotated.
  • FIG. 9 is a view showing the cross-sectional structure of the light coupling portion of the optical fiber force bra.
  • the position of the output-only optical fiber lb, lc, Id is the input-output combined optical fiber la. Forces arranged symmetrically with respect to each other If the tension given to all the optical fibers la, lb, lc, and Id is constant, a slight deviation of the relative position between the output-only optical fibers lb, lc, and Id will result. It causes the meandering of the centrally located optical fiber la. Therefore, in this case, it is difficult to obtain wide-band branching characteristics with high yield due to the non-symmetry of the light coupling portion 22 which makes it difficult to control the asymmetry of the structure in the light coupling portion 22 with high accuracy.
  • the tension applied to the optical fiber la is larger than the tension applied to the other optical fibers lb, lc, Id, by the revolution of the optical fibers lb, lc, Id, The optical fiber la does not meander.
  • a plurality of optical Fino la, lb, lc, Id [weights 12a, 12b, 12c, 12d of different weights are attached, and a heavy weight 12a
  • Light fiber 12b, 12c, 12d is attached by using tension of the attached optical fiber la and the light fiber 12b, 12c, 12d is twisted by twisting the optical fiber lb, lc, Id
  • Optical fiber with the heavy weight 12a attached The winding method using the principle of winding around la makes it possible to easily realize a reproducible wrinkle state and to easily reproduce the branching ratio.
  • the bonding amount of the optical fiber lb, lc, Id becomes constant, the yield is improved, and the reproducibility becomes rich.
  • the cross-sectional structure of the optical coupling portion of the optical fiber power bra shown in FIG. 9 is the configuration of a 1 ⁇ 4 optical fiber power bra that is broadened by an asymmetric taper as disclosed in Patent Document 7 Similar to 1).
  • the tension applied to the four optical fibers is the same as described in column 55, line 57 of column 4 and column 61, line 63 of the same document.
  • the central optical fiber is likely to meander along its length. That is, as shown in FIG. 8, the probability that the central optical fiber la is kept in a straight line is considered to be greatly reduced. Therefore, in this case, the asymmetry between the optical fiber la and the optical fiber lb-Id is not guaranteed.
  • optical fiber fabric of the same document asymmetry is introduced in the taper to secure a wide band of characteristics.
  • the optical fiber rotation mechanism shown in the same document is used only to simply contact the four optical fibers to each other to form a taper, and in the same document, different tensions are applied between the optical fibers. The intention to introduce and introduce asymmetry is not fulfilled.
  • FIG. 10 shows the wavelength characteristics of the optical fiber force bra after the package manufactured according to the present embodiment.
  • the horizontal axis of the graph represents the wavelength of the signal light [/ z mL, and the vertical axis represents insertion loss [dB] of the signal path.
  • the characteristic line A represents the output wavelength characteristic of the optical fiber la
  • the characteristic lines B, C, and D represent the output wavelength characteristics of the optical fibers lb, lc, and Id, respectively.
  • the optical fiber coupler 2b has a branching ratio at both wavelengths of 1.3 m and 1.55 m and is approximately equal branched with an insertion loss of about 6 dB.
  • This branching ratio can be controlled with high yield by changing the amount of polarization of the optical fiber lb-Id to the optical fiber la, and the desired branching ratio of 1 X 4 unequally branched optical fiber force bra is obtained. It is easy to make
  • pretreatment such as pre-stretching and etching to introduce asymmetry, and a plurality of types of as in the conventional fusion stretch-type optical fiber camber, Using the same optical fiber
  • broadband equal branch characteristics can be obtained.
  • the weights 12a-12d are used to apply a load to the optical fiber la-Id, but other panel forces, magnetic forces, etc. may be used.
  • micro torch 5 was used as a heating source, electric heaters using ceramics etc., discharge, CO laser etc.
  • a heating method of 2 may be used.
  • the force described in the case where the optical fiber force bra according to the present invention is applied to 1 ⁇ 2 optical fiber force bra and IX 4 optical fiber force bra, for example, IX 3 optical fiber force plastic, 1 ⁇
  • IX 4 optical fiber force bra for example, IX 3 optical fiber force plastic
  • 1 ⁇ It is also possible to apply the invention to other common 1 XN fiber optic force bras, such as 8-fiber couplers. Even when the present invention is applied to such an optical fiber force bra, the same function and effect as the above embodiment can be obtained.

Abstract

A conventional optical fiber coupler requires a preprocessing process or different optical fibers having strictly uniform characteristics. The inventive optical fiber coupler is a 1×2 wide band optical fiber coupler for branching or coupling propagating lights between an optical fiber (1a) and an optical fiber (1b). Both optical fibers (1a, 1b) are identical single-mode optical fibers available on the market as a standard type. An optical coupling part (21) of the optical fiber coupler is formed by fusing and elongating the optical fibers (1a, 1b) with a part of the optical fiber (1b) kept wound around the optical fiber (1a). Winding amount of the optical fiber (1b) with respect to the optical fiber (1a) is adjusted such that the difference in length between both optical fibers (1a, 1b) at the optical coupling part (21) is equal to the minimum possible length required for substantially equalizing the degrees of coupling of propagating lights at the optical fibers (1a, 1b).

Description

明 細 書  Specification
光ファイバ力ブラおよびその製造方法並びにその製造装置  Optical fiber force bra and method for manufacturing the same
技術分野  Technical field
[0001] 本発明は、光通信システムや光センサシステム等において光信号の分岐 ·結合'合 分波等に用いられる光ファイバ力ブラ、およびその製造方法並びにその製造装置に 関し、特に、光ファイバ力ブラ型の光分岐結合器 (光ファイバスプリッタ)に関するもの である。  The present invention relates to an optical fiber force bra used for branching / coupling / multiplexing of an optical signal in an optical communication system, an optical sensor system or the like, a method of manufacturing the same, and an apparatus for manufacturing the same. It relates to a power bra type optical coupler (optical fiber splitter).
背景技術  Background art
[0002] 光通信システムにおいては、大容量の通信を行うために、複数の波長の光を用い て送受信を行う波長多重通信方式が提案されて!、る。波長多重通信方式の光通信 システムでは、光信号のモニターや分配等に用いる光ファイバ力ブラにおいて複数 の各波長の光信号が同等に分岐されること、つまり、波長の違いにより各波長の光の 分岐比'結合比(以下、光結合度と記す)が変化しないことが、システム構築上の重要 な要素とされている。このような波長特性の平坦な光ファイバ力ブラは、光通信システ ム以外でも適用範囲は広ぐ光センサシステム等への応用としても好適な部品となつ ている。このため、このような光通信システムに用いるための、波長依存性の少ない 光ファイバ力ブラが種々提案されて 、る。  In an optical communication system, in order to perform large-capacity communication, a wavelength division multiplex communication system in which transmission and reception are performed using light of a plurality of wavelengths has been proposed. In an optical communication system using a wavelength division multiplexing communication method, optical signals of a plurality of respective wavelengths are equally branched in an optical fiber power bra used for monitoring and distributing optical signals, that is, light of each wavelength is It is considered as an important factor in system construction that the branching ratio 'coupling ratio (hereinafter referred to as the optical coupling degree) does not change. An optical fiber force bra having such a flat wavelength characteristic is a component suitable for application to an optical sensor system or the like whose application range is wide apart from optical communication systems. Therefore, various optical fiber power bras with low wavelength dependence have been proposed for use in such optical communication systems.
[0003] 例えば、 2分岐の広帯域光ファイバカプラ(1 X 2光ファイバカプラまたは 2 X 2光ファ ィバカブラ)の場合、各光ファイバ間で伝搬定数に差をつけることにより、波長依存性 を低減させることが行われて ヽる (特許文献 1参照)。光結合部で互 ヽの伝搬定数が 異なる場合、光結合は不完全な結合となり、最大結合度は 100%以下になる。従つ て、伝搬定数の差を制御することにより、光結合部での最大結合度を 50%以下まで 制御することが可能となり、結果的に広帯域で均一に近い分岐比が実現できる。伝 搬定数に差をつけるには、光結合部で、各々の光ファイバの外径、コア径、比屈折率 差 (カットオフ)等が互 ヽに異なって 、る必要がある。  [0003] For example, in the case of a 2-branch broadband optical fiber coupler (1 x 2 optical fiber coupler or 2 x 2 optical fiber coupler), the wavelength dependence is reduced by making the propagation constant different between the optical fibers. That is done (see Patent Document 1). If the propagation constants of the two optical coupling parts are different from each other, the optical coupling is incomplete and the maximum coupling degree is 100% or less. Therefore, by controlling the difference in the propagation constants, it is possible to control the maximum degree of coupling in the optical coupling section to 50% or less, and as a result, it is possible to realize a wide band and nearly uniform branching ratio. In order to make the transmission constants different, it is necessary that the outer diameter of each optical fiber, the core diameter, the relative refractive index difference (cutoff), etc. be mutually different in the optical coupling portion.
[0004] 広帯域ィヒの具体的な方法としては、同一の光ファイバで前処理により光結合部で の伝搬定数に差をつける力 もともと異なる光ファイバを用いるかのどちら力となる。 前者の例としては、同一の 2本の光ファイバのうちの 1本の光ファイバを加熱延伸し、 テーパー部分を有する細径部を形成した後、加熱延伸した 1本の光ファイバの細径 部にお 、て、両光ファイバを融着延伸するプリ延伸法 (特許文献 2および特許文献 3 参照)、同一の 2本の光ファイバのうちの 1本の光ファイバについて、コアにドーパント を熱拡散させて屈折率分布を調整した後、両光ファイバを融着延伸するコア拡散法( 特許文献 4参照)や、エッチング法、研磨法等がある。また、後者の例としては、外径 、コア径、比屈折率差 (カットオフ)等が予め異なる光ファイバを用いることが提案され ている。更に、比屈折率差が予め異なる 2本の光ファイバの一部を融着延伸する、前 者の方法と後者の方法とを組み合わせた方法もある (特許文献 5参照)。 [0004] As a specific method of wide band communication, the force to differentiate the propagation constant at the optical coupling portion by the same optical fiber by the pretreatment becomes the force of either using a different optical fiber. In the former example, one optical fiber of the same two optical fibers is heated and drawn to form a small diameter portion having a tapered portion, and then the small diameter portion of one heated optical fiber is formed. In the pre-stretching method (see Patent Document 2 and Patent Document 3) in which both optical fibers are fused and drawn (see Patent Document 2 and Patent Document 3), the dopant is thermally diffused in the core of one of the two optical fibers. There is a core diffusion method (refer to Patent Document 4) in which both optical fibers are fused and drawn after adjusting the refractive index distribution, an etching method, a polishing method and the like. As an example of the latter, it has been proposed to use an optical fiber in which the outer diameter, the core diameter, the relative refractive index difference (cutoff), etc. are different beforehand. Furthermore, there is also a method in which the former method and the latter method are combined in which a part of two optical fibers having different relative refractive index differences in advance are fusion-drawn (see Patent Document 5).
[0005] これらの方法は、光ファイバ間の非対称性を制御することによって分岐比を変えるこ とが出来るので、 50 : 50の等分岐光ファイバカプラだけでなぐ 90 : 10等の不等分岐 光ファイバ力ブラを作成でき、タップ力ブラ等の作成に応用することができる。  [0005] Since these methods can change the branching ratio by controlling the asymmetry between the optical fibers, it is possible to use only 50:50 equal-branch optical fiber couplers and to obtain an uneven branch light such as 90:10. A fiber force bra can be created and applied to the creation of a tap force bra or the like.
[0006] また、 50 : 50の等分岐光ファイバ力ブラに限れば、広帯域ィ匕のためには必ずしも伝 搬定数に差をつける必要はない。例えば、 3本の光ファイバを並列に整列させて融着 •延伸することにより、中央の光ファイバを入力端子、両端の 2本の光ファイバを出力 端子とした 1 X 2広帯域 '等分岐光ファイバ力ブラが実現できる。  [0006] In addition, in the case of a 50: 50 equal-branch optical fiber power bra, it is not necessary to make a difference in the propagation constants for wide band communication. For example, by aligning and fusing three optical fibers in parallel, and stretching it, 1 X 2 broadband 'equal-branch optical fiber with the central optical fiber as the input terminal and the two optical fibers at both ends as the output terminal Power bra can be realized.
[0007] この構成は、多分岐 ·等分岐光ファイバ力ブラ { 1 X N (N〉2) }へも適用可能であり、 1本の入力光ファイバの周囲に他の N個の出力光ファイバを対称に整列させて融着 延伸することにより、 1 X N広帯域 '等分岐光ファイバ力ブラを作成することが可能で ある。このように、この構成では (N+ 1)本の光ファイバを用いることとなる。また、この 場合、波長により過剰損失が多少増加することは原理的に避けられない。  [0007] This configuration is also applicable to multi-branch and equal-branch optical fiber force bra {1 XN (N> 2)}, and one N input optical fibers are surrounded by N other output optical fibers. By symmetrically aligning and fusion drawing, it is possible to create a 1 × N broadband 'equal-branch optical fiber force bra. Thus, in this configuration, (N + 1) optical fibers are used. Also, in this case, it is theoretically impossible to slightly increase the excess loss depending on the wavelength.
[0008] これを避けるためには、 1 X N広帯域'等分岐光ファイバ力ブラにおいても、光フアイ バ間の非対称性を導入する必要がある。このため、 2分岐広帯域'不等分岐光フアイ バカブラの場合と同様に、同一の複数本の光ファイバのうちの 1本の光ファイバに、テ 一パー部分を有する細径部を形成し、細径部を有しない他の同一の光ファイバとの 間で融着延伸して作成するプリ延伸法 (特許文献 6参照)や、複数本の光ファイバに 均等な張力を与えつつ互いに巻きつけて融着延伸し、光ファイバ力ブラの融着延伸 部分のテーパーを非対称とする方法 (特許文献 7参照)が提案されて 、る。 特許文献 1:特許第 2711351号公報 [0008] In order to avoid this, it is necessary to introduce asymmetry between the optical fibers even in the 1 × N broadband 'equal branch optical fiber power bra. For this reason, as in the case of the two-branch broadband 'unequal-branch optical fiber bac- ter, a small diameter portion having a taper portion is formed in one optical fiber of the same plurality of optical fibers. A pre-stretching method (see Patent Document 6) prepared by fusion drawing with another identical optical fiber not having a diameter portion (see Patent Document 6), or by mutually winding a plurality of optical fibers while applying uniform tension. A method (see Patent Document 7) is proposed in which stretching is performed and the taper of the fusion stretching portion of the optical fiber force bra is made asymmetric. Patent Document 1: Patent No. 2711351
特許文献 2:特公平 6 - 040167号公報  Patent Document 2: Japanese Patent Publication No. 6-040167
特許文献 3:特許第 2645458号公報  Patent Document 3: Patent No. 2645458
特許文献 4 :特許第 2958179号公報  Patent Document 4: Patent No. 2958179
特許文献 5:特許第 2848832号公報  Patent Document 5: Patent No. 2848832
特許文献 6 :米国特許第 5751873号明細書  Patent Document 6: US Patent No. 5,751,873
特許文献 7:米国特許第 5883992号明細書  Patent Document 7: US Patent No. 5883992
[0009] しカゝしながら、特許文献 1一特許文献 4に示される広帯域化方法のように、同一の 光ファイバで前処理により伝搬定数に差をつける場合は、前処理工程が増えるだけ でなぐこの前処理工程での制御性の良否が歩留まり低下の致命的な原因となり得 る。つまり、分岐比の広帯域特性は前処理量 (テーパ形状、エッチング量、研磨量等 )に非常に敏感であり、これを融着 ·延伸後に補正することはできない。  [0009] In the case where the propagation constant is differentiated by the pretreatment with the same optical fiber as in the method of broadening the bandwidth shown in Patent Literature 1 and Patent Literature 4, however, the number of pretreatment steps is increased. Good controllability in this pre-treatment process can be a fatal cause of yield reduction. That is, the wide band characteristics of the branching ratio are very sensitive to the amount of pretreatment (taper shape, etching amount, polishing amount, etc.), and this can not be corrected after fusion and drawing.
[0010] また、特許文献 5等にあるように、外径、コア径、比屈折率差 (カットオフ)等がもとも と異なる光ファイバを用いる広帯域ィ匕方法では、厳密に特性の揃った各光ファイバを 特注する必要が生じるので、経済性に難がある。また、このように厳密に特性の揃つ た光ファイバが入手出来たとしても、光ファイバの長さ方向には厳密にパラメータを揃 えることは困難である。従って、この広帯域化方法は、光ファイバ力ブラの生産の際に 、光ファイバ力ブラの特性の劣化や歩留まり低下の原因となり得る。  Further, as described in Patent Document 5 etc., in the wide band method using an optical fiber having different outer diameter, core diameter, relative refractive index difference (cutoff), etc., characteristics are strictly aligned. There is a problem with the economics because it is necessary to customize each optical fiber. Also, even if an optical fiber with exactly the same characteristics can be obtained, it is difficult to exactly align the parameters in the longitudinal direction of the optical fiber. Therefore, this method of broadening the bandwidth can cause deterioration of the characteristics of the optical fiber force bra and a decrease in yield when producing the optical fiber force bra.
[0011] また、特許文献 6の広帯域ィ匕方法のように、 N本の光ファイバを用いて 1 X N広帯域 光ファイバ力ブラを作製する場合は、前処理として幾本かの光ファイバに延伸処理を 施す必要がある。また、 1 X N光ファイバカプラとして N+ 1本の光ファイバを用いる方 法では、上述したように原理的に過剰損失の波長依存性が大きくなる。また、分岐比 が等分岐に限定されるので、不等分岐光ファイバ力ブラが作成できな 、等の欠点を 有している。さらに、特許文献 7の広帯域ィ匕方法のように、 1 X N光ファイバ力ブラで 非対称テーパを導入する方法は、必要以上にテーパ長を長くする必要があり、光フ アイバカブラの全長が多少長くなる欠点を有するほか、非対称性テーパ形状の制御 性が問題となり、歩留まり低下の要因となる。  [0011] Further, as in the case of the broadband signal method of Patent Document 6, in the case of producing a 1 XN broadband optical fiber force bra using N optical fibers, stretching processing is performed on several optical fibers as pre-processing. Need to be In addition, in the method of using one N + 1 optical fiber as a 1 × N optical fiber coupler, the wavelength dependence of the excess loss is theoretically increased as described above. In addition, since the branching ratio is limited to equal branching, there is a disadvantage that an unequally branched optical fiber force bra can not be created. Furthermore, in the method of introducing an asymmetric taper with a 1 X N optical fiber force bra, as in the wide band method of Patent Document 7, it is necessary to make the taper length longer than necessary, and the total length of the optical fiber cab In addition to having a defect, the controllability of the asymmetric taper shape becomes a problem, which causes a decrease in yield.
発明の開示 [0012] 本発明はこのような課題を解決するためになされたもので、一の光ファイバの伝搬 光を他の 1本以上の光ファイバに結合させる光結合部を備える光ファイバ力ブラにお いて、光結合部での一の光ファイバと他の 1本以上の光ファイバとの長さが互いに異 なり、かつ、その光結合部の長さが、少なくとも 2つの特定の波長において各光フアイ バの伝搬光の光結合度がほぼ等しくなる最小の長さになっていることを特徴とする。 Disclosure of the invention The present invention has been made to solve such a problem, and an optical fiber power bra provided with an optical coupling portion that couples propagation light of one optical fiber to one or more other optical fibers. The length of one optical fiber and the other one or more optical fibers in the optical coupling portion are different from each other, and the length of the optical coupling portion is different for each optical fiber at at least two specific wavelengths. It is characterized in that it has a minimum length such that the degree of optical coupling of the propagating light of the beam is approximately equal.
[0013] このような構成によれば、例えば、光結合部の一部または全部において、一の光フ アイバを直線状またはほぼ直線状に配置させ、他の 1本以上の光ファイバを蛇行させ る等の手段により、光結合部での各光ファイバの長さを互いに異ならせることにより、 光結合部での各光ファイバ間に非対称性を導入することができる。  According to such a configuration, for example, in a part or all of the optical coupling portion, one optical fiber is disposed linearly or substantially linearly, and the other one or more optical fibers are meandered. Asymmetry can be introduced between the optical fibers in the optical coupling portion by making the lengths of the optical fibers in the optical coupling portion different from each other by means such as
[0014] このため、同一の光ファイバの伝搬定数に差をつけるための前処理を予め正確に 行う必要なぐ非対称性を導入することが可能となる。また、非対称性は、光結合部で の各光ファイバの長さによって制御されるため、光結合部での各光ファイバの融着 · 延伸時に補正することが出来る。従って、前処理量に敏感で、融着 '延伸時に伝搬 定数の補正をすることが出来ない従来の光ファイバ力ブラに比べ、歩留まりを高くす ることが出来る。 For this reason, it is possible to introduce asymmetry which is necessary to perform the pre-processing accurately to differentiate the propagation constants of the same optical fiber in advance. Further, asymmetry is controlled by the length of each optical fiber at the optical coupling portion, it can be corrected at the time of fusion and drawing of each optical fiber at the optical coupling portion. Therefore, the yield can be increased compared to the conventional optical fiber force bra, which is sensitive to the amount of pre-processing and can not correct the propagation constant at the time of fusional fusion drawing.
[0015] また、厳密に特性の揃った異なる光ファイバを用意する必要がないため、経済性に 優れる。また、光ファイバの長さ方向に厳密にパラメータを揃える必要がないため、生 産の際に光ファイバ力ブラの特性が劣化したりすることはなぐし力も、歩留まりの低 下を招くこともない。  [0015] In addition, since it is not necessary to prepare different optical fibers having exactly the same characteristics, the economy is excellent. In addition, since it is not necessary to exactly align the parameters in the length direction of the optical fiber, the characteristics of the optical fiber force bra may not be deteriorated during production, nor will it cause a decrease in yield or yield. .
[0016] また、光結合部での各光ファイバの長さの差を制御することにより、 50 : 50の等分 岐比に限定されることなぐ任意の分岐比を得ることが可能である。従って、 I X 2不 等分岐'光ファイバ力ブラだけでなぐ一般的な 1 X N不等分岐'光ファイバ力ブラへ も適用可能となる。しかも、 1 X N広帯域'等分岐光ファイバ力ブラを得るために N+ 1 本の光ファイバを用いる従来の広帯域ィ匕法のように、過剰損失の波長依存性が原理 的に大きくなる問題も生じない。さらに、一の光ファイバを信号光の入出力用に兼用 することが出来るため、 1本少ない N本の光ファイバを用いて 1 X N広帯域光ファイバ 力ブラを得ることが出来る。また、この問題を避けるために、 1 X N広帯域'等分岐光 ファイバ力ブラに非対称テーパを用いて非対称性を導入する場合のように、非対称 テーパ形状の制御性が問題となり、歩留まりが低下する要因になることがない。また、 非対称テーパを用いて非対称性を導入する場合のように、必要以上にテーパ長を長 くすることなぐ分岐比が広帯域の光ファイバ力ブラを得ることが出来る。 Also, by controlling the difference in length of each optical fiber at the optical coupling portion, it is possible to obtain an arbitrary branching ratio that is not limited to the 50: 50 equal division ratio. Therefore, the present invention is also applicable to a general 1 XN unequally-branched optical fiber force bra, which is only divided by the IX 2 unequally-branched fiber optic power bra. Furthermore, there is no problem that the wavelength dependence of the excess loss becomes large in principle, as in the conventional broadband 匕 method using N + 1 optical fibers to obtain a 1 × N broadband 'etc. branched optical fiber power bra. . Furthermore, since one optical fiber can be used for input and output of signal light, it is possible to obtain a 1 XN wide-band optical fiber power bra using N less optical fibers. Also, to avoid this problem, as in the case of introducing asymmetry by using an asymmetry taper to a 1 X N broadband 'isobranch optical fiber force bra The controllability of the tapered shape is a problem, and the yield does not decrease. In addition, as in the case of introducing asymmetry using an asymmetric taper, it is possible to obtain an optical fiber force bra having a wide branch ratio that does not increase the taper length more than necessary.
[0017] また、本発明は、一の光ファイバと他の 1本以上の光ファイバとが同一の光ファイバ 力 なることを特徴とする。  Furthermore, the present invention is characterized in that one optical fiber and one or more other optical fibers have the same optical fiber power.
[0018] この構成〖こよれば、同一の光ファイバを用いた場合にも、光結合部での各光フアイ バの長さを互いに異ならせることにより、各光ファイバ間で伝搬定数に差をつける等 することなぐ容易に、光結合部に非対称性を導入することができる。  According to this configuration, even when the same optical fiber is used, by making the lengths of the respective optical fibers at the optical coupling portion different from each other, the propagation constants differ among the respective optical fibers. Asymmetry can be introduced into the light coupling portion easily without putting it on.
[0019] このため、同一の光ファイバを用いた場合にも、容易に、分岐比が広帯域の上述し た光ファイバ力ブラを得ることが出来る。  Therefore, even when the same optical fiber is used, it is possible to easily obtain the above-mentioned optical fiber force bra having a wide branching ratio.
[0020] また、本発明は、複数本の光ファイバを互いに整列させる整列工程と、この整列ェ 程で整列された各光ファイバを融着 '延伸して光結合部を形成する融着延伸工程と を含む光ファイバ力ブラの製造方法において、整列工程が、少なくとも 1本の光フアイ バを直線状またはほぼ直線状に配置し、その周囲に他の光ファイバを 1本以上巻き 付ける卷付工程を備えることを特徴とする。  The present invention also includes an alignment step of aligning a plurality of optical fibers with one another, and a fusion drawing step of fusion bonding and drawing each optical fiber aligned by this alignment step to form an optical coupling part. In the method of manufacturing an optical fiber force bra including the step of arranging, at least one optical fiber is arranged in a straight line or a substantially straight line, and an aligning step is a brazing step in which one or more other optical fibers are wound around it. And the like.
[0021] このような構成によれば、直線状またはほぼ直線状の光ファイバに対する他の光フ アイバの卷付量を変更することにより、光結合部での各光ファイバの長さの差を調整 できる。  According to such a configuration, the difference in length of each optical fiber at the optical coupling portion can be obtained by changing the amount of adhesion of the other optical fiber to the linear or almost linear optical fiber. It can be adjusted.
[0022] このため、直線状またはほぼ直線状の光ファイバに対する他の光ファイバの卷付量 を変更することにより、各光ファイバ間の非対称性を制御して、分岐比が所望の広帯 域特性を有する光ファイバ力ブラを容易に得ることが出来る。  For this reason, by changing the amount of brazing of the other optical fiber to the linear or nearly linear optical fiber, the asymmetry between each optical fiber is controlled, and the wide band region with a desired branching ratio is obtained. An optical fiber force bra having the characteristics can be easily obtained.
[0023] また、本発明は、卷付工程が、直線状またはほぼ直線状に配置された光ファイバに 与える張力が、その光ファイバに巻き付ける他の光ファイバに与える張力よりも大きい ことを特徴とする。 Furthermore, the present invention is characterized in that the tension applied to the optical fiber disposed in a straight line or substantially in a straight line is greater than the tension applied to the other optical fibers wound around the optical fiber. Do.
[0024] このような構成によれば、より大きな張力が与えられた直線状またはほぼ直線状の 光ファイバの張力を利用し、その光ファイバの周りに小さな張力が与えられた他の光 ファイバを巻き付けることで、直線状またはほぼ直線状の光ファイバ力 その周りに卷 き付ける他の光ファイバから受ける力によって曲がるのを最小限に抑えることが可能 となる。 [0024] According to such a configuration, the tension of a larger tensioned linear or nearly linear optical fiber is used, and another optical fiber having a small tension is provided around the optical fiber. Wrapping allows straight or nearly straight optical fiber forces to minimize bending due to forces from other optical fibers that wrap around it. It becomes.
[0025] このため、直線状またはほぼ直線状の光ファイバの周りに他の光ファイバを巻き付 けるときに、直線状またはほぼ直線状の光ファイバが曲がって他の光ファイバの卷付 量が一定でなくなることが防止される。つまり、直線状またはほぼ直線状の光ファイバ に他の光ファイバが巻き付く量は一定になり、再現性のある卷状態を容易に実現す ることが可能になる。従って、分岐比の広帯域特性が揃った光ファイバ力ブラを容易 に製造することが出来、歩留まりは高まる。  Therefore, when winding another optical fiber around a linear or nearly linear optical fiber, the linear or nearly linear optical fiber is bent and the amount of bending of the other optical fiber is increased. It is prevented that it is not constant. In other words, the amount by which the other optical fiber is wound around the linear or nearly linear optical fiber becomes constant, and it becomes possible to easily realize the reproducible wedge state. Therefore, it is possible to easily manufacture an optical fiber force bra having a wide range of branch ratio characteristics, and the yield is increased.
[0026] また、本発明は、複数本の光ファイバを互いに整列させる整列機構と、この整列機 構で整列された各光ファイバを融着 '延伸して光結合部を形成する融着延伸機構と を備える光ファイバ力ブラの製造装置にぉ 、て、直線状またはほぼ直線状に配置さ れた少なくとも 1本の光ファイバの周囲に他の光ファイバを 1本以上巻き付ける卷付 機構と、直線状またはほぼ直線状に配置された光ファイバに与える張力をその光ファ ィバに巻き付ける光ファイバに与える張力より大きく保つ張力付与機構とを備えてい ることを特徴とする。  Further, according to the present invention, an alignment mechanism for aligning a plurality of optical fibers with each other, and a fusion / stretching mechanism for fusion-stretching each optical fiber aligned by this alignment mechanism to form an optical coupling portion In a manufacturing apparatus for an optical fiber force bra having a and a winding mechanism for winding one or more other optical fibers around at least one optical fiber arranged in a straight line or a substantially straight line, and a straight line And a tension applying mechanism for keeping the tension applied to the optical fiber arranged in a substantially or substantially straight shape larger than the tension applied to the optical fiber wound around the optical fiber.
[0027] このような構成によれば、卷付機構により、直線状またはほぼ直線状の光ファイバの 周囲に他の光ファイバが巻き付けられる。この巻き付けの際、張力付与機構によって 各光ファイバに所定の張力が与えられることにより、直線状またはほぼ直線状の光フ アイバがその周りに巻き付ける他の光ファイノから受ける力によって曲がることなぐ 他の光ファイバが直線状またはほぼ直線状の光ファイバに巻き付く量は一定になる。  According to such a configuration, the brazing mechanism winds another optical fiber around the linear or nearly linear optical fiber. During this winding, a predetermined tension is applied to each optical fiber by the tensioning mechanism so that the straight or nearly straight optical fiber is not bent by the force received from the other optical fino wrapped around it. The amount by which the optical fiber wraps around a straight or nearly straight optical fiber is constant.
[0028] このため、光結合部における光ファイバ間の非対称性をそれらの長さの差によって 容易に制御することが出来る光ファイバ力ブラの製造装置が提供される。  For this reason, an apparatus for manufacturing a fiber optic force bra is provided which can easily control the asymmetry between the optical fibers in the optical coupling portion by the difference in their lengths.
[0029] このような本発明によれば、上記のように、同一の光ファイバの伝搬定数に差をつ けるための前処理を予め正確に行う必要なぐまた、厳密に特性の揃った異なる光フ アイバを用意することなぐ光ファイバ力ブラの光結合部に非対称性を導入して、光分 岐比の波長依存性が少なく信頼性の高い広帯域光ファイバ力ブラを低価格で得るこ とが可能となる。また、任意の分岐比の 1 X N光ファイバ力プラを N本の光ファイバで 実現することが出来る。  According to the present invention, as described above, it is necessary to accurately pre-treat the difference in the propagation constant of the same optical fiber in advance. By introducing asymmetry to the optical coupling portion of the optical fiber power bra that does not prepare the fiber, it is possible to obtain a reliable broadband optical fiber power bra with low wavelength dependency of the optical branching ratio at low cost. It becomes possible. In addition, a 1 x N optical fiber force coupler with an arbitrary branching ratio can be realized with N optical fibers.
[0030] また、一の光ファイバに対する他の光ファイバの卷付量を変更することにより、各光 ファイバ間の非対称性を制御して、分岐比が所望の広帯域特性を有する光ファイバ 力ブラを生産性よく製造することが出来る、光ファイバ力ブラの製造方法およびその 製造装置が提供される。 In addition, each light beam can be changed by changing the amount of brazing of the other optical fiber to one optical fiber. Provided are a method of manufacturing an optical fiber power bra and an apparatus for manufacturing the same, by which asymmetry between fibers can be controlled and an optical fiber power bra having branch characteristics having a desired wide band characteristic can be manufactured with high productivity.
図面の簡単な説明  Brief description of the drawings
[0031] [図 1]本発明の一実施形態による光ファイバ力ブラの光結合部周囲の構成の概略を 示す斜視図である。  FIG. 1 is a perspective view showing an outline of a configuration around an optical coupling portion of an optical fiber force bra according to an embodiment of the present invention.
[図 2]図 1の光ファイバ力ブラの融着延伸前における光ファイバの卷付状態を示す側 面図である。  FIG. 2 is a side view showing an optical fiber brazed state prior to fusion drawing of the optical fiber force bra of FIG.
[図 3]図 1に示す光ファイバ力ブラの波長と挿入損失との関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the wavelength of the optical fiber force bra shown in FIG. 1 and the insertion loss.
[図 4]本発明の一実施形態による光ファイバ力ブラ製造装置のファイバ保持機構およ び加熱機構の構成の概略を示す平面図および側面図である。  FIG. 4 is a plan view and a side view showing an outline of the configuration of a fiber holding mechanism and a heating mechanism of an optical fiber force bra manufacturing apparatus according to an embodiment of the present invention.
[図 5]図 4に示す光ファイバ力ブラ製造装置を構成するファイバ回転機構の卷付前お よび卷付時の概略を示す斜視図である。  [FIG. 5] A perspective view showing an outline of a fiber rotating mechanism constituting the optical fiber force bra manufacturing apparatus shown in FIG. 4 before and at the time of brazing.
[図 6]図 1に示す光ファイバ力ブラの光結合部の融着延伸時間と各光ファイバの光結 合度との関係を示すグラフである。  FIG. 6 is a graph showing the relationship between the fusion drawing time of the optical coupling part of the optical fiber force bra shown in FIG. 1 and the optical coupling degree of each optical fiber.
[図 7]本発明の他の実施形態による光ファイバ力ブラの光結合部周囲の構成の概略 を示す斜視図である。  FIG. 7 is a perspective view showing an outline of a configuration around an optical coupling portion of a fiber optic force bra according to another embodiment of the present invention.
[図 8]図 7に示す光ファイバ力ブラの融着延伸前における光ファイバの卷付状態を示 す側面図である。  [FIG. 8] A side view showing a brazing state of the optical fiber before fusion drawing of the optical fiber power bra shown in FIG.
[図 9]図 7に示す光ファイバ力ブラの光結合部の加熱延伸前における断面図である。  FIG. 9 is a cross-sectional view of the optical coupling portion of the optical fiber force bra shown in FIG. 7 before heating and drawing.
[図 10]図 7に示す光ファイバ力ブラの波長と挿入損失との関係を示すグラフである。 発明を実施するための最良の形態  FIG. 10 is a graph showing the relationship between the wavelength of the optical fiber force bra shown in FIG. 7 and the insertion loss. BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 次に、本発明を実施するための最良の形態について説明する。 Next, the best mode for carrying out the present invention will be described.
[0033] 図 1は、本発明の第 1の実施形態による光ファイバ力ブラ光結合部周囲 2aの斜視 図である。 FIG. 1 is a perspective view of an optical fiber force bra light coupling part periphery 2 a according to a first embodiment of the present invention.
[0034] この光ファイバカプラは、光ファイバ laと光ファイバ lbとの間で伝搬光を分岐または 結合する、融着延伸型 I X 2広帯域光ファイバ力ブラである。両光ファイバ la, lbは、 それぞれ標準的に市販されている同一の単一モード光ファイバである。両光ファイバ la, lbは、外径や導波路パラメータが互いに異なるものでなぐともにプリ延伸やエツ チング等の異方性を導入するための前処理を施してはいない。各光ファイバ la, lb には、例えば波長 1. 31 mや波長 1. 55 mといった複数の波長の信号光が伝搬 し、波長多重通信が行われる。 This optical fiber coupler is a fused and drawn IX2 broadband optical fiber power bra that splits or couples propagating light between the optical fiber la and the optical fiber lb. Both optical fibers la and lb are identical single-mode optical fibers that are commercially available, respectively. Both optical fibers The la and lb have different outer diameters and waveguide parameters, and they are not pretreated to introduce anisotropy such as prestretching or etching. In each of the optical fibers la and lb, signal light of a plurality of wavelengths such as a wavelength of 1.31 m and a wavelength of 1.55 m propagate, for example, and wavelength division multiplexing communication is performed.
[0035] この光ファイバカプラは、光ファイバ laと光ファイバ lbとの間で伝搬光を分岐または 結合するための光結合部 21を備える。光結合部 21は、図 2に示すように、直線状ま たはほぼ直線状に配置された光ファイバ laに対して、光ファイバ lbの一部を巻き付 けて蛇行した状態で、融着延伸して構成されている。従って、光結合部 21での各光 ファイバ la, lbの長さは互いに異なっている。光ファイバ laに対する光ファイバ lbの 卷付量は、光結合部 21での両光ファイバ la, lbの長さの差力 波長多重通信で使 用される 2つの特定の波長 1. 31 mおよび 1. 55 mにおいて、各光ファイバ la, 1 bの伝搬光の結合度がほぼ等しくなるように調整されて 、る。  This optical fiber coupler comprises an optical coupling portion 21 for branching or coupling the propagating light between the optical fiber la and the optical fiber lb. As shown in FIG. 2, the optical coupling portion 21 is fused in a serpentine state in which a part of the optical fiber lb is wound around the linear or almost linear optical fiber la. It is configured to be stretched. Therefore, the lengths of the optical fibers la and lb at the light coupling portion 21 are different from each other. The amount of optical fiber lb applied to the optical fiber la is the difference between the lengths of both optical fibers la and lb at the optical coupling portion 21. Two specific wavelengths used in wavelength division multiplexing communication: 1.31 m and 1 At 55 m, the degree of coupling of the propagation light of each optical fiber la, 1 b is adjusted to be approximately equal.
[0036] 図 3は、光ファイバ力ブラの波長特性を示すグラフであり、同グラフの横軸は信号光 の波長 [/z mL縦軸は信号路の挿入損失 [dB]を表している。また、特性線 Aは光ファ ィバ laから光信号を入力した場合の光ファイバ laの出力波長特性、特性線 Bは光フ アイバ lbの出力波長特性を表している。同グラフに示すように、光ファイバ力ブラは、 波長 1. 31 111と1. 55 mの両波長での分岐比が挿入損失約 3dBでほぼ 50 : 50と なっており、これら両波長で使用可能な、広帯域な等分岐特性が備えられている。こ の分岐比は、光ファイバ laに対する光ファイバ lbの卷付量を変えることにより、歩留 まりょく制御することが可能であり、等分岐光ファイバ力ブラ以外でも、例えば、波長 1 . 31 /z mと 1. 55 mの両波長で使用可能な、分岐比 95 : 5の I X 2不等分岐光ファ ィバカブラ(5%タップ力ブラ)も容易に制作することが出来る。  FIG. 3 is a graph showing the wavelength characteristics of the optical fiber force bra, and the horizontal axis of the graph represents the wavelength of the signal light [/ z mL vertical axis represents the insertion loss [dB] of the signal path. The characteristic line A represents the output wavelength characteristic of the optical fiber la when the optical signal is input from the optical fiber la, and the characteristic line B represents the output wavelength characteristic of the optical fiber lb. As shown in the graph, the fiber optic force bra has a branching ratio of approximately 50:50 with an insertion loss of approximately 3 dB at both wavelengths of 1. 31 111 and 1.5 5 m, and it is used at both of these wavelengths A possible, wideband equal-branching feature is provided. The branching ratio can be controlled by changing the amount of wire bonding of the optical fiber lb to the optical fiber la, and it is possible to control the branching ratio other than the equal branch optical fiber power bra, for example, the wavelength 1. 31 It is also possible to easily make an IX 2 unequally branched optical fiber Bragg bra (5% tap force bra) with a branching ratio of 95: 5 that can be used at both wavelengths of / zm and 1.55 m.
[0037] 次に、この光ファイバ力ブラを製造する光ファイバ力ブラ製造装置について説明す る。  Next, an optical fiber force bra manufacturing apparatus for manufacturing the optical fiber force bra will be described.
[0038] 図 4 (a)および (b)は、光ファイバ力ブラ製造装置のファイバ保持機構および加熱機 構 3の平面図および側面図である。  FIGS. 4 (a) and 4 (b) are a plan view and a side view of a fiber holding mechanism and a heating mechanism 3 of the optical fiber force bra manufacturing apparatus.
[0039] 光ファイバ力ブラ製造装置のファイバ保持機構および加熱機構 3は、一対の延伸ス テージ 4a, 4bを備えており、この延伸ステージ 4a, 4b間には、マイクロトーチ 5を載置 したトーチ用ステージ 6が設けられている。マイクロトーチ 5は、光ファイバ la, lbの光 結合部 21を加熱するためのものであり、トーチ用ステージ 6によって延伸ステージ 4a , 4b間を移動できるようになつている。延伸ステージ 4a, 4bは、加熱して溶融した光 ファイバ la, lbを延伸するためのものであり、所定の直線軌道上を進退し得るよう〖こ 構成されている。延伸ステージ 4a, 4bは、マイクロトーチ 5と共に、光ファイバ laと光 ファイバ laに巻き付けられた光ファイバ lbとを融着延伸して光結合部 21を形成する 加熱延伸機構を構成して!/ヽる。 The fiber holding mechanism and the heating mechanism 3 of the optical fiber force bra manufacturing apparatus are provided with a pair of drawing stages 4a and 4b, and the microtorch 5 is placed between the drawing stages 4a and 4b. A torch stage 6 is provided. The microtorch 5 is for heating the light coupling portion 21 of the optical fibers la and 1b, and can be moved between the drawing stages 4a and 4b by the torch stage 6. The drawing stages 4a and 4b are for drawing the heated and melted optical fibers la and lb, and are structured so as to be able to move back and forth on a predetermined linear trajectory. The drawing stages 4a and 4b form, together with the microtorch 5, the optical drawing section 21 by fusion-bonding and drawing the optical fiber la and the optical fiber lb wound around the optical fiber la. Ru.
[0040] また、延伸ステージ 4a上の端部には、光ファイバ la, lbのそれぞれの一端を把持 する光ファイバクランプ 7が設けられており、双方の延伸ステージ 4a, 4b上には、光フ アイバホルダー 8a, 8bと、光ファイバ laに対して光ファイバ lbを巻き付けるファイバ 回転機構 9a, 9bとが設けられている。また、延伸ステージ 4b上には光ファイバガイド 10a, 10bが設けられている。光ファイバガイド 10a, 10bは、延伸ステージ 4b上に各 光ファイバ la, lbごとに回転自在に配設されたローラ力 構成されている。さらに、延 伸ステージ 4bの右側部には、光ファイバガイド 10a, 10bと対になって光ファイバ支 持円柱 11a, l ibが設けられており、光ファイバ支持円柱 11a, l ibに支持された光 ファイバ la, lbには錘 12a, 12bが固定されている。  Further, an optical fiber clamp 7 for gripping one end of each of the optical fibers la and lb is provided at an end on the drawing stage 4a, and an optical fiber clamp 7 is provided on both the drawing stages 4a and 4b. Iber holders 8a and 8b and fiber rotation mechanisms 9a and 9b for winding the optical fiber lb around the optical fiber la are provided. In addition, optical fiber guides 10a and 10b are provided on the drawing stage 4b. The optical fiber guides 10a and 10b are configured so as to have roller forces rotatably provided on the drawing stage 4b for each of the optical fibers la and lb. Furthermore, on the right side of the extension stage 4b, an optical fiber supporting cylinder 11a, l ib is provided in a pair with the optical fiber guides 10a, 10b, and supported by the optical fiber supporting cylinder 11a, l ib Weights 12a and 12b are fixed to the optical fibers la and lb.
[0041] 本実施形態では、錘 12aの重量を 30g、錘 12bの重量を 25gとした。錘 12a, 12b は上述した光ファイバクランプ 7と共に、直線状またはほぼ直線状に配置された光フ アイバ laに与える張力を、その光ファイバ laに巻き付ける光ファイバ lbに与える張力 より大きく保つ張力付与機構を構成している。  In the present embodiment, the weight of the weight 12a is 30 g, and the weight of the weight 12b is 25 g. The weights 12a and 12b, together with the optical fiber clamp 7 described above, maintain the tension applied to the linearly or almost linearly disposed optical fiber la more than the tension applied to the optical fiber lb wound around the optical fiber la. Are configured.
[0042] 錘 12a, 12bによって生じる張力は光ファイバクランプ 7から右側に位置する光ファ ィバ la, lbに円滑に伝わる。光ファイバ支持円柱 11a, l ibは、錘 12a, 12bによる 張力の方向を変えて光ファイバ la, lbに張力を円滑に伝えると共に、光ファイバ la, lbに過度の曲がりを生じさせないローラ力も構成されている。光ファイバクランプ 7、 光ファイバ支持台 10a, 10bおよび光ファイバ支持円柱 11a, l ibは、光ファイバ la, lbを延伸ステージ 4a, 4b上に互いに整列させる整列機構を構成している。  The tension generated by the weights 12a and 12b is smoothly transmitted from the optical fiber clamp 7 to the optical fiber la and lb located on the right side. The optical fiber supporting cylinders 11a and lib change the direction of tension by the weights 12a and 12b to smoothly transmit the tension to the optical fibers la and lb, and also constitute a roller force which does not cause excessive bending of the optical fibers la and lb. ing. The optical fiber clamp 7, the optical fiber support 10a and 10b, and the optical fiber support cylinders 11a and 1b constitute an alignment mechanism for aligning the optical fibers la and lb with each other on the extension stages 4a and 4b.
[0043] 光ファイバホルダー 8a, 8bは、光ファイバ la, lbの融着延伸作業の際に光フアイ ノ la, lbを把持するためのものであり、延伸ステージ 4a, 4bの中央側に設けられて いる。 The optical fiber holders 8a and 8b are for holding the optical fibers la and lb during the fusion drawing operation of the optical fibers la and lb, and are provided on the center side of the drawing stages 4a and 4b. The There is.
[0044] ファイバ回転機構 9aは、延伸ステージ 4aのほぼ中央部に設けられている。ファイバ 回転機構 9bは、延伸ステージ 4bのほぼ中央部に設けられている。これらファイバ回 転機構 9a, 9bは、図 5 (a) , (b)に示すように、それぞれ一対の基体 91と、これら各基 体 91に回転自在に保持された一対の円柱状の回転体 92とから構成されている。対 向して配置された各回転体 92は、図示しない回転駆動機構により、互いに逆方向に 回転動作させられる。回転体 92は、図に示すように、回転動作の中心となる軸心と一 致する位置に光ファイバ laが挿通される基準揷通孔 93が形成されており、軸心から 所定距離離間した位置に軸心に沿って開口した光ファイバ lbが挿通される回転挿 通孔 94が形成されている。  The fiber rotation mechanism 9a is provided substantially at the center of the drawing stage 4a. The fiber rotating mechanism 9b is provided substantially at the center of the drawing stage 4b. As shown in FIGS. 5 (a) and 5 (b), the fiber rotating mechanisms 9a and 9b respectively have a pair of substrates 91 and a pair of cylindrical rotating members rotatably held by the respective substrates 91. And 92. The rotating bodies 92 arranged in the opposite direction are rotated in opposite directions to each other by a rotational driving mechanism (not shown). As shown in the figure, the rotor 92 has a reference hole 93 through which the optical fiber la is inserted at a position coinciding with the axial center which is the center of rotational movement, and is separated from the axial center by a predetermined distance. A rotational insertion hole 94 is formed at the position where the optical fiber lb opened along the axial center is inserted.
[0045] 上記の光ファイバホルダー 8a, 8bおよびファイバ回転機構 9a, 9bは、光ファイバ 1 aの周囲に他の光ファイバ lbを卷きつける卷付機構を構成している。  The optical fiber holders 8a and 8b and the fiber rotation mechanisms 9a and 9b described above constitute a brazing mechanism for winding another optical fiber lb around the optical fiber 1a.
[0046] 次に、この製造装置を用いた光ファイバ力ブラの製造方法にっ 、て説明する。  Next, a method of manufacturing an optical fiber force bra using this manufacturing apparatus will be described.
[0047] まず、光結合部 21となる光ファイバ la, lbの被覆を除去し、その部分が延伸ステー ジ 4a, 4bの中央に位置するように配置し、そのまま、光ファイバ la, lbの一端を光フ アイバクランプ 7で把持する。次に、図 5 (a)に示すように、一の光ファイバ laをフアイ バ回転機構 9a, 9bを構成する回転体 92の基準揷通孔 93に挿通し、他の光ファイバ lbを回転体 92の回転揷通孔 94に揷通する。そして、光ファイバ支持台 10a, 10bお よび光ファイバ支持円柱 11a, l ibにより、光ファイノく la, lbを延伸ステージ 4a, 4b 上に支持する。これにより、図 4に示すように、 2本の光ファイバ la, lbを延伸ステー ジ 4a, 4b上に整列させる。光ファイバホルダー 8a, 8bはこの時点では開放しておき、 光ファイバクランプ 7から右側に位置する光ファイバ la, lbに錘 12a, 12bから伝わる 張力が掛カる状態としておく。  First, the coating of the optical fibers la and lb to be the optical coupling portion 21 is removed, and the portion is disposed at the center of the drawing stages 4a and 4b, and one end of the optical fibers la and lb is as it is. With the fiber optic clamp 7. Next, as shown in FIG. 5 (a), one optical fiber la is inserted into the reference through hole 93 of the rotating body 92 constituting the fiber rotating mechanism 9a, 9b, and the other optical fiber lb is rotated Pass through the 92 holes of through hole 94. Then, the optical fiber la and lb are supported on the drawing stages 4a and 4b by the optical fiber support bases 10a and 10b and the optical fiber support cylinders 11a and 1b. As a result, as shown in FIG. 4, two optical fibers la and lb are aligned on the extension stages 4a and 4b. At this time, the optical fiber holders 8a and 8b are opened so that tension transmitted from the weights 12a and 12b is applied to the optical fibers la and lb located on the right side of the optical fiber clamp 7.
[0048] その後、各光ファイバ la, lbの他端にそれぞれ錘 12a, 12bを取り付ける。錘 12a, 12bを取り付けると、光ファイバガイド 10a, 10bおよび光ファイバ支持円柱 11a, l ib を構成する各ローラを介して、錘 12a, 12bによる張力が各光ファイバ la, lbに円滑 に伝わり、各光ファイバ la, lbに互いに異なる張力が掛かる。  [0048] After that, weights 12a and 12b are attached to the other ends of the optical fibers la and lb, respectively. When the weights 12a and 12b are attached, the tension by the weights 12a and 12b is smoothly transmitted to the respective optical fibers la and lb through the rollers constituting the optical fiber guides 10a and 10b and the optical fiber supporting cylinders 11a and l ib. Different tensions are applied to each optical fiber la and lb.
[0049] この状態で、両ファイバ回転機構 9a, 9bの回転体 92をほぼ同時に反対方向に、ま たは一方のみを回転させる。回転体 92の基準揷通孔 93に挿通された光ファイバ la は、回転体 92の回転軸の中心に配置されているので、回転体 92を回転させた場合 でも公転しない。一方、回転揷通孔 94に挿通された光ファイバ lbは、回転体 92の回 転動作に従って、回転体 92の軸心を中心として回転する。この回転に伴い、図 5 (b) に示すように、両ファイバ回転機構 9a, 9b間に位置する光結合部 21の光ファイバ lb の被覆除去部が、直線状またはほぼ直線状に配置された光結合部 21の光ファイバ 1 aの被覆除去部に巻き付く。この際、光ファイバ laに加わる張力は光ファイバ lbにカロ わる張力よりも大きいので、光ファイバ lbの公転により、光ファイバ laが曲がることは ない。 [0049] In this state, the rotating bodies 92 of both the fiber rotating mechanisms 9a, 9b are You rotate only one. Since the optical fiber la inserted into the reference through hole 93 of the rotary body 92 is disposed at the center of the rotation axis of the rotary body 92, it does not revolve even when the rotary body 92 is rotated. On the other hand, the optical fiber lb inserted into the rotary through hole 94 rotates around the axial center of the rotary 92 as the rotary 92 rotates. Along with this rotation, as shown in FIG. 5 (b), the coating removal portion of the optical fiber lb of the optical coupling portion 21 located between the two fiber rotating mechanisms 9a and 9b is disposed linearly or almost linearly. It is wound around the coating removal part of the optical fiber 1 a of the light coupling part 21. At this time, since the tension applied to the optical fiber la is larger than the tension applied to the optical fiber lb, the revolution of the optical fiber lb does not bend the optical fiber la.
[0050] 本実施形態では、ファイバ回転機構 9bの回転体 92を約 260度回転させた。この回 転量は、光ファイバ la, lbの伝搬光の最大結合度と回転角との関係より求めた値で あるが、この値は、光ファイバの種類、製造装置の構造 (光ファイバ回転機構の構造 と取付位置、トーチ構造等)と、作成条件 (光ファイバに与える張力、融着度、延伸形 状等)等に大きく依存する相対的な値であり、絶対的な値ではない。なお、本実施形 態では、ファイバ回転機構 9bのみを回転させた力 特に回転量が多い場合等は、フ アイバ回転機構 9a, 9bの両方を逆方向に回転させてもょ 、。  In the present embodiment, the rotator 92 of the fiber rotation mechanism 9b is rotated about 260 degrees. This rotation amount is a value obtained from the relationship between the maximum coupling degree of the propagation light of the optical fiber la and lb and the rotation angle, and this value is the type of the optical fiber and the structure of the manufacturing apparatus. This is a relative value that largely depends on the structure and mounting position of the optical fiber, the torch structure, etc.) and the preparation conditions (tension applied to the optical fiber, degree of fusion, etc.), not absolute values. In the present embodiment, the force of rotating only the fiber rotation mechanism 9b may rotate both of the fiber rotation mechanisms 9a and 9b in the opposite direction, particularly when the amount of rotation is large.
[0051] 続いて、光ファイバホルダー 8a, 8bで各光ファイバ la, lbを把持して保持する。そ して、マイクロトーチ 5を点火した後にトーチ用ステージ 6によりマイクロトーチ 5を所定 の位置に移動させ、光結合部 21の被覆除去部を互いに加熱融着した後、延伸ステ ージ 4a, 4bを左右に緩やかに引き離しながら加熱延伸し、所定のところで加熱延伸 を止めて光結合部 21を形成した。次に、この光結合部 21の両側を基板に固定した 後に、全体を製造装置から外し、ノ^ケージをして、光ファイバ力ブラを完成させた。  Subsequently, each of the optical fibers la and lb is held and held by the optical fiber holders 8a and 8b. Then, after the microtorch 5 is ignited, the microtorch 5 is moved to a predetermined position by the torch stage 6 and the sheath removing portions of the optical coupling portion 21 are heated and fused to each other, and then the drawing stages 4a and 4b are performed. The film was heated and drawn while gently pulling it apart from side to side, and the heating and drawing was stopped at a predetermined position to form a light coupling part 21. Next, after fixing both sides of the optical coupling portion 21 to the substrate, the whole was removed from the manufacturing apparatus, and no cage was performed to complete an optical fiber force bra.
[0052] 図 6は、光ファイバ la, lbのこの加熱延伸時間(横軸)と、光ファイバ laから入力さ れた波長 1. 31 mおよび 1. 55 mの信号光についてのそれぞれの光結合度(縦 軸)との関係を示すグラフである。本実施形態では、両波長での光結合度が最初に 一致する点(図中の A点)での特性が得られる時間で、加熱延伸を停止した。従って 、このようにして融着延伸されて形成された光結合部 21での両光ファイバ la, lbの 長さの差は、波長多重通信で使用される 2つの特定の波長 1. 31 mおよび 1. 55 /z mにおいて、各光ファイバ la, lbの伝搬光の結合度がほぼ等しくなる最小の長さ に設定されている。 [0052] FIG. 6 shows the heating and drawing time of the optical fiber la and lb (horizontal axis) and the respective optical couplings for the signal lights of the wavelengths 1.31 m and 1.55 m input from the optical fiber la. It is a graph showing the relationship with degrees (vertical axis). In the present embodiment, the heating and drawing are stopped at the time when the characteristics at the point where the degree of optical coupling at both wavelengths first agrees (point A in the figure) is obtained. Therefore, the difference in lengths of the two optical fibers la and 1b at the light coupling part 21 formed by the fusion drawing in this way is the two specific wavelengths 1.31 m and 1. 55 At / zm, it is set to the minimum length such that the coupling degree of the propagation light of each of the optical fibers la and lb is substantially equal.
[0053] 以上説明した本実施形態による光ファイバ力ブラによれば、光ファイバ lbを直線状 またはほぼ直線状に配置された光ファイバ laに対して巻き付け、光結合部 21での各 光ファイバ la, lbの長さを互いに異ならせるだけで、光結合部 21での各光ファイバ 1 a, lb間に非対称性を持たせることができる。  According to the optical fiber power bra according to the present embodiment described above, the optical fiber lb is wound around the linear or substantially linear optical fiber la, and each optical fiber la at the optical coupling portion 21 is wound. , and lb can be made to have asymmetry between the optical fibers 1a and 1b at the light coupling portion 21 simply by making the lengths of Lb and Lb different from each other.
[0054] このため、従来のように、同一の光ファイバの伝搬定数に差をつけるための前処理 を予め正確に行う必要なぐ非対称性を導入することが可能となる。また、非対称性 は、光結合部 21での各光ファイバ la, lbの長さによって制御されるため、光結合部 21での各光ファイバ la, lbの融着 ·延伸時に補正することが出来る。従って、前処 理量に敏感で、融着 ·延伸時に伝搬定数の補正をすることが出来ない従来の光ファ ィバカブラに比べ、本実施形態による光ファイバ力ブラによれば、歩留まりを高くする ことが出来る。  For this reason, it becomes possible to introduce asymmetry which is necessary to perform in advance a pretreatment for differentiating the propagation constant of the same optical fiber in advance as in the prior art. Further, the asymmetry is controlled by the length of each optical fiber la, 1b at the optical coupling portion 21, so that it can be corrected at the time of fusion and drawing of each optical fiber la, 1b at the optical coupling portion 21. . Therefore, compared with the conventional optical fiber camber which is sensitive to the amount of pretreatment and can not correct the propagation constant at the time of fusion / drawing, the optical fiber power bra according to the present embodiment makes the yield higher. Can do.
[0055] また、本実施形態による光ファイバ力ブラは、従来のように、厳密に特性の揃った異 なる光ファイバを用意する必要がないため、経済性に優れる。また、光ファイバ la, 1 bの長さ方向に厳密にパラメータを揃える必要がないため、生産の際に光ファイバ力 ブラの特性が劣化したりすることはなぐしかも、歩留まりの低下を招くこともない。  Further, the optical fiber power bra according to the present embodiment is excellent in economic efficiency because it is not necessary to prepare different optical fibers having exactly the same characteristics as in the conventional case. In addition, since it is not necessary to exactly align the parameters in the length direction of the optical fibers la and 1b, the characteristics of the optical fiber bra does not deteriorate during production, and the yield may be lowered. Absent.
[0056] また、光ファイバ laに対する光ファイバ lbの卷付量を変更して、光結合部 21での 各光ファイバ la, lbの長さの差を制御することにより、 50 : 50の等分岐比に限定され ることなぐ任意の分岐比の光ファイバ力ブラを得ることが可能である。また、 I X 2不 等分岐'光ファイバ力ブラだけでなぐ一般的な 1 X N不等分岐'光ファイバ力ブラも 同様にして制作することが可能である。し力も、 1 X N広帯域'等分岐光ファイバカブ ラを得るために N+ 1本の光ファイバを用いる従来の広帯域ィ匕法のように、過剰損失 の波長依存性が原理的に大きくなる問題も生じず、 1本少ない N本の光ファイバを用 いて I X N広帯域光ファイバ力ブラを得ることが出来る。また、この問題を避けるため に、 1 X N広帯域'等分岐光ファイバ力ブラに非対称テーパを用いて非対称性を導入 する場合のように、非対称テーパ形状の制御性が問題となり、歩留まり低下の要因に なることもない。 [0057] また、本実施形態による光ファイバ力ブラは、 1 X N広帯域'等分岐光ファイバカブ ラに非対称テーパを用いて非対称性を導入する場合のように、分岐比の広帯域ィ匕の ために長尺化することはなぐ歩留まり低下の要因になることもない。従って、必要以 上にテーパ長を長くすることなぐ分岐比が広帯域の光ファイバ力ブラを得ることが出 来る。 Also, by changing the amount of brazing of the optical fiber lb relative to the optical fiber la, by controlling the difference in length of each optical fiber la and lb at the optical coupling portion 21, 50: 50 equal branching It is possible to obtain an optical fiber force bra of any branching ratio that is not limited to the ratio. In addition, it is possible to produce a general 1 X N unequal branch optical fiber power bra, which is only divided by the IX 2 unequal branch optical fiber power bra, in the same manner. Also, as with the conventional broadband method using N + 1 optical fibers to obtain a 1 × N broadband 'isobranch optical fiber coupler, there is also a problem that the wavelength dependence of excess loss becomes theoretically large. It is possible to obtain an IXN broadband optical fiber power bra using only one N optical fiber. Also, in order to avoid this problem, controllability of the asymmetric taper shape becomes a problem as in the case of introducing asymmetry to the 1 × N broadband 'equal branch optical fiber force bra using an asymmetric taper, which is a factor of yield reduction. It will never be. Also, in the optical fiber power bra according to the present embodiment, as in the case of introducing asymmetry using an asymmetric taper to a 1 × N broadband ′ equal-branch optical fiber coupler, it is possible to use a broadband ratio of branching ratio. Increasing the length does not become a factor of falling yield. Therefore, it is possible to obtain an optical fiber power bra having a branching ratio that does not increase the taper length more than necessary.
[0058] また、本実施形態では、光ファイバ力ブラが同一の光ファイバ la, lbからなる場合 について説明した力 必ずしも同一の光ファイバによって構成する必要はなぐ異な る光ファイバを用いて光ファイバ力ブラを構成するようにしてもよい。すなわち、同一 の光ファイバ la, lbおよび異なる光ファイバのいずれを用いた場合にも、光結合部 2 1での各光ファイバの長さを互いに異ならせることにより、各光ファイバ間で伝搬定数 に差をつけることなぐ容易に、光結合部 21に非対称性を導入することができる。この ため、異なる光ファイバを用いた場合にも、容易に、分岐比が広帯域の上述した光フ アイバカブラを得ることが出来る。  Further, in the present embodiment, the force described in the case where the optical fiber force bra is composed of the same optical fibers la and lb is the optical fiber power using the different optical fibers which need not necessarily be composed of the same optical fiber. A bra may be configured. That is, when using the same optical fibers la and 1b and different optical fibers, by making the lengths of the respective optical fibers in the optical coupling portion 21 different from each other, the propagation constant can be calculated between the respective optical fibers. Asymmetry can be introduced into the light coupling portion 21 easily without making a difference. For this reason, even when different optical fibers are used, it is possible to easily obtain the above-mentioned optical fiber QB with a wide branching ratio.
[0059] また、本実施形態による光ファイバ力ブラの製造方法は、上述したように、光フアイ ノ la, lbを互いに整列させる整列工程が、 1本の光ファイバ laを直線状またはほぼ 直線状に配置し、その周囲にその光ファイバ laと同一の他の光ファイバ lbを巻き付 けて、光結合部 21での各光ファイバ la, lbの長さを互いに異ならせる卷付工程を備 えている。従って、光ファイバ la, lbに取り付ける錘 12a, 12bの重量やファイバ回転 機構 9a, 9bを構成する回転体 92の回転量を調整して、光ファイバ laに対する光ファ ィバ lbの卷付量を変更することにより、光結合部 21での各光ファイバ la, lbの長さ の差を調整できる。このため、光ファイバ laに対する光ファイバ lbの卷付量を変更す ることにより、各光ファイバ la, lb間の非対称性を制御して、分岐比が所望の広帯域 特性を有する光ファイバ力ブラを容易に得ることが出来る。  Further, in the method of manufacturing the optical fiber force bra according to the present embodiment, as described above, the alignment step of aligning the optical fibers la and lb with each other is linear or substantially linear for one optical fiber la. The other optical fiber lb same as that of the optical fiber la is placed around it, and the optical fiber la and lb at the optical coupling portion 21 have a brazing step to make the lengths of the optical fibers la and lb different from each other. There is. Therefore, by adjusting the weight of the weight 12a, 12b attached to the optical fiber la, lb and the amount of rotation of the rotator 92 constituting the fiber rotation mechanism 9a, 9b, the amount of brazing of the optical fiber lb relative to the optical fiber la By changing it, the difference in length of each optical fiber la and lb at the optical coupling portion 21 can be adjusted. Therefore, the asymmetry between each optical fiber la and lb is controlled by changing the amount of bias of the optical fiber lb with respect to the optical fiber la, and an optical fiber power bra having a desired wide band characteristic of the branching ratio is obtained. It can be easily obtained.
[0060] また、本実施形態による光ファイバ力ブラの製造方法では、上述したように、卷付ェ 程力 直線状またはほぼ直線状に配置された光ファイバ laに、その光ファイバ laに 巻き付ける光ファイバ lbに与える張力よりも大きな張力を与えて行われる。従って、 大きな張力が与えられた光ファイバ laの張力を利用し、その光ファイバ laの周りに小 さな張力が与えられた光ファイバ lbを巻き付けることで、光ファイバ laが、その周りに 巻き付ける光ファイバ lb力 受ける応力によって曲がることはない。このため、光ファ ィバ laの周りに光ファイバ lbを巻き付けるときに、光ファイバ laが曲がって光ファイバ lbの卷付量が一定でなくなることが防止される。つまり、光ファイバ laに光ファイバ 1 bが巻き付く量は一定になり、再現性のある卷状態を容易に実現することが可能にな る。従って、分岐比の広帯域特性が揃った光ファイバ力ブラを容易に製造することが 出来、歩留まりは高まる。 Further, in the method of manufacturing the optical fiber force bra according to the present embodiment, as described above, the optical fiber is wound around the optical fiber la, which is disposed linearly or almost linearly with the welding process. This is done by applying a tension greater than the tension applied to the fiber lb. Therefore, by using the tension of the large tensioned optical fiber la and winding the small tensioned optical fiber lb around the optical fiber la, the optical fiber la can be wound around it. Fiber to wrap lb Force does not bend under stress. For this reason, when the optical fiber lb is wound around the optical fiber la, the optical fiber la is prevented from being bent and the brazing amount of the optical fiber lb is not constant. That is, the amount by which the optical fiber 1b is wound around the optical fiber la becomes constant, and it becomes possible to easily realize a reproducible wrinkle state. Therefore, it is possible to easily manufacture an optical fiber force bra having a wide band characteristic of the branching ratio and to increase the yield.
[0061] また、本実施形態による光ファイバ力ブラの製造装置は、上述したように、直線状ま たはほぼ直線状に配置された光ファイバ laの周囲にその光ファイバ laと同一の光フ アイバ lbを巻き付ける卷付機構と、光ファイバ laに与える張力をその光ファイバ laに 巻き付ける光ファイバ lbに与える張力より大きく保つ張力付与機構とを備えている。 従って、卷付機構により、光ファイバ laの周囲に光ファイバ lbが巻き付けられる際、 張力付与機構によって各光ファイバ la, lbに所定の張力が与えられることにより、光 ファイバ laがその周りに巻き付ける光ファイバ lbから受ける力によって曲がることなく 、光ファイバ lbが光ファイバ laに巻き付く量は一定になる。このため、光結合部 21に おける光ファイバ la, lb間の非対称性をそれらの長さの差によって容易に制御する ことが出来る光ファイバ力ブラの製造装置が提供される。 In addition, as described above, the apparatus for manufacturing an optical fiber force bra according to the present embodiment has the same optical fiber as the optical fiber la, which is disposed around the linear or almost linear optical fiber la. The apparatus includes a bending mechanism for winding Iber lb and a tension applying mechanism for keeping tension applied to the optical fiber la larger than tension applied to the optical fiber lb wound on the optical fiber la. Therefore, when the optical fiber lb is wound around the optical fiber la by the brazing mechanism, the optical fiber la is wound around the optical fiber la by applying a predetermined tension to the optical fibers la and lb by the tensioning mechanism. The amount by which the optical fiber lb wraps around the optical fiber la is constant without bending due to the force received from the fiber lb. For this reason, an apparatus for manufacturing an optical fiber force bra is provided which can easily control the asymmetry between the optical fibers la and lb at the optical coupling portion 21 by the difference in their lengths.
[0062] 次に、本発明による光ファイバ力ブラの第 2の実施形態について説明する。 Next, a second embodiment of the optical fiber force bra according to the present invention will be described.
[0063] 図 7は本実施形態による融着延伸型 1 X 4広帯域光ファイバ力ブラ光結合部周囲 2 bの斜視図である。 [0063] FIG. 7 is a perspective view of a fusion drawing type 1 × 4 wide band optical fiber power bra light coupling part periphery 2b according to the present embodiment.
[0064] 光ファイバ力ブラ光結合部周囲 2bは、中心に位置する直線状の光ファイバ laが入 出力兼用光ファイバで、それに螺旋状に巻き付いている他の光ファイバ lb, lc, Id は出力専用光ファイバである。これら各光ファイバ la— Idも、第 1の実施形態と同様 、それぞれ標準的に市販されている同一の単一モード光ファイバである。なお、この 第 2の実施形態でも、同一でない異なる光ファイバを用いて光ファイバ力ブラを構成 してもよい。光ファイバ力ブラ結合部 22は、図 8に示すように、直線状またはほぼ直線 状に配置された光ファイバ laに対して、他の 3本の光ファイバ lb, lc, Idの一部を卷 きつけた状態で、融着延伸して構成される。従って、光結合部 22での光ファイバ laと 他の光ファイバ lc一 Idとの長さは互いに異なっている。光ファイバ laに対する光ファ ィバ lb, lc, Idの卷付量は、光光結合部 22での光ファイバ laと他の光ファイバ lc 一 Idとの長さの差力 波長多重通信で使用される 2つの特定の波長 1. 31 mおよ び 1. において、各光ファイバ la, lb, lc, Idの伝搬光の結合度がほぼ等し くなる長さに調整されている。 [0064] The optical fiber force bra around the optical coupling section 2b is an input / output dual-purpose optical fiber that is a straight optical fiber la located at the center, and the other optical fiber lb, lc, Id is an output that is spirally wound on it It is a dedicated optical fiber. Each of these optical fibers la-Id is also the same single mode optical fiber that is commercially available as a standard, as in the first embodiment. Also in the second embodiment, the optical fiber force bra may be configured using different optical fibers that are not identical. The optical fiber force bra coupler 22 is, as shown in FIG. 8, a part of the other three optical fibers lb, lc, and Id with respect to the linear or nearly linear optical fiber la. It is constructed by fusion drawing in a state of tightness. Therefore, the lengths of the optical fiber la and the other optical fiber lc1 Id at the optical coupling portion 22 are different from each other. Optical fiber for optical fiber la The application amount of the fiber lb, lc, Id is the difference in length between the optical fiber la and the other optical fiber lc 1 Id at the optical coupling part 22. Two specific wavelengths used in wavelength multiplexing communication 1. 31 m and 1 are adjusted so that the coupling degree of the propagation light of each optical fiber la, lb, lc, Id is almost equal.
[0065] この光ファイバ力ブラを製造する装置は、第 1実施形態の光ファイバ力ブラ製造装 置とほぼ同様の構成を有する力 光ファイバ回転機構 9a, 9bには、回転中心に開口 した基準揷通孔 93以外に、回転中心に対称に 3つの回転揷通孔 94が開口しており 、計 4つの孔のそれぞれに光ファイバ la, lb, lc, Idが揷通する構造となっている。 また、光ファイバ la— Idに張力を与える機構としては、互いに独立した 4つの機構( ファイバガイド 10a— 10d、光ファイバ支持円柱 11a— l id)が備えられており、錘 12 aの他に 3つの錘 12b— 12d力 各光ファイバ la, lb, lc, Idの端部に装着される。 この場合、光ファイバ laに加わる錘 12aの重量は例えば約 35g、他の光ファイバ lb 一 Idに加わる錘 12b— 12dの重量は例えばそれぞれ約 20gとした。このように光ファ ィバ laに与える張力は他の 3本の光ファイバ lb, lc, Idに与える張力よりも大きいた め、本実施形態でも、光ファイバ laの直進性は歩留まり良く保障される。  The apparatus for manufacturing the optical fiber force bra has a configuration substantially similar to that of the optical fiber force bra manufacturing apparatus according to the first embodiment. In addition to the through hole 93, three rotational through holes 94 are opened symmetrically at the center of rotation, and the optical fibers la, lb, lc, Id pass through each of a total of four holes. . Also, as a mechanism for applying tension to the optical fiber la-Id, four mechanisms (fiber guide 10a-10d, optical fiber supporting cylinder 11a-id) independent of each other are provided, and in addition to the weight 12a, 3 Two weights 12b-12d force mounted on the end of each optical fiber la, lb, lc, Id. In this case, the weight of the weight 12a added to the optical fiber la is, for example, about 35 g, and the weight of the weights 12b to 12d added to the other optical fiber lb-Id is, for example, about 20 g. As described above, since the tension applied to the optical fiber la is larger than the tension applied to the other three optical fibers lb, lc, and Id, even in the present embodiment, the rectilinearity of the optical fiber la is ensured with a good yield. .
[0066] このような張力が与えられながら、光ファイバ lb, lc, Idは、光ファイバ laに対して 図 8に示すように螺旋状に巻き付けられるが、本実施形態では、光ファイバ回転機構 9a, 9bを互いに逆方向に 270度ずつ回転させて巻き付けた。この回転量も、第 1実 施形態の場合と同様に、各光ファイバ la, lb, lc, Idの長さの差力 回転角と最大 結合度との関係より、各光ファイバ la, lb, lc, Idの伝搬光の光結合度がほぼ等し くなる値になっている。この値も、光ファイバの種類、製造装置の構造、作成条件等 に大きく依存する相対的な値であり、絶対的な値ではないため、適宜変更して差し支 えない。また、回転角の最適値は分岐数に大きく依存する値であり、例えば、 I X 8光 ファイバ力ブラの場合には回転条件は全く異なることは当然である。また、光ファイバ 回転機構 9a, 9bの回転量は必ずしも等しい必要はなぐ回転機構 9aまたは回転機 構 9bのみを回転させてもょ 、。  While such a tension is applied, the optical fibers lb, lc, and Id are helically wound around the optical fiber la as shown in FIG. 8, but in the present embodiment, the optical fiber rotation mechanism 9a , 9b were wound in opposite directions by 270 degrees. As in the case of the first embodiment, the amount of rotation can also be determined from the relationship between the rotation angle of each optical fiber la, lb, lc, and Id and the maximum coupling degree. The degree of optical coupling of the propagating light of lc and Id is almost equal. This value is also a relative value that largely depends on the type of optical fiber, the structure of the manufacturing apparatus, the preparation conditions, and the like, and is not an absolute value. Also, the optimum value of the rotation angle is a value that largely depends on the number of branches, and it is natural that the rotation conditions are completely different in the case of, for example, an I x 8 optical fiber power bra. In addition, the rotation amounts of the optical fiber rotation mechanisms 9a and 9b need to be the same, and only the rotation mechanism 9a or the rotation mechanism 9b may be rotated.
[0067] 図 9は光ファイバ力ブラの光結合部の断面構造を示す図である。  FIG. 9 is a view showing the cross-sectional structure of the light coupling portion of the optical fiber force bra.
[0068] 同図では、出力専用光ファイバ lb, lc, Idの位置が入力出力兼用光ファイバ laに 対して対称な位置に配置されている力 全ての光ファイバ la, lb, lc, Idに与える 張力を一定にした場合、この出力専用光ファイバ lb, lc, Id間の相対位置の僅かな ズレが中心に位置する光ファイバ laの蛇行の要因となる。従って、この場合は光結 合部 22における構造の非対称性を精度良く制御することが難しぐ光結合部 22の非 対称性により広帯域分岐特性を歩留まり良く得ることは困難となる。 In the figure, the position of the output-only optical fiber lb, lc, Id is the input-output combined optical fiber la. Forces arranged symmetrically with respect to each other If the tension given to all the optical fibers la, lb, lc, and Id is constant, a slight deviation of the relative position between the output-only optical fibers lb, lc, and Id will result. It causes the meandering of the centrally located optical fiber la. Therefore, in this case, it is difficult to obtain wide-band branching characteristics with high yield due to the non-symmetry of the light coupling portion 22 which makes it difficult to control the asymmetry of the structure in the light coupling portion 22 with high accuracy.
[0069] これに対して、本実施形態では、光ファイバ laにカ卩わる張力が他の光ファイバ lb, lc, Idに加わる張力よりも大きいので、光ファイバ lb, lc, Idの公転により、光フアイ バ laが蛇行することはない。このように、光ファイバ lb, lc, Idを巻き付ける方法とし て、複数本の光ファイノ la, lb, lc, Id【こ異なった重量の鍾 12a, 12b, 12c, 12d を付けて、重い錘 12aを付けた光ファイバ laの張力を利用し、光ファイバ lb, lc, Id を捻ることで、軽い錘 12b, 12c, 12dを付けた光ファイバ lb, lc, Idが重い錘 12aを 付けた光ファイバ laの周りに巻き付く原理を利用した巻き付け方法により、再現性の ある卷状態が容易に実現可能となり、分岐比を容易に再現することが可能となる。こ のように、中心におかれる光ファイバ laに掛ける張力を大きくすることで光ファイバ lb , lc, Idの卷付量が一定となり、歩留まりが向上し、再現性に富むようになる。  On the other hand, in the present embodiment, since the tension applied to the optical fiber la is larger than the tension applied to the other optical fibers lb, lc, Id, by the revolution of the optical fibers lb, lc, Id, The optical fiber la does not meander. Thus, as a method of winding the optical fiber lb, lc, Id, a plurality of optical Fino la, lb, lc, Id [weights 12a, 12b, 12c, 12d of different weights are attached, and a heavy weight 12a Light fiber 12b, 12c, 12d is attached by using tension of the attached optical fiber la and the light fiber 12b, 12c, 12d is twisted by twisting the optical fiber lb, lc, Id Optical fiber with the heavy weight 12a attached The winding method using the principle of winding around la makes it possible to easily realize a reproducible wrinkle state and to easily reproduce the branching ratio. As described above, by increasing the tension applied to the optical fiber la placed at the center, the bonding amount of the optical fiber lb, lc, Id becomes constant, the yield is improved, and the reproducibility becomes rich.
[0070] 図 9に示した光ファイバ力ブラの光結合部の断面構造は、特許文献 7に開示された 、非対称テーパによって広帯域化された 1 X 4光ファイバ力ブラの構成(同文献の図 1 参照)と類似している。し力し、同文献のコラム 4の 55— 57行や、コラム 7の 61— 63 行に明記されているように、 4本の光ファイバに印加される張力は全て同一であるた め、同文献には明記されていないが、中心の光ファイバは長さ方向において蛇行し ている可能性が高くなる。つまり、図 8に示すように中心の光ファイバ laが直線状に 保たれる確率は、大幅に低下すると考えられる。従って、この場合は、光ファイバ laと 光ファイバ lb— Idとの間の非対称性は保障されない。そのために同文献の光フアイ バカブラでは、テーパに非対称性を導入して特性の広帯域を確保している。同文献 に示される光ファイバ回転機構は、テーパを形成するために 4本の光ファイバを互 ヽ に単に接触させるためだけに用いられているのであり、同文献では、光ファイバ間に 異なる張力を与えて非対称性を導入する意図は伺えない。  The cross-sectional structure of the optical coupling portion of the optical fiber power bra shown in FIG. 9 is the configuration of a 1 × 4 optical fiber power bra that is broadened by an asymmetric taper as disclosed in Patent Document 7 Similar to 1). The tension applied to the four optical fibers is the same as described in column 55, line 57 of column 4 and column 61, line 63 of the same document. Although not specified in the literature, the central optical fiber is likely to meander along its length. That is, as shown in FIG. 8, the probability that the central optical fiber la is kept in a straight line is considered to be greatly reduced. Therefore, in this case, the asymmetry between the optical fiber la and the optical fiber lb-Id is not guaranteed. Therefore, in the optical fiber fabric of the same document, asymmetry is introduced in the taper to secure a wide band of characteristics. The optical fiber rotation mechanism shown in the same document is used only to simply contact the four optical fibers to each other to form a taper, and in the same document, different tensions are applied between the optical fibers. The intention to introduce and introduce asymmetry is not fulfilled.
[0071] 図 10は、本実施形態により作製したパッケージ後の光ファイバ力ブラの波長特性を 示すグラフであり、同グラフの横軸は信号光の波長 [ /z mL縦軸は信号路の挿入損 失 [dB]を表している。また、特性線 Aは光ファイバ laについての出力波長特性、特 性線 B, C, Dはそれぞれ光ファイバ lb, lc, Idについての出力波長特性を表してい る。同グラフに示すように、光ファイバカプラ 2bは、波長 1. 3: mと 1. 55 mの両 波長での分岐比が挿入損失約 6dBでほぼ等分岐となっており、これら両波長で使用 可能な、広帯域な等分岐特性が備えられている。この分岐比は、光ファイバ laに対 する光ファイバ lb— Idの卷付量を変えることにより、歩留まりよく制御することが可能 であり、所望の分岐比の 1 X 4不等分岐光ファイバ力ブラを容易に制作することが出 来る。 FIG. 10 shows the wavelength characteristics of the optical fiber force bra after the package manufactured according to the present embodiment. The horizontal axis of the graph represents the wavelength of the signal light [/ z mL, and the vertical axis represents insertion loss [dB] of the signal path. The characteristic line A represents the output wavelength characteristic of the optical fiber la, and the characteristic lines B, C, and D represent the output wavelength characteristics of the optical fibers lb, lc, and Id, respectively. As shown in the graph, the optical fiber coupler 2b has a branching ratio at both wavelengths of 1.3 m and 1.55 m and is approximately equal branched with an insertion loss of about 6 dB. A possible, wideband equal-branching feature is provided. This branching ratio can be controlled with high yield by changing the amount of polarization of the optical fiber lb-Id to the optical fiber la, and the desired branching ratio of 1 X 4 unequally branched optical fiber force bra is obtained. It is easy to make
[0072] 従って、本実施形態による光ファイバ力ブラによっても、従来の融着延伸型の光ファ ィバカブラのように、非対称性を導入するためのプリ延伸、エッチング等の前処理や 、複数種類の光ファイバを用いることなぐ 4本の同じ光ファイバ la, lb, lc, Idを用 い、光結合部 22の形成時に非対称な配置を導入することにより広帯域な等分岐特 '性を得ることができる。  Therefore, even with the optical fiber force bra according to the present embodiment, pretreatment such as pre-stretching and etching to introduce asymmetry, and a plurality of types of as in the conventional fusion stretch-type optical fiber camber, Using the same optical fiber By using four identical optical fibers la, lb, lc, and Id and introducing an asymmetric arrangement when forming the optical coupling part 22, broadband equal branch characteristics can be obtained. .
[0073] このようにして作成された光ファイバカプラでも、上述したように、波長 1. 31 μ mと 1 . 55 mの両波長で利用可能な、広帯域な等分岐特性が得られ、光ファイバ lbの 卷付量を変えることにより、歩留まりよく分岐比を制御することが可能である。  [0073] As described above, even with the optical fiber coupler created in this manner, a wide band equal-branching characteristic that can be used at both wavelengths of 1.31 μm and 1.55 m can be obtained, and an optical fiber can be obtained It is possible to control the branching ratio with a good yield by changing the amount of brazing of lb.
[0074] なお、上記各実施形態では光ファイバ la— Idに荷重を与えるために錘 12a— 12d を使用したが、他にパネ力、磁力等を利用してもよい。また、加熱源として、マイクロト ーチ 5を使用したが、その他にセラミック等を用いた電熱ヒータ、放電、 COレーザ等  In the above embodiments, the weights 12a-12d are used to apply a load to the optical fiber la-Id, but other panel forces, magnetic forces, etc. may be used. In addition, although micro torch 5 was used as a heating source, electric heaters using ceramics etc., discharge, CO laser etc.
2 の加熱方法を用いても良い。  A heating method of 2 may be used.
産業上の利用可能性  Industrial applicability
[0075] 上記実施形態においては、本発明による光ファイバ力ブラを 1 X 2光ファイバ力ブラ および I X 4光ファイバ力ブラに適用した場合について説明した力 例えば、 I X 3光 ファイバ力プラ、 1 X 8光ファイバカプラ等の他の一般的な 1 X N光ファイバ力ブラに本 発明を適用することも可能である。このような光ファイバ力ブラに本発明を適用した場 合においても、上記実施形態と同様な作用効果が奏される。 In the above embodiment, the force described in the case where the optical fiber force bra according to the present invention is applied to 1 × 2 optical fiber force bra and IX 4 optical fiber force bra, for example, IX 3 optical fiber force plastic, 1 × It is also possible to apply the invention to other common 1 XN fiber optic force bras, such as 8-fiber couplers. Even when the present invention is applied to such an optical fiber force bra, the same function and effect as the above embodiment can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 一の光ファイバの伝搬光を他の 1本以上の光ファイバに結合させる光結合部を備え る光ファイバカプラにおいて、  [1] In an optical fiber coupler provided with an optical coupling portion for coupling the propagation light of one optical fiber to one or more other optical fibers,
前記光結合部での前記一の光ファイバと前記他の 1本以上の光ファイバとの長さが 互いに異なり、かつ、その光結合部の長さが、少なくとも 2つの特定の波長において 前記各光ファイバの伝搬光の光結合度がほぼ等しくなる最小の長さになっていること を特徴とする光ファイバ力ブラ。  The lengths of the one optical fiber and the one or more other optical fibers in the optical coupling portion are different from each other, and the lengths of the optical coupling portion are at least at two specific wavelengths. A fiber optic power bra characterized in that it has a minimum length such that the degree of optical coupling of the propagating light of the fiber is approximately equal.
[2] 前記一の光ファイバと前記他の 1本以上の光ファイバとは同一の光ファイノからなる ことを特徴とする請求項 1に記載の光ファイバ力ブラ。 [2] The optical fiber power bra according to claim 1, wherein the one optical fiber and the one or more other optical fibers are made of the same optical fino.
[3] 前記光結合部において、前記一の光ファイバが直線状またはほぼ直線状に配置さ れ、かつ、前記他の 1本以上の光ファイバが前記一の光ファイバに対して蛇行してい ることを特徴とする請求項 1または請求項 2に記載の光ファイバ力ブラ。 [3] In the optical coupling portion, the one optical fiber is disposed linearly or substantially linearly, and the one or more other optical fibers meander with respect to the one optical fiber. The optical fiber power bra according to claim 1 or 2, characterized in that:
[4] 前記光結合部において、前記他の 1本以上の光ファイバが直線状またはほぼ直線 状に配置され、かつ、前記一の光ファイバが前記他の 1本以上の光ファイバに対して 蛇行していることを特徴とする請求項 1または請求項 2に記載の光ファイバ力ブラ。 [4] In the optical coupling portion, the one or more other optical fibers are arranged linearly or substantially linearly, and the one optical fiber is meandered relative to the one or more other optical fibers. The optical fiber power bra according to claim 1 or 2, characterized in that:
[5] 複数本の光ファイバを互いに整列させる整列工程と、この整列工程で整列された前 記各光ファイバを融着 '延伸して光結合部を形成する融着延伸工程とを含む光フアイ バカブラの製造方法にぉ 、て、 [5] An optical fiber comprising: an alignment step of aligning a plurality of optical fibers with each other; and a fusion drawing step of fusion-bonding and drawing the respective optical fibers aligned in the alignment step to form a light coupling portion. According to the manufacturing method of stupidity,
前記整列工程は、前記光結合部において、少なくとも 1本の光ファイバを直線状ま たはほぼ直線状に配置し、その周囲に他の光ファイバを 1本以上巻き付ける卷付ェ 程を備えることを特徴とする光ファイバ力ブラの製造方法。  In the alignment step, at the light coupling portion, at least one optical fiber is arranged in a straight line or a substantially straight line, and a winding step is provided around the one or more other optical fibers. A method of manufacturing an optical fiber force bra characterized by the present invention.
[6] 前記卷付工程において、直線状またはほぼ直線状に配置された前記光ファイバに 与える張力が、その光ファイバに巻き付ける他の光ファイバに与える張力よりも大きい ことを特徴とする請求項 5に記載の光ファイバ力ブラの製造方法。 [6] In the brazing step, the tension applied to the optical fiber disposed linearly or substantially linearly is larger than the tension applied to another optical fiber wound around the optical fiber. The method of manufacturing an optical fiber power bra according to claim 1.
[7] 複数本の光ファイバを互いに整列させる整列機構と、この整列機構で整列された前 記各光ファイバを融着 '延伸して光結合部を形成する融着延伸機構とを備える光ファ ィバカブラの製造装置にぉ 、て、 [7] An optical fiber comprising: an alignment mechanism for aligning a plurality of optical fibers with each other; and a fusion drawing mechanism for fusion-stretching each optical fiber aligned by the alignment mechanism to form an optical coupling part. In the manufacturing equipment of
直線状またはほぼ直線状に配置された少なくとも 1本の光ファイバの周囲に他の光 ファイバを 1本以上巻き付ける卷付機構と、直線状またはほぼ直線状に配置された前 記光ファイバに与える張力をその光ファイバに巻き付ける前記光ファイバに与える張 力より大きく保つ張力付与機構とを備えていることを特徴とする光ファイバ力ブラの製 造装置。 Other light around at least one optical fiber arranged in a straight or nearly straight line It has a bending mechanism that winds one or more fibers, and a tensioning mechanism that keeps the tension applied to the optical fiber arranged linearly or almost linearly larger than the tension applied to the optical fiber wound on the optical fiber. An optical fiber force bra manufacturing apparatus characterized by
PCT/JP2004/017148 2003-12-09 2004-11-18 Optical fiber coupler and process and device for producing the same WO2005057260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003409729A JP3974106B2 (en) 2003-12-09 2003-12-09 Broadband optical fiber coupler, manufacturing method thereof, and manufacturing apparatus thereof
JP2003-409729 2003-12-09

Publications (1)

Publication Number Publication Date
WO2005057260A1 true WO2005057260A1 (en) 2005-06-23

Family

ID=34674906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017148 WO2005057260A1 (en) 2003-12-09 2004-11-18 Optical fiber coupler and process and device for producing the same

Country Status (4)

Country Link
JP (1) JP3974106B2 (en)
CN (1) CN100392451C (en)
TW (1) TW200527020A (en)
WO (1) WO2005057260A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031548A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Optical fiber bundle and method of manufacturing optical fiber type combiner module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182521B2 (en) * 2013-12-05 2017-08-16 古河電気工業株式会社 Optical fiber laser equipment
CN109655973B (en) * 2019-01-07 2024-02-20 浙江大学 2 x 2 single-mode fiber directional coupler with continuously adjustable light splitting ratio

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777623A (en) * 1993-06-30 1995-03-20 Shin Etsu Chem Co Ltd Production of optical fiber coupler
JPH07181340A (en) * 1993-12-24 1995-07-21 Shin Etsu Chem Co Ltd Manufacture of wide band optical fiber coupler
US5764830A (en) * 1996-11-13 1998-06-09 E-Tek Dynamics, Inc. 1×N and N×N fiber optic couplers
EP0404587B1 (en) * 1989-06-22 1998-08-19 Fujikura Ltd. Optical fiber coupler and a fabrication method for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363609A (en) * 1989-07-31 1991-03-19 Japan Aviation Electron Ind Ltd Wide-band optical fiber coupler and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404587B1 (en) * 1989-06-22 1998-08-19 Fujikura Ltd. Optical fiber coupler and a fabrication method for the same
JPH0777623A (en) * 1993-06-30 1995-03-20 Shin Etsu Chem Co Ltd Production of optical fiber coupler
JPH07181340A (en) * 1993-12-24 1995-07-21 Shin Etsu Chem Co Ltd Manufacture of wide band optical fiber coupler
US5764830A (en) * 1996-11-13 1998-06-09 E-Tek Dynamics, Inc. 1×N and N×N fiber optic couplers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031548A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Optical fiber bundle and method of manufacturing optical fiber type combiner module

Also Published As

Publication number Publication date
TW200527020A (en) 2005-08-16
CN1890589A (en) 2007-01-03
JP2005172972A (en) 2005-06-30
TWI344556B (en) 2011-07-01
JP3974106B2 (en) 2007-09-12
CN100392451C (en) 2008-06-04

Similar Documents

Publication Publication Date Title
EP0635140B1 (en) One by eight optical fiber coupler
US6731842B2 (en) Microbend fused fiber coupler method and apparatus
US5764830A (en) 1×N and N×N fiber optic couplers
US6363190B1 (en) Polarization insensitive fused fiber coupler method and apparatus
WO2005057260A1 (en) Optical fiber coupler and process and device for producing the same
CA2190044C (en) Broadband coupler
CA2123757C (en) Method for making optical waveguide couplers with low wavelength sensitivity and couplers thereby produced
JPH09504886A (en) Fiber optic coupler
JPH10176903A (en) Mach-zehnder interferometer and its manufacture
JP2000137136A (en) Optical fiber coupler splicing drawing device with twisting mechanism
JP2000193845A (en) Branching light coupler for input light into a plurality of fibers and manufacture thereof
EP0687930B1 (en) Method for manufacturing optical fiber couplers
JP4176272B2 (en) Optical multiplexer / demultiplexer and manufacturing method thereof
JP2003315598A (en) Method and device for collective fusion splice by discharge
JP2883183B2 (en) Method and apparatus for manufacturing optical fiber coupler
JP2001324644A (en) Multi-wavelength optical fiber coupler and manufacturing method
JPH02140708A (en) Production of fiber type coupler
JPH1020145A (en) Production of low polarization dependent loss optical fiber coupler
JPH0318804A (en) Production of optical fiber coupler
JP2000206361A (en) Optical fiber type multi-branch coupler, and manufacture thereof
JPH0868914A (en) Production of optical fiber coupler
JPH11167041A (en) Multi-branch optical coupler
JP2000304963A (en) Multi-branch optical coupler
JPH11337763A (en) Polarization maintaining optical fiber aligning device and manufacturing equipment of polarization maintaining optical fiber coupler
JPH07333459A (en) Production of optical fiber coupler

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480036510.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase