WO2005055313A1 - Electrostatic chuck, exposure apparatus, and object chucking method - Google Patents

Electrostatic chuck, exposure apparatus, and object chucking method Download PDF

Info

Publication number
WO2005055313A1
WO2005055313A1 PCT/JP2004/017781 JP2004017781W WO2005055313A1 WO 2005055313 A1 WO2005055313 A1 WO 2005055313A1 JP 2004017781 W JP2004017781 W JP 2004017781W WO 2005055313 A1 WO2005055313 A1 WO 2005055313A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic chuck
mask
adsorbed
dielectric ceramic
suction
Prior art date
Application number
PCT/JP2004/017781
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichi Tanaka
Kazunori Saitou
Shunichi Sasaki
Kazuho Nakanishi
Hiroshi Suzuki
Hironori Ishida
Mamoru Ishii
Tatsuya Shiogai
Original Assignee
Nikon Corporation
Nihon Ceratec Corporation
Taiheiyo Cement Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation, Nihon Ceratec Corporation, Taiheiyo Cement Corporation filed Critical Nikon Corporation
Publication of WO2005055313A1 publication Critical patent/WO2005055313A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • G03F7/70708Chucks, e.g. chucking or un-chucking operations or structural details being electrostatic; Electrostatically deformable vacuum chucks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an electrostatic chuck or the like provided in a semiconductor manufacturing apparatus, and more particularly, to an electrostatic chuck that sucks and holds an object to be sucked such as a mask on the lower surface thereof, and to such an electrostatic chuck.
  • the present invention relates to an exposure apparatus provided with a chuck and a method for attracting an object to be attracted to an electrostatic chuck. Background art
  • the flatness of the reflective surface of the mask is directly related to the exposure accuracy.
  • a method of mechanically holding or supporting the periphery of the mask cannot be used. This is because, in the method of holding or supporting the periphery of the mask, the mask is curved or warped, and the flatness of the reflection surface of the mask is reduced, thereby lowering the exposure accuracy.
  • a method of fixing the mask a method of using an electrostatic chuck used for holding a silicon wafer as an object to be processed in a vacuum atmosphere in semiconductor manufacturing technology is considered.
  • the conventional electrostatic chuck has a structure in which the silicon wafer is sucked and held from below so that the processing surface of the silicon wafer faces upward (for example, see Patent Document 1). Therefore, when the conventional electrostatic chuck is used upside down, the flatness of the mask cannot be maintained high due to the radius due to the weight of the mask, and the radius due to the weight of the electrostatic chuck cannot be maintained. Also, the flatness of the mask may be reduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-168384
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an electrostatic chuck capable of suction-holding an object to be sucked with high accuracy on a bottom surface. Another object of the present invention is to provide an exposure apparatus having such an electrostatic chuck. It is still another object of the present invention to provide a method of adsorbing an object to be held by an electrostatic chuck with high accuracy.
  • a suction surface for sucking and holding an object to be sucked is formed on a lower surface, and the suction surface is formed in a concave shape.
  • the shape accuracy of the object to be sucked and held by suction can be enhanced.
  • the object to be sucked is a substrate such as a mask, the flatness thereof can be maintained well, and the exposure accuracy can be improved.
  • the suction surface is formed directly on the lower surface of the dielectric. Thereby, the attraction force can be increased.
  • the side surface is fixed inside the semiconductor manufacturing apparatus. Thereby, the electrostatic chuck can be reliably supported.
  • the dielectric has a volume resistivity of 1 ⁇ 10 9 —1 ⁇ 10 ′′ ⁇ ′cm, a Young's modulus of lOOGPa or more, and 20 ° C.—26 °. average thermal bulging expansion coefficient of C is 0. 5 X 10- 6 -. are 0. 5 X 10- 6 which by connexion desired suction force can be obtained, an electrostatic due to changes in the usage environment of the electrostatic chuck The deformation of the chuck is suppressed.
  • the object to be attracted is plate-like glass having a Young's modulus of less than 100 GPa, and is attracted and held on the attracting surface with high precision.
  • two or more independently-driveable electrodes arranged substantially concentrically, which generate an electrostatic force for adsorbing and holding an object to be adsorbed on a dielectric. ing.
  • the non-adsorption portion of the adsorption surface of the object to be adsorbed can be adsorbed and held outside the center of the lower surface.
  • the shape accuracy of the object to be adsorbed can be maintained at a high level, and the occurrence of displacement of the object to be adsorbed when the object to be adsorbed is held by adsorption can be suppressed.
  • the object to be adsorbed is brought into contact with an electrostatic chuck having a concave lower surface and a concave suction surface on the lower surface. Then, the object is adsorbed and held on the adsorption surface. Then, after the substantially central portion of the object to be sucked is suction-held at the center of the suction surface, the non-sucked portion of the object to be sucked is held outside the center of the suction surface.
  • the object to be adsorbed when the object to be adsorbed is a plate-like glass held in a substantially horizontal posture by supporting the peripheral portion thereof, the flatness of the object is favorably maintained. Can be.
  • the shape accuracy when the object to be adsorbed is being suction-held can be improved.
  • the object to be adsorbed is a substrate such as a mask, its flatness can be maintained well, thereby increasing the exposure accuracy.
  • FIG. 1 is a schematic sectional view of an electrostatic chuck according to the present invention.
  • FIG. 2 is a plan view of the electrostatic chuck shown in FIG. 1, and an explanatory diagram showing a shape of a vertical cross section including a line A and a line B shown in the plan view.
  • FIG. 3 is an explanatory view showing electrode shapes of the electrostatic chuck shown in FIG. 1.
  • FIG. 4 is a schematic bottom view of another electrostatic chuck according to the present invention, which also looks at a force on a suction surface.
  • FIG. 5 is a schematic diagram showing a schematic configuration of an EUV optical lithography system according to the present invention.
  • FIG. 6 is an explanatory view showing a restrained position of the electrostatic chuck.
  • FIG. 1 is a schematic sectional view (vertical sectional view) of the electrostatic chuck 10.
  • the electrostatic chuck 10 has a structure in which electrodes 12a and 12b are embedded in a plate-shaped dielectric ceramic body 11.
  • the electrostatic chuck 10 suction-holds the mask 20 as a processing target on the bottom surface (lower surface) of the electrostatic chuck 10, that is, the bottom surface (lower surface) of the dielectric ceramic body 11.
  • the bottom surface (lower surface) of the electrostatic chuck 10 will be referred to as the “suction surface”.
  • FIG. 2 is a plan view of the electrostatic chuck 10 (FIG. 2 (a)) and an explanatory diagram showing the shape of a vertical cross section (plane including the Z axis) including lines A and B shown in the plan view ( Figures 2 (b) and 2 (c)).
  • the suction surface of the electrostatic chuck 10 that holds the mask 20 by suction is concave.
  • the upper surface of the dielectric ceramic body 11 is flat, and the bottom surface (lower surface) of the dielectric ceramic body 11 is such that the thickness of the substantially central portion of the dielectric ceramic body 11 is smaller than the thickness of its peripheral portion (this gap is reduced).
  • the concave form of the suction surface of the electrostatic chuck 10 is exaggerated for understanding the invention.
  • the reason why the suction surface of the electrostatic chuck 10 is concave is as follows.
  • the mask 20 is made of glass, and a pattern is formed on one side thereof.
  • the glass substrate for the mask 20 has high parallelism (thickness uniformity) and flatness.
  • the mask 20 manufactured using such a glass substrate is held by an electrostatic chuck of a type that sucks and holds the bottom surface of the mask, the mask 20 has its own weight due to its own weight radius and the radius of the electrostatic chuck itself.
  • the flatness of the pattern and the pattern accuracy deteriorates.
  • the electrostatic chuck with a function of correcting the radius of the mask 20.
  • the step of holding the mask 20 on the electrostatic chuck 10 will be described in detail later.
  • the bottom surface of the dielectric ceramic body 11 is previously processed into a concave shape in accordance with the radius of the mask 20. In this way, the mask 20 exhibits a high flatness while being held by the electrostatic chuck 10.
  • the mask 20 is actually adsorbed during processing and its flatness is measured, and the calorie is adjusted so that a desired flatness is obtained. There is a way to continue. Also, by calculating the radius shapes from the material properties of the mask 20 and the dielectric ceramic body 11 and the like, based on the calculated values, a certain shape of the dielectric ceramic body 11 is obtained. This is preferable because the processing time can be reduced.
  • the Young's modulus of the glass used for the mask 20 for EUV exposure is less than 100 GPa.
  • the dielectric ceramic body 11 is required to have rigidity that does not bend due to the rigidity of the mask 20 when the mask 20 having such Young's modulus is sucked and held.
  • the electrostatic chuck 10 has a force fixed to the inside of the EUV exposure apparatus through its side surface. At this time, a certain stress is applied to the dielectric ceramic body 11, so that the dielectric ceramic body 11 Rigidity that is not deformed by stress is required. For this reason, a material having a Young's modulus of 100 GPa or more is suitably used as the dielectric ceramic body 11.
  • a rod-shaped or plate-shaped jig is attached to the side surface of the dielectric ceramic body 11, and these jigs are attached to the frame of the EUV exposure apparatus.
  • Examples thereof include a method of fixing the dielectric ceramic body 11 to a movable stage and the like, and a method of holding the dielectric ceramic body 11 by applying pressing forces from a plurality of predetermined directions, but are not limited thereto.
  • the thickness of the dielectric ceramic body 11 is determined in consideration of a method of fixing the electrostatic chuck 10, a space for installation, and the like, but is preferably thick from the viewpoint of preventing the occurrence of a radius. No.
  • the dielectric ceramic body 11 has a volume at the operating temperature of the electrostatic chuck 10 so that the electrostatic chuck 10 can use the Johnsen-Rahbek force as a mechanism of an attraction force for adsorbing an object to be attracted.
  • a material with a resistivity of 1 X 10 9 ⁇ 'cm—1 X 10 14 ⁇ 'cm is preferably used
  • the electrostatic chuck 10 attracts and holds one mask for a long time, so that electric charges easily accumulate in the dielectric ceramic body 11. For this reason, if a high-resistance material exceeding 1 X 10 " ⁇ 'cm is used for the dielectric ceramics 11, the mask will not be quickly detached from the electrostatic chuck 10 when the mask is replaced. By using a material with a volume resistivity of 1 X 10 9 ⁇ ⁇ cm—1 X 10 " ⁇ ⁇ cm for the body 11 The occurrence of such a problem is prevented.
  • the mask 20 When EUV exposure is performed by holding the mask 20 by suction on the electrostatic chuck 10, the mask 20 generates heat with little force due to EUV. When the mask 20 expands due to this heat generation, the dimensional accuracy of the pattern formed on the mask 20 deteriorates. Therefore, a glass material of zero expansion is used for the glass substrate for the mask 20. On the other hand, when the mask 20 generates heat, the heat is transmitted to the electrostatic chuck 10 holding and holding the mask, whereby the dielectric ceramic body 11 is thermally expanded and deformed. The deformation due to the thermal expansion of the dielectric ceramic body 11 causes a displacement of the mask 20 and a decrease in flatness.
  • thermal expansion coefficient small material as a dielectric ceramic body 11, an average thermal expansion coefficient at 20 ° C- 26 ° C gar 0. 5 X 10- 6 — It is preferred to use a material that is 0.5 x 10 — 6 .
  • the volume resistivity is 1 ⁇ 10 9 -IX 10 14 ⁇ 'cm
  • the Young's modulus is lOOGPa or more
  • the ceramic material is 5 X 10- 6, double coupling material of the ceramic material with ceramic material and a negative thermal expansion coefficient having a positive thermal expansion coefficient No.
  • Ceramic material having a positive coefficient of thermal expansion examples include silicon carbide (SiC), silicon nitride (SiN), alumina (Al 2 O 3), and zirconia (ZrO 2), and have a negative coefficient of thermal expansion.
  • the ceramic material examples include eucryptite-cordierite. Therefore, when baking is difficult if these materials are blended in a predetermined ratio, a sintering aid may be added in a range where a predetermined coefficient of thermal expansion can be obtained.
  • FIG. 3 is an explanatory view showing the planar shape of the electrodes 12a and 12b of the electrostatic chuck 10.
  • the electrodes 12a and 12b are arranged near the bottom surface of the dielectric ceramic body 11 so that the suction surface of the electrostatic chuck 10 is the bottom surface.
  • the electrode 12a is provided substantially at the center of the dielectric ceramic body 11, and the electrode 12b is provided outside the electrode 12a and insulated from the electrode 12a.
  • the mask 20 is grounded.
  • an electrostatic force for adsorbing the mask 20 on the bottom surface of the dielectric ceramic body 11 is applied to the dielectric ceramic. Occurs at the bottom of body 11.
  • a switch 13a, 13b is provided with a force S in the middle of the wiring connecting the power supply 14 and the electrodes 12a, 12b, respectively.
  • a voltage can be applied to each of the terminals 12b independently.
  • FIG. 1 shows a configuration in which one power source 14 also applies a voltage to the electrodes 12a and 12b. The power source for driving the electrode 12a and the power source for driving the electrode 12b may be separated.
  • the materials used for the electrodes 12 a and 12 b are determined depending on the material used for the dielectric ceramics 11 and the method for manufacturing the electrostatic chuck 10.
  • a dielectric ceramic powder is formed into a sheet by a known doctor blade method, extrusion molding method, or the like, and a predetermined electrode paste is printed on the obtained green sheet in a predetermined pattern.
  • a predetermined number of green sheets on which the electrode paste is not printed are stacked, a green sheet on which the electrode paste is printed is stacked thereon, and further a predetermined number of green sheets are stacked on which the electrode paste is printed.
  • these are integrally formed by a hot press treatment or the like, and the dielectric ceramics and the electrodes are simultaneously fired.
  • the electrodes 12a and 12b can be formed with high positional accuracy by screen printing or the like.
  • the material used for the electrodes 12a and 12b is a high melting point metal such as tungsten, molybdenum, or iridium that can withstand firing of the dielectric ceramic body 11, or a high melting point conductive material such as titanium nitride or silicon molybdenum. It is necessary to use arsenic compounds.
  • the mask 20 When the mask 20 is brought close to the electrostatic chuck 10 fixed at a predetermined position, a method of supporting (or holding) the central portion of the mask 20 and a method of supporting the peripheral portion of the mask 20 are provided.
  • the pattern formed on the mask 20 is May be damaged. Therefore, the latter method is usually adopted, but in this case, the mask 20 is bent by its own weight so that the center thereof is convex downward.
  • the bottom surface of the dielectric ceramic body 11 is formed in a concave shape as described above, when the mask 20 is close to the electrostatic chuck 10, the center of the mask 20 and the electrostatic chuck The distance from the center of the suction surface of 10 is wider than the distance between these peripheral parts. In this state, if the mask 20 is attracted to the entire attracting surface of the electrostatic chuck 10 at a stretch, the mask 20 may be displaced or stress may be applied to the mask 20, which is not preferable.
  • a voltage is applied only to the electrode 12a, and the substantially central portion of the mask 20 is suction-held at the center of the suction surface of the electrostatic chuck 10. Thereafter, a voltage is applied to the electrode 12b, and the non-sucked portion of the mask 20 is sucked and held outside the center of the suction surface of the electrostatic chuck 10. As a result, unnecessary stress is not applied to the mask 20, and the displacement of the mask 20 can be prevented.
  • FIGS. 1 and 3 show two independently drivable electrodes 12a and 12b.
  • the dielectric ceramic body is used.
  • three or more electrodes that can be independently driven may be provided substantially concentrically, and these may be sequentially driven toward the outside of the central force.
  • the dielectric ceramic body 11 having a smooth curved suction surface is used.
  • Such pins 15 and ribs 16 can be formed by sandblasting the bottom surface of the dielectric ceramic body 11 or the like.
  • the curved surface connecting the pin 15 and the apex of the rib 16 that is, the curved surface connecting the point in contact with the mask 20 (not shown) may be concave.
  • the dielectric ceramic body 11 ' is further provided with a gas supply hole 17a and a gas discharge hole 17b penetrating in the thickness direction.
  • the cooling gas for example, By supplying a nitrogen gas
  • the cooling gas exhausting the cooling gas flowing between the pins 15 from the gas exhaust holes 17b, the mask 20 (not shown) and the dielectric ceramics 11 'can be cooled.
  • FIG. 5 is a schematic diagram showing a schematic configuration of the EUV optical lithography system 120.
  • the EUV optical lithography system 120 uses the image optical system 122 to form a reduced image of the pattern of the reflective mask 124 (reticle).
  • EUV light is a force that refers to light having a wavelength in the range of 0.1 to 400 nm.
  • the wavelength of EUV light used as illumination light for exposure in the EUV light lithography system 120 is 1 nm— It is desirable to be in the range of 50 nm.
  • Such EUV light is generated by, for example, a laser plasma X-ray source.
  • the laser plasma X-ray source has a laser source 136 serving as an excitation light source, a xenon gas supply device 138, and a nozzle 142 for discharging xenon gas supplied from the xenon gas supply device 138.
  • the laser source 136 generates laser light having a wavelength equal to or shorter than ultraviolet light.
  • a YAG laser or an excimer laser is used.
  • the laser light emitted from the laser source 136 is condensed and applied to the flow of xenon gas emitted from the nozzle 142.
  • xenon gas plasma is generated, and photons of EUV light are emitted when excited xenon gas molecules fall to a low energy state. Since EUV light has low transmittance in the atmosphere, a region for generating xenon gas plasma is provided in the vacuum chamber 140.
  • a parabolic mirror 144 for condensing EUV light generated by the plasma is arranged.
  • the parabolic mirror 144 constitutes a condensing optical system, and is arranged such that the focal position is near the position where xenon gas is emitted from the nozzle 142.
  • the parabolic mirror 144 includes a multilayer film suitable for reflecting EUV light, typically on the concave surface of the parabolic mirror 144. EUV light is reflected by this multilayer film and reaches a collector mirror 146 through a window 141 of a vacuum chamber 140.
  • the window 141 may be an opening through which the laser plasma X-ray source can pass without interference.
  • EUV light since EUV light has low transmittance in the atmosphere, EUV light is not transmitted.
  • the passing light path is preferably maintained in a vacuum atmosphere. Therefore, an optical path through which EUV light passes is provided in a vacuum chamber 132, and the vacuum chamber 132 is maintained at a predetermined degree of vacuum by using a pressure reducing device of a vacuum pump 134.
  • the vacuum chamber 140 is separated from the vacuum chamber 132. This is because dust tends to be generated by the nozzle 142 that discharges xenon gas.
  • the condenser mirror 146 collects the EUV light that has arrived from the parabolic mirror 144 and reflects the EUV light to the reflective mask 124.
  • the EUV light reflected by the condenser mirror 146 illuminates a predetermined portion of the reflective mask 124.
  • the parabolic mirror 144 and the condensing mirror 146 constitute an illumination system in the EUV optical lithography system 120.
  • the reflective mask 124 is held by suction on the lower surface of the electrostatic chuck 10 provided on the mask stage.
  • the EUV light is reflected by the reflective mask 124, the EUV light is patterned by the pattern data from the reflective mask 124.
  • the patterned EUV light reaches the wafer W mounted on the wafer stage 130 through the image optical system 122.
  • FIG. 5 shows an example of the image optical system 122 in which four reflecting mirror forces are also configured.
  • the EUV light reflected by the reflective mask 124 is reflected in the order of the concave first mirror 150a, the convex second mirror 150b, the convex third mirror 150c, and the concave fourth mirror 150d to form a reduced image of the mask pattern. Form.
  • the exposure processing of the wafer W is typically performed by step scanning.
  • the illumination system irradiates a predetermined area of the reflective mask 124 with EUV light to project a mask pattern onto an exposure area of the eno and W, and during the exposure, the electrostatic chuck 10 and the wafer stage 130
  • the image optical system 122 moves at a predetermined speed in accordance with the reduction ratio of the image optical system 122 in phase with each other.
  • scanning of the reflective mask 124 and the wafer W is performed with respect to the image optical system 122 in one degree of freedom.
  • the wafer stage 130 holding the wafer W is movable in the X, ⁇ , and Z directions.
  • the wafer W is placed behind the partition 152 so that gas generated from the resist on the wafer W does not affect the mirrors 150a to 150d of the image optical system 122. It is desirable to be arranged in.
  • the partition 152 has an opening 152a, and EUV light is emitted from the concave fourth mirror 150d to the wafer W through the opening 152a.
  • the space inside the partition 152 is evacuated by a vacuum pump 154.
  • the raw material powder of the dielectric ceramic body includes lithium aluminosilicate having a negative coefficient of thermal expansion and silicon carbide having a positive coefficient of thermal expansion, which have a coefficient of thermal expansion of 20-26 ° C. using those formulated to be 0. 5 X 10- 6 -0. 5 X 10- 6 range.
  • the electrode material a 30 mm ⁇ tungsten mesh and a tungsten mesh having a 152 ⁇ 152 mm opening and a 40 mm ⁇ hole at the center were used.
  • the raw material powder is put into a predetermined mold and formed by a uniaxial press, and the tungsten electrode is placed on the green body as shown in FIG.
  • the raw material powder was filled and baked by hot press.
  • the sintered body thus obtained was ground to 160 mm X 160 mm X 20 mm.
  • the tungsten mesh electrode was placed at a depth of 2 mm from the surface to be the adsorption surface. Opposite surface force of adsorption surface To insert terminals for supplying power to each electrode, make a 4 mm ⁇ hole in the sintered body and insert a 3.8 mm ⁇ metal pin into each hole. Was connected to each electrode.
  • the mask was sucked onto each of the electrostatic chucks of the examples and the comparative examples thus manufactured, and the flatness of the mask was measured using a laser interferometer.
  • a mask having a flatness of 40 nm or less in a 152 XI 52 mm area was determined to be acceptable.
  • the mask is made of glass, has a shape of 152 mm ⁇ 152 mm ⁇ 6.3 mm, has a Young's modulus of 80 GPa, and has a thickness of several tens / A zm conductive film was used.
  • a predetermined voltage is first applied to a 30 mm ⁇ tungsten mesh electrode arranged at the center, and a predetermined time has elapsed since then. Thereafter, a method of applying a predetermined voltage to a tungsten mesh electrode having a 152 ⁇ 152 mm opening was used.
  • the electrostatic chucks of the example and the comparative example were constrained at three points on the side surfaces, as indicated by arrows in the plan view of FIG.
  • the flatness of the mask was less than 40 nm in the example.
  • the flatness of the comparative example was greater than 40 nm. It has grown. As a result, it was confirmed that the mask could be held with high precision by making the suction surface of the electrostatic chuck concave.
  • the electrostatic chuck of the present invention is suitable as a member for a semiconductor manufacturing apparatus, particularly for an exposure apparatus.

Abstract

An electrostatic chuck (10) has a structure where independently drivable electrodes (12a, 12b) are provided in a dielectric ceramic body (11). The electrostatic chuck (10) is fixed at its side surface inside a semiconductor manufacturing apparatus, and the lower surface of the electrostatic chuck (10) chucks and holds an object. The lower surface of the dielectric ceramic body (11) for chucking and holding the object is concave. With this, when, for example, a plate-shaped glass mask is held, the warp of the glass mask is corrected to enhance the planarity of the glass mask.

Description

明 細 書  Specification
静電チャックおよび露光装置ならびに被吸着物の吸着方法  Electrostatic chuck, exposure apparatus, and method of adsorbing an object
技術分野  Technical field
[0001] 本発明は半導体製造装置に装備される静電チャック等に関し、さら〖こ詳しくは、マ スク等の被吸着物をその下面で吸着保持する静電チャックおよびこのような静電チヤ ックを備えた露光装置、ならびに静電チャックへの被吸着物の吸着方法に関する。 背景技術  The present invention relates to an electrostatic chuck or the like provided in a semiconductor manufacturing apparatus, and more particularly, to an electrostatic chuck that sucks and holds an object to be sucked such as a mask on the lower surface thereof, and to such an electrostatic chuck. The present invention relates to an exposure apparatus provided with a chuck and a method for attracting an object to be attracted to an electrostatic chuck. Background art
[0002] 半導体製造技術にお!、て、半導体デバイスの高速化と大容量ィ匕は、微細化技術の 進展によるところが大きい。微細化技術の中でも、特に、パターンを形成するリソダラ フィ技術の進歩が、その中心的役割を果たしている。近時、さらに半導体デバイスの 高集積化が求められ、 lOOnm以下のデザインルールの下では、従来の KrFエキシ マレーザや ArFエキシマレーザによるリソグラフィ技術による対応は困難である。そこ で、このようなデザインルールに対応できるリソグラフィ技術として、従来の光リソダラ フィと像形成原理が同じであり、波長が 1桁以上短い極限紫外光 (Extreme UV(EU V) )を用いた EUVリソグラフィ技術が提案されて ヽる。このような EUVリソグラフィ技 術では、マスクに下側から光を当てて反射させることができるように、マスクを固定す る方法が考えられている。  [0002] In semiconductor manufacturing technology, the speeding up and large capacity of semiconductor devices largely depend on the progress of miniaturization technology. Among the miniaturization technologies, in particular, the advance of the lithography technology for forming patterns plays a central role. Recently, higher integration of semiconductor devices is required, and it is difficult to use conventional KrF excimer laser or ArF excimer laser lithography technology under the design rule of less than 100 nm. Therefore, as a lithography technology that can respond to such a design rule, EUV using extreme ultraviolet (Extreme UV (EU V)), which has the same image forming principle as conventional optical lithography and has a wavelength shorter than one digit, is used. Lithography technology has been proposed. In such EUV lithography technology, a method of fixing the mask so that the mask can be irradiated with light from below and reflected can be considered.
[0003] し力しながら、 EUVリソグラフィ技術では、光源が短波長化されることによってマスク の反射面の平面度が露光精度に直接に関わるために、従来のリソグラフィ技術で用 いられていたマスクの固定方法、例えば、マスクの周縁部を機械的に保持または支 持する方法を、用いることができない。これは、マスクの周囲を保持または支持する方 法では、マスクに橈みや反りが生じてマスクの反射面の平面度が低下してしまい、こ れによって露光精度が低下してしまうからである。  [0003] However, in EUV lithography technology, the shorter the wavelength of the light source, the flatness of the reflective surface of the mask is directly related to the exposure accuracy. For example, a method of mechanically holding or supporting the periphery of the mask cannot be used. This is because, in the method of holding or supporting the periphery of the mask, the mask is curved or warped, and the flatness of the reflection surface of the mask is reduced, thereby lowering the exposure accuracy.
[0004] そこでマスクの固定方法として、半導体製造技術において被処理物であるシリコン ウェハを真空雰囲気で保持するために用いられて ヽる静電チャックを利用する方法 が考えられる。し力しながら、従来の静電チャックはシリコンウェハの加工面が上を向 くように下側からシリコンウェハを吸着保持する構造である (例えば、特許文献 1参照 ) oこのため、従来の静電チャックを上下逆さにして用いると、マスクの自重による橈み によって、マスクの平面度を高く維持することができず、さらに静電チャックの自重に よる橈みによってもマスクの平面度が低下するおそれがある。 [0004] Therefore, as a method of fixing the mask, a method of using an electrostatic chuck used for holding a silicon wafer as an object to be processed in a vacuum atmosphere in semiconductor manufacturing technology is considered. The conventional electrostatic chuck has a structure in which the silicon wafer is sucked and held from below so that the processing surface of the silicon wafer faces upward (for example, see Patent Document 1). Therefore, when the conventional electrostatic chuck is used upside down, the flatness of the mask cannot be maintained high due to the radius due to the weight of the mask, and the radius due to the weight of the electrostatic chuck cannot be maintained. Also, the flatness of the mask may be reduced.
[0005] 以下、本発明に関連する先行技術文献を列記する。  [0005] Hereinafter, prior art documents related to the present invention are listed.
特許文献 1:特開 2003— 168384号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-168384
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明はこのような事情に鑑みてなされたものであり、底面で被吸着物を高精度に 吸着保持することができる静電チャックを提供することを目的とする。また、このような 静電チャックを備えた露光装置を提供することを目的とする。さらに、静電チャックに 被吸着物を高精度に保持させるための被吸着物の吸着方法を提供することを目的と する。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electrostatic chuck capable of suction-holding an object to be sucked with high accuracy on a bottom surface. Another object of the present invention is to provide an exposure apparatus having such an electrostatic chuck. It is still another object of the present invention to provide a method of adsorbing an object to be held by an electrostatic chuck with high accuracy.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の静電チャックの一形態では、下面に被吸着物を吸着保持する吸着面が形 成され、その吸着面が、凹状に形成される。これにより、被吸着物をその下面で吸着 保持する場合にぉ 、て、被吸着物の吸着保持されて 、るときの形状精度を高めるこ とができる。例えば、被吸着物がマスク等の基板であれば、その平面度を良好に維持 することができ、これによつて露光精度を高めることができる。  [0007] In one form of the electrostatic chuck of the present invention, a suction surface for sucking and holding an object to be sucked is formed on a lower surface, and the suction surface is formed in a concave shape. Thus, when the object to be adsorbed is held by suction on its lower surface, the shape accuracy of the object to be sucked and held by suction can be enhanced. For example, if the object to be sucked is a substrate such as a mask, the flatness thereof can be maintained well, and the exposure accuracy can be improved.
[0008] 本発明の静電チャックの別の一形態では、吸着面が、誘電体の下面に直接形成さ れる。これにより、吸着力を高めることができる。  [0008] In another form of the electrostatic chuck of the present invention, the suction surface is formed directly on the lower surface of the dielectric. Thereby, the attraction force can be increased.
本発明の静電チャックの別の一形態では、側面が、半導体製造装置の内部に固定 される。これにより、静電チャックを確実に支持することができる。  In another embodiment of the electrostatic chuck according to the present invention, the side surface is fixed inside the semiconductor manufacturing apparatus. Thereby, the electrostatic chuck can be reliably supported.
本発明の静電チャックの別の一形態では、誘電体は体積抵抗率が 1 X 109— 1 X 1 0" Ω 'cmであり、ヤング率が lOOGPa以上であり、 20°C— 26°Cにおける平均熱膨 張係数が 0. 5 X 10— 6— 0. 5 X 10— 6とされる。これによつて所望の吸着力が得られ、 静電チャックの使用環境の変化による静電チャックの変形が抑制される。 In another form of the electrostatic chuck of the present invention, the dielectric has a volume resistivity of 1 × 10 9 —1 × 10 ″ Ω′cm, a Young's modulus of lOOGPa or more, and 20 ° C.—26 °. average thermal bulging expansion coefficient of C is 0. 5 X 10- 6 -. are 0. 5 X 10- 6 which by connexion desired suction force can be obtained, an electrostatic due to changes in the usage environment of the electrostatic chuck The deformation of the chuck is suppressed.
[0009] 本発明の静電チャックの別の一形態では、被吸着物が、ヤング率が lOOGPa以下 の板状のガラスとされ、吸着面に高精度に吸着保持される。 本発明の静電チャックの別の一形態では、誘電体に被吸着物を吸着保持するため の静電力を発生させる、略同心円状に配置された 2以上の独立駆動が可能な電極を 有している。従って、下面の中心部で被吸着物の吸着面の略中心部を吸着保持した 後に、この下面の中心部の外側で被吸着物の吸着面の未吸着部を吸着保持するこ とができる。、これにより被吸着物の形状精度を高く維持し、また、被吸着物を吸着保 持する際の被吸着物の位置ずれの発生を抑制することができる。 [0009] In another form of the electrostatic chuck of the present invention, the object to be attracted is plate-like glass having a Young's modulus of less than 100 GPa, and is attracted and held on the attracting surface with high precision. According to another embodiment of the electrostatic chuck of the present invention, there are provided two or more independently-driveable electrodes arranged substantially concentrically, which generate an electrostatic force for adsorbing and holding an object to be adsorbed on a dielectric. ing. Therefore, after the substantially central portion of the adsorption surface of the object to be adsorbed is suction-held at the center of the lower surface, the non-adsorption portion of the adsorption surface of the object to be adsorbed can be adsorbed and held outside the center of the lower surface. Thus, the shape accuracy of the object to be adsorbed can be maintained at a high level, and the occurrence of displacement of the object to be adsorbed when the object to be adsorbed is held by adsorption can be suppressed.
[0010] 本発明の露光装置の一形態では、本発明の静電チャックを備えているため、高精 度の露光処理が可能となる。 [0010] In one embodiment of the exposure apparatus of the present invention, since the electrostatic chuck of the present invention is provided, high-precision exposure processing is possible.
本発明の被吸着物の吸着方法の一形態では、下面が被吸着物を吸着保持する吸 着面であり、かつ、吸着面が凹状である静電チャックに、その下方から被吸着物を接 近させて、被吸着物を吸着面に吸着保持させる。そして、吸着面の中心部で被吸着 物の略中心部を吸着保持した後に、吸着面の中心部の外側で被吸着物の未吸着部 を吸着保持する。このような被吸着物の吸着方法では、被吸着物がその周縁部が支 持されることによって略水平姿勢に保持された板状のガラスである場合に、その平面 度を良好に維持することができる。  In one embodiment of the method for adsorbing an object to be adsorbed according to the present invention, the object to be adsorbed is brought into contact with an electrostatic chuck having a concave lower surface and a concave suction surface on the lower surface. Then, the object is adsorbed and held on the adsorption surface. Then, after the substantially central portion of the object to be sucked is suction-held at the center of the suction surface, the non-sucked portion of the object to be sucked is held outside the center of the suction surface. In such a method for adsorbing an object to be adsorbed, when the object to be adsorbed is a plate-like glass held in a substantially horizontal posture by supporting the peripheral portion thereof, the flatness of the object is favorably maintained. Can be.
発明の効果  The invention's effect
[0011] 本発明によれば、被吸着物をその底面で吸着保持する場合において、被吸着物の 吸着保持されているときの形状精度を高めることができる。例えば、被吸着物がマス ク等の基板であれば、その平面度を良好に維持することができ、これによつて露光精 度を高めることができる。  According to the present invention, when an object to be adsorbed is suction-held on its bottom surface, the shape accuracy when the object to be adsorbed is being suction-held can be improved. For example, if the object to be adsorbed is a substrate such as a mask, its flatness can be maintained well, thereby increasing the exposure accuracy.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明に係る静電チャックの概略断面図である。  FIG. 1 is a schematic sectional view of an electrostatic chuck according to the present invention.
[図 2]図 1に示す静電チャックの平面図と、この平面図中に示される線 Aおよび線 Bを 含む垂直断面の形状を示す説明図である。  FIG. 2 is a plan view of the electrostatic chuck shown in FIG. 1, and an explanatory diagram showing a shape of a vertical cross section including a line A and a line B shown in the plan view.
[図 3]図 1に示す静電チャックの電極形状を示す説明図である。  FIG. 3 is an explanatory view showing electrode shapes of the electrostatic chuck shown in FIG. 1.
[図 4]本発明に係る別の静電チャックを吸着面側力も見た概略底面図である。  FIG. 4 is a schematic bottom view of another electrostatic chuck according to the present invention, which also looks at a force on a suction surface.
[図 5]本発明に係る EUV光リソグラフィシステムの概略構成を示す模式図である。  FIG. 5 is a schematic diagram showing a schematic configuration of an EUV optical lithography system according to the present invention.
[図 6]静電チャックの拘束位置を示す説明図である。 発明を実施するための最良の形態 FIG. 6 is an explanatory view showing a restrained position of the electrostatic chuck. BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態について図面を参照しながら説明する。ここでは、 EU V露光装置に装備されるマスクを吸着保持する静電チャックについて説明する。 図 1は静電チャック 10の概略断面図(垂直断面図)である。静電チャック 10は、板 状の誘電セラミックス体 11の内部に電極 12a, 12bが埋設された構造を有している。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, a description will be given of an electrostatic chuck for attracting and holding a mask provided in an EUV exposure apparatus. FIG. 1 is a schematic sectional view (vertical sectional view) of the electrostatic chuck 10. The electrostatic chuck 10 has a structure in which electrodes 12a and 12b are embedded in a plate-shaped dielectric ceramic body 11.
[0014] 静電チャック 10は、被処理体であるマスク 20を、静電チャック 10の底面(下面)、つ まり誘電セラミックス体 11の底面(下面)で吸着保持する。以下の説明にお 、ては、 静電チャック 10の底面(下面)を「吸着面」と言う。  The electrostatic chuck 10 suction-holds the mask 20 as a processing target on the bottom surface (lower surface) of the electrostatic chuck 10, that is, the bottom surface (lower surface) of the dielectric ceramic body 11. In the following description, the bottom surface (lower surface) of the electrostatic chuck 10 will be referred to as the “suction surface”.
図 2は静電チャック 10の平面図(図 2 (a) )と、この平面図中に示される線 Aおよび 線 Bを含む垂直断面 (Z軸をも含む面)の形状を示す説明図(図 2 (b)、図 2 (c) )であ る。図 1および図 2に示されるように、マスク 20を吸着保持する静電チャック 10の吸着 面は凹状となっている。換言すれば、誘電セラミックス体 11は、その上面は平面であ り、その底面(下面)は誘電セラミックス体 11の略中心部の厚さがその周辺部の厚さよ りも薄い状態 (このギャップを図 2 (b)、(c)中に" t"で示す)となるように湾曲している。 なお、図 1および図 2においては、静電チャック 10の吸着面の凹状の形態を、発明の 理解のために誇張して示して 、る。  FIG. 2 is a plan view of the electrostatic chuck 10 (FIG. 2 (a)) and an explanatory diagram showing the shape of a vertical cross section (plane including the Z axis) including lines A and B shown in the plan view ( Figures 2 (b) and 2 (c)). As shown in FIGS. 1 and 2, the suction surface of the electrostatic chuck 10 that holds the mask 20 by suction is concave. In other words, the upper surface of the dielectric ceramic body 11 is flat, and the bottom surface (lower surface) of the dielectric ceramic body 11 is such that the thickness of the substantially central portion of the dielectric ceramic body 11 is smaller than the thickness of its peripheral portion (this gap is reduced). 2 (b) and 2 (c). 1 and 2, the concave form of the suction surface of the electrostatic chuck 10 is exaggerated for understanding the invention.
[0015] このように静電チャック 10の吸着面を凹状とする理由は次の通りである。一般的に マスク 20はガラスからなり、その片面にパターンが形成されている。このパターンを精 度よく形成するために、マスク 20用のガラス基板は高 、平行度 (厚み均一性)と平面 度を有している。このようなガラス基板を用いて作製されたマスク 20を、底面で吸着 保持するタイプの静電チャックに保持させた場合、マスク 20の自重橈みと静電チヤッ ク自体の橈みによって、マスク 20の平面度が低下し、パターン精度が悪くなつてしま  [0015] The reason why the suction surface of the electrostatic chuck 10 is concave is as follows. Generally, the mask 20 is made of glass, and a pattern is formed on one side thereof. In order to form this pattern with high precision, the glass substrate for the mask 20 has high parallelism (thickness uniformity) and flatness. When a mask 20 manufactured using such a glass substrate is held by an electrostatic chuck of a type that sucks and holds the bottom surface of the mask, the mask 20 has its own weight due to its own weight radius and the radius of the electrostatic chuck itself. The flatness of the pattern and the pattern accuracy deteriorates.
[0016] そこで、静電チャックにマスク 20の橈みを矯正させる機能を持たせることが必要とな つてくる。マスク 20を静電チャック 10に保持させる工程については後に詳細に説明 するが、静電チャック 10のように、誘電セラミックス体 11の底面をマスク 20の橈み量 に合わせて予め凹状に加工しておくことにより、マスク 20は静電チャック 10に保持さ れた状態で高!ヽ平面度を示す。 [0017] 誘電セラミックス体 11の底面をこのような凹状とする方法としては、加工途中でマス ク 20を実際に吸着させてその平面度を測定し、所望の平面度が得られるように、カロ ェを続ける方法が挙げられる。また、マスク 20と誘電セラミックス体 11の材料物性等 からこれらの橈み形状を計算し、得られた計算値に基づ!/、てある程度の誘電セラミツ タス体 11の形状を求めておくと、加工時間を短縮することができ好ましい。 [0016] Therefore, it is necessary to provide the electrostatic chuck with a function of correcting the radius of the mask 20. The step of holding the mask 20 on the electrostatic chuck 10 will be described in detail later. However, like the electrostatic chuck 10, the bottom surface of the dielectric ceramic body 11 is previously processed into a concave shape in accordance with the radius of the mask 20. In this way, the mask 20 exhibits a high flatness while being held by the electrostatic chuck 10. [0017] As a method of making the bottom surface of the dielectric ceramic body 11 such a concave shape, the mask 20 is actually adsorbed during processing and its flatness is measured, and the calorie is adjusted so that a desired flatness is obtained. There is a way to continue. Also, by calculating the radius shapes from the material properties of the mask 20 and the dielectric ceramic body 11 and the like, based on the calculated values, a certain shape of the dielectric ceramic body 11 is obtained. This is preferable because the processing time can be reduced.
[0018] 一般的に、 EUV露光用のマスク 20に用いられるガラスのヤング率は lOOGPa以下 である。誘電セラミックス体 11には、このようなヤング率を有するマスク 20を吸着保持 した際に、マスク 20の剛性に起因して橈むことのない剛性が必要とされる。また、静 電チャック 10は、その側面を介して EUV露光装置の内部に固定される力 このとき 誘電セラミックス体 11には一定の応力が掛カつた状態となるから、誘電セラミックス体 11にはこの応力によっても変形しない剛性が求められる。このため、誘電セラミックス 体 11としては、ヤング率が lOOGPa以上の材料が好適に用いられる。  Generally, the Young's modulus of the glass used for the mask 20 for EUV exposure is less than 100 GPa. The dielectric ceramic body 11 is required to have rigidity that does not bend due to the rigidity of the mask 20 when the mask 20 having such Young's modulus is sucked and held. Also, the electrostatic chuck 10 has a force fixed to the inside of the EUV exposure apparatus through its side surface. At this time, a certain stress is applied to the dielectric ceramic body 11, so that the dielectric ceramic body 11 Rigidity that is not deformed by stress is required. For this reason, a material having a Young's modulus of 100 GPa or more is suitably used as the dielectric ceramic body 11.
[0019] なお、静電チャック 10の EUV露光装置内への固定方法としては、誘電セラミックス 体 11の側面に棒状や板状の治具を取り付け、これらの治具を EUV露光装置のフレ ームや、可動ステージ等に固定する方法や、誘電セラミックス体 11に所定の複数方 向から押圧力を加えて保持する方法等が挙げられるが、これらに限定されるものでな い。また、誘電セラミックス体 11の厚さは、静電チャック 10の固定方法や設置スぺー ス等を考慮して定められるが、橈みを生じな 、ようにする観点からは厚 、ことが好まし い。  In order to fix the electrostatic chuck 10 in the EUV exposure apparatus, a rod-shaped or plate-shaped jig is attached to the side surface of the dielectric ceramic body 11, and these jigs are attached to the frame of the EUV exposure apparatus. Examples thereof include a method of fixing the dielectric ceramic body 11 to a movable stage and the like, and a method of holding the dielectric ceramic body 11 by applying pressing forces from a plurality of predetermined directions, but are not limited thereto. Further, the thickness of the dielectric ceramic body 11 is determined in consideration of a method of fixing the electrostatic chuck 10, a space for installation, and the like, but is preferably thick from the viewpoint of preventing the occurrence of a radius. No.
[0020] 誘電セラミックス体 11には、静電チャック 10が被吸着物を吸着する吸着力の機構と してジョンセンラーベック力を用いることができるように、静電チャック 10の使用温度 における体積抵抗率が 1 X 109 Ω 'cm— 1 X 1014 Ω 'cmの材料が好適に用いられる [0020] The dielectric ceramic body 11 has a volume at the operating temperature of the electrostatic chuck 10 so that the electrostatic chuck 10 can use the Johnsen-Rahbek force as a mechanism of an attraction force for adsorbing an object to be attracted. A material with a resistivity of 1 X 10 9 Ω'cm—1 X 10 14 Ω'cm is preferably used
EUV露光装置にお 、てマスクを保持する場合には、静電チャック 10は 1つのマス クを長時間吸着保持するために、誘電セラミックス体 11に電荷が溜まりやすい。その ため、誘電セラミックス体 11に 1 X 10" Ω 'cmを超えた高抵抗の材料を用いると、マ スク交換の際にマスクが迅速に静電チャック 10から脱離しない。しかし、誘電セラミツ タス体 11に体積抵抗率が 1 X 109 Ω · cm— 1 X 10" Ω · cmの材料を用いることにより 、このような問題の発生が防止される。 When a mask is held in an EUV exposure apparatus, the electrostatic chuck 10 attracts and holds one mask for a long time, so that electric charges easily accumulate in the dielectric ceramic body 11. For this reason, if a high-resistance material exceeding 1 X 10 "Ω'cm is used for the dielectric ceramics 11, the mask will not be quickly detached from the electrostatic chuck 10 when the mask is replaced. By using a material with a volume resistivity of 1 X 10 9 Ω · cm—1 X 10 "Ω · cm for the body 11 The occurrence of such a problem is prevented.
[0021] 静電チャック 10にマスク 20を吸着保持して EUV露光を行った場合、マスク 20は E UVによって少な力もず発熱する。この発熱によってマスク 20が膨張すると、マスク 20 に形成されているパターンの寸法精度が低下するために、マスク 20用のガラス基板 にはゼロ膨張のガラス材料が使用される。一方、マスク 20が発熱すると、それを吸着 保持している静電チャック 10に熱が伝わり、これによつて誘電セラミックス体 11が熱 膨張を起こして変形する。この誘電セラミックス体 11の熱膨張による変形は、マスク 2 0の位置ずれや平面度の低下の原因となる。  When EUV exposure is performed by holding the mask 20 by suction on the electrostatic chuck 10, the mask 20 generates heat with little force due to EUV. When the mask 20 expands due to this heat generation, the dimensional accuracy of the pattern formed on the mask 20 deteriorates. Therefore, a glass material of zero expansion is used for the glass substrate for the mask 20. On the other hand, when the mask 20 generates heat, the heat is transmitted to the electrostatic chuck 10 holding and holding the mask, whereby the dielectric ceramic body 11 is thermally expanded and deformed. The deformation due to the thermal expansion of the dielectric ceramic body 11 causes a displacement of the mask 20 and a decrease in flatness.
[0022] そこで、誘電セラミックス体 11としては熱膨張率が小さい材料を用いることが好まし ぐ具体的には、 20°C— 26°Cにおける平均熱膨張係数がー 0. 5 X 10— 6— 0. 5 X 10 — 6である材料を用いることが好まし 、。 [0022] Therefore, it is preferable instrument specifically using thermal expansion coefficient is small material as a dielectric ceramic body 11, an average thermal expansion coefficient at 20 ° C- 26 ° C gar 0. 5 X 10- 6 — It is preferred to use a material that is 0.5 x 10 — 6 .
上述した誘電セラミックス体 11に求められる特性、すなわち、体積抵抗率が 1 X 109 -I X 1014 Ω 'cmであり、ヤング率が lOOGPa以上であり、 20°C— 26°Cにおける平 均熱膨張係数がー 0. 5 X 10"6-0. 5 X 10—6であるセラミックス材料としては、正の熱 膨張係数を有するセラミックス材料と負の熱膨張係数を有するセラミックス材料の複 合材料が挙げられる。 The characteristics required for the dielectric ceramic body 11 described above, that is, the volume resistivity is 1 × 10 9 -IX 10 14 Ω'cm, the Young's modulus is lOOGPa or more, and the average heat at 20 ° C. to 26 ° C. expansion coefficient gar 0. 5 X 10 "6 -0. the ceramic material is 5 X 10- 6, double coupling material of the ceramic material with ceramic material and a negative thermal expansion coefficient having a positive thermal expansion coefficient No.
[0023] 正の熱膨張係数を有するセラミックス材料としては、炭化珪素(SiC)、窒化珪素(Si N)、アルミナ (Al O )、ジルコニァ (ZrO )等が挙げられ、負の熱膨張係数を有する  Examples of the ceramic material having a positive coefficient of thermal expansion include silicon carbide (SiC), silicon nitride (SiN), alumina (Al 2 O 3), and zirconia (ZrO 2), and have a negative coefficient of thermal expansion.
2 3 2  2 3 2
セラミックス材料としては、ユークリプタイトゃコーディエライト等が挙げられる。そこで、 これらの材料を所定比率で配合すればよぐ焼成が困難な場合には、所定の熱膨張 係数が得られる範囲で焼結助剤を添加してもよい。  Examples of the ceramic material include eucryptite-cordierite. Therefore, when baking is difficult if these materials are blended in a predetermined ratio, a sintering aid may be added in a range where a predetermined coefficient of thermal expansion can be obtained.
[0024] 図 3は静電チャック 10が具備する電極 12a, 12bの平面形状を示す説明図である。 FIG. 3 is an explanatory view showing the planar shape of the electrodes 12a and 12b of the electrostatic chuck 10.
静電チャック 10の吸着面がその底面となるように、電極 12a, 12bは誘電セラミックス 体 11の底面近くに配置されて 、る。  The electrodes 12a and 12b are arranged near the bottom surface of the dielectric ceramic body 11 so that the suction surface of the electrostatic chuck 10 is the bottom surface.
電極 12aは誘電セラミックス体 11の略中心部に設けられ、電極 12bは電極 12aの 外側に電極 12aと絶縁して設けられている。静電チャック 10では、図 1に示されるよう に、マスク 20にアースをとる。電極 12a, 12bに所定の電圧を印加することにより、誘 電セラミックス体 11の底面にマスク 20を吸着させるための静電力が誘電セラミックス 体 11の底部に発生する。 The electrode 12a is provided substantially at the center of the dielectric ceramic body 11, and the electrode 12b is provided outside the electrode 12a and insulated from the electrode 12a. In the electrostatic chuck 10, as shown in FIG. 1, the mask 20 is grounded. By applying a predetermined voltage to the electrodes 12a and 12b, an electrostatic force for adsorbing the mask 20 on the bottom surface of the dielectric ceramic body 11 is applied to the dielectric ceramic. Occurs at the bottom of body 11.
[0025] 電源 14と電極 12a, 12bとそれぞれ接続する配線の途中にはスィッチ 13a, 13b力 S 設けられており、これらスィッチ 13a, 13bのオン'オフを別々に行うことによって、電 極 12a, 12bにそれぞれ独立して電圧を印加することができるようになつている。図 1 では、 1つの電源 14力も電極 12a, 12bに電圧が印加される構成を示した力 電極 1 2aの駆動用電源と電極 12bの駆動用電源を分けてもよい。  [0025] A switch 13a, 13b is provided with a force S in the middle of the wiring connecting the power supply 14 and the electrodes 12a, 12b, respectively. By turning on and off the switches 13a, 13b separately, the electrodes 12a, A voltage can be applied to each of the terminals 12b independently. FIG. 1 shows a configuration in which one power source 14 also applies a voltage to the electrodes 12a and 12b. The power source for driving the electrode 12a and the power source for driving the electrode 12b may be separated.
[0026] 電極 12a, 12bに用いられる材料は、誘電セラミックス体 11に用いられる材料と静 電チャック 10の製造方法に依存して定められる。静電チャック 10の製造方法として は、誘電セラミックス粉末を公知のドクターブレード法や押出成形法等によってシート 状に成形し、こうして得られたグリーンシートに所定の電極ペーストを所定のパターン で印刷し、電極ペーストが印刷されていないグリーンシートを所定数積み重ね、その 上に電極ペーストが印刷されたグリーンシートを積み重ね、さらにその上に電極ぺー ストが印刷されて ヽな 、グリーンシートを所定数積み重ねて、これらを熱プレス処理 等により一体ィ匕して、誘電セラミックスと電極とを同時に焼成する方法が挙げられる。  The materials used for the electrodes 12 a and 12 b are determined depending on the material used for the dielectric ceramics 11 and the method for manufacturing the electrostatic chuck 10. As a method of manufacturing the electrostatic chuck 10, a dielectric ceramic powder is formed into a sheet by a known doctor blade method, extrusion molding method, or the like, and a predetermined electrode paste is printed on the obtained green sheet in a predetermined pattern. A predetermined number of green sheets on which the electrode paste is not printed are stacked, a green sheet on which the electrode paste is printed is stacked thereon, and further a predetermined number of green sheets are stacked on which the electrode paste is printed. There is a method in which these are integrally formed by a hot press treatment or the like, and the dielectric ceramics and the electrodes are simultaneously fired.
[0027] このような同時焼成法では、電極 12a, 12bは、スクリーン印刷等により高い位置精 度で形成することができる。同時焼成法では、電極 12a, 12bとして用いられる材料と しては、誘電セラミックス体 11の焼成に耐えるタングステンやモリブデン、イリジウム等 の高融点金属、または窒化チタンや珪ィヒモリブデン等の高融点導電性ィヒ合物を用 、ることが必要となる。  [0027] In such a simultaneous firing method, the electrodes 12a and 12b can be formed with high positional accuracy by screen printing or the like. In the simultaneous firing method, the material used for the electrodes 12a and 12b is a high melting point metal such as tungsten, molybdenum, or iridium that can withstand firing of the dielectric ceramic body 11, or a high melting point conductive material such as titanium nitride or silicon molybdenum. It is necessary to use arsenic compounds.
[0028] 静電チャック 10の別の製造方法としては、誘電セラミックス粉末中の所定位置に、 電極 12a, 12bとなる金属箔ゃ金属網を埋設して、プレス成形し、焼成する方法があ る。但し、この方法では金属箔等の位置精度を高く維持するために注意を払う必要 がある。  [0028] As another method of manufacturing the electrostatic chuck 10, there is a method of embedding metal foils / metal nets serving as the electrodes 12a and 12b at predetermined positions in the dielectric ceramic powder, press-forming and firing. . However, in this method, care must be taken to maintain high positional accuracy of the metal foil and the like.
次に、静電チャック 10にマスク 20を吸着保持させる際の電極 12a, 12bの駆動方 法について説明する。  Next, a method of driving the electrodes 12a and 12b when the mask 20 is attracted and held by the electrostatic chuck 10 will be described.
[0029] 所定位置に固定された静電チャック 10にマスク 20を近付ける際のマスク 20の支持 方法には、マスク 20の中心部を支持 (または保持)する方法と、マスク 20の周辺部を 支持 (または保持)する方法がある力 前者ではマスク 20に形成されて 、るパターン を損傷してしまうおそれがある。そこで、通常は後者の方法が採用されるが、この場合 には、マスク 20は自重によってその中心部が下側に凸となるように橈む。 When the mask 20 is brought close to the electrostatic chuck 10 fixed at a predetermined position, a method of supporting (or holding) the central portion of the mask 20 and a method of supporting the peripheral portion of the mask 20 are provided. In the former case, the pattern formed on the mask 20 is May be damaged. Therefore, the latter method is usually adopted, but in this case, the mask 20 is bent by its own weight so that the center thereof is convex downward.
[0030] 一方、誘電セラミックス体 11の底面は、上述の通り、凹状にカ卩ェされているために、 マスク 20を静電チャック 10に近付けた状態では、マスク 20の中心部と静電チャック 1 0の吸着面の中心部との間隔は、これらの周辺部の間隔よりも広くなる。この状態でマ スク 20を、静電チャック 10の吸着面全体に一気に吸着させると、マスク 20の位置ず れが生じたり、マスク 20に応力が掛カることとなり好ましくな!/、。 On the other hand, since the bottom surface of the dielectric ceramic body 11 is formed in a concave shape as described above, when the mask 20 is close to the electrostatic chuck 10, the center of the mask 20 and the electrostatic chuck The distance from the center of the suction surface of 10 is wider than the distance between these peripheral parts. In this state, if the mask 20 is attracted to the entire attracting surface of the electrostatic chuck 10 at a stretch, the mask 20 may be displaced or stress may be applied to the mask 20, which is not preferable.
[0031] そこで、最初に電極 12aのみに電圧を印加して、静電チャック 10の吸着面の中心 部でマスク 20の略中心部を吸着保持する。その後、電極 12bに電圧を印加して、静 電チャック 10の吸着面の中心部の外側でマスク 20の未吸着部を吸着保持する。こ れにより、マスク 20に不要な応力が掛カもず、またマスク 20の位置ずれを防ぐことが できる。 Therefore, first, a voltage is applied only to the electrode 12a, and the substantially central portion of the mask 20 is suction-held at the center of the suction surface of the electrostatic chuck 10. Thereafter, a voltage is applied to the electrode 12b, and the non-sucked portion of the mask 20 is sucked and held outside the center of the suction surface of the electrostatic chuck 10. As a result, unnecessary stress is not applied to the mask 20, and the displacement of the mask 20 can be prevented.
なお、図 1および図 3では 2個の独立駆動可能な電極 12a, 12bを示した力 上述し たマスク 20の吸着方法によりマスク 20を静電チャックに吸着させるためには、誘電セ ラミックス体に略同心円状に 3またはそれ以上の独立駆動が可能な電極を設け、これ らを中心力 外側に向けて、逐次、駆動してもよい。  FIGS. 1 and 3 show two independently drivable electrodes 12a and 12b. In order to attract the mask 20 to the electrostatic chuck by the above-described method of attracting the mask 20, the dielectric ceramic body is used. Alternatively, three or more electrodes that can be independently driven may be provided substantially concentrically, and these may be sequentially driven toward the outside of the central force.
[0032] 上述した静電チャック 10では、吸着面が滑らかな曲面を有する誘電セラミックス体 1 1が用いられていたが、例えば、図 4の概略底面図に示すように、吸着面に所定のパ ターンでピン 15 (円柱状突起部)が形成され、また、その外周部にはリブ 16 (円環状 突起部)が形成されている誘電セラミックス体 11' を用いることもできる。このようなピ ン 15およびリブ 16は誘電セラミックス体 11の底面をサンドブラストカ卩ェ等することによ り形成することができる。誘電セラミックス体 11/ では、ピン 15およびリブ 16の頂点を 結ぶ曲面、つまりマスク 20 (図示せず)と接するポイントを結ぶ曲面が凹状になってい ればよい。 In the above-described electrostatic chuck 10, the dielectric ceramic body 11 having a smooth curved suction surface is used. For example, as shown in a schematic bottom view of FIG. It is also possible to use a dielectric ceramic body 11 'in which a pin 15 (cylindrical projection) is formed by the turn and a rib 16 (annular projection) is formed on the outer periphery thereof. Such pins 15 and ribs 16 can be formed by sandblasting the bottom surface of the dielectric ceramic body 11 or the like. In the dielectric ceramic body 11 /, the curved surface connecting the pin 15 and the apex of the rib 16, that is, the curved surface connecting the point in contact with the mask 20 (not shown) may be concave.
[0033] このようにピン 15およびリブ 16が形成された誘電セラミックス体 11' では、さらに誘 電セラミックス体 11' に、その厚み方向に貫通するガス供給孔 17aとガス排出孔 17b を形成しておくことが好ましい。マスク 20 (図示せず)がピン 15およびリブ 16に吸着 保持されている状態で、ガス供給孔 17aを通してピン 15の隙間に冷却ガス (例えば、 窒素ガス)を供給し、ピン 15間を流れた冷却ガスをガス排出孔 17bから排気すること により、マスク 20 (図示せず)と誘電セラミックス体 11' とを冷却することができる。 [0033] In the dielectric ceramic body 11 'on which the pins 15 and the ribs 16 are formed as described above, the dielectric ceramic body 11' is further provided with a gas supply hole 17a and a gas discharge hole 17b penetrating in the thickness direction. Preferably. While the mask 20 (not shown) is held by the pins 15 and the ribs 16, the cooling gas (for example, By supplying a nitrogen gas) and exhausting the cooling gas flowing between the pins 15 from the gas exhaust holes 17b, the mask 20 (not shown) and the dielectric ceramics 11 'can be cooled.
[0034] 次に静電チャック 10を備えた EUV光リソグラフィシステム、つまり、露光の照明光と して EUV光を用いた投影露光装置の実施形態について説明する。 図 5は、 EUV 光リソグラフィシステム 120の概略構成を示す模式図である。 EUV光リソグラフィシス テム 120では、像光学システム 122を用 V、て反射型マスク 124 (レチクル)のパターン の縮小像を形成する。 Next, an embodiment of an EUV light lithography system including the electrostatic chuck 10, that is, a projection exposure apparatus using EUV light as illumination light for exposure will be described. FIG. 5 is a schematic diagram showing a schematic configuration of the EUV optical lithography system 120. The EUV optical lithography system 120 uses the image optical system 122 to form a reduced image of the pattern of the reflective mask 124 (reticle).
[0035] 一般的に EUV光とは波長が 0. 1— 400nmの範囲の光を指す力 EUV光リソグラ フィシステム 120において露光のための照明光として使用される EUV光の波長は、 1 nm— 50nmの範囲にあることが望ましい。また、このような EUV光は、例えば、レー ザプラズマ X線源によって生成される。レーザプラズマ X線源は、励起光源として作 用するレーザ源 136とキセノンガス供給装置 138と、キセノンガス供給装置 138から 供給されるキセノンガスを放出するノズル 142とを有している。  In general, EUV light is a force that refers to light having a wavelength in the range of 0.1 to 400 nm. The wavelength of EUV light used as illumination light for exposure in the EUV light lithography system 120 is 1 nm— It is desirable to be in the range of 50 nm. Such EUV light is generated by, for example, a laser plasma X-ray source. The laser plasma X-ray source has a laser source 136 serving as an excitation light source, a xenon gas supply device 138, and a nozzle 142 for discharging xenon gas supplied from the xenon gas supply device 138.
[0036] レーザ源 136は紫外線以下の波長を持つレーザ光を発生させるものであり、例え ば、 YAGレーザ、エキシマレーザが使用される。レーザ源 136から放射されるレーザ 光は集光されて、ノズル 142から放出されたキセノンガスの流れに照射される。これに よりキセノンガスプラズマが発生し、励起されたキセノンガスの分子が低 、エネルギ状 態に落ちる際に EUV光の光子が放出される。 EUV光は大気中では低い透過性を 持っているため、キセノンガスプラズマを発生させる領域は真空チャンバ 140内に設 けられている。  [0036] The laser source 136 generates laser light having a wavelength equal to or shorter than ultraviolet light. For example, a YAG laser or an excimer laser is used. The laser light emitted from the laser source 136 is condensed and applied to the flow of xenon gas emitted from the nozzle 142. As a result, xenon gas plasma is generated, and photons of EUV light are emitted when excited xenon gas molecules fall to a low energy state. Since EUV light has low transmittance in the atmosphere, a region for generating xenon gas plasma is provided in the vacuum chamber 140.
[0037] 真空チャンバ 140内には、プラズマによって生成した EUV光を集光するための放 物面ミラー 144が配置されている。この放物面ミラー 144は集光光学系を構成し、ノ ズル 142からのキセノンガスが放出される位置の近傍に焦点位置がくるように配置さ れている。放物面ミラー 144は EUV光を反射するのに適当な多層膜を、典型的には 、放物面ミラー 144の凹面の表面に備えている。 EUV光はこの多層膜で反射され、 真空チャンバ 140の窓 141を通じて集光ミラー 146へと達する。この窓 141はレーザ プラズマ X線源が妨害を受けずに通過できるような開口としても構わない。  [0037] In the vacuum chamber 140, a parabolic mirror 144 for condensing EUV light generated by the plasma is arranged. The parabolic mirror 144 constitutes a condensing optical system, and is arranged such that the focal position is near the position where xenon gas is emitted from the nozzle 142. The parabolic mirror 144 includes a multilayer film suitable for reflecting EUV light, typically on the concave surface of the parabolic mirror 144. EUV light is reflected by this multilayer film and reaches a collector mirror 146 through a window 141 of a vacuum chamber 140. The window 141 may be an opening through which the laser plasma X-ray source can pass without interference.
[0038] 前述したように EUV光が大気中では低い透過性を持っているため、 EUV光が通 過する光経路は真空雰囲気に保持されていることが好ましい。このため、 EUV光が 通過する光経路は、真空チャンバ 132内に設けられており、この真空チャンバ 132は 、真空ポンプ 134の減圧装置を用いて所定の真空度に保たれている。なお、真空チ ヤンバ 140は真空チャンバ 132から分離されていることが望ましい。これは、キセノン ガスを放出するノズル 142によりゴミが生成される傾向があるからである。 [0038] As described above, since EUV light has low transmittance in the atmosphere, EUV light is not transmitted. The passing light path is preferably maintained in a vacuum atmosphere. Therefore, an optical path through which EUV light passes is provided in a vacuum chamber 132, and the vacuum chamber 132 is maintained at a predetermined degree of vacuum by using a pressure reducing device of a vacuum pump 134. Preferably, the vacuum chamber 140 is separated from the vacuum chamber 132. This is because dust tends to be generated by the nozzle 142 that discharges xenon gas.
[0039] 集光ミラー 146は、放物面ミラー 144から届いた EUV光を集光し、反射型マスク 12 4へと反射させる。集光ミラー 146で反射された EUV光は、反射型マスク 124の所定 の部分を照明する。なお、放物面ミラー 144と集光ミラー 146は、 EUV光リソグラフィ システム 120における照明システムを構成する。 The condenser mirror 146 collects the EUV light that has arrived from the parabolic mirror 144 and reflects the EUV light to the reflective mask 124. The EUV light reflected by the condenser mirror 146 illuminates a predetermined portion of the reflective mask 124. The parabolic mirror 144 and the condensing mirror 146 constitute an illumination system in the EUV optical lithography system 120.
反射型マスク 124は、マスクステージに設けられた静電チャック 10の下面に吸着保 持されている。反射型マスク 124で EUV光が反射されると、 EUV光は反射型マスク 1 24からのパターンデータによりパターン化される。このパターン化された EUV光は、 像光学システム 122を通じて、ウェハステージ 130上に載置されたウェハ Wに達する  The reflective mask 124 is held by suction on the lower surface of the electrostatic chuck 10 provided on the mask stage. When the EUV light is reflected by the reflective mask 124, the EUV light is patterned by the pattern data from the reflective mask 124. The patterned EUV light reaches the wafer W mounted on the wafer stage 130 through the image optical system 122.
[0040] 図 5では、像光学システム 122の一例として 4つの反射ミラー力も構成されているも のを示している。反射型マスク 124により反射された EUV光は、凹面第 1ミラー 150a 、凸面第 2ミラー 150b、凸面第 3ミラー 150c、凹面第 4ミラー 150dの順で反射されて 、マスクパターンの縮小された像を形成する。 FIG. 5 shows an example of the image optical system 122 in which four reflecting mirror forces are also configured. The EUV light reflected by the reflective mask 124 is reflected in the order of the concave first mirror 150a, the convex second mirror 150b, the convex third mirror 150c, and the concave fourth mirror 150d to form a reduced image of the mask pattern. Form.
ウェハ Wの露光処理は、典型的には、ステップ.スキャンにより行われる。この場合、 前記照明システムにより EUV光が反射型マスク 124の所定の領域に照射されてマス クパターンがウエノ、 Wの露光領域に投影され、露光の間、静電チャック 10とウェハス テージ 130は、像光学システム 122に対してそれぞれ相対的に位相を合わせて、像 光学システム 122の縮小率に従った所定の速度で移動する。ここで、反射型マスク 1 24とウェハ Wのスキャンは、像光学システム 122に対して 1つの自由度に対して行わ れる。反射型マスク 124の全ての領域をウェハ Wの所定の領域に露光すると、ウェハ Wのダイ上へのパターンの露光は完了する。次に、露光はウェハ Wの次のダイへとス テツプして進む。なお、ウェハ Wを保持するウェハステージ 130は、 X, Υ, Z方向に 可動であることが好ましい。 [0041] このような露光処理の際には、ウェハ W上のレジストから生じるガスが像光学システ ム 122の各ミラー 150a— 150dに景響を与えないように、ウェハ Wはパーティション 1 52の後ろに配置されることが望ましい。このパーティション 152は開口 152aを有して おり、この開口 152aを通じて EUV光が凹面第 4ミラー 150dからウェハ Wへと照射さ れる。パーティション 152内の空間は真空ポンプ 154により真空排気されている。これ により、ウエノ、 Wの表面に設けられているレジスト膜(図示せず)に照射することにより 生じるガス状のゴミが、各ミラー 150a— 150dや反射型マスク 124に付着することによ る光学性能の悪ィ匕が防止される。 The exposure processing of the wafer W is typically performed by step scanning. In this case, the illumination system irradiates a predetermined area of the reflective mask 124 with EUV light to project a mask pattern onto an exposure area of the eno and W, and during the exposure, the electrostatic chuck 10 and the wafer stage 130 The image optical system 122 moves at a predetermined speed in accordance with the reduction ratio of the image optical system 122 in phase with each other. Here, scanning of the reflective mask 124 and the wafer W is performed with respect to the image optical system 122 in one degree of freedom. When all the regions of the reflective mask 124 are exposed to predetermined regions of the wafer W, exposure of the pattern on the dies of the wafer W is completed. Next, exposure proceeds to the next die on wafer W. It is preferable that the wafer stage 130 holding the wafer W is movable in the X, Υ, and Z directions. In such an exposure process, the wafer W is placed behind the partition 152 so that gas generated from the resist on the wafer W does not affect the mirrors 150a to 150d of the image optical system 122. It is desirable to be arranged in. The partition 152 has an opening 152a, and EUV light is emitted from the concave fourth mirror 150d to the wafer W through the opening 152a. The space inside the partition 152 is evacuated by a vacuum pump 154. As a result, gaseous dust generated by irradiating a resist film (not shown) provided on the surface of the ueno or W is adhered to each of the mirrors 150a to 150d and the reflection type mask 124, thereby causing an optical phenomenon. Poor performance is prevented.
実施例  Example
[0042] 実施例および比較例にっ 、て説明する。  Examples will be described with reference to Examples and Comparative Examples.
静電チャックの製造に際して、誘電セラミックス体の原料粉末としては、負の熱膨張 係数を有するリチウムアルミノシリケートと、正の熱膨張係数を有する炭化珪素とが、 熱膨張係数が 20— 26°Cの範囲で 0. 5 X 10—6—0. 5 X 10— 6になるように配合され たものを用いた。また、電極材料としては、 30mm φのタングステンメッシュと、 152 X 152mm口で中心部に 40mm φの穴が抜かれたタングステンメッシュとを用いた。 In manufacturing the electrostatic chuck, the raw material powder of the dielectric ceramic body includes lithium aluminosilicate having a negative coefficient of thermal expansion and silicon carbide having a positive coefficient of thermal expansion, which have a coefficient of thermal expansion of 20-26 ° C. using those formulated to be 0. 5 X 10- 6 -0. 5 X 10- 6 range. As the electrode material, a 30 mm φ tungsten mesh and a tungsten mesh having a 152 × 152 mm opening and a 40 mm φ hole at the center were used.
[0043] 静電チャックは、上記原料粉末を所定の型に入れて一軸プレスで成形し、成形体 の上に上記タングステン製の電極を先に図 3に示したように配置し、その上に原料粉 末を充填して、ホットプレス焼成した。こうして得られた焼結体を研削加工し、 160mm X 160mm X 20mmとした。タングステンメッシュからなる電極は、吸着面となる面の 表面から 2mmの深さの位置に配置した。吸着面の反対の面力 各電極に給電する ための端子を挿入するために、焼結体に 4mm φの孔を空け、各孔に 3. 8mm φの 金属製のピンを挿入して、これを各電極と接続した。  [0043] In the electrostatic chuck, the raw material powder is put into a predetermined mold and formed by a uniaxial press, and the tungsten electrode is placed on the green body as shown in FIG. The raw material powder was filled and baked by hot press. The sintered body thus obtained was ground to 160 mm X 160 mm X 20 mm. The tungsten mesh electrode was placed at a depth of 2 mm from the surface to be the adsorption surface. Opposite surface force of adsorption surface To insert terminals for supplying power to each electrode, make a 4 mm φ hole in the sintered body and insert a 3.8 mm φ metal pin into each hole. Was connected to each electrode.
[0044] このようにして 2個の静電チャックを作製し、そのうちの 1個(実施例)には、吸着面を 、その中心部がその周縁部よりも 80nm深くなるように凹状に加工した。残りの 1個(比 較例)では、吸着面を 40nm以下の平面度を有するように加工した。  [0044] Two electrostatic chucks were produced in this manner, and one of the chucks (Example) was formed into a concave shape such that the suction surface was 80 nm deeper than its peripheral edge. . The remaining one (comparative example) was processed so that the adsorption surface had a flatness of 40 nm or less.
このようにして作製した実施例および比較例の静電チャックに、それぞれマスクを吸 着させて、マスクの平面度をレーザ干渉計を用いて測定した。ここでは、マスクの平 面度が 152 X I 52mmエリア内で 40nm以下となるものを合格と判定した。 [0045] なお、マスクとしては、ガラス製で、形状が 152mm X 152mm X 6. 3mmであり、ャ ング率が 80GPaであり、静電チャックに吸着される側の表面には厚さ数十/ z mの導 電性膜が形成されているものを用いた。また、静電チャックに設けられた 2個の電極 への電圧印加方法としては、中心部に配置された 30mm φのタングステンメッシュ電 極に先に所定の電圧を印加し、それから所定時間が経過した後に、 152 X 152mm 口のタングステンメッシュ電極に所定の電圧を印加する方法を用いた。なお、実施例 および比較例の静電チャックは、図 6の平面図に矢符で示すように、その側面の 3点 で拘束した。 The mask was sucked onto each of the electrostatic chucks of the examples and the comparative examples thus manufactured, and the flatness of the mask was measured using a laser interferometer. Here, a mask having a flatness of 40 nm or less in a 152 XI 52 mm area was determined to be acceptable. The mask is made of glass, has a shape of 152 mm × 152 mm × 6.3 mm, has a Young's modulus of 80 GPa, and has a thickness of several tens / A zm conductive film was used. In addition, as a method of applying voltage to the two electrodes provided on the electrostatic chuck, a predetermined voltage is first applied to a 30 mm φ tungsten mesh electrode arranged at the center, and a predetermined time has elapsed since then. Thereafter, a method of applying a predetermined voltage to a tungsten mesh electrode having a 152 × 152 mm opening was used. The electrostatic chucks of the example and the comparative example were constrained at three points on the side surfaces, as indicated by arrows in the plan view of FIG.
[0046] 実施例および比較例の静電チャックにそれぞれ吸着保持されたマスクの平面度を 測定した結果、実施例ではマスクの平面度は 40nm以下であった力 比較例の平面 度は 40nmよりも大きくなつた。これにより、静電チャックの吸着面を凹状とすることに より、マスクを高精度で保持することができることが確認された。  [0046] As a result of measuring the flatness of the masks sucked and held on the electrostatic chucks of the example and the comparative example, the flatness of the mask was less than 40 nm in the example. The flatness of the comparative example was greater than 40 nm. It has grown. As a result, it was confirmed that the mask could be held with high precision by making the suction surface of the electrostatic chuck concave.
以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例 は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱し ない範囲で変形可能であることは明らかである。  As described above, the present invention has been described in detail. However, the above-described embodiment and its modifications are merely examples of the present invention, and the present invention is not limited thereto. Obviously, modifications can be made without departing from the scope of the present invention.
産業上の利用可能性  Industrial applicability
[0047] 上述の通り、本発明の静電チャックは半導体製造装置、特に露光装置用の部材と して好適である。 [0047] As described above, the electrostatic chuck of the present invention is suitable as a member for a semiconductor manufacturing apparatus, particularly for an exposure apparatus.

Claims

請求の範囲 The scope of the claims
[1] 下面に被吸着物を吸着保持する吸着面が形成される静電チャックであって、  [1] An electrostatic chuck in which an adsorption surface for adsorbing and holding an object is formed on a lower surface,
前記吸着面が、凹状に形成されて!、ることを特徴とする静電チャック。  An electrostatic chuck, wherein the suction surface is formed in a concave shape.
[2] 請求項 1記載の静電チャックにおいて、  [2] The electrostatic chuck according to claim 1,
前記吸着面が、誘電体の下面に形成されていることを特徴とする静電チャック。  The electrostatic chuck, wherein the suction surface is formed on a lower surface of a dielectric.
[3] 請求項 1または請求項 2記載の静電チャックにお 、て、 [3] In the electrostatic chuck according to claim 1 or 2,
側面が、半導体製造装置の内部に固定されることを特徴とする静電チャック。  An electrostatic chuck having a side surface fixed inside a semiconductor manufacturing apparatus.
[4] 請求項 2または請求項 3記載の静電チャックにお 、て、 [4] In the electrostatic chuck according to claim 2 or 3,
前記誘電体は、体積抵抗率が 1 X 109— 1 X 1014 Ω 'cmであり、ヤング率が 100GP a以上であり、 20°C— 26°Cにおける平均熱膨張係数がー 0. 5 X 10— 6— 0. 5 X 10— 6で あることを特徴とする静電チャック。 The dielectric has a volume resistivity of 1 × 10 9 —1 × 10 14 Ω′cm, a Young's modulus of 100 GPa or more, and an average coefficient of thermal expansion at 20 ° C.—26 ° C. of −0.5. X 10- 6 - electrostatic chuck, which is a 0. 5 X 10- 6.
[5] 請求項 2な 、し請求項 4の 、ずれか 1項記載の静電チャックにお 、て、 [5] In the electrostatic chuck according to any one of claims 2 and 4,
前記被吸着物は、ヤング率が lOOGPa以下の板状のガラスであることを特徴とする 静電チャック。  The object to be adsorbed is a plate-shaped glass having a Young's modulus of less than 100 GPa.
[6] 請求項 2な 、し請求項 5の 、ずれか 1項記載の静電チャックにお ヽて、  [6] In the electrostatic chuck according to any one of claims 2 and 5,
前記誘電体に前記被吸着物を吸着保持するための静電力を発生させる、略同心 円状に配置された 2以上の独立駆動が可能な電極を有することを特徴とする静電チ ャック。  An electrostatic chuck comprising two or more independently-driveable electrodes arranged substantially concentrically to generate electrostatic force for adsorbing and holding the object to be adsorbed on the dielectric.
[7] 請求項 1な 、し請求項 6の 、ずれか 1項記載の静電チャックを備えたことを特徴とす る露光装置。  [7] An exposure apparatus, comprising the electrostatic chuck according to any one of claims 1 to 6.
[8] 下面が被吸着物を吸着保持する吸着面であり、かつ、前記吸着面が凹状である静 電チャックに、その下方力 被吸着物を接近させて、前記被吸着物を前記吸着面に 吸着保持させる、被吸着物の吸着方法であって、  [8] The lower surface is a suction surface for sucking and holding the object to be sucked, and the object to be sucked is brought close to the electrostatic chuck having the concave suction surface, so that the object to be sucked is moved to the suction surface. A method of adsorbing an object to be adsorbed,
前記吸着面の中心部で前記被吸着物の略中心部を吸着保持した後に、前記吸着 面の中心部の外側で前記被吸着物の未吸着部を吸着保持することを特徴とする被 吸着物の吸着方法。  A suction unit configured to adsorb and hold a substantially central portion of the object to be adsorbed at a center portion of the adsorption surface, and then adsorb and hold an unadsorbed portion of the object to be adsorbed outside the center of the adsorption surface Adsorption method.
PCT/JP2004/017781 2003-12-01 2004-11-30 Electrostatic chuck, exposure apparatus, and object chucking method WO2005055313A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-401372 2003-12-01
JP2003401372 2003-12-01
JP2004110639A JP2005191515A (en) 2003-12-01 2004-04-05 Electrostatic chuck, exposure system, and suction method of object to be sucked
JP2004-110639 2004-04-05

Publications (1)

Publication Number Publication Date
WO2005055313A1 true WO2005055313A1 (en) 2005-06-16

Family

ID=34656182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017781 WO2005055313A1 (en) 2003-12-01 2004-11-30 Electrostatic chuck, exposure apparatus, and object chucking method

Country Status (2)

Country Link
JP (1) JP2005191515A (en)
WO (1) WO2005055313A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942364B2 (en) * 2005-02-24 2012-05-30 京セラ株式会社 Electrostatic chuck, wafer holding member, and wafer processing method
US7869184B2 (en) * 2005-11-30 2011-01-11 Lam Research Corporation Method of determining a target mesa configuration of an electrostatic chuck
US20140002805A1 (en) * 2011-03-11 2014-01-02 ASML Netherelands B.V. Electrostatic Clamp Apparatus And Lithographic Apparatus
TWI819046B (en) * 2018-08-02 2023-10-21 日商創意科技股份有限公司 electrostatic adsorbent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263541U (en) * 1988-11-01 1990-05-11
JPH0513558A (en) * 1990-12-25 1993-01-22 Ngk Insulators Ltd Wafer heating device and its manufacture
JPH1072260A (en) * 1995-11-01 1998-03-17 Ngk Insulators Ltd Aluminium nitride sintered compact, material containing metal, electrostatic chuck, production of aluminum nitride sintered compact, and production of material containing metal
JPH11274281A (en) * 1998-03-26 1999-10-08 Kobe Steel Ltd Electrostatic chuck and manufacture thereof
JP2001068536A (en) * 1999-08-24 2001-03-16 Taiheiyo Cement Corp Aligner and support member used for the same
JP2003037159A (en) * 2001-07-25 2003-02-07 Toto Ltd Electrostatic chuck unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263541U (en) * 1988-11-01 1990-05-11
JPH0513558A (en) * 1990-12-25 1993-01-22 Ngk Insulators Ltd Wafer heating device and its manufacture
JPH1072260A (en) * 1995-11-01 1998-03-17 Ngk Insulators Ltd Aluminium nitride sintered compact, material containing metal, electrostatic chuck, production of aluminum nitride sintered compact, and production of material containing metal
JPH11274281A (en) * 1998-03-26 1999-10-08 Kobe Steel Ltd Electrostatic chuck and manufacture thereof
JP2001068536A (en) * 1999-08-24 2001-03-16 Taiheiyo Cement Corp Aligner and support member used for the same
JP2003037159A (en) * 2001-07-25 2003-02-07 Toto Ltd Electrostatic chuck unit

Also Published As

Publication number Publication date
JP2005191515A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP3851891B2 (en) Chuck, lithographic projection apparatus, chuck manufacturing method, device manufacturing method
JP3814359B2 (en) X-ray projection exposure apparatus and device manufacturing method
JP6359565B2 (en) Electrostatic clamp
JP2004064069A (en) Wavefront aberration correction apparatus and exposure apparatus
JP2010161319A (en) Electrostatic chucking device, exposure apparatus, and device manufacturing method
EP1780601A2 (en) Lithographic apparatus and device manufacturing method
WO2013083332A1 (en) Method for a patterning device support
TW200534046A (en) Lithographic apparatus and device manufacturing method
US7817252B2 (en) Holder for carrying a photolithography mask in a flattened condition
JP2010182866A (en) Electrostatic attraction holding device, aligner, exposure method, and method of manufacturing device
TW201235798A (en) Lithographic apparatus and device manufacturing method
JP2009266886A (en) Mask, mask holder, photolithography machine, and manufacturing method of device
JP4476824B2 (en) Electrostatic chuck and exposure apparatus
CN113508340A (en) Object holder comprising an electrostatic clamp
US20060257753A1 (en) Photomask and method thereof
WO2005055313A1 (en) Electrostatic chuck, exposure apparatus, and object chucking method
JPWO2003052804A1 (en) Substrate holding apparatus, exposure apparatus and device manufacturing method
JP2002305138A (en) Aligner and method for exposure
KR102502727B1 (en) reticle and exposure apparatus including the same
JP6971183B2 (en) Board fixing device
JP2005276886A (en) Electrostatic chuck and exposure apparatus
JP2009177126A (en) Mask blanks, mask, mask holding apparatus, exposure apparatus and method for manufacturing device
CN113892061A (en) Split double-sided wafer and reticle chuck
KR20220044078A (en) System and method for overlay error reduction
CN110476125B (en) Optical system and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 04819824

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 4819824

Country of ref document: EP