WO2005057143A1 - Draft (depth) measuring instrument - Google Patents

Draft (depth) measuring instrument Download PDF

Info

Publication number
WO2005057143A1
WO2005057143A1 PCT/JP2003/015723 JP0315723W WO2005057143A1 WO 2005057143 A1 WO2005057143 A1 WO 2005057143A1 JP 0315723 W JP0315723 W JP 0315723W WO 2005057143 A1 WO2005057143 A1 WO 2005057143A1
Authority
WO
WIPO (PCT)
Prior art keywords
draft
tube
sensor
measurement
amplitude
Prior art date
Application number
PCT/JP2003/015723
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Aoki
Original Assignee
Shigeru Aoki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shigeru Aoki filed Critical Shigeru Aoki
Priority to AU2003289269A priority Critical patent/AU2003289269A1/en
Priority to PCT/JP2003/015723 priority patent/WO2005057143A1/en
Publication of WO2005057143A1 publication Critical patent/WO2005057143A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/002Measuring the movement of open water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/12Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude for indicating draught or load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers

Definitions

  • a plurality of earth leakage electronic circuits are installed in tandem on the ship's outer skin (water level scale piles of lakes, rivers, rivers and harbors) of a ship that is stopped or moored, and the draft (water level) on the ship's side (shore)
  • the present invention relates to an apparatus and a method for measuring the vertical and horizontal swaying motion of a hull caused by external force such as generated wave period and amplitude or the movement of the center of gravity accompanying cargo handling.
  • the ship's draft inspection has been carried out by a maritime appraiser, usually requested by the shipper, and a crew member acting as the operating carrier's agent, by visually checking the water level at the draft display point and appraising the weight of the loaded cargo.
  • a maritime inspector official surveyor designated by both the shipper and the receiver at both the loading and unloading ports is still arranged each time.
  • the company is measuring the weight of loaded cargo (draft 'survey) based on draft assessment.
  • the draft is measured using (000311) to (000313), the water level is measured using (000324) to (000325), and the civil engineering construction site is measured by using a ranging finder or altitude meter (000336) to (000337). Things are known. Implementation method when measuring draft using these devices ⁇ Advantages and disadvantages in terms of operation and economics are listed below, and problems are further highlighted.
  • the water level in the pipe was recorded only for the transparent pipe, which was lower than the true water level (the highest level of the water level was determined by opening the bottom of the pipe and raising and lowering the water, and the water level inside the pipe was stabilized except for the transparent section). Therefore, stainless steel is used in bad weather.
  • Electromagnetic F! The type of roll-following force is not balanced or the surface is impossible.
  • the size of the foot itself is about 1cm to 10cm. Smooth tracing and switching in front and rear of the hull and in the middle left and right ships, poor tracking performance, mechanical actuation to determine if four floats can be made from the upper deck to the side Upper reel rotating part Magnetic suspension may be installed, which may cause a winding error of the winding reel. Detected by mechanical rotation of stone float and cut, etc. or float with magnet If the buoyancy of the float is increased and the follow-up part is required for periodic inspection and supplement of the working part, and the reed switch along the id is required, measurement accuracy is particularly low.
  • (000311) displays the draft indirectly due to the measurement of the stable water pressure at the bottom of the ship, so that almost no vertical movement of the draft surface due to the sway of the hull or the waves can be detected.
  • the measurement accuracy is low and the error is large, it is not suitable for draft surveys and is hardly used.
  • a temperature sensor having a plurality of tandemly arranged in the height direction inside the outer plate is applied by utilizing a difference in specific heat of water between the steel outer plate and water.
  • draft is detected indirectly from the detected temperature distribution.However, if the difference between the air temperature (boat side plate) and the water temperature disappears, the detection becomes impossible. It is impractical because it is large and expensive because of the stationary type, and on the other hand, the accuracy is low and an error proportional to the thickness of the outer shell is expected.
  • (000312) can be replaced with a transparent tube and is economical, but when reading the water surface that moves violently up and down with the naked eye of the measurer, individual differences and habits of dynamic visual acuity, and disagreement between the measurer and the draft display part It is difficult for even a skilled person to accurately and objectively evaluate the draft (water level) visually every time, such as the illusion due to the angle.
  • an object of the present invention is to provide a device that compensates for the drawbacks of the conventional draft (water level) gauge summarized in Table 1 and satisfies the small, lightweight, high-precision, inexpensive, and durable digital values of the measured value.
  • Means for Solving the Problems When a built-in steel pipe made of steel is installed inside the outer plate of a stationary type
  • the present invention provides an accurate 10 mm draft for a stopped or moored vessel even when the water surface violently moves up and down due to strong winds and the hull fluctuates due to external force (lake, river, river, port In the method of measuring in units of 2.5 mm), the inside diameter of the built-in steel pipe from the draft of 50 to 60 mm and the full length of the draft to the intake of the light coin is less than the draft. ) Install at the display location. Inside the tube, the following sensor tube 11 is suspended using a measuring power cable 12 with a scale to the height where the earth leakage circuit part of 11 can detect the water surface, and the extended scale graduation of 1 2 At the top of the tube and input the value to the DC current transmitter / receiver 13.
  • the DC current transmitter / receiver 13 After installing the sensor tube 1 at the specified location, the DC current transmitter / receiver 13 sends a DC current to the sensor tube 11 through the power cable 12 for measurement. Measure the draft (water level), wave cycle amplitude, hull vertical and horizontal oscillation cycle width, etc. at a specified time from the distribution of the measurement results obtained by repeating this multiple times.
  • the present invention provides a flexible base material made of polyimide having a length of 160 mm, a positive electrode film having an exposed wiring and 16 negative electrodes arranged in parallel with the exposed wiring.
  • Direct current transmitter / receiver 13 If the relay switch, which is based on the built-in XOR logic circuit, is activated sequentially in the left and right direction, the sensor tube 11 will generate a short circuit at the electrode in contact with the water surface and detect the DC current I do.
  • the minus pole indicates the first digit of the hexadecimal number, and the plus pole indicates the second digit of the hexadecimal number.
  • the sensor tube 11 measures the freeboard that is not submerged in water for this measurement.
  • the draft (water level) can be obtained by subtracting the freeboard measured from the vessel's mold depth. (See Figures 1-3)
  • the above-mentioned sensor tube 1 1 uses the leakage of direct current due to seawater or freshwater to detect the water level. If the water level in the tube moves up and down due to the sway of the hull or large waves or wind waves, measurement is performed. At the point, the sensor tube 11 is half-submerged and installed, and then DC current is applied to the exposed circuit (see Fig. 3), which is in contact with water, causing the sensor tube 1 1 Convert to a short circuit and measure in hexadecimal. Repeat this several times and convert the ferocious average value to a decimal number to determine the draft (water level).
  • Figure 1 is a sketch of the draft indicator on a cargo ship.
  • the draft measuring device is configured such that the sensor tube 11 suspended from the upper deck by a cable descends and submerges along the ship side outer plate, and a DC current flows through the draft tube to cause a freeboard. Measure.
  • Fig. 2 shows the state of the hull and draft while moored, and an example of installation of the sensor tube 11. Measure and record the length from the upper end of the sensor tube 11 fixed to the ship's outer shell to the upper deck using the cable 12 with scale. 1 Connect the terminal of 2 to the DC current transmitter / receiver 13 and record the length from the upper end of the sensor tube 11 to the upper deck and the motion cycle and measurement point due to visual observation of the water surface at the measurement point. When the mold depth is input to each of the 13 microcomputers, a current flows through the sensor and the tube 11 and the freeboard is measured, and the draft is calculated from this. Function and specification of each part of draft (water level) measuring device according to the present embodiment
  • the white circles on the sensor tube 11 shown in Fig. 3 indicate nickel on a thin copper plate with a thickness of 100 microns.
  • the positive electrode corresponds to the second digit of the hexadecimal number.
  • the positive electrode corresponds to the second digit of the hexadecimal number.
  • the positive electrode corresponds to the second digit of the hexadecimal number.
  • the 16 negative electrodes correspond to the first digit of the hexadecimal number (0 to A to F).
  • a circuit in which white circles are arranged in a 10-mm interval right-descent staircase state is connected in each stage. Connect to
  • the measuring range of the sensor is 160mm x 16 circuits with an accuracy of 10mm-2560mm,
  • the measuring power cable with scale 1 2 detects the power supply to the sensor tube 1 1
  • a scale or bar code with a scale of 10 mm is engraved on the surface of the table.
  • FIG. 1 is a sketch drawing of a draft display position of a standard cargo ship and a state in which a sensor tube 11 according to an embodiment of the present invention is installed and loaded.
  • Figure 2 The buoyancy point of operation moves in a dispersed manner, resulting in a sagging state.
  • To accurately calculate the discharge of a cargo ship based on Archimedes' principle it is necessary to increase the number of measurement points in terms of halves, quadrants, and octants for the length of the ship. If the measurement is performed for more than four quadrants, the bending stress acting on the hull can be measured more accurately.
  • Fig. 3 ⁇ ⁇ This is an exploded view of the sensor tube 11 according to the embodiment of the present invention, in which the white circles of the positive electrode and the negative electrode are exposed and exposed. Since the exposed electrode part is exposed to seawater etc., it is necessary to take twice as much nickel and gold plating as usual and take sufficient protection measures.
  • Figure 4 An example of an XOR logic circuit that amplifies the weak electrical signal detected by the leakage circuit of the sensor tube 11 and converts it into a 4-bit hexadecimal number.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Visual measurement of a vertically varying draft average value generally includes a personal error and lacks objectivity. The measurement system of the invention using conductivity of the seawater or freshwater enables fast objective measurement of the average value. A leakage circuit sensor with a simple robust structure comprises a hexadecimal number of electrodes arranged parallel and vertically in a tube. The sensor is suspended along a draft indicator of the ship-side outside plate. A DC current is applied to the sensor, and the current flows through the electrodes under water to detect the sea level. By using such sensors, the drafts varying with waves and wind are measured at a plurality of places in a predetermined time. Thus, various variations such as of the draft average value, wave period/amplitude, and hull pitching/rolling period/amplitude are determined.

Description

明 細 書 , 喫水 (水位)測定装置'  Description, draft (water level) measurement device
技術分野  Technical field
本発明は、 停止又は係留中船舶の船側外板 (湖沼河川港湾の水位目盛杭) へ、 高さ方 向に複数の漏電電子回路を縦列に設置し、 喫水 (水位) '船側 (岸辺) に生じる波周期及び 振幅等の外力又は荷役に伴う重心移動に因る船体の縦横動揺運動等を測定する装置並びに その方法に関する。  According to the present invention, a plurality of earth leakage electronic circuits are installed in tandem on the ship's outer skin (water level scale piles of lakes, rivers, rivers and harbors) of a ship that is stopped or moored, and the draft (water level) on the ship's side (shore) The present invention relates to an apparatus and a method for measuring the vertical and horizontal swaying motion of a hull caused by external force such as generated wave period and amplitude or the movement of the center of gravity accompanying cargo handling.
従来の技術  Conventional technology
船舶へ鉄鉱石や石炭等の粉粒状貨物を積み揚げし、 その貨物重量を計測する場合、 当該港での荷役開始前と完了後に喫水を判定し (目視に因る精度 10mm単位程度)、 各々 算出される当該排水量の差を持って積又は揚荷役した貨物の重量とする。 (アルキメデス の原理に因る水面に浮く貨物を含む船体排水量の計測)  When unloading powdered or granular cargo such as iron ore or coal onto a ship and measuring the weight of the cargo, the draft is determined before and after the completion of cargo handling at the port (approximately 10 mm in visual accuracy). The weight of the cargo loaded or unloaded with the difference between the calculated drainage amounts. (Measurement of hull drainage including cargo floating on the water surface based on Archimedes' principle)
爾来、 船舶の喫水検査は通常荷主側より依頼される海事鑑定人と運航船社側代理人として の船員等が喫水表示個所の水位を目視に因り読取判定し撒積貨物の積載重量を鑑定した。 しかし悪天候下では波浪うねり強風等に因る船体動揺の為相対的に水面が頻繁に変化し喫 水の読取並びに判定に 常な困難を生じ、 その判定値には常に人間の目視に因り判定する 為に必然的に生ずるパーソナルエラ一等の不均質な誤差が含まれる。 従って、 鉄鉱石等の 一部撒積貨物に関しては、 未だに積地と揚地の両港に於て荷送人と荷受人両者が指定する 海事鑑定人 (オフィ シャル ·サーベイヤー) をその都度手配し、 喫水鑑定に因る積載貨物 重量計測 (ドラフ ト ' サーベイ) を行っているのが現状である。 Since then, the ship's draft inspection has been carried out by a maritime appraiser, usually requested by the shipper, and a crew member acting as the operating carrier's agent, by visually checking the water level at the draft display point and appraising the weight of the loaded cargo. However, in bad weather, the water surface changes relatively frequently due to the ship's sway due to wave swell and strong wind, etc., causing constant difficulty in reading and judging the draft, and the judgment value is always judged by human visual observation. Therefore, non-uniform errors such as personal errors that occur inevitably occur. Therefore, for partially loaded cargo such as iron ore, a maritime inspector (official surveyor) designated by both the shipper and the receiver at both the loading and unloading ports is still arranged each time. At present, the company is measuring the weight of loaded cargo (draft 'survey) based on draft assessment.
尚、 在港船に影響を与える主な外力は大波と強風であるが此れ以外に下記事象も関与し喫 水を変動させる、早い潮流に因る見かけ上の船首尾での喫水増加と船体中央での喫水減少、 浅い港内での浅水影響に因る船体の微かな沈下 (ベルヌ一ィの定理に因る)、海水密度変化 に伴う船体浮力の增減等々。 ドラフ ト · サーベイにおいては此れら多様な外力の相互作用 に因り時々刻々変化する喫水に対し、 精度 10mm · 正確 ·単純 · 小型 '安価 ·遠隔操作検 知式等を充足する水位計が嘱望され現在に到っている。 従来の測定器を表 1に纏めた。 The main external forces that affect ships at sea are large waves and strong winds, but the following events also affect the draft, and the apparent increase in draft at the bow and stern due to the fast tidal current and the hull Decrease in draft at the center, slight sinking of the hull due to shallow water in a shallow port (due to Bernoulli's theorem), reduced buoyancy due to changes in seawater density, etc. In draft surveys, a water level gauge that satisfies the accuracy of 10 mm, accurate, simple, small size, inexpensive, remote operation detection, etc. is expected for drafts that change every moment due to the interaction of these various external forces. It is up to the present. Table 1 summarizes conventional measuring instruments.
喫水測定には (000311 ) 〜 (000313)、.水位計としては (000324) ~ ( 000325 ), 更に土木建築現場では測距儀乃至標高計として (000336 ) ~ ( 000337) を使用し測定す る事が知られている。 此れらの機器を使用して喫水を測る場合の実施方法 ·運用面 ·経済 性での長所短所を下記列挙し、 更に問題点をクローズアップする。  The draft is measured using (000311) to (000313), the water level is measured using (000324) to (000325), and the civil engineering construction site is measured by using a ranging finder or altitude meter (000336) to (000337). Things are known. Implementation method when measuring draft using these devices · Advantages and disadvantages in terms of operation and economics are listed below, and problems are further highlighted.
従来の喫水測定装置  Conventional draft measurement device
(000311)—部の船舶に装備される喫水ゲージは、大半が船底の水圧を測定する間接方式 である為その精度は低く、 サーベイヤーが実施する ドラフ ト ·サ一ペイには、 悪天候で喫 水鑑定用ボートが手配不能等の非常時以外は、 殆ど採用されない。 サーベイャ一又は船員 は船舶の喫水鑑定に際し、 飽く迄個人の目視に因る喫水読取に拘る傾向が強く、 荷主側か らは喫水を浅く読む (積載貨物過小評価) 反対に運航船社側では喫水を深く読む (積載貨 物過大評価) 等の相反する恣意的暗黙要望に拠り、 多々現場で物議を嚙ます場合が有る。  (000311) Most of the draft gauges installed on some vessels are indirect methods that measure the water pressure at the bottom of the ship, and their accuracy is low. It is rarely used except in the event of an emergency, such as when a water appraisal boat cannot be arranged. Surveyors or seafarers tend to be concerned with reading the draft due to individual visual observation until they get tired, and read the draft shallowly from the shipper side (underestimated cargo load). Due to conflicting arbitrary tacit requests, such as reading deeply (loading cargo overestimation), there are many cases where controversy is held on site.
(000312)悪天の為喫水鑑定用ボート手配不能、 うねり風浪等で目視に因る喫水読取に困 窮する場合、 両舷の船体中央喫水表示個所へ上部 1 m程が透明な造りの読取用漣通管を管 内の水面がある程度安定する迄(水深 3 m〜 5 m程度)永中に投入し此れを目視測定する。  (000312) When it is not possible to arrange a draft inspection boat due to bad weather, or when it is difficult to read the draft due to swelling wind, etc., the upper part of the ship's hull at the central draft display location on both sides is transparent for reading about 1 m. Insert the Rentsu pipe forever until the water surface in the pipe is stabilized to a certain extent (water depth of about 3 m to 5 m), and measure it visually.
(000313)白墨塗布済スケ一ル内装の(000312)を水中に投入し、 白墨水濡部で測定する。 従来の水位計を喫水測定に転用  (000313) The (000312) inside the scale with the black ink applied is put into water, and the measurement is made at the black water wet portion. Conversion of conventional water level gauge to draft measurement
(000323)と原理が共通する漣通管の目盛をカメラで観察する方式。  (000323) A method of observing the scale of the Rentsu tube using a camera, which has the same principle as (000323).
(000324)水面上に浮く フロートを巻き上げリールに連動させ其れの回転数を電気信号 に変換する機械式。  (000324) A mechanical type in which a float floating on the water surface is linked to a take-up reel and the number of revolutions of the float is converted into an electric signal.
(000325)磁石内臓フロートをリード · スィツチが配置してあるガイ ドに沿って水面上を フロートの浮力に因り上下させスイッチングし電気信号に変換する電磁式。 等々、 設備が 複雑で大掛かりなのに計測精度は低く悪天候下では風浪に因り水面が激しく複雑且つ不規 則に変動するのに対して上記装置の.センサ一部分が正確に追従しない欠点が有つた。  (000325) An electromagnetic type in which a float with a built-in magnet is moved up and down on the water surface along the guide on which a lead switch is arranged according to the buoyancy of the float to switch and convert it into an electric signal. Although the equipment was complicated and large-scale, the measurement accuracy was low, and in bad weather, the surface of the water was severe due to wind waves, and the water surface fluctuated complicatedly and irregularly.
測距儀乃至標高計を喫水測定に応用  Rangefinder or altimeter applied to draft measurement
(000336)〜(000337)近年、 レーザ一光や超音波を使用する距離測定方法を水位計へ応用 する方策も開発されている。 例えば、 特開 2 0 0 2— 1 '◦ 7 2 0 4で開示された技術で は、 レーザー光を水面に反射させ水面迄の距離を計測する方法であり、 従来装置に較べ測 定精度は向上したが、 喫水測定には表 1の通り不向きである。 (000336)-(000337) In recent years, measures for applying a distance measuring method using laser light or ultrasonic waves to a water level gauge have been developed. For example, with the technology disclosed in Japanese Patent Application Laid-Open No. 2002-1-1 ' Is a method of measuring the distance to the water surface by reflecting the laser light to the water surface. Although the measurement accuracy has been improved compared to the conventional device, it is not suitable for draft measurement as shown in Table 1.
表 1  table 1
(番号) 計測方式  (Number) Measurement method
精度 (目盛 cm単位) 誤差 激しい水面変動への 規模 センサ-の設置箇所と 大小風浪の影響と センサ-の追従性と 小〇 センサ-の最小必要個数 誤差要因との関連 センサ-の耐久性向上策 大 XAccuracy (scale cm unit) Error Scale for severe water level fluctuations Location of sensor and influence of large and small wind waves, followability of sensor and minimum required number of sensors Relation between error factors and error factors Measures to improve durability of sensor Large X
( 000311 ) 船底の水圧測定 数 cm〜数十 cm 水深十数メ-トルの船底部の X 10〜50cm目盛で低精度 每回ケ、、イシ、、を調整しても、 水圧は安定しているので 船体の前後と中央部左右船 喫水面近傍での大波や潮流 水面の上下動へは追従しな 底へ水圧計を 4個装備し、 船 に因る微小な水圧変化を船 い、 水圧計の水密性保持並 橋のケ、 シ、 'で計測する 底では感知不能 びに耐塩害策が必要 (000311) Water pressure measurement at the bottom of the ship Several cm to several tens of cm Low accuracy with a scale of 10 to 50 cm at the bottom of the ship at a depth of several tens of meters The water pressure is stable even when adjusting There are four water pressure gauges at the bottom that do not follow large waves and tidal currents near the draft surface in front of and behind the hull and at the center of the ship. Maintain the watertightness of the meter.
( 000312) 目視式透明管 大波に因り管が喫水表示部 管を水深数メ-トル程水に浸せ 〇 (000312) Visually transparent tube Due to the large wave, the tube is drawn by the draft indicator. The tube is immersed in water at a depth of several meters.
( 000313) ケ、'イシ'内臓透明管 から離れたりずれた場合や ば管内水位は安定するが、 〇 10cm間隔の喫水表示数字を 鉛直に吊下られた管読取部 大波に因る水圧変動の為に 視力で Icm単位で読取 を斜め上から読取と、 見合 ヒ。ン ί·- がらの流入量が流出 船首船尾と中央部の左右船 角度に因る読違いを生じる 量より大きい場合、 管内の 側外板の喫水表示部へ 6本 白墨塗布のケ シ、'では管内 水位は真水位より上方で安 の透明管'(底に ンホ-ルを開け を上下する水位の最高値の 定する、 透明部以外はステ 管内の水位を安定させた) を み記録、 従って悪天候下で ンレス材を使用、 観測後要 吊下げ固定 は計測不能 水洗 (000313) Ke, if the water is separated from or displaced from the 'Ishi' built-in transparent pipe or if the water level in the pipe becomes stable, the draft reading numbers at cm10cm intervals are displayed vertically in the pipe reading section. For reading, read in diagonally from the top in Icm units with visual acuity. If the amount of inflow is larger than the amount that causes misreading due to the angle between the bow and stern, and the angle between the right and left boats, the blackboard is painted on the draft indicator on the side outer panel in the pipe. The water level in the pipe was recorded only for the transparent pipe, which was lower than the true water level (the highest level of the water level was determined by opening the bottom of the pipe and raising and lowering the water, and the water level inside the pipe was stabilized except for the transparent section). Therefore, stainless steel is used in bad weather.
( 000324) 機械フ D-卜式 フロ-トの浮力と卷上リ-ルの回 フロ-トを小型化するのは作動 X (000324) Mechanical float D-type Float of float and rotation of winding reel.
( 000325) 電磁フ! -ト式 転追従力が均衡するか、 面で無理、 フ ϋ-ト自体が大き X 1cm〜 10cm程度 磁石付フ ϋ -卜が力、'仆、、に沿つ いと其の慣性力も大きくな 船体の前後と中央部左右船 て滑らかに卜レ-スしスィッチンク、、 り追従性は悪くなる、 側へフロ-卜を上甲板から 4個 出来るか否かの機械的作動 フロ-トと卷上リ-ル回転部ゃ磁 吊下げ装備し、 卷上リ -ルの回 誤差が発生する可能性有 石付フロ-トとカ ト、、等の機械 転数で検知又は磁石付フロ-卜フロ-卜の浮力を大きく し追従 部は定期点検と作動部の補 で力、、イドに沿ったリ -ドスイッチを 性を求めると測定精度は低修が特に必要 (000325) Electromagnetic F! -The type of roll-following force is not balanced or the surface is impossible.The size of the foot itself is about 1cm to 10cm. Smooth tracing and switching in front and rear of the hull and in the middle left and right ships, poor tracking performance, mechanical actuation to determine if four floats can be made from the upper deck to the side Upper reel rotating part Magnetic suspension may be installed, which may cause a winding error of the winding reel. Detected by mechanical rotation of stone float and cut, etc. or float with magnet If the buoyancy of the float is increased and the follow-up part is required for periodic inspection and supplement of the working part, and the reed switch along the id is required, measurement accuracy is particularly low.
切替て水位を電子信号へ変 下し、 小さくすると機械的 Switch to lower the water level to an electronic signal.
換する 作動誤差が多発する Operation error occurs frequently
( 000336) レ-サ、' -光反射式 光波又は音波の照射方向 反射波のメイン D-フ、、を発信兼 〇 (000336) Laser, '-Light reflection type Light wave or sound wave irradiation direction Main wave of reflected wave
( 000337) 超音波反射式 と船側外板に Θの挟角が有 受信装置で正確に受ける 〇 0.1cm〜lcm と高精度 り、照射源から水面迄の距 には、照射する水面が常に 上記 6箇所の上甲板から鉛 離を Lとすると、 水平に上下動する必要有 直に釣下げた発信兼受信装 誤差 L = L ( 1 - CosG) この為に (000313 ) と同 置よりレ -Γ -光又は超音波 従って誤差を少なくする 様な連通管を装置に取付 を直接水面へ照射、 反射し には船体の前後(トリム)左右 ける必要有り、管を長く し て受信する迄の時間で水位 (ヒール)方向の傾きを少 大波下でも管内水面を安 を'計測 なく し、照射源を水面に接 定させれば其の分追従性 (000337) Ultrasonic wave reflection type and the outer shell of the ship side have an included angle of 受 け る accurately received by the receiver 〇 High accuracy of 0.1cm to lcm, the distance from the irradiation source to the water surface is always above the water surface to be irradiated Assuming that the lead distance from the six upper decks is L, it is necessary to move up and down horizontally. Transmitting and receiving equipment error L = L (1-CosG) which is directly lowered. Γ-Light or ultrasonic waves A communication pipe that reduces errors should be attached to the equipment directly to the surface of the water, and it is necessary to move the front and back (trim) of the hull to reflect the light. Even if the inclination of the water level (heel) direction is small, the water level in the pipe is not measured safely even under a large wave, and if the irradiation source is connected to the water surface, the follow-up
近させる必要有り は悪くなる 発明が解決しょう とする課題 Need to be closer, worse Issues that the invention is trying to solve
( 000311 )は船底の安定した水圧を計測することに因り喫水を間接的にアナ口グ表示 する為、 船体の動揺や波に因る喫水面の上下動を殆ど検知できない。 又、 測定精度が低 く誤差も大きいのでドラフ ト · サーベイには不向きで殆ど使用されない。  (000311) displays the draft indirectly due to the measurement of the stable water pressure at the bottom of the ship, so that almost no vertical movement of the draft surface due to the sway of the hull or the waves can be detected. In addition, since the measurement accuracy is low and the error is large, it is not suitable for draft surveys and is hardly used.
同様に、 特開平 9 - 1 2 6 7 6 6で開示された技術では、 鋼製船側外板と水の比熱 の差を応用し、 外板内側に高さ方向に複数縦列配置した温度センサーの検知温度分布か ら、 間接的に喫水を検出する方式であるが、 気温 (船側外板)と水温に差が無くなれぱ検 知不能となり、 この場合は船側外板を加熱する必要性から装置は据置型で大型高価とな り、 反面精度は低く船側外板厚さに比例した誤差を生ずる場合が予測されるので実用的 でない。  Similarly, in the technology disclosed in Japanese Patent Application Laid-Open No. 9-126667, a temperature sensor having a plurality of tandemly arranged in the height direction inside the outer plate is applied by utilizing a difference in specific heat of water between the steel outer plate and water. In this method, draft is detected indirectly from the detected temperature distribution.However, if the difference between the air temperature (boat side plate) and the water temperature disappears, the detection becomes impossible. It is impractical because it is large and expensive because of the stationary type, and on the other hand, the accuracy is low and an error proportional to the thickness of the outer shell is expected.
他方、 (000312) は透明なチューブでも代用可能で経済的であるが、 激しく上下動 する水面を計測者の肉眼で読取る際に動態視力の個人差や癖、 計測者と喫水表示部分と の見合角度に因る錯覚等、 毎回正確且つ客観的に喫水 (水位)を目視に因り鑑定する事は 熟練者で在っても困窮する。  On the other hand, (000312) can be replaced with a transparent tube and is economical, but when reading the water surface that moves violently up and down with the naked eye of the measurer, individual differences and habits of dynamic visual acuity, and disagreement between the measurer and the draft display part It is difficult for even a skilled person to accurately and objectively evaluate the draft (water level) visually every time, such as the illusion due to the angle.
( 000313) 白墨塗布のゲイジは構造上、 J;下に変動する水面の最上位のみを記録する ので、 大波でセンサーパイプ内の水面変動が大きい場合其の分誤差は増大する。  (000313) Since the gage coated with black ink records only the highest level of the water surface fluctuating below J; structurally, the error increases when the water surface fluctuation in the sensor pipe is large due to the large waves.
( 000324) と (000325) は、 水面と接触するセンサーに機械式作動部が一部存在す る為に装置全体が大掛かり と成り且つ据付型を前提とする為に船上で複数箇所喫水を測 るには不便な方式で、 価格の割に精度や運用面で他より劣る点が多い。  (000324) and (000325) measure drafts at multiple locations on board because the entire device is large-scale due to the presence of a mechanical operating part in the sensor that comes into contact with the water surface, and assuming an installation type. This is an inconvenient method, and in many cases it is inferior to others in accuracy and operation in terms of price.
( 000336) と (000337) 水位を感知するのに光波や音波を使用するので (センサー に機械式作動部無し) mm単位と精度は高いが、 発 (受) 信源より照射された光 (音) 波は水面迄往路を鉛直に直進し水面で 1 8 0 ° 入反射するメインローブのみが発 (受) 信源迄復路を直進し受信され水面迄の距離を計測する。 従って、 発 (受) 信源を水面に 対して常に鉛直に設置する必要が有り、 船体に傾斜が在ると照射距離と傾斜 度に比例 した誤差を生じ、その誤差は計測精度を遥かに上回る場合が在り運用面で問題を抱える。  (000336) and (000337) Since light waves and sound waves are used to detect the water level (there is no mechanical actuator in the sensor), the accuracy is high in mm units, but the light (sound) emitted from the source (receiver) The wave travels straight on the outward path to the surface of the water, and only the main lobe that enters and reflects at 180 ° on the water surface is emitted (received). The wave travels straight on the return path to the source, is received, and the distance to the water surface is measured. Therefore, the source (receiver) must always be installed vertically with respect to the water surface. If the hull is tilted, an error proportional to the irradiation distance and the tilt will occur, and the error will far exceed the measurement accuracy. In some cases, there are operational problems.
従って、 本発明の目的は、 表 1に纏めた従来の喫水 (水位)計の短所を補い、 計測値 をデジタル検出する小型軽量 · 高精度 · 安価 · 耐久性を充足する装置提供にある。 課題を解決するための手段 据置型において組込式防鑌鋼製管を外板内側へ設置した場合 Accordingly, an object of the present invention is to provide a device that compensates for the drawbacks of the conventional draft (water level) gauge summarized in Table 1 and satisfies the small, lightweight, high-precision, inexpensive, and durable digital values of the measured value. Means for Solving the Problems When a built-in steel pipe made of steel is installed inside the outer plate of a stationary type
上記目的を達成する為に本発明は、 水面が強風波浪で激しく上下動し更に船体が外力 に因り動揺する場合であっても、 停止又は係留中船舶の喫水を精度 10mm (湖沼 ·河川 · 港湾の水位においては精度 2.5mm) 単位で測る方法において、 内径 50~60mm ·全長満載 喫水以上から軽貨喫水以下の取水口に到る組込式防鐫鋼製管を外板内側の喫水 (水位) 表 示箇所に設置する。 其の管内に、 下記センサ一チューブ 1 1をスケール付測定用電源ケ一 ブル 1 2を用いて、 1 1の漏電回路部分が水面を検知できる高さ迄吊下げ、 1 2の繰出し たスケール目盛を管上端で読取りその値を直流電流発信兼受信装置 1 3へ入力する。 その 後' 1 3へ直流電流を流せば水面を上限とする乾舷 (水位)を漏電回路で検知する。 此れを所 定時間内に複数回計測、 1 3内蔵マイクロコンピュータ一にてデータ処理、 型深さ一乾舷 =喫水 (水位) ·波周期振幅 ·船体縦横動揺周期振幅等を測定する。  In order to achieve the above object, the present invention provides an accurate 10 mm draft for a stopped or moored vessel even when the water surface violently moves up and down due to strong winds and the hull fluctuates due to external force (lake, river, river, port In the method of measuring in units of 2.5 mm), the inside diameter of the built-in steel pipe from the draft of 50 to 60 mm and the full length of the draft to the intake of the light coin is less than the draft. ) Install at the display location. Inside the tube, the following sensor tube 11 is suspended using a measuring power cable 12 with a scale to the height where the earth leakage circuit part of 11 can detect the water surface, and the extended scale graduation of 1 2 At the top of the tube and input the value to the DC current transmitter / receiver 13. Then, if a direct current is passed to '13, the freeboard (water level) with the upper limit of the water surface is detected by the earth leakage circuit. This is measured several times within a predetermined time. 13 Data processing is performed by the built-in microcomputer 1. Die depth, freeboard = draft (water level), wave cycle amplitude, hull vertical and horizontal oscillation cycle amplitude, etc. are measured.
即ち、 (000313)ゲイジ内蔵透明管の発展改良型として、 検知管に 1 6進数 ( 4ビヅ ト処理) の漏電回路を複数縦列に組込み、 電子の目で水面を計測する方法である。 携帯型において伸縮式防鲭鋼管を外板外側へ吊下げた場合 [000313] (000313) As a development and improvement type of a transparent tube with a built-in gage, a method of incorporating a hexadecimal (4-bit processing) leakage circuit in a detector tube in a plurality of columns and measuring the water surface with the eyes of an electron. When a telescopic steel pipe is suspended outside the outer panel of a portable type
船首尾及び船体中央左右計 6筒所の外板外側喫水表示部へ伸縮式防鲭鋼管をステンレ スワイア一を用いて吊下げ後、 同管内へセンサ一チューブ 1 1下半分が水没するよう上下 させ装填する、 測定用電源ケーブル兼スケール 1 2を用いて各々を船側外板上^部で固定 する。 尚、 船側外板にォ一バーハングの無い船体中央部の喫水表示個所ではセンサ一チュ —ブ 1 1上端を、 2 0 cm 間隔で船側外板に溶接表記されている、 喫水数字の上端に合せ て磁石で固定する方法を採れば測定精度は更に向上する。 (図 1参照)  Using a stainless steel wire, suspend the telescopic steel pipe to the draft indicator on the outer side of the outer panel of the 6 sections of the stern and center of the hull using a stainless steel wire, and then move it up and down so that the lower half of the sensor tube is submerged. Use the measuring power cable and scale 12 to be loaded, and secure each to the upper part of the outer shell on the side of the ship. In addition, at the draft indicator at the center of the hull where there is no bar hang on the hull outer panel, align the upper end of the sensor tube 11 with the upper end of the draft number welded on the hull outer panel at an interval of 20 cm. If the method of fixing with a magnet is adopted, the measurement accuracy is further improved. (refer graph1)
センサ一チューブ 1 1を所定個所へ設置後、 直流電流発信兼受信装置 1 3より測定用 電源ケーブル 1 2を通じて直流電流をセンサーチューブ 1 1へ流せば同チューブ内側に水 面を上限とするショート回路を検知する、 これを複数回繰り返した測定結果の分布から所 定時刻での喫水 (水位) ·波周期振幅 ·船体縦横動揺周期 幅等を測定する。 発明の開示 本発明は、 長さ 160mmの柔軟な材質のポリイ ミ ド製べ一ス · 力パーフィルム材に、 露出配線したプラス電極と、 此れに並行した 1 6本のマイナス電極を横ピッチ 1.76mmで 皮膜配線し各々を縦 10mm ピッチで斜め階段状に皮膜除去した回路を縦列に 8回路接続 した全長 160mm X 8 ¾ = 1280mmの漏電回路を製作し、 カバーフィルム面を内側に回路を 円弧状に曲げ、 外径 30~35mni ·全長 1500mmの波しぷき付着防止用グラスファイバー製 チューブに組込み水面検知部センサ一チューブ 1 1 とする。 6計測点(最少 4〜最多 1 6 ) の船側外板へ設置済の計測用防鐫鋼管内側に、 スケール付測定用電源ケ一プル 1 2を用い て漏電回路が水面を検知する迄ケーブルを繰出し、 同チューブを吊下げ装填する。 After installing the sensor tube 1 at the specified location, the DC current transmitter / receiver 13 sends a DC current to the sensor tube 11 through the power cable 12 for measurement. Measure the draft (water level), wave cycle amplitude, hull vertical and horizontal oscillation cycle width, etc. at a specified time from the distribution of the measurement results obtained by repeating this multiple times. DISCLOSURE OF THE INVENTION The present invention provides a flexible base material made of polyimide having a length of 160 mm, a positive electrode film having an exposed wiring and 16 negative electrodes arranged in parallel with the exposed wiring. A circuit with a total length of 160 mm X 8 ¾ = 1280 mm was produced by connecting 8 circuits in series with a circuit with a film wiring of 1.76 mm and the film removed in a diagonal staircase at a pitch of 10 mm vertically and a circuit with the cover film inside. Bend in an arc shape, outer diameter 30 ~ 35mni · Total length 1500mm Installed in a glass fiber tube for preventing the adhesion of ripples. At the measurement point (minimum 4 to maximum 16), connect the cable to the inner side of the anti-measuring steel pipe installed on the ship side outer plate using the measuring power supply cable 12 with scale until the earth leakage circuit detects the water surface. Feed out and suspend the tube.
直流電流発信兼受信装置 1 3内蔵の X O R論理回路に因るリ レースィ ツチを左右方向 へ順次作動させれば水面と接している電極の所でセンサーチューブ 1 1はショート回路を 生じ直流電流を検知する。 マイナス極は 1 6進数の 1桁目、 プラス極は 1 6進数の 2桁目 を表示し、 センサーチューブ 1 1はこの計測に関し、 水に浸っていない乾舷を計測する。 本船の型深さより計測で得た乾舷を差引けば喫水 (水位) を得る。 (図 1〜 3参照)  Direct current transmitter / receiver 13 If the relay switch, which is based on the built-in XOR logic circuit, is activated sequentially in the left and right direction, the sensor tube 11 will generate a short circuit at the electrode in contact with the water surface and detect the DC current I do. The minus pole indicates the first digit of the hexadecimal number, and the plus pole indicates the second digit of the hexadecimal number. The sensor tube 11 measures the freeboard that is not submerged in water for this measurement. The draft (water level) can be obtained by subtracting the freeboard measured from the vessel's mold depth. (See Figures 1-3)
上記センサ一チュ一ブ 1 1は水位検知に閧し直流電流の海水又は淡水に因る漏電を利 用するもので、 船体動揺又は大波や風浪の為チューブ内水位が上下動する場合は、 計測点 に於いてセンサーチューブ 1 1部分を半分水没させ設置後、 水と接触漏電する暴露部回路 (図 3参照) へ直流電流を流すことに因り、 上下変動するセンサーチューブ 1 1内側水位 を電気的ショート回路に変換して 1 6進数で計測する。 これを複数回繰り返し獰た平均値 を 1 0進数に変換し喫水 (水位) を决定する。  The above-mentioned sensor tube 1 1 uses the leakage of direct current due to seawater or freshwater to detect the water level.If the water level in the tube moves up and down due to the sway of the hull or large waves or wind waves, measurement is performed. At the point, the sensor tube 11 is half-submerged and installed, and then DC current is applied to the exposed circuit (see Fig. 3), which is in contact with water, causing the sensor tube 1 1 Convert to a short circuit and measure in hexadecimal. Repeat this several times and convert the ferocious average value to a decimal number to determine the draft (water level).
船舶の動揺に因る測定誤差を極小化させる為に、縦揺れに対しては船首と船尾 2箇所、 横揺れに対しては船体中央の左舷と右舷、 各々対でセンサーチューブ 1 1を設置完了 ¾、 同時 (同一周期内).に計測する必要がある。 尚、 2対のセンサ一チューブ 1 側水位の 変動周期を比較すると船体動揺周期を逆算できる。 発明の実施の形態 Completed installation of sensor tubes 11 in pairs to minimize measurement errors due to ship sway, to the bow and stern for pitching, and to the port and starboard in the center of the hull for rolling. ¾ It is necessary to measure at the same time (within the same cycle). Comparing the fluctuation cycle of the water level of two pairs of sensors and one tube, the hull sway cycle can be calculated backward. Embodiment of the Invention
以下、 本発明の実施の形態を図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は貨物船の喫水表示部の見取り図である。  Figure 1 is a sketch of the draft indicator on a cargo ship.
本実施の形態に係る喫水測定装置は、 上甲板よりケーブルに因り吊り下げられたセンサ一 チューブ 1 1を船側外板に沿って降下半水没させ、 これに直流電流を流すことに因り乾舷 を測定する。 The draft measuring device according to the present embodiment is configured such that the sensor tube 11 suspended from the upper deck by a cable descends and submerges along the ship side outer plate, and a DC current flows through the draft tube to cause a freeboard. Measure.
図 2は係留中の船体と喫水の状態並びにセンサ一チューブ 1 1の設置例である。 船側外板に固定したセンサ一チューブ 1 1の上端から上甲板迄の長さをスケール付ケ一ブ ル 1 2を用いて測り記録する。 1 2の端末を直流電流発信兼受信装置 1 3に接続し、 記録 してあるセンサーチューブ 1 1の上端から上甲板迄の長さと計測点での水面の目視に因る 動摇周期、 計測点の型深さを 1 3のマイクロコンピュー夕一へ各々入力すると、 センサ一 チューブ 1 1に電流が流れ乾舷を計測し、 これより喫水を算出する。 本実施の形態に係る喫水 (水位)測定装置各部の機能及び仕様  Fig. 2 shows the state of the hull and draft while moored, and an example of installation of the sensor tube 11. Measure and record the length from the upper end of the sensor tube 11 fixed to the ship's outer shell to the upper deck using the cable 12 with scale. 1 Connect the terminal of 2 to the DC current transmitter / receiver 13 and record the length from the upper end of the sensor tube 11 to the upper deck and the motion cycle and measurement point due to visual observation of the water surface at the measurement point. When the mold depth is input to each of the 13 microcomputers, a current flows through the sensor and the tube 11 and the freeboard is measured, and the draft is calculated from this. Function and specification of each part of draft (water level) measuring device according to the present embodiment
図 3に示すセンサ一チューブ 1 1の白丸の箇所は厚さ 100ミクロンの銅薄細板にニッケル The white circles on the sensor tube 11 shown in Fig. 3 indicate nickel on a thin copper plate with a thickness of 100 microns.
3ミクロン更に其の上に金 3ミク Dン鍍金処理を充分施した電子回路で白丸の箇所以外はポリィ ミ ド (フレキシブルプラスチヅク) で皮膜されている。 プラス電極は 1 6進数の 2桁目に対 応し、 水面を 160mmスパンで検知する為に図の様に 1段回路を下方へ接続する每に 8本 の皮膜した銅薄細板を左に 1本分ずらして配線し、 各段回路の最も左端に到る銅薄細板は 間隔 150mmに対し 10mmピッチで白丸の 1 6箇所を植木算的に配置した漏電角銅薄細板 へ接続される。 他方 1 6本のマイナス電極は 1 6進数の 1桁目(0〜 、 A〜F)に対応し、 図 の様に白丸の箇所を 10mm間隔の右降下階段状態で配置した回路を各段直列に接続する。 It is an electronic circuit that is 3 micron and has been fully plated with gold and 3 micron D. It is coated with polyimide (flexible plastic) except for the white circle. The positive electrode corresponds to the second digit of the hexadecimal number.To detect the water surface with a span of 160 mm, connect the single-stage circuit downward as shown in the figure. Wires are shifted by one wire, and the thin copper plate at the left end of each circuit is connected to a short-leaved rectangular copper thin plate in which 16 white circles are planted at a pitch of 10 mm for a spacing of 150 mm. You. On the other hand, the 16 negative electrodes correspond to the first digit of the hexadecimal number (0 to A to F). As shown in the figure, a circuit in which white circles are arranged in a 10-mm interval right-descent staircase state is connected in each stage. Connect to
センサ一チューブ 1 1を水面に一部浸せば水没したプラス電極とマイナス電極間に直 流 ¾流が流れセンサ一チューブ 1 1内の水位は 1 6進数の電気信号に変換され.る。  If the sensor tube 11 is partially immersed in the water surface, a direct current flows between the submerged plus and minus electrodes, and the water level in the sensor tube 11 is converted to a hexadecimal electrical signal.
センサ,の計測範囲は、 精度 10mmで 160mm X 16 回路- 2560mm,  The measuring range of the sensor is 160mm x 16 circuits with an accuracy of 10mm-2560mm,
精度 5mm で 1280mm, 精度 2.5mmで 640mm となる。 スケール付測定用電源ケーブル 1 2は、 センサーチューブ 1 1への電源供給と検知し た信号の回帰経路並びにセンサーチューブ 1 1 を喫水表示箇所へ保持固定し上甲板迄の乾 舷を計測する目的の為にグ一ブルの表面に 10mm 目盛のスケール乃至バーコ一ドを刻印 する。 It becomes 1280mm when the accuracy is 5mm and 640mm when the accuracy is 2.5mm. The measuring power cable with scale 1 2 detects the power supply to the sensor tube 1 1 For the purpose of measuring the free return path of the signal and the sensor tube 11 to the draft display point and measuring the freeboard to the upper deck, a scale or bar code with a scale of 10 mm is engraved on the surface of the table.
直流電流発信兼受信装置 1 3は、 精度 10mmで 160mm X 8段 =計測範囲 1280mm の場合、 8本のプラス電極と 1 6本のマイナス電極各々に, X 0 R論理回路に因る リレイ スィヅチを設け、 プラス電極を左右へスィヅチイングすればセンサー回路内の水面に接触 している電極で微弱な電流を検知、 これを増幅して 1 6進数の 2桁目として測定する。 同 様にマイ ス電極に備えてある X O R論理回路に因るリ レイスィヅチを左右へ作動させれ ば 1 6進数の 1桁目としてセンサーチューブ 1 1内の乾舷水面を計測する。 図面の簡単な説明  The DC current transmitter / receiver 13 has a relay switch based on the X0R logic circuit for each of the eight positive electrodes and the sixteen negative electrodes when the accuracy is 10 mm and 160 mm x 8 steps = measurement range 1280 mm. If the plus electrode is switched left and right, a weak current is detected by the electrode in contact with the water surface in the sensor circuit, and this is amplified and measured as the second digit of the hexadecimal number. Similarly, if the relay switch provided by the XOR logic circuit provided on the master electrode is operated left and right, the freeboard water surface in the sensor tube 11 is measured as the first digit of the hexadecimal number. Brief Description of Drawings
図 1 · ' ·標準的貨物船の喫水表示箇所と本発明の実施に係るセンサ一チューブ 1 1 を設置装填した状態の見取図である。  FIG. 1 is a sketch drawing of a draft display position of a standard cargo ship and a state in which a sensor tube 11 according to an embodiment of the present invention is installed and loaded.
図 2 · · ·標準的貨物船は貨物積載前 (空船状態) では船体中央に浮力作用点が集中 しホギング状態となり、 貨物積載後 (満船状態) では反対に貨物重量に因り船首と船尾に 浮力作用点が分散移動するのでサギング状態になる。 アルキメデスの原理より貨物船の排 水量を正確に算出するには、 船の長さに関して二等分、 四等分、 八等分と計測点を増やす 必要が有る。 尚、 四等分以上の計測を実施すれば船体に働く曲応力をより正確に計測でき る。  Figure 2 ········································································································································································· The buoyancy point of operation moves in a dispersed manner, resulting in a sagging state. To accurately calculate the discharge of a cargo ship based on Archimedes' principle, it is necessary to increase the number of measurement points in terms of halves, quadrants, and octants for the length of the ship. If the measurement is performed for more than four quadrants, the bending stress acting on the hull can be measured more accurately.
図 3 · · · 本発明の実施に係るセンサーチューブ 1 1の展開図であり, プ ス電極と マイナス電極の白丸印の箇所は絶縁を解かれ暴露されている。 暴露電極部は蘋繁に海水等 に曝される為通常の二倍ニッケルと金鍍金処理を施し充分な防鲭対策を採る必要が有る。  Fig. 3 ··· · This is an exploded view of the sensor tube 11 according to the embodiment of the present invention, in which the white circles of the positive electrode and the negative electrode are exposed and exposed. Since the exposed electrode part is exposed to seawater etc., it is necessary to take twice as much nickel and gold plating as usual and take sufficient protection measures.
図 4 · · ' センサーチューブ 1 1の漏電回路で検知した微弱な電気信号を増幅し、 更 に 4ビヅ トの 1 6進数へ変換する X O R論理回路の一例。  Figure 4 ··· An example of an XOR logic circuit that amplifies the weak electrical signal detected by the leakage circuit of the sensor tube 11 and converts it into a 4-bit hexadecimal number.

Claims

請求の範囲 The scope of the claims
1 . 漏電回路センサーチューブ 1 1 'スケ一ル付測定用電源ケーブル 1 2 '直流電流発信 兼受信装置 1 3を使用して電子的に水面(絶縁体である空気と導電体である水との境界面) を検知する事をブールチュービング計測と銘銘し、 . 1. Leakage circuit sensor tube 1 1 'Scale power cable with scale 1 2' DC current transmitting and receiving device 13 Electronically water surface (using air as insulator and water as conductor) Detecting (boundary surface) is called Boolean tubing measurement.
1 1、 1 2、 1 3各々の装置と仕様並びにその機能、  1 1 1 1 2 1 3 Each equipment and specifications and their functions,
ブールチュービング計測装置に因る水面 ·波周期振幅測定方法。 Water surface and wave period amplitude measurement method using Boolean tubing measurement equipment.
2 . 据置型組込式防鲭鋼製管を停止 ·係留中船舶の外板内側へ設置し、 同管内ヘプ一ルチ ュ一ビング計測装置をセンサ一チューブ 1 1が半水没する迄吊下げ装填後、 装置に因る所 定時間での喫水 ·波周期振幅 ·船体縦横動揺周期振幅 ·荷役能率 ,荷役に伴う船体応力変 化等の測定を電子信号に因り遠隔操作し、 測定値をデジタル表示する装置と方法。 2. Stop the stationary built-in steel pipe made of steel. Install it inside the outer plate of the ship while mooring, and mount the tubing measuring device in the pipe until the sensor tube 11 is half submerged. Later, the draft at a predetermined time due to the equipment ・ Wave cycle amplitude ・ Hull vertical and horizontal oscillating cycle amplitude ・ Working efficiency, changes in hull stress due to cargo handling, etc. are remotely controlled by electronic signals and the measured values are digitally displayed. Apparatus and method to do.
3 . 湖沼河川港湾の水位目盛杭へ請求項 2と同様に据置型組込式防鲭鋼製管を設置し、 同 管内へセンサ一チューブ 1 1が半水没する迄吊下げ装填後、 ブールチュービング計測装置 に因る所定時間での水位 ·波周期振幅を測定する方法。 3. Install a stationary built-in steel pipe in the same way as in claim 2 on the water level scale pile at the lake / river port, and suspend and load the sensor tube 11 into the pipe until it is half submerged. A method of measuring the water level and wave period amplitude at a predetermined time by a measuring device.
4 . 携帯型伸縮式防鑌鋼製管を停止 ·係留中船舶の外板外側へ設置し、 同伸縮管内へセン サ—チューブ 1 1が半水没する迄吊下げ装填するか、 又は極端な外板の湾曲の在る船首尾 においては管を垂直に設置不能な為に同伸縮管は使用せず代わりにセンサーチ ^ーブ 1 1 上端を 2 O cm間隔で外板に溶接表記されている喫水数字の上端に合せて磁石 固定後、 ブールチュービング計測装置に因る所定時間での喫水 ·波周期振幅 ·船体縦横動揺周期振 幅 ·荷役能率を測定する方法。 4. Stop the portable telescopic steel-made steel pipe. · Install it outside the outer plate of the ship while mooring, and load it into the telescopic pipe by hanging it until the sensor tube 11 is submerged halfway or extreme outside. At the stern where the plate is curved, the tube cannot be installed vertically, so the telescopic tube is not used and the upper end of the sensor tube 1 1 is welded to the outer plate at intervals of 2 Ocm. A method of measuring the draft, wave cycle amplitude, hull vertical and horizontal swing amplitude, and cargo handling efficiency at a predetermined time using a Boolean tubing measurement device after fixing the magnet to the upper end of the draft number.
5 . センサ一チューブ 1 1開口内側断面積の 1 0倍の開口.を持つ降水受け血を、 センサー チューブ 1 1上端に設置し、 ブールチュービング計測装置に因り、 所定時間での降雨量と 変化率を 1 mm精度で測定する装置と方法。 5. A single tube 1 sensor 1 1 The opening of 10 times the inner cross-sectional area of the opening The blood receiving blood is installed at the upper end of the sensor tube 1 1 Equipment and method for measuring 1 mm accuracy.
PCT/JP2003/015723 2003-12-09 2003-12-09 Draft (depth) measuring instrument WO2005057143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003289269A AU2003289269A1 (en) 2003-12-09 2003-12-09 Draft (depth) measuring instrument
PCT/JP2003/015723 WO2005057143A1 (en) 2003-12-09 2003-12-09 Draft (depth) measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/015723 WO2005057143A1 (en) 2003-12-09 2003-12-09 Draft (depth) measuring instrument

Publications (1)

Publication Number Publication Date
WO2005057143A1 true WO2005057143A1 (en) 2005-06-23

Family

ID=34674679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015723 WO2005057143A1 (en) 2003-12-09 2003-12-09 Draft (depth) measuring instrument

Country Status (2)

Country Link
AU (1) AU2003289269A1 (en)
WO (1) WO2005057143A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905740A (en) * 2010-09-08 2010-12-08 南通航运职业技术学院 Water gauge metering method
CN102050211A (en) * 2010-12-02 2011-05-11 徐传仁 Intelligent water gage weighing device for ship
CN103373456A (en) * 2012-04-25 2013-10-30 彭茂秋 Automatic ship goods calculating system and ship flotation condition instrument
US10234320B2 (en) 2012-08-16 2019-03-19 The University Of Bradford Device and method for measuring the depth of media

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126766A (en) * 1995-11-02 1997-05-16 Ishikawajima Harima Heavy Ind Co Ltd Method and device for measuring water level and wave cycle
JPH1183593A (en) * 1997-09-09 1999-03-26 Toa Denki Kk Flat seat-shaped interface sensor
JP2003090753A (en) * 2001-09-19 2003-03-28 Toshiba Eng Co Ltd Underground water level-detecting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126766A (en) * 1995-11-02 1997-05-16 Ishikawajima Harima Heavy Ind Co Ltd Method and device for measuring water level and wave cycle
JPH1183593A (en) * 1997-09-09 1999-03-26 Toa Denki Kk Flat seat-shaped interface sensor
JP2003090753A (en) * 2001-09-19 2003-03-28 Toshiba Eng Co Ltd Underground water level-detecting apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905740A (en) * 2010-09-08 2010-12-08 南通航运职业技术学院 Water gauge metering method
CN102050211A (en) * 2010-12-02 2011-05-11 徐传仁 Intelligent water gage weighing device for ship
WO2012071904A1 (en) * 2010-12-02 2012-06-07 武汉静磁栅机电制造有限公司 Smart draft gauge weighing device for ships
CN102050211B (en) * 2010-12-02 2013-01-23 徐传仁 Intelligent water gage weighing device for ship
CN103373456A (en) * 2012-04-25 2013-10-30 彭茂秋 Automatic ship goods calculating system and ship flotation condition instrument
CN103373456B (en) * 2012-04-25 2016-05-18 彭茂秋 Boats and ships are calculated goods system and method for ship floating condition instrument automatically
US10234320B2 (en) 2012-08-16 2019-03-19 The University Of Bradford Device and method for measuring the depth of media

Also Published As

Publication number Publication date
AU2003289269A1 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
KR101674373B1 (en) Sensor for monitoring corrosion and method for manufacturinf same
CN201885992U (en) Direct-reading 6,000-meter CTD profiling system
KR101133197B1 (en) Submarine surface mooring apparatus for oceancurrent observation
WO2014029160A1 (en) Acoustic undersea tide gauge
JP4009696B2 (en) Fluid flow rate calculation method
CN111505060B (en) Ocean skin layer salinity measurement buoy
US4855966A (en) Method and apparatus for monitoring bridge structures for scouring
CN205861011U (en) A kind of pipeline deposit detector
WO2005057143A1 (en) Draft (depth) measuring instrument
CN105973176A (en) Pipe sediment detector and detection method
CN112378888A (en) Water transparency measuring device
KR100832679B1 (en) Water quality measuring buoy system of automatic adaptability on water depth
JP3803901B2 (en) Sea level displacement measuring device
CN110116785A (en) Floatable hydrospace detection device and its Detection location platform localization method can be positioned
JP2006209712A (en) Tsunami detection device
CN211336351U (en) Positioning sinking and floating type ocean detection device
CN114966711A (en) Manned submersible vehicle-oriented seawater depth determination method and system
Chang et al. Preliminary test of Tide-independent Bathymetric measurement Based on GPS
KR20120117060A (en) Oceanographic observation station for height and direction measuring of a wave
JP2515922B2 (en) Water depth position and potential measuring device for underwater metal structures
US11371841B2 (en) System and method of tilt sensor tide and inland water level gauge
RU53454U1 (en) UNDERWATER MEASUREMENT OF DEPTH OF A RESERVOIR AND AVERAGE VERTICAL VELOCITY OF SPEED OF SOUND IN WATER
RU191059U1 (en) UNDERWATER DEPTH METER
CN215599007U (en) Water transparency measuring device
RU84579U1 (en) UNDERWATER DEPTH METER

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE(1)EPC (EPO FORM 1205A OF 01.09.2006).

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP