WO2005054281A2 - Proteína nmb1125 y su uso en formulaciones farmaceuticas - Google Patents

Proteína nmb1125 y su uso en formulaciones farmaceuticas Download PDF

Info

Publication number
WO2005054281A2
WO2005054281A2 PCT/CU2004/000015 CU2004000015W WO2005054281A2 WO 2005054281 A2 WO2005054281 A2 WO 2005054281A2 CU 2004000015 W CU2004000015 W CU 2004000015W WO 2005054281 A2 WO2005054281 A2 WO 2005054281A2
Authority
WO
WIPO (PCT)
Prior art keywords
protein
nmb1125
pharmaceutical formulation
formulation according
sequence
Prior art date
Application number
PCT/CU2004/000015
Other languages
English (en)
French (fr)
Other versions
WO2005054281A3 (es
Inventor
Rolando PAJÓN FEYT
Gerardo Enrique GUILLÉN NIETO
Gretel Sardiñas García
Lázaro Hiram BETANCOURT NÚÑEZ
Lila Rosa Castellanos Serra
Yasser PERERA NEGRÍN
Darién GARCÍA DÍAZ
Olivia NIEBLA PÉREZ
Evelin CABALLERO MENÉNDEZ
Sonia González Blanco
Original Assignee
Centro De Ingenieria Genetica Y Biotecnologia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2004294376A priority Critical patent/AU2004294376A1/en
Priority to US10/580,508 priority patent/US7691971B2/en
Priority to CA002547317A priority patent/CA2547317A1/en
Priority to EP04802607A priority patent/EP1693378B9/en
Priority to BRPI0417309-0A priority patent/BRPI0417309A/pt
Priority to DE602004023419T priority patent/DE602004023419D1/de
Application filed by Centro De Ingenieria Genetica Y Biotecnologia filed Critical Centro De Ingenieria Genetica Y Biotecnologia
Priority to AT04802607T priority patent/ATE444305T1/de
Priority to NZ547520A priority patent/NZ547520A/xx
Priority to PL04802607T priority patent/PL1693378T3/pl
Publication of WO2005054281A2 publication Critical patent/WO2005054281A2/es
Publication of WO2005054281A3 publication Critical patent/WO2005054281A3/es
Priority to NO20063020A priority patent/NO20063020L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • the present invention is related to the branch of medicine, particularly with the development of new vaccine formulations, of preventive or therapeutic application, which allow an increase in the quality of the immune response against vaccine antigens against diseases of diverse origin.
  • Neisseria meningitidis a Gram negative diplococcus whose sole host is man, is the causative agent of meningococcal meningitis.
  • this bacterium is in an asymptomatic carrier state in the population, this being the most common route for its microbiological isolation.
  • meningococcal meningitis In the world, children under 2 years of age are the population most susceptible to meningococcal meningitis, however, young adolescents and the population of older adults can also be affected. Untreated meningococcal disease is fatal in most affected individuals, and vaccination could prevent this situation by avoiding even such early stages as bacterial colonization.
  • capsular polysaccharides have been studied and evaluated as vaccine candidates.
  • a tetravalent, polysaccharide-based vaccine that confers protection against serogroups A, C, Y, and W-135 has been licensed in the United States.
  • the antibodies that are generated after Vaccination are serogroup-specific (Rosenstein N. et al. 2001. Menningococcal disease. N. Engl. J. Med, 344, 1378-1388).
  • Serogroup B unlike the rest, continues to be a major cause of endemic and epidemic meningococcal disease, largely due to the absence of effective vaccines against it. It has been seen that serogroup B polysaccharide has a low immunogenicity, in addition to the theoretical risk that vaccines based on this compound could develop immunotolerance and induce autoimmunity given its structural homology with oligosaccharide chains present in human fetal structures (Finne J. ef al. 1987. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissue. J. Immunol, 138: 4402-4407).
  • the vaccine produced by the Finlay Institute in Cuba (commercially known as VA-MENGOC-BC ® ) is produced from strain B: 4: P1.19,15 and is composed of a PME preparation of said strain and isolated capsular polysaccharide of serogroup C, adsorbed to aluminum hydroxide (Sierra GV et al. 1991. Vaccine against group B Neisseria meningitidis: protection tria! and mass vaccination results in Cuba. NIPH Ann Dis. 14 (2): 195-210).
  • This vaccine contributed to a rapid decline in the epidemic in Cuba (Rodr ⁇ guez AP, et al. The epidemiological impact of antimeningococcal B vaccination in Cuba. 1999. Mem Inst Oswaldo Cruz. 94 (4): 433 ⁇ 10).
  • VME vaccines appear to be effective in the presentation of PME, arranged in their natural conformation, to allow the generation of bactericidal antibodies, at least in adolescents and adults. The antibody responses generated increased the opsonophagocytosis of the meningococcus.
  • vaccines for example: PME content, LPS content and the presence or absence of adjuvant
  • PME content, LPS content and the presence or absence of adjuvant has a significant impact on immunogenicity and there are large differences from one producer to another according to the strain and / or the methodology used
  • VME vaccines have been more used than any other serogroup B vaccine and are useful in the context of disease outbreaks caused by a single type of strain.
  • P1 protein is an antigen with a significant level of variability, which seems to undergo continuous variation between and during outbreaks (Jelfs J, ef al. 2000. Sequence Variation in the porA Gene of a Clone of Neisseria meningitidis during Epidemic Spread. Clin Diagn Lab Immunol.
  • VME vaccine was developed in the Netherlands, (RIVM) containing P1 of six different pathogenic isolates (Van Der Ley P and Poolman JT. 1992. Construction of a multivalent meningococcal vaccine strain based on the class 1 outer membrane protein Infect Immun. 60 (8): 3156-61, Claassen I, et al. 1996.
  • VME external membrane vesicle
  • TbpA and B class 5 proteins
  • TbpA and B class 5 proteins
  • FbpA and FetA iron-regulated proteins
  • TbpB is part of the transferrin binding complex, together with TbpA.
  • TbpA has a more important role in iron binding (Painter M, et al. 1998. Analysis of TbpA and TbpB functionality in defective mutants of Neisseria meningitidis. J Med Microbiol 47 (9): 757-60) and it is a more effective immunogen than TbpB.
  • NspA The presence of NspA was detected by ELISA in 99.2% of the fesiated strains belonging to serogroups from A to C, using monoclonal antibodies (Martin D, et al. 1997. Highly conserveed Neisseria meningitidis Sur ⁇ ace Protein Confers Protection against Experimental Infection J Exp Med 185 (7): 1173-83). These monoclonal antibodies have been shown to have bactericidal activity against numerous strains of meningococcus and are capable of reducing the bacteraemia caused by this microorganism in a murine model (Cadieux N, et al. 1999.
  • Vaccines consisting of a single protein have been used for decades and have generally shown good stability, but it can vary if the presentation of proteins in the form of vesicles is required to ensure that the antigens remain attached to the membrane.
  • the immunogenicity and reactogenicity of VME can vary with alterations in the amount of proteins and LPS removed during the purification process.
  • the construction of synthetic liposomal vesicles allows the optimization and standardization of these vaccines (Christodoulides M, et al. 1998.
  • Intramuscular injection of the meningococcal vaccine has been the route used that allows the production of systemic immunoglobulin G (IgG), although the production of secretory IgA is important, since during meningococcal infection the invasion of the host occurs via the nasal epithelium.
  • Genome sequencing of N. meningitidis Genome sequencing of MC58 (a strain of serogroup B meningococcus) (Tettelin H, et al. 2000. Complete Genome Sequence of Neisseria meningitidis Serogroup B Strain MC58. Science 287 (5459): 1809-15172) and Z2491 (a serogroup A strain) (Parkhill J, et al. 2000.
  • Vaccine formulations using some of these proteins combined with adjuvants induced significant titers of bactericidal antibodies against the homologous strain (MC58), but none of them was as high as those induced by a VME vaccine of this same strain (Giuliani MM, et to 2000. Proceedings 12th IPNC. p. 22).
  • MC58 homologous strain
  • combinations of these proteins are more immunogenic than each protein separately (Santini L. et al. 2000. Proceedings 12th I PNC. P. 25).
  • the numerous ORFs excluded in this work perhaps due to the lack of protein expression or due to changes in immunological properties, need further investigation.
  • the components of a vaccine should be selected based on the contribution of the antigens in the pathogenesis of N. meningitidis.
  • the antigens alone they can be effective vaccine candidates, or alternatively, the attenuated mutants can be considered members of a vaccine. In this sense, the use of candidates whose sequence is highly conserved even among different genera of pathogenic microorganisms, could be a solution to the effects produced by them in case they generate a convenient response from the immune system.
  • the technical objective pursued with this invention is precisely the development of formulations capable of raising and / or expanding the body's immune response against several pathogens or against a broad spectrum of varieties thereof, these pathogens being parasitic, bacterial, viral. , cancerous or other.
  • the use of the NMB1125 protein is reported for the first time as a component of a vaccine formulation of a therapeutic or preventive nature against meningococcal disease or any infection caused by a member of the Neisseria genus.
  • the novel nature of this invention resides in the previously unreported use of the NMB1125 protein in formulations with new properties, capable of inducing a systemic and mucosal immune response of a broad protective spectrum, given the conserved nature of this protein in different isolates of Neisseria meningitidis and Neisser ⁇ a gonorrhoeae.
  • Figure 1 Vector pM100 used in the cloning and expression of the NMB1125 protein.
  • pTrip tryptophan promoter
  • N-term P64k N-terminal fragment of the P64k
  • T4 Terminator transcription terminator of bacteriophage T4.
  • Figure 3 Analysis by SDS-PAGE of the fractions obtained in the cell rupture; lane 1, total cells; lane 2, precipitate of rupture; lane 3, rupture supernatant.
  • Figure 4. Analysis by SDS-PAGE of the NMB1125 protein purification process from the rupture supernatant; lane 1, resulting protein; lane 2, a contaminant protein of lower molecular weight that migrates in another chromatographic peak; Lane 3, sample before applying.
  • FIG. 1 Western blotting recognition of the NMB1125 protein present in the N. meningitidis PMEs using sera from mice immunized with the recombinant protein: The arrow indicates the band corresponding to the immunoidentified NMB1125 protein.
  • Figure 7 Response of IgA antibodies against the recombinant protein NMB1125, at the mucosal level, in mice immunized with the antigen intranasally. The results are expressed as the inverse of the title, calculated as that dilution of the sample where the optical density of the preimmune sample is doubled.
  • A Response of IgA antibodies in saliva.
  • B Response of IgA antibodies in lung washes
  • Figure 8 Results of the search for similarity between the gene that codes for the NMB1125 protein (“query”) and the annotated sequences of the genomes of different serogroups of Neisseria meningitidis (“Sbjct”) using the BLAST program.
  • FIG. 9 Recognition of the NMB1125 protein in different strains of N. meningitidis, for sera produced against the recombinant antigen.
  • the graph only shows the values obtained when immunized with the semi-purified protein intraperitoneally, although in the rest of the cases a similar behavior was observed.
  • the results were expressed as the inverse of the title, calculated as the dilution of the serum where the optical density of the preimmune serum is doubled.
  • Figure 10 Comparison between sera obtained by immunizing with the protein obtained by two procedures, administered intraperitoneally, in the passive protection experiment against meningococcal infection, in the infant rat model.
  • Figure 11 Recognition of the NMB1125 protein, and a panel of unrelated antigens, by the mAbs generated (mAbs H8 / 92, 3H2764 and 7D2 / 15).
  • P64k subunit E3 of the enzyme pyruvate dehydrogenase from Neisseria meningitidis] T.T, tetanus toxoid;
  • HBsAg surface antigen of the Hepatitis B virus.
  • Protein identification based on ESI-MS spectra was performed using the ProFound program (Zhang W and Chait BT. 2000. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72: 2482-2489. Http : //prowl.rockefeller.edu/cgi-bin/ProFound).
  • Protein identification based on MS / MS spectra was performed through the MASCOT program (Perkins DN, et al. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567. Http : //www.matrixscience.com/). Search parameters included cysteine modification as well as possible oxidations and deamidations. From the analysis of the data obtained from the identification of the proteins present in preparations of outer membrane vesicles, it was selected to evaluate as a possible vaccine candidate for the NMB1125 protein from which it was identified by mass peptide 1 spectrometry.
  • Example 3 Cloning and expression of the NMB1125 gene, coding for the NMB1125 protein of N. meningitidis in Escher ⁇ chia coli.
  • the vector pM-100 was used, which vector allows cloning using different restriction enzymes, and obtaining high levels of heterologous protein expression in the form of cytoplasmic inclusion bodies in E. coli .
  • the vector pM-100 ( Figure 1) has the following main elements: tryptophan promoter, sequence corresponding to the N-terminal stabilizing segment of the P64k antigen of N.
  • meningitldis strain B 4: P1.19.15 coding for 47 aa, sequence corresponding to the transcription terminator of the bacteriophage T4 and sequence corresponding to the gene that confers ampicillin resistance as a selection marker.
  • an oligonucleotide pair (7738 and 7739) was designed to amplify the segment of said gene without the sequence encoding the signal peptide, using the genomic DNA of strain B: 4: P1.19,15.
  • the sequencing of the cloned NMB1125 gene segment was performed using the automatic sequencer ALFexpressIl (Thermo Sequenase TM Cy TM 5 Dye Terminator Kit, Amersham Biosciences) and oligonucleotides 1573 (No. Sequence identification: 8) and 6795 (No. Sequence identification : 9), which hybridize in the sequence corresponding to the stabilizing segment of the P64k and in the transcription terminator of the bacteriophage T4, respectively.
  • the plasmid obtained was named pM-238 for later use.
  • the E. coli strain GC 366 was transformed by chemical method with plasmid pM-238 ( Figure 2).
  • the expression experiment was performed in minimal M9 saline medium (Miller JH. 1972. Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, NEW York, USA) supplemented with 1% glycerol, 1% hydrolyzed casein, CaCI 2 0.1 mM, 1mM MgSO 4 and 50 ug / mL ampicillin
  • the cultures were incubated for 12 h at 37 ° C at 250 rpm. After this time they were centrifuged and the cell precipitate ruptured by ultrasonic disruption (IKA LABORTECHNIK).
  • the fraction containing the protein was then dialyzed to Buffer A (25mM Tris-hydroxymethyl amino methane) and the NMB1125 protein was purified by ion exchange chromatography using a 5/5 monoQ column (Amersham Biosciences) with a 0 to 100% NaCI gradient in 1h [BufferA as equilibrium buffer and BufferB (BufferA + 1M NaCI) to create the gradient], which was finally obtained with 80% purity as shown in Figure 4.
  • Buffer A 25mM Tris-hydroxymethyl amino methane
  • BufferB BufferA + 1M NaCI
  • mice In which the same protein obtained by two different methods was administered. The first was to extract the band from a polyacrylamide gel (Castellanos L, et al. 1996. A procedure for protein elution from, reverse-stained poiyarcylamide gels applicable at the low picomole level: An alternative route to the preparation of low abundance proteins for microanalysis Electrophoresis 17: 1564-1572) and the second one was referred to in Example 3, whose product was denoted as semi-purified protein. With these preparations, female Balb / c mice, 8 to 10 weeks old, were immunized, which were divided into 4 groups of 8 mice each.
  • Table 1 describes the composition of the groups: Tablal: Groups of Balb / C mice used for immunization
  • Antibody titers (IgG) against the recombinant protein and the homologous protein present in the bacteria were determined by an ELISA type assay, in sera obtained after the third inoculation.
  • the antibody titers of each animal against the recombinant protein are shown in Figure 5. After the second inoculation, antibody levels are detected, although they were higher after the third inoculation.
  • Immunological identification was also performed by Western blotting, detecting the recognition of the band corresponding to the protein.
  • Example 5 Characterization of the gene sequence coding for the NMB1125 protein in different strains of N. meningitidis.
  • Figure 8 shows the results of the sequence comparison for those sequences that produce a significant alignment in each of the genomes analyzed. These sequences have 100% or identity in serogroups A and B, and 99% identity in serogroup C, with the gene sequence coding for the NMB1125 protein obtained (No. Sequence identification: 3). Additionally, the nucleotide sequence of the gene in question was determined for 3 Cuban isolates (No. Sequence identification: 5-7) belonging to serogroup B (B: 4: P1.19,15) and sequence alignment was performed using the program ClustalX (http://www.ebi.ac.uk/clustalw/). The results of the alignment show that there is a great conservation in the nucleotide sequence of the NMB1125 gene among the different strains analyzed.
  • NMB1125 protein as a vaccine candidate, taking into account the high degree of similarity between the aforementioned sequences, would allow to generate an effective and broad-spectrum immune response (product of cross-reactivity), against meningococcal disease.
  • Example 7 Protection induced by murine sera generated against the NMB1125 protein, against homologous and heterologous strains, in the infant rat model
  • the immunization scheme was performed in Balb / c mice (H-2 d , female sex, 5-6 weeks) and had a total of 4 doses distributed as follows: on days 0, 15 and 30 of the 10 ⁇ g scheme of the NMB1125 antigen per mouse (total volume 100 ⁇ l), administered subcutaneously, emulsified the first dose with Freund's complete adjuvant, and the remaining doses with Freund's Incomplete Adjuvant; on day 50, 10 ⁇ g of the antigen per mouse in phosphate buffer solution (140 mM NaCI, 270 mM KCI, 1.5 mM KH 2 PO 4 , 6.5 mM Na 2 HPO x 2H 2 O, pH 7.2) intraperitoneally. Extractions were performed on days 0 and 45 of the scheme.
  • the splenocytes of the best-titted animal evaluated by an indirect ELISA using the NMB1125 protein (Example 3) in the coating, were fused with the myeloma X63 Ag8 653 cells and the resulting hybridomas were isolated and screened according to established methods (Gavilondo JV. 1995. Monoclonal Antibodies: Theory and Practice, Elves Scientiae, Havana, Cuba).
  • bactericidal antibody titer was expressed as the reciprocal of the highest antibody dilution evaluated, capable of killing 50% or more of the bacteria; two of the generated mAbs (3H2 / 64 and 7D2 / 15) had bactericidal titres greater than 1: 128 against the homologous strain B: 4: P1.19,15 and one (H8 / 92) greater than 1:80. They also had titers greater than 1: 64 against heterologous strains B: 15: P1.7,16 and C: 2a: P1.5.
  • a SPOTScan type assay was performed. A series of overlapping peptides covering the protein sequence were synthesized on a cellulose support and the membrane was incubated with a mixture of sera diluted 1: 100. The antigen-antibody reaction was detected by incubation with an alkaline murine-alkaline phosphatase anti-lnmunoglobulin G conjugate, followed by the addition of a solution containing the Bromo-Chloro-Indolyl-Phosphate substrate. Several common antigenic regions present in the protein were observed, regardless of the preparation that was used in immunization. However, it was noted that in the groups immunized with protein adjuvant with Freund's Adjuvant a much broader recognition pattern was obtained.
  • NMB1125 protein as a carrier of a peptide.
  • a synthetic peptide of 15 amino acid residues was conjugated thereto, derived from the V3 region of the gp120 protein of HIV-1, JY1 isolation. The conjugation was performed by the glutaraldehyde method.
  • the free JY1 peptide, the recombinant protein NMB1125 and the conjugate JY1-NMB1125 was administered to adult mice in a 3 dose scheme, where the immunogens were emulsified with Freund's Adjuvant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Uso de un nuevo antígeno vacunal aplicado de manera preventiva o terapéutica contra enfermedades bacterianas, virales, cancerosas, o de otro origen. El objetivo técnico que se persigue es el desarrollo de formulaciones capaces de elevar el espectro protector de las vacunas ya existentes y extenderlo contra diferentes patógenos. Para lograr este objetivo se aisló e identificó la proteína NMB1125 como componente de las preparaciones de membrana externa de Neisseria meningitidis, capaz de inducir actividad bactericida. Adicionalmente, se clonó y expresó el gen codificante para la proteína NMB1125, la cual se purificó evaluándose luego su inmunogenicidad en biomodelos animales. El secuenciamiento de genes homólogos evidenció, por su elevado grado de conservación, su alto valor como antígeno inductor de una respuesta inmune cruzada cuando es presentado por diferentes vías. Las formulaciones resultantes de esta invención son aplicables en la industria farmacéutica como formulaciones vacunales para uso humano.

Description

MEMORIA DESCRIPTIVA.
PROTEÍNA NMB1125 Y SU USO EN FORMULACIONES FARMACÉUTICAS.
La presente invención está relacionada con la rama de la medicina, particularmente con el desarrollo de nuevas formulaciones vacunales, de aplicación preventiva o terapéutica, que permitan un aumento en la calidad de la respuesta inmune contra antígenos vacunales contra enfermedades de origen diverso. Neisseria meningitidis, un diplococo Gram negativo cuyo único hospedero es el hombre, es el agente causal de la meningitis meningocóccica. Usualmente esta bacteria se encuentra en estado de portador asintomático en la población, siendo esta la vía más común para su aislamiento microbiológico.
En el mundo los niños menores de 2 años de edad son la población más susceptible a contraer la meningitis meningocóccica, sin embargo, los adolescentes jóvenes y la población de adultos mayores también pueden ser afectados. La enfermedad meningocóccica sin tratamiento es fatal en la mayoría de los individuos afectados, y la vacunación podría prevenir esta situación evitando incluso etapas tan tempranas como la colonización bacteriana.
Diversas estrategias se han desarrollado con el objetivo de obtener un preparado vacunal que satisfaga los requisitos necesarios para proteger a la población contra esta enfermedad. Para ello se han tenido en cuenta los antígenos capsulares cuya especificidad inmunológica ha permitido la clasificación de este microorganismo en serogrupos. En la actualidad se han definido 5 de estos serogrupos como los responsables de la mayoría de los casos de enfermedad meningocóccica en el mundo. El serogrupo A es el principal responsable de las epidemias en África subsahariana. Los serogrupos B y C están asociados a la mayor parte de los casos que ocurren en los países desarrollados. Los serogrupos Y y W135 están presentes en la mayoría de los casos remanentes de la enfermedad y de infección prevalente en algunas regiones de los Estados Unidos, con un marcado incremento en los últimos años. De ahí que los polisacáridos capsulares hayan sido objeto de estudio y evaluación como candidatos vacunales. Una vacuna tetravalente, basada en polisacáridos, que confiere protección contra los serogrupos A, C, Y, y W-135 ha sido licenciada en los Estados Unidos. Los anticuerpos que son generados tras la vacunación son serogrupo- específico (Rosenstein N. et al. 2001. Menningococcal disease. N. Engl. J. Med, 344, 1378-1388).
El serogrupo B, a diferencia del resto, continúa siendo una importante causa de enfermedad meningocóccica endémica y epidémica, en gran parte debido a la no existencia de vacunas efectivas contra el mismo. Se ha visto que el polisacárido del serogrupo B posee una baja inmunogenicidad, además del riesgo teórico que existe de que vacunas basadas en este compuesto podrían desarrollar inmunotolerancia e inducir autoinmunidad dada su homología estructural con cadenas oligosacarídicas presentes en estructuras fetales humanas (Finne J. ef al. 1987. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tisúes. J. Immunol, 138: 4402-4407). Por este motivo, el desarrollo de vacunas contra el serogrupo B se ha concentrado en el uso de antígenos subcapsulares. Vacunas de vesículas y proteínas de membrana externa En la década de los años 70 la producción de vacunas de proteínas de membrana externa (PME), estuvo basada en la eliminación del lipopolisacárido (LPS) de las preparaciones proteicas mediante la utilización de detergentes (Frasch CE and Robbins JD. 1978. Protection against group B meningococcal disease. III. Immunogenicity of serotype 2 vaccines and specificity of protection in a guinea pig model. J Exp Med 147(3):629-44). Después, las PME fueron precipitadas para producir agregados resuspendidos en cloruro de sodio. A pesar de los buenos resultados obtenidos en estudios realizados en animales, estas vacunas no indujeron anticuerpos bactericidas ni en adultos ni en niños (Zollinger WD, et al. 1978. Safety and immunogenicity of a Neissería meningitidis type 2 protein vaccine in animáis and humans. J. Infect. Dis. 137(6):728-39), resultado que fue atribuido a la desnaturalización de las proteínas presentes en la preparación como resultado de la precipitación. Los próximos pasos en la búsqueda de un nuevo candidato, fueron: diseñar una vacuna que presenta las proteínas en su conformación nativa formando vesículas de membrana externa (Zollinger WD, et al. 1979. complex of meningococcal group B polysaccharide and type 2 outer membrane protein immunogenic in man. J. Clin. Invest. 63(5):836-48, Wang LY and Frasch CE. 1984. Development of a Neisseria meningitidis group B serotype 2b protein vaccine and evaluation in a mouse model. Infecí Immun. 46(2):408-14136). Las vacunas compuestas por vesículas de membrana externa (VME) fueron significativamente más inmunogénicas por vía parenteral que los agregados de PME, y esta inmunogenicidad fue explicada inicialmente por una mayor adsorción al adyuvante hidróxido de aluminio (Wang LY and Frasch CE. 1984. Neissería meningitidis group B serotype 2b protein vaccine and evaluation in a mouse model.. Infect Immun. 46(2):408-14136).
Varios estudios de eficacia se han llevado a cabo utilizando vacunas basadas en vesículas de membrana externa, en diferentes formulaciones. Las dos vacunas más ampliamente estudiadas fueron desarrolladas en los años 80 en respuesta a brotes de la enfermedad meningocóccica en Cuba (Sierra GV et al. 1991. Vaccine against group B Neisseria meningitidis: protection tríal and mass vaccination results in Cuba. NIPH Ann Dis. 14(2): 195-210) y Noruega (Bjune G, et al. 1991. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lance! 338(8775): 1093-6), respectivamente. La vacuna producida por en Instituto Finlay en Cuba (comercialmente denominada VA-MENGOC-BC®) es producida a partir de la cepa B:4:P1.19,15 y está compuesta por una preparación de PME de dicha cepa y polisacárido capsular aislado del serogrupo C, adsorbidas a hidróxido de aluminio (Sierra GV et al. 1991. Vaccine against group B Neisseria meningitidis: protection tria! and mass vaccination results in Cuba. NIPH Ann Dis. 14(2):195-210). Esta vacuna contribuyó a un rápido descenso de la epidemia en Cuba (Rodríguez AP, et al. The epidemiological impact of antimeningococcal B vaccination in Cuba.1999. Mem Inst Oswaldo Cruz. 94(4):433^10).
La vacuna producida por el Instituto Nacional de Salud Pública de Noruega (NIPH) fue inicialmente utilizada durante un período hiperendémico de la enfermedad causada por una cepa perteneciente al clon ET-5 (B:15:P1.7,16). Esta vacuna monovalente también fue producida a partir de VME purificadas y adsorbidas a hidróxido de aluminio (BjuneG, et al. 1991. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet. 338(8775): 1093-6). Las vacunas de VME parecen ser efectivas en la presentación de PME, dispuestas en su conformación natural, para permitir la generación de anticuerpos bactericidas, al menos en adolescentes y adultos. Las respuestas de anticuerpos generadas, incrementaron la opsonofagocitosis del meningococo. La formulación precisa de las vacunas (por ejemplo: contenido de PME, contenido de LPS y la presencia o ausencia del adyuvante) tiene un significativo impacto en la inmunogenicidad existiendo grandes diferencias de un productor a otro según la cepa y/o la metodología empleada (Lehmann AK, et al. 1991. Immunization against serogroup B meningococci. Opsonin response in vaccinees as measured by chemiluminescence. APMIS. 99(8):769-72, Gómez JA, et al. 1998. Effect of adjuvants in the isotypes and bactericidal activity of antibodies against the transferrin-binding proteins of Neisseria meningitidis. Vaccine.16(17):1633-9, Steeghs L, et al. 1999. Immunogenicity of Outer Membrane Proteins in a Lipopolysaccharide-Deficient Mutant of Neisseria meningitidis; Influence of Adjuvants on the Immune Response. Infecí Immun. 67(10):4988-93).
Sin embargo, el perfil antigénico de los aislamientos obtenidos de pacientes cambia rápidamente y una vacuna abarca sólo un limitado número de cepas, por tanto puede ser inefectiva en unos años si las cepas que la componen no se corresponden con la epidemia local existente. Hasta el momento, las vacunas de VME han sido más utilizadas que cualquier otra vacuna del serogrupo B y son útiles en el contexto de los brotes de la enfermedad causada por un solo tipo de cepa.
Los ¡nmunógenos responsables de la reactividad cruzada inducida por este tipo de preparados no han sido completamente caracterizados, y muchos antígenos presentes en estos preparados restan por ser identificados. Estudios realizados con los sueros provenientes de ensayos clínicos del Instituto Finlay y el NIPH, sugieren que los anticuerpos contra la proteína de clase 1 (P1, también llamadas PorA) y Opc (otra PME mayoritaria) (Wedege E, et al. 1998. Immune Responses against Major Outer Membrane Antigens of Neisseria meningitidis in Vaccinees and Controls Who Contracted Meningococcal Disease during the Norwegian Serogroup B Protection Trial. Infecí Immun. 66(7): 3223-31), son importantes mediadores de la actividad bactericida del suero (fundamentalmente P1) y en ambas proteínas se observó una marcada variabilidad de cepa a cepa. La proteína P1 es un antígeno con un significativo nivel de variabilidad, el cual parece experimentar variación continua entre y durante los brotes (Jelfs J, ef al. 2000. Sequence Variation in the porA Gene of a Clone of Neisseria meningitidis during Epidemic Spread. Clin Diagn Lab Immunol. 7(3):390-5) y hacia el cual van dirigidos predominantemente los anticuerpos bactericidas después de la vacunación (y después de la enfermedad), por lo que la protección producto de la inmunización con vacunas de VME de una sola cepa (monovalentes), las cuales pudieran ser serosubtipo específica (por ejemplo dependientes del tipo de P1), se hace cuestionable. Para resolver este problema se desarrolló una vacuna de VME en Holanda, (RIVM) que contenía P1 de seis aislamientos patogénicos diferentes (Van Der Ley P and Poolman JT. 1992. Construction of a multivalent meningococcal vaccine strain based on the class 1 outer membrane protein. Infect Immun. 60(8):3156-61, Claassen I, et al. 1996. Production, characterization and control of a Neisseria meningitidis hexavalent class 1 outer membrane protein containing vesicle vaccine. Vaccine. 14(10):1001-8). En este caso las vesículas fueron extraídas de dos variantes de la cepa H44/76, genéticamente manipulada para expresar tres proteínas P1 independientes. La búsqueda de un antígeno universal Aunque las proteínas de membrana externa (PME) pueden inducir una respuesta inmune funcional contra el serogrupo B, ninguna de las vacunas confiere una protección universal, debido a la gran heterogeneidad de las regiones expuestas en la superficie de las PME. La discreta reactividad cruzada inducida por las vacunas de vesículas de membrana externa (VME) ha incentivado la búsqueda de un antígeno de membrana externa (o de un grupo de antígenos), que induzca anticuerpos funcionales y esté presente en todas las cepas del meningococo. Estos antígenos deben ser la base para una vacuna antimeningocóccica realmente universal, la cual eliminará el potencial problema de la modificación capsular en las cepas patogénicas, después de la vacunación con polisacárido. Debido a la variabilidad de la proteína inmunodominante P1, su uso en una vacuna universal está limitado y por tanto otras PME mayoritarias fueron consideradas candidatos para una vacuna y muchas de ellas se encuentran en desarrollo. Algunas de las que han sido incluidas son: proteínas de clase 5 (Opc), NspA y proteínas reguladas por hierro (TbpA y B, FbpA y FetA). TbpB forma parte del complejo de unión de transferrina, junto con TbpA. Recientes trabajos sugieren que la TbpA tiene una función más importante en la unión al hierro (Pintor M, et al. 1998. Analysis of TbpA and TbpB functionality in defective mutants of Neisseria meningitidis. J Med Microbiol 47(9): 757-60) y es un inmunogéno más efectivo que la TbpB. Una PME minoritaria, altamente conservada, ha sido descubierta a través de una técnica novedosa, la que consiste en emplear combinaciones de PME provenientes de diferentes cepas para inmunizar ratones (Martin D, et al. 1997. Highly Conserved Neissería meningitidis Suríace Protein Confers Protection against Experimental Infection. J Exp Med 185 (7): 1173-83). Se utilizaron células B de ratones inmunizados para producir hibridomas, y los mAbs se examinaron para evaluar la reactividad cruzada contra múltiples cepas del meningococo. Como resultado se encontró un anticuerpo monoclonal con reactividad cruzada que reconoció una PME de 22 kDa y fue designada como NspA. La inmunización con NspA indujo respuesta de anticuerpos bactericidas en ratones contra las cepas de los grupos A hasta O Esta proteína también protege contra la infección meningocóccica letal (Martin D, et al. 1997. Highly Conserved Neisseria meningitidis Suríace Protein Confers Protection against Experimental Infection. J Exp Med 185 (7): 1173-83). La comparación de secuencias de NspA, genéticamente divergentes, demostró que la proteína está altamente conservada (97% homología) (Cadieux N, et al. 1999. Bactericidal and Cross-Protective Activities of a Monoclonal Antibody Directed against Neisseria meningitidis NspA Outer Membrane Protein. Infecí Immun 67 (9): 4955-9). La presencia de NspA se detectó por ELISA en un 99.2% de las cepas fesíadas pertenecienfes a los serogrupos desde la A hasta la C, utilizando anticuerpos monoclonales (Martin D, et al. 1997. Highly Conserved Neisseria meningitidis Suríace Protein Confers Protection against Experimental Infection. J Exp Med 185 (7): 1173-83). Se ha comprobado que estos anticuerpos monoclonales presentan actividad bactericida contra numerosas cepas del meningococo y son capaces de reducir la bacteriemia provocada por este microorganismo en un modelo murino (Cadieux N, et al. 1999. Bactericidal and Cross-Protective Activities of a Monoclonal Antibody Directed against Neisseria meningitidis NspA Outer Membrane Protein. Infecí Immun 67 (9): 4955-9). Aunque estos resultados sugieren que la NspA es un prometedor candidato vacunal capaz de conferir protección contra varios serogrupos, un suero policlonal de ratón contra la proteína recombinante, no se asoció a la superficie en un 35% de las cepas de meningococo del serogrupo B, a pesar de la presencia del gen nspA en estos organismos (Moe GR et al. 1999. Differences in Suríace Expression of NspA among Neisseria meningitidis Group B Strains. Infecí Immun 67 (11): 5664-75).
Presentación de los antígenos y la formulación de la vacuna. Los primeros trabajos sugirieron que la forma en que los antígenos eran presentados era muy importante para generar una respuesta inmune. Los epitopos presentes en las proteínas que se encuentran unidas a la membrana, en muchos casos, dependen de la correcta estructura terciaria y la misma a su vez, depende frecuentemente de los dominios hidrofóbicos unidos a la membrana. Este efecto se ha demostrado en preparaciones de PME que resultan inmunogénicas en humanos, sólo cuando se presentan en forma de vesículas (Zollinger WD, et al. 1979. complex of meningococcal group B polysaccharide and type 2 outer membrane protein immunogenic in man. J Clin Invest 63 (5): 836-48, Zollinger WD, et al. 1978. Safety and immunogenicity of a Neisseria meningitidis type 2 protein vaccine in animáis and humans. J Infect Dis 137 (6): 728-39). Durante décadas se han utilizado vacunas integradas por una sola proteína y generalmente han mostrado buena estabilidad, pero la misma puede variar si se requiere la presentación de las proteínas en forma de vesículas para lograr que los antígenos permanezcan unidos a la membrana. La inmunogenicidad y reactogenicidad de las VME puede variar con alteraciones en la cantidad de proteínas y LPS eliminadas durante el proceso de purificación. La construcción de vesículas liposomales sintéticas permite la optimización y estandarización de dichas vacunas (Christodoulides M, et al. 1998. Immunization with recombinant class 1 outer-membrane protein from Neisseria meningitidis: influence of liposomes and adjuvants on antibody avidity, recognition of native protein and the induction of a bactericidal immune response against meningococci. Microbiology 144(Pt 11):3027- 37). Es decir, las PME han sido presentadas en forma de vesículas y como proteínas expresadas con un elevado grado de pureza, y en ambos casos se ha logrado desarrollar respuesta de anticuerpos. La inyección intramuscular de la vacuna antimeningocóccica ha sido la vía utilizada que permite la producción de inmunoglobulina G (IgG) sistémica, aunque es importante la producción de IgA secretora, ya que durante la infección meningocóccica la invasión al hospedero ocurre por la vía del epitelio nasal. Secuenciación del genoma de N. meningitidis La secuenciación del genoma de MC58 (una cepa de meningococo del serogrupo B) (Tettelin H, et al. 2000. complete Genome Sequence of Neisseria meningitidis Serogroup B Strain MC58. Science 287 (5459): 1809-15172) y de Z2491 (una cepa de serogrupo A) (Parkhill J, et al. 2000. complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404 (6777):502-6173) fueron publicadas durante el año 2000. La disponibilidad de las secuencias de ADN tiene una gran influencia en la investigación de una vacuna antimeningocóccica. Mientras la secuenciación del genoma de MC58 continuaba su desarrollo, Pizza y colaboradores comenzaron identificando los marcos abiertos de lectura (ORFs) que fueron predichos para codificar las proteínas expuestas en la superficie, unidas a membrana y las que se exportan. Este grupo de investigadores identificaron 570 ORFs, amplificados a través de la reacción en cadena de la polimerasa y los clonaron en Escherichia coli, para permitir la expresión de proteínas de fusión con cola de histidina o glutatión S-transferasa (Pizza M, et al. 2000. Identification of Vaccine Candidates Against Serogroup B Meningococcus by Whole-Genome Sequencing. Science 287 (5459): 1816-20). El 61% (350) de los ORFs seleccionados fueron expresados exitosamente, en la mayoría de los casos aquellos que no lograron expresarse, tenían más de un dominio hidrofóbico de transmembrana. Las proteínas recombinantes fueron purificadas y se utilizaron para inmunizar ratones. Los sueros obtenidos fueron evaluados por ELISA, citometría de flujo y se les determinó la actividad bactericida contra 2 cepas. Posteriormente se seleccionaron 7 proteínas que en los 3 ensayos resultaron positivas. Las formulaciones vacunales empleando algunas de estas proteínas combinadas con adyuvantes, indujeron títulos significativos de anticuerpos bactericidas contra la cepa homologa (MC58), pero ninguno de ellos fue tan alto como los inducidos por una vacuna de VME de esta misma cepa (Giuliani MM, et al. 2000. Proceedings 12th IPNC. p. 22). Por otro lado, existen evidencias de que combinaciones de estas proteínas resultan más ¡nmunogénicas que cada proteína por separado (Santini L. et al. 2000. Proceedings 12th I PNC. p. 25). Los numerosos ORFs excluidos en ese trabajo, quizás por la falta de la expresión proteica o por modificaciones de las propiedades inmunológicas, necesitan una investigación más profunda.
Los componentes de una vacuna deben seleccionarse en base a la contribución de los antígenos en la patogénesis de N. meningitidis. Los antígenos por sí solos pueden ser efectivos candidatos vacunales, o alternativamente, los mutantes atenuados pueden ser considerados integrantes de una vacuna. En este sentido, el empleo de candidatos cuya secuencia esté altamente conservada incluso entre diferentes géneros de microorganismos patógenos, podría resultar una solución a las afectaciones producidas por los mismos en caso de que generen una conveniente respuesta por parte del sistema inmune.
El objetivo técnico que se persigue con esta invención es precisamente el desarrollo de formulaciones capaces de elevar y/o ampliar la respuesta inmune del organismo contra varios patógenos o contra un espectro amplio de variedades del mismo, siendo estos patógenos de carácter parasitario, bacteriano, viral, canceroso u otro.
Descripción detallada de la invención
En el trabajo objeto de la presente invención se reporta por primera vez el uso de la proteína NMB1125 como componente de una formulación vacunal de carácter terapéutico o preventivo contra la enfermedad meningocóccica o cualquier infección provocada por un miembro del género Neisseria.
El carácter novedoso de esta invención reside en el uso, previamente no reportado, de la proteína NMB1125 en formulaciones con nuevas propiedades, capaces de inducir una respuesta inmune sistémica y mucosal de amplio espectro protector, dado el carácter conservado de esta proteína en diferentes aislamientos de Neisseria meningitidis y Neissería gonorrhoeae.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Vector pM100 empleado en el clonaje y la expresión de la proteína NMB1125. pTrip, promotor triptófano; N-term P64k, fragmento N-terminal de la P64k; T4 Terminator, terminador de la transcripción del bacteriófago T4.
Figura 2. Construcción final obtenida del clonaje de la secuencia nucleotídica correspondiente al gen NMB1125 en el vector pM100.
Figura 3. Análisis mediante SDS-PAGE de las fracciones obtenidas en la ruptura celular; carril 1 , células totales; carril 2, precipitado de ruptura; carril 3, sobrenadante de ruptura. Figura 4. Análisis mediante SDS-PAGE del proceso de purificación de la proteína NMB1125 a partir del sobrenadante de ruptura; carril 1, proteina resultante; carril 2, proteina contaminante de menor peso molecular que migra en otro pico cromatográfico; carril 3, muestra antes de aplicar.
Figura 5. Niveles de anticuerpos (IgG) contra la proteína recombinante NMB1125, obtenidos al inmunizar ratones con el mismo antígeno por vía intranasal o intraperitoneal. Se representan los resultados obtenidos en un ensayo tipo ELISA, que fueron expresados como el inverso del título, calculado como la dilución de la muestra donde se duplica la densidad óptica de la muestra preinmune.
Figura 6. Reconocimiento por Western blotting de la proteína NMB1125 presente en las PME de N. meningitidis utilizando sueros de ratones inmunizados con la proteína recombinante: La flecha indica la banda correspondiente a la proteína NMB1125 inmunoidentificada.
Figura 7. Respuesta de anticuerpos IgA contra la proteína recombinante NMB1125, a nivel mucosal, en ratones inmunizados con el antígeno por vía intranasal. Los resultados se expresan como el inverso del título, calculado como aquella dilución de la muestra donde se duplica la densidad óptica de la muestra preinmune. (A) Respuesta de anticuerpos IgA en saliva. (B) Respuesta de anticuerpos IgA en lavados pulmonares
Figura 8. Resultados de la búsqueda de similitud entre el gen que codifica para la proteína NMB1125 ("query") y las secuencias anotadas de los genomas de diferentes serogrupos de Neisseria meningitidis ("Sbjct") empleando el programa BLAST.
Figura 9. Reconocimiento de la proteína NMB1125 en diferentes cepas de N. meningitidis, por sueros producidos contra el antígeno recombinante. En el gráfico sólo se muestran los valores obtenidos cuando se inmunizó con la proteína semipurificada por vía intraperitoneal, aunque en el resto de los casos se observó un comportamiento similar. Los resultados fueron expresados como el inverso del título, calculado como la dilución del suero donde se duplica la densidad óptica del suero preinmune.
Figura 10. Comparación entre los sueros obtenidos inmunizando con la proteína obtenida por dos procedimientos, administrada por vía intraperitoneal, en el experimento de protección pasiva contra infección meningocóccica, en el modelo de rata infante.
Figura 11: Reconocimiento de la proteína NMB1125, y de un panel de antígenos no relacionados, por los mAbs generados (mAbs H8/92, 3H2764 y 7D2/15). P1 , proteína de clase 1 de Neisseria meningitidis cepa B:4:P1.15; P64k, subunidad E3 de la enzima piruvato deshidrogenasa de Neisseria meningitidis] T.T, toxoide tetánico; HBsAg, antígeno de superficie del virus de la Hepatitis B.
Figura 12. Reconocimiento de la proteína NMB1125 por sueros de pacientes convalecientes de la enfermedad meningocóccica. Como control negativo se emplearon sueros de donantes sanos. Los resultados se representan como la absorbancia (492nm) en un ensayo tipo ELISA.
Figura 13. Títulos de anticuerpos anti-péptido JY1 correspondientes a los sueros de los animales inmunizados con el péptido libre (JY1), la proteína recombinante (NMB1125) y el conjugado JY1-NMB1125.
Ejemplos de realización Ejemplo 1
Detección de la proteína NMB1125 en preparaciones de vesículas de membrana externa de Neissería meningitidis, serogrupo B.
Con el objetivo de estudiar las proteínas presentes en preparaciones de vesículas de membrana externa de Neisseria meningitidis serogrupo B (cepa B:4:P1.19,15), se realizó una electroforesis bidimensional según lo descrito en la literatura (Gorg A, et al. 1985. Electrophoresis 6:599-604). A continuación se realizó una digestión enzimática de las proteínas extraídas del gel empleando la enzima tripsina (Promega, Madison, Wl, E.U). Los péptidos generados durante la digestión fueron extraídos de la solución empleando microcolumnas (ZipTips, Millipore, MA, E.U). Previo al análisis por espectrometría de masas los péptidos fueron eluídos de las microcolumnas con solución de acetonitrilo al 60% y 1% de ácido fórmico e inmediatamente la mezcla se cargó en nanoagujas (Protana, Dinamarca). Las mediciones se realizaron en un espectrómetro de masas híbrido con cuadrupolo y tiempo de vuelo (QTof-2™, Manchester, Reino Unido), equipado con una fuente de ionización (nanoESI). Los espectros de masas fueron adquiridos en un rango de m/z desde 400 hasta 2000 en 0.98 segundos y utilizando 0.02 segundos entre cada uno de los barridos. La adquisición y procesamiento de los datos fue realizada a través del programa MassLynx (versión 3.5, Micromass). La identificación de proteínas basada en los espectros ESI-MS se realizó empleando el programa ProFound (Zhang W and Chait BT. 2000. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72:2482-2489. http://prowl.rockefeller.edu/cgi-bin/ProFound). La búsqueda se subscribió a las secuencias de genes y proteínas de bacterias contenidas en las bases de datos SwissProt (http://www.ebi.ac.uk/swissprot/) y NCBI (http://www.ncbi.nlm.nih.gov/), considerando la oxidación de metioninas, la desamidación y la carboxiamidometilación de cisteínas como posibles modificaciones presentes.
La identificación de las proteínas basada en los espectros MS/MS se realizó a través del programa MASCOT (Perkins DN, et al. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567. http://www.matrixscience.com/). Entre los parámetros de búsqueda se incluyó la modificación de cisteínas así como las posibles oxidaciones y desamidaciones. A partir del análisis de los datos obtenidos de la identificación de las proteínas presentes en preparaciones de vesículas de membrana externa se seleccionó para evaluar como posible candidato vacunal a la proteína NMB1125 de la cual fue identificado mediante espectrometría de masas 1 péptido.
Ejemplo 2 Análisis de homología de la proteína NMB1125 con productos génicos reportados en bases de datos
Para el análisis de homología de la proteína NMB1125, se realizó una búsqueda de similitud de secuencias en la base de datos del NCBI empleando el programa BLAST ( Altschul SF, et al. 1990. Basic local alignment search tool. J Mol Biol 215:403-410, http://www.ncbi.nlm. nih.gov/BLAST/). Los resultados de este procedimiento señalaron como homólogos, además de a las correspondientes proteínas de otros serogrupos de Neisseria, a varios productos génicos de otros microorganismos entre los cuales se encuentran proteínas hipotéticas de los géneros Ralstonia, Yersinia y Pseudomonas.
La conservación de esta proteína en estos genomas, ha dado lugar a que se reúnan como grupo de proteínas ortólogas en un dominio conservado reportado en la NCBI [(gnllCDD| 13507. COG4259, Uncharacterized protein conserved in bacteria [Function unknown)], lo cual indica un común ancestro filogenético para todas ellas.
El análisis de la vecindad del gen que codifica para la proteína NMB1125 empleando la base de datos MBGD (Uchiyama, I. 2003. MBGD: microbial genome datábase for comaprative análisis. Nucleic Acids Res. 31, 58-62.), reveló una significativa similitud en la organización génica con los genes de los microorganismos antes mencionados, lo que unido a los datos anteriores, nos conduce a confirmarlos como homólogos en los respectivos genomas.
Ejemplo 3: Clonaje y expresión del gen NMB1125, codificante para la proteína NMB1125 de N. meningitidis en Escheríchia coli. Para realizar el clonaje y la expresión del gen NMB1125 se utilizó el vector pM-100, dicho vector permite realizar el clonaje empleando diferentes enzimas de restricción, y obtener elevados niveles de expresión de proteínas heterólogas en forma de cuerpos de inclusión citoplasmáticos en E. coli. El vector pM-100 (Figura 1) cuenta con los siguientes elementos principales: promotor triptófano, secuencia correspondiente al segmento estabilizador N-terminal del antígeno P64k de N. meningitldis cepa B:4:P1.19,15 codificante para 47 a.a, secuencia correspondiente al terminador de la transcripción del bacteriófago T4 y secuencia correspondiente al gen que confiere resistencia a ampicillina como marcador de selección. A partir de la secuencia nucleotídica correspondiente al gen que codifica para la proteína NMB1125 (Ejemplo 1) se procedió a diseñar un par de oligonucleótidos (7738 y 7739) para amplificar el segmento de dicho gen sin la secuencia que codifica para el péptido señal, utilizando el ADN genómico de la cepa B:4:P1.19,15. Bglll
7738: 5Λ TTAGATCTCTATCCCGATACCGTCTATGAAGG Λ3 (No. Identificación de secuencia: 1)
7739: 5' AAGCTCGAGTCGTTTGCCTCCTTTACC 3' Xhol (No. Identificación de secuencia: 2)
Para la predicción del péptido señal se utilizaron los métodos descritos en el SignalP World Wide Web server mttp://www.cbs.dtu.dk/services/SiαnalP-2.0). A continuación de la amplificación del gen de la proteína NMB1125 mediante la reacción en cadena de la polimerasa (RCP) (Randall K, et al. 1988. Science 42394:487-491) utilizando los oligonucleótidos 7738 y 7739, se digirió dicho producto de RCP empleando las enzimas Bglll y Xhol, y se clonó en el vector pM-100 digerido previamente de la misma forma. La construcción final obtenida se muestra en la Figura 2, la proteína NMB1125 se expresa fusionada con el segmento N-terminal de la P64k. La secuenciación del segmento del gen NMB1125 clonado se realizó empleando el secuenciador automático ALFexpressIl (Termo Sequenase™ Cy™ 5 Dye Terminador Kit, Amersham Biosciences) y los oligonucleotidos 1573 (No. Identificación de secuencia: 8) y 6795 (No. Identificación de secuencia: 9), que hibridan en la secuencia correspondiente al segmento estabilizador de la P64k y en el terminador de la transcripción del bacteriófago T4, respectivamente. El plasmidio obtenido se nombró pM-238 para su posterior utilización.
Para la expresión del gen NMB1125 se transformó por el método químico la cepa de E. coli GC 366 con el plasmidio pM-238 (Figura 2). El experimento de expresión se realizó en medio mínimo salino M9 (Miller JH. 1972. Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, NEW York, USA) suplementado con glicerol al 1%, hidrolizado de caseína al 1%, CaCI2 0.1 mM, MgSO4 1mM y ampicillina 50 ug/mL Los cultivos se incubaron durante 12 h a 37°C a 250 r.p.m. Al cabo de este tiempo se centrifugaron y se realizó la ruptura del precipitado celular mediante disrupción ultrasónica (IKA LABORTECHNIK). Fracciones de sobrenadante y precipitado obtenidas fueron analizadas mediante electroforesis desnaturalizante en geles de poliacrilamida (SDS-PAGE) (Laemmli UK. 1970. Cleavage of structural proteins during the assembly ofthe head of bacteríophage T4. Nature 277:680) y tinción con Azul Brillante de Coomassie R-250; analizándose el porciento de expresión mediante densitometría del gel (LKB Bromma 2202 Ultrascan láser densitometer; Amersham Pharmacia Biotech, Reino Unido). La proteína NMB1125 se obtuvo en el sobrenadante de ruptura, representando un 60% del total de las proteínas presentes en esta fracción (Figura 3). A continuación la fracción que contenía a la proteína se dializó para quedar en Buffer A (25mM de Tris-hidroximetil amino metano) y se purificó la proteína NMB1125 mediante una cromatografía de intercambio iónico empleando una columna monoQ 5/5 (Amersham Biosciences) con un gradiente de 0 a 100% de NaCI en 1h [BufferA como buffer de equilibrio y BufferB (BufferA+1M de NaCI) para crear el gradiente] con lo cual finalmente se obtuvo con un 80% de pureza como se muestra en la Figura 4.
Ejemplo 4
Evaluación de la respuesta inmune inducida por la proteína NMB1125 por vía intraperitoneal e intranasal.
Para evaluar la inmunogenicidad de la proteína NMB1125, se diseñó un esquema de inmunización en ratones, en el que se administró la misma proteína obtenida por dos métodos diferentes. El primero consistió en extraer la banda de un gel de poliacrilamida (Castellanos L, et al. 1996. A procedure for protein elution from, reverse-stained poiyarcylamide gels applicable at the low picomole level: An alternative route to the preparation of low abundance proteins for microanalysis. Electroforesis 17: 1564-1572) y el segundo se refirió en el Ejemplo 3, cuyo producto se denotó como proteína semipurificada. Con estas preparaciones se inmunizaron ratones Balb/c hembras, de 8 a 10 semanas de edad, los cuales fueron divididos en 4 grupos de 8 ratones cada uno. Se realizaron 3 inmunizaciones por vía intranasal o intraperitoneal, separadas por un intervalo de 15 días. La proteína administrada por vía intraperitoneal fue emulsificada con adyuvante de Freund. En la Tabla 1 se describe la composición de los grupos: Tablal : Grupos de ratones Balb/C utilizados para la inmunización
Figure imgf000018_0001
Los títulos de anticuerpos (IgG) contra la proteína recombinante y la proteína homologa presente en la bacteria se determinaron mediante un ensayo tipo ELISA, en sueros obtenidos después de la tercera inoculación. En la Figura 5 se muestran los títulos de anticuerpos de cada uno de los animales contra la proteína recombinante. Después de la segunda inoculación se detectan niveles de anticuerpos, aunque fueron superiores luego de la tercera inoculación. También se realizó la identificación inmunológica por Western blotting, detectándose el reconocimiento de la banda correspondiente a la proteína. Los grupos inmunizados por vía intraperitoneal presentaron títulos de anticuerpos significativamente superiores a los grupos inoculados por vía intranasal. Para el análisis estadístico de los resultados se utilizó el método no paramétrico de análisis de varianza de clasificación simple por rangos de Kruskal-Wailis, debido a que las varianzas entre los grupos no eran homogéneas según la Prueba de Bartlett. En la comparación de las medias de los tratamientos, en las combinaciones necesarias, se empleó la prueba de comparación múltiple de Dunn. Los sueros obtenidos después de inmunizar con la proteína recombinante reconocieron a la proteína natural presente en un preparado de proteínas de membrana externa (PME) de la cepa CU385. Estos resultados son expuestos en la Figura 6.
Para analizar la respuesta a nivel mucosal se evaluaron muestras de saliva y lavados pulmonares. En la Figura 7 sólo se muestran los grupos inmunizados por vía intranasal y se observa un incremento en el título de IgA en el grupo al cual se le administró la proteína semipurificada.
Ejemplo 5 Caracterización de la secuencia del gen codificante para la proteína NMB1125 en distintas cepas de N. meningitidis.
Para analizar la conservación de la secuencia del gen codificante para la proteína NMB1125 entre las distintas cepas de Neisseria meningitidis se realizó una búsqueda de similitud con los genomas de Neisseria meningitidis (serogrupos A, B y C) anotados en la base de datos del NCBI (NC 003116.1. NC 003112.1 , NC 003221. SANGER 135720IContig1) empleando el programa BLAST (Altschul SF, et al. 1990. Basic local alignment search tool. J Mol Biol 215:403-410. http://www.ncbi.nlm.nih.gov/BLAST/). La Figura 8 muestra los resultados de la comparación de secuencias para aquellas secuencias que producen un alineamiento significativo en cada uno de los genomas analizados. Dichas secuencias presentan un 100%o de identidad en los serogrupos A y B, y un 99% de identidad en el serogrupo C, con la secuencia del gen codificante para la proteína NMB1125 obtenida (No. Identificación de secuencia: 3). Adicionalmente se determinó la secuencia nucleotídica del gen en cuestión para 3 aislamientos cubanos (No. Identificación de secuencia: 5-7) pertenecientes al serogrupo B (B:4:P1.19,15) y se realizó un alineamiento de secuencia empleando el programa ClustalX (http://www.ebi.ac.uk/clustalw/). Los resultados del alineamiento evidencian que existe una gran conservación en la secuencia nucleotídica del gen NMB1125 entre las distintas cepas analizadas.
El empleo de la proteína NMB1125 como candidato vacunal, tomando en cuenta el alto grado de similitud existente entre las secuencias anteriormente citadas, permitiría generar una respuesta inmune efectiva y de amplio espectro de protección (producto de la reactividad cruzada), contra la enfermedad meningoccócica.
Ejemplo 6
Caracterización de la respuesta inmune de amplio espectro de acción inducida por la inmunización de ratones Balb/c con la proteína NMB1125.
Con el objetivo de evaluar si la inmunización con la proteína NMB1125 induce una respuesta de amplia reactividad cruzada con otras cepas de Neisseria, se realizó un ensayo tipo ELISA en el que las placas de poliestireno se recubrieron con células totales de 7 cepas de Neisseria pertenecientes a diferentes serotipos y serosubtipos. Las placas se incubaron con la mezcla de los sueros obtenidos contra la proteína NMB1125 por dos rutas de inmunización, según se describe en el Ejemplo 4. En la Figura 9 se muestran los resultados obtenidos con los sueros producidos contra la proteína semipurificada administrada por la ruta intraperitoneal. Como se observa los sueros inmunes reconocieron la proteína presente en diferentes cepas, con niveles semejantes al encontrado en la cepa CU385. El resto de los sueros tuvieron un comportamiento similar en este ensayo.
Ejemplo 7 Protección inducida por los sueros murinos generados contra la proteína NMB1125, contra cepas homologas y heterólogas, en el modelo de rata infante
Para determinar la actividad funcional de los antisueros obtenidos, se realizó un ensayo de protección en el modelo de infección meningocóccica en ratas infantes. En dicho ensayo se emplearon 24 ratas de 5 a 6 días de nacidas, divididas en grupos de 6 animales cada uno.
Se determinó si los sueros que se administraron por la ruta ¡ntraperitoneal protegían a las ratas de la infección por la bacteria (cepa CU385), inoculada por la misma ruta una hora después. Los sueros de cada grupo de ratones inmunizados se mezclaron antes de ser inoculados en ratas infantes y se diluyeron 1/10 en PBS estéril. Cuatro horas después del reto, los animales se sacrificaron y se hizo un conteo de las bacterias viables en la sangre.
Para la interpretación de los resultados se realizó un Análisis de Varianza (Anova) seguido de un análisis de comparación múltiple de Dunnet, donde se comparan los grupos en estudio con el control negativo. Como se observa en la Figura 10 los grupos que recibieron los antisueros contra la proteína NMB1125 mostraron diferencias significativas respecto al control negativo, o sea fueron protectores en este modelo.
Un ensayo similar fue realizado infectando las ratas infantes con las cepas H44/48 y 120/90, aisladas de pacientes en Cuba, cuya clasificación serológica es homologa a la cepa B385. Además, se realizaron experimentos de reto con las cepas 233 (C:2a: P1.5) del serogrupo C y la cepa H44/76 ( B:15:P1.7,16) del serogrupo B. En todos los casos los antisueros protegieron a las ratas infantes contra la infección meningocóccica. Ejemplo 8
Generación de anticuerpos monoclonales contra la proteína NMB1125 capaces de mediar actividad bactericida contra Neissería meningitidis Con el objetivo de generar anticuerpos monoclonales (mAbs) específicos contra la proteína NMB1125, y estudiar su capacidad funcional de mediar actividad bactericida contra cepas homologas y heterólogas de N. meningitidis, se empleó en un esquema de inmunización una preparación de la proteína NMB1125 con un porciento de pureza superior al 80% (Ejemplo 3). El esquema de inmunización se realizó en ratones Balb/c (H-2d , sexo femenino, 5-6 semanas) y contó con un total de 4 dosis distribuidas de la siguiente manera: los días 0, 15 y 30 del esquema 10 μg del antígeno NMB1125 por ratón ( volumen total 100 μl), administrados por vía subcutánea, emulsificada la primera dosis con Adyuvante completo de Freund, y las restantes dosis con Adyuvante Incompleto de Freund; el día 50, 10 μg del antígeno por ratón en solución tampón fosfato (NaCI 140 mM, KCI 270 mM, KH2PO4 1.5 mM, Na2HPO x 2H2O 6.5 mM, pH 7.2) por vía ¡ntraperitoneal. Las extracciones se realizaron los días 0 y 45 del esquema.
Los esplenocitos del animal de mejor título, evaluados mediante un ELISA indirecto empleando la proteína NMB1125 (Ejemplo 3) en el recubrimiento, se fundieron con las células de mieloma X63 Ag8 653 y los hibridomas resultantes se aislaron y pesquisaron según métodos establecidos (Gavilondo JV. 1995. Anticuerpos Monoclonales: Teoría y Práctica, Elfos Scientiae, La Habana, Cuba). La reactividad de los anticuerpos secretados por los hibridomas obtenidos contra la proteína NMB1125, así como su reactividad cruzada contra un grupo de antígenos no relacionados, se evaluó mediante un ELISA indirecto empleando en el recubrimiento 5 μg/ml de cada uno de los antígenos, e igual concentración de cada uno de los mAbs a ensayar. La Figura 11 muestra los resultados obtenidos en este experimento, en total se obtuvieron 3 clones positivos (mAbs H8/92, 3H2/64 y 7D2/15) que reconocen específicamente la proteína NMB1125, y no a la secuencia aminoacídica correspondiente al segmento N-term de la P64k, tampoco al resto del panel de antígenos no relacionados ensayados.
Para determinar la capacidad de los mAbs generados contra la proteína NMB1125 de mediar respuesta bactericida contra cepas homologas y heterólogas de Neisseria meningitidis se realizó un ensayo bactericida. El título de anticuerpos bactericidas fue expresado como el recíproco de la mayor dilución de anticuerpos evaluada, capaz de matar el 50% ó más de las bacterias; dos de los mAbs generados (3H2/64 y 7D2/15) tuvieron títulos bactericidas superiores a 1:128 contra la cepa homologa B:4:P1.19,15 y uno (H8/92) superior a 1:80. Además tuvieron títulos superiores a 1 :64 contra las cepas heterólogas B:15:P1.7,16 y C:2a:P1.5.
Ejemplo 9
Caracterización de las regiones blanco de la respuesta inmune murina contra la proteína NMB1125
Con el objetivo de identificar las regiones dentro de la proteína, que son más reconocidas por los antisueros murinos generados contra el antígeno recombinante se realizó un ensayo de tipo SPOTScan. Una serie de péptidos sobrelapados que cubren la secuencia de la proteína se sintetizaron sobre un soporte de celulosa y la membrana se incubó con una mezcla de sueros diluida 1:100. La reacción antígeno- anticuerpo se detectó mediante la incubación con un conjugado anti-lnmunoglobulina G murina- fosfatasa alcalina, seguido de la adición de una solución que contenía el sustrato Bromo-Cloro-Indolil-Fosfato. Se observaron varias regiones antigénicas comunes presentes en la proteína, con independencia de la preparación que se empleó en la inmunización. No obstante, se apreció que en los grupos inmunizados con proteína adyuvada con Adyuvante de Freund se obtuvo un patrón de reconocimiento mucho más amplio.
Ejemplo 10 Reconocimiento de la proteína NMB1125 por sueros humanos.
Una batería de sueros humanos, provenientes de individuos convalecientes se empleó en este estudio, que se realizó en un ensayo tipo ELISA. Las placas se recubrieron con la proteína NMB1125 obtenida mediante electroforesis preparativa (5 μg/ml). Después de bloquear las placas con leche descremada en polvo al 3% en PBS con Tween-20, los sueros se diluyeron (1 :50) en la misma solución y se incubaron en las placas. El inmunoensayo prosiguió como ha sido ampliamente reportado. Como control negativo se emplearon sueros de donantes sanos. También se empleó como control no relacionado una mezcla de sueros de vacunados con vacuna recombinante contra la Hepatitis B (datos no mostrados). La Figura 12 muestra los resultados obtenidos con 5 sueros de convalecientes en este ensayo. Como se aprecia, los sueros humanos reconocieron la proteína lo que indica que la misma se expresa durante la infección meningocóccica y que es inmunogénica.
Ejemplo 11
Proteína NMB1125 como portadora de un péptido. Para demostrar la capacidad portadora de la proteína recombinante NMB1125, se conjugó a la misma un péptido sintético de 15 residuos aminoacídicos, derivado de la región V3 de la proteína gp120 del VIH-1, aislamiento JY1. La conjugación se realizó por el método del glutaraldehído. El péptido JY1 libre, la proteína recombinante NMB1125 y el conjugado JY1-NMB1125, se administró a ratones adultos en un esquema de 3 dosis, donde los inmunógenos se emulsificaron con Adyuvante de Freund. Dos semanas después de la tercera dosis se obtuvieron muestras del suero de los animales inmunizados, los que se analizaron por ELISA para determinar los niveles de anticuerpos anti-péptido. Para ello las placas se recubrieron con el péptido libre (20μg/ml) y el inmunoensayo prosiguió como se ha descrito previamente. Los resultados del experimento (Figura 13) evidencian la capacidad portadora de la proteína NMB1125, capaz de potenciar significativamente la respuesta de anticuerpos contra el péptido JY1, tras su conjugación al mismo.
LISTA DE SECUENCIAS
<110> Centro de Ingeniería Genética y Biotecnología
<120> PROTEÍNA NMB1125 Y SU USO EN FORMULACIONES FARMACÉUTICAS
<130> NMB1 125
<140> <141>
<160> 9
<170> Patentln Ver. 2.1
<210> 1 <211> 25 <212> ADN
<213> Secuencia artificial
<400> 1 ttagatctct atcccgatac cgtctatgaa gg 32
<210> 2
<211> 26
<212> ADN
<213> Secuencia artificial
<400> 2 aagctcgagt cgtttgcctc ctttacc 27
<210> 3 <211> 262 <212> ADN <213> Neisseria meningitidis <400> 3 ctatcccgat accgtctatg aaggtttgaa aaacgacgac acttcgttgg gcaagcagac 60 cgaaaagatg gaaaaatact ttgtggaagc cggcaacaaa aaaatgaatg ccgccccggg 120 tgcgcacgcc atctgggact gctgctttcc gttcgggaga caaagagggc cgttccgcca 180 gtttgaagaa gagaaaaggc tgtttcccga atcgggcgta tttatggact tcctgatgaa 240 aaccggtaaa ggaggcaaac ga 262
<210> 4 <211> 153 <212> PRT
<213> Neisseria meningitidis
<400> 4
Gln Lys Ser Leu Tyr Tyr Tyr Gly Gly Tyr Pro Asp Thr Val Tyr Glu 1 5 10 15
Gly Leu Lys Asn Asp Asp Thr Ser Leu Gly Lys Gln Thr Glu Lys Met 20 25 30
Glu Lys Tyr Phe Val Glu Ala Gly Asn Lys Lys Met Asn Ala Ala Pro 35 40 45
Gly Ala His Ala His Leu Gly Leu Leu Leu Ser Arg Ser Gly Asp Lys 50 55 60
Glu Gly Ala Phe Arg Gln Phe Glu Glu Glu Lys Arg Leu Phe Pro Glu 65 70 75 80 Ser Gly Val Phe Met Asp Phe Leu Met Lys Thr Gly Lys Gly Gly Lys 85 90 95
Arg
<210> 5
<211> 260
<212> ADN
<213> Neisseria meningitidis
<400> 5 ctatcccgat accgtctatg aaggtttgaa aaacgacgac acttcgttgg gcaagcagac 60 gaaaagatgg aaaaatactt tgtggaagcc ggcaacaaaa aaatgaatgc cgccccgggt 120 gcgcacgccc atctgggact gctgctttcc cgttcgggag acaaagaggg cgcgttccgc 180 cagtttgaag aagagaaaag gctgtttccc gaatcgggcg tatttatgga cttcctgatg 240 aaaaccggta aaggaggcaa 260
<210> 6 <211> 260 <212> ADN
<213> Neisseria meningitidis
<400> 6 ctatcccgat accgtctatg aaggtttgaa aaacgacgac acttcgttgg gcaagcagac 60 gaaaagatgg aaaaatactt tgtggaagcc ggcaacaaaa aaatgaatgc cgccccgggt 120 gcgcacgccc atctgggact gctgctttcc cgttcgggag acaaagaggg cgcgttccgc 180 cagtttgaag aagagaaaag gctgtttccc gaatcgggcg tatttatgga cttcctgatg 240 aaaaccggta aaggaggcaa 260
<210>7 <211> 260
<212> ADN
<213> Neisseria meningitidis <400> 7 ctatcccgat accgtctatg aaggtttgaa aaacgacgac acttcgttgg gcaagcagac 60 gaaaagatgg aaaaatactt tgtggaagcc ggcaacaaaa aaatgaatgc cgccccgggt 120 gcgcacgccc atctgggact gctgctttcc cgttcgggag acaaagaggg cgcgttccgc 180 cagtttgaag aagagaaaag gctgtttccc gaatcgggcg tatttatgga cttcctgatg 240 aaaaccggta aaggaggcaa 260
<210> 8 <211> 29 <212> ADN
<213> Secuencia nucleotídica del oligonucleotido sintético 1573
<400> 8 ttccatggta gataaaagaa tggctttag 29
<210> 9 <211> 27 <212> ADN <213> Secuencia nucleotídica del oligonucleotido sintético 6795
<400> 9 aactgcaggc ttgtaaaccg ttttgtg 27

Claims

REIVINDICACIONES.
PROTEÍNA NMB1125 Y SU USO EN FORMULACIONES FARMACÉUTICAS. 1. Proteína de N. meningitidis denominada NMB1125 caracterizada por ser un antígeno capaz de generar en el organismo receptor una respuesta protectora contra infecciones causadas por bacterias del género Neisseria y tener la secuencia aminoacídica identificada en el listado de secuencias como Secuencia 4.
2. Proteína denominada NMB1125, de acuerdo con la reivindicación 1, caracterizada por estar codificada por el gen NMB1125 identificado en el listado de secuencias como Secuencia 3.
3. Gen NMB1125 de acuerdo con la reivindicación 2, caracterizado por tener la secuencia de bases identificada en el listado de secuencias como Secuencia 3 y codificar para la proteína de la reivindicación 1.
4. Proteína o péptido obtenido por vía recombinante o por síntesis química caracterizada porque tiene la secuencia de la proteína NMB1125 y ser capaz de generar en el organismo receptor una respuesta protectora contra infecciones causadas por bacterias del género Neisseria de acuerdo con la reivindicación 1.
5. Formulación farmacéutica caracterizada porque contiene la proteína o el péptido de las reivindicaciones 1, 2 y 4, o la proteína de la reivindicación 1 producida de manera natural, de acuerdo con la reivindicaciones 1, 2 y 4.
6. Formulación farmacéutica de la reivindicación 5 caracterizada porque es una vacuna capaz de generar en el organismo receptor una respuesta protectora contra infecciones causadas por bacterias del género Neisseria.
7. Formulación farmacéutica de acuerdo con las reivindicaciones 5 y 6 caracterizada porque es una vacuna capaz de generar en el organismo receptor una respuesta protectora contra infecciones causadas por Neisseria meningitidis.
8. Formulación farmacéutica de acuerdo con las reivindicaciones 5 y 6 caracterizada porque es una vacuna capaz de generar en el organismo receptor una respuesta protectora contra infecciones causadas por Neisseria gonorrhoeae.
9. Formulación farmacéutica de acuerdo con las reivindicaciones 5, 6, 7 y 8, caracterizada por ser una formulación profiláctica o terapéutica.
10. Formulación farmacéutica de acuerdo con las reivindicaciones 5, 6, 7 y 8, caracterizada porque es una formulación combinada conteniendo uno o varios antigenos de naturaleza antigénica diferente, obtenidos por vía recombinante, por vía sintética o producidos de manera natural.
11. Formulación farmacéutica de acuerdo con las reivindicaciones 5, 6, 7 y 8, caracterizada porque contiene antígenos polisacáridicos.
12. Formulación farmacéutica de acuerdo con las reivindicaciones 5, 6, 7 8 y 9, caracterizada porque uno de los componentes de la formulación es un polisacárido capsular de N. meningitidis.
13. Formulación farmacéutica de acuerdo con la reivindicación 9, caracterizada porque contiene un conjugado proteína-polisacárido, cuya porción polisacarídica se corresponde con un polisacárido bacteriano.
14. Formulación farmacéutica de acuerdo con las reivindicaciones 5, 6, 7 y 8, caracterizada porque contiene uno o varios microorganismos inactivados.
15. Formulación farmacéutica de acuerdo con las reivindicaciones 5, 6, 7 y 8, caracterizada porque contiene antígenos peptídicos.
16. Formulación farmacéutica de acuerdo con las reivindicaciones 5 y 6, caracterizada porque contiene hormonas.
17. Formulación farmacéutica de acuerdo con las reivindicaciones 5 y 6, caracterizada porque contiene factores de crecimiento.
18. Formulación farmacéutica de acuerdo con las reivindicaciones de la 5 a la 17 caracterizada porque es una formulación para ser administrada por vía parenteral.
19. Formulación farmacéutica de acuerdo con las reivindicaciones de la 5 a la 17 caracterizada porque es una formulación para ser administrada por vía mucosal.
20. Formulación farmacéutica de acuerdo con las reivindicaciones de la 5 a la 17 caracterizada porque es una formulación para ser administrada por vía oral.
21. Formulación farmacéutica de acuerdo con las reivindicaciones de la 5 a la 20 caracterizada por ser una formulación inmunoestimulante o inmunopotenciadora.
22. Formulación farmacéutica de acuerdo con las reivindicaciones de la 5 a la 21 caracterizada porque contiene péptidos o fragmentos del antígeno NMB1125.
23. Formulación farmacéutica de acuerdo con las reivindicaciones de la 5 a la 21 caracterizada porque contiene mimotopos del antígeno NMB1125.
24. Organismo genéticamente modificado caracterizado porque contiene el gen de la reivindicación 3, o parte de este, solo o formando parte de otra secuencia génica.
25. Formulación farmacéutica de acuerdo con la reivindicación 24 caracterizada porque contenga el organismo genéticamente modificado vivo, atenuado o un preparado de este.
26. Formulación farmacéutica caracterizada porque contiene la proteína expresada por el organismo de la reivindicación 24, y es capaz de generar en el organismo receptor una respuesta protectora contra infecciones causadas por bacterias del género Neisseria.
27. Formulación farmacéutica caracterizada porque contiene la proteína o el péptido de las reivindicaciones 1, 2 y 4, como portadora de antígenos de diversa naturaleza.
28. Componente farmacéutico caracterizado porque contiene la proteína NMB1125 de las reivindicaciones 1 y 2, o fragmentos de esta y es capaz de permitir la detección, solo o de conjunto con otros componentes, la enfermedad meningocóccica en humanos.
29. Componente farmacéutico caracterizado porque contiene el gen de la reivindicación 3, o fragmentos de este y es capaz de permitir la detección, solo o de conjunto con otros componentes, la enfermedad meningocóccica en humanos.
30. Uso de la proteína NMB1125 o fragmentos de esta, de acuerdo con las reivindicaciones 1 y 2, en biosensores u otras aplicaciones farmacéuticas o biotecnológicas.
31. Uso del gen NMB1125, de acuerdo con las reivindicación 3, o fragmentos de este, en biosensores u otras aplicaciones farmacéuticas o biotecnológicas.
PCT/CU2004/000015 2003-12-03 2004-12-02 Proteína nmb1125 y su uso en formulaciones farmaceuticas WO2005054281A2 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/580,508 US7691971B2 (en) 2003-12-03 2004-12-02 Protein NMB1125 and use thereof in pharmaceutical formulations
CA002547317A CA2547317A1 (en) 2003-12-03 2004-12-02 Protein nmb1125 and use thereof in pharmaceutical formulations
EP04802607A EP1693378B9 (en) 2003-12-03 2004-12-02 Protein nmb1125 and use thereof in pharmaceutical formulations
BRPI0417309-0A BRPI0417309A (pt) 2003-12-03 2004-12-02 proteìna nmb1125 e seu uso em formulações farmacêuticas
DE602004023419T DE602004023419D1 (de) 2003-12-03 2004-12-02 Nmb1125-protein und dessen verwendung in pharmazeutischen formulierungen
AU2004294376A AU2004294376A1 (en) 2003-12-03 2004-12-02 Protein NMB1125 and use thereof in pharmaceutical formulations
AT04802607T ATE444305T1 (de) 2003-12-03 2004-12-02 Nmb1125-protein und dessen verwendung in pharmazeutischen formulierungen
NZ547520A NZ547520A (en) 2003-12-03 2004-12-02 Protein NMB1125 and use thereof in pharmaceutical formulations
PL04802607T PL1693378T3 (pl) 2003-12-03 2004-12-02 Białko NMB1125 i jego zastosowanie w kompozycjach farmaceutycznych
NO20063020A NO20063020L (no) 2003-12-03 2006-06-28 Protein NMB1125 og anvendelse derav i farmasoytiske formuleringer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU20030285A CU23237A1 (es) 2003-12-03 2003-12-03 PROTEINA NMB1125 Y SU USO EN FORMULACIONES FARMACéUTICAS
CUCU2003/0285 2003-12-03

Publications (2)

Publication Number Publication Date
WO2005054281A2 true WO2005054281A2 (es) 2005-06-16
WO2005054281A3 WO2005054281A3 (es) 2005-08-04

Family

ID=40091628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2004/000015 WO2005054281A2 (es) 2003-12-03 2004-12-02 Proteína nmb1125 y su uso en formulaciones farmaceuticas

Country Status (18)

Country Link
US (1) US7691971B2 (es)
EP (1) EP1693378B9 (es)
KR (1) KR20060123759A (es)
CN (1) CN1890260A (es)
AR (1) AR047263A1 (es)
AT (1) ATE444305T1 (es)
AU (1) AU2004294376A1 (es)
BR (1) BRPI0417309A (es)
CA (1) CA2547317A1 (es)
CU (1) CU23237A1 (es)
DE (1) DE602004023419D1 (es)
ES (1) ES2334138T3 (es)
NO (1) NO20063020L (es)
NZ (1) NZ547520A (es)
PL (1) PL1693378T3 (es)
RU (1) RU2336900C2 (es)
WO (1) WO2005054281A2 (es)
ZA (1) ZA200604556B (es)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU22559A1 (es) 1996-01-17 1999-05-03 Ct Ingenieria Genetica Biotech Sistema de expresión de antígenos heterologos en e. coli como proteínas de fusión
ES2304065T3 (es) * 1998-05-01 2008-09-01 Novartis Vaccines And Diagnostics, Inc. Antigenos y composiciones de neisseria meningitidis.
BR0010361A (pt) * 1999-04-30 2003-06-10 Chiron Corp Seq ências genÈmicas de neisseria e uso destas

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GIULIANI MM ET AL., PROCEEDINGS 12TH IPNC, 2000, pages 22
PIZZA M ET AL.: "Identification of Vaccine Candidates Against Serogroup B Meningococcus by Whole-Genome Sequencing", SCIENCE, vol. 287, no. 5459, 2000, pages 1816 - 20
SANTINI L. ET AL., PROCEEDINGS 12TH IPNC., 2000, pages 25

Also Published As

Publication number Publication date
RU2006123434A (ru) 2008-01-10
NO20063020L (no) 2006-09-01
CN1890260A (zh) 2007-01-03
DE602004023419D1 (de) 2009-11-12
PL1693378T3 (pl) 2010-03-31
BRPI0417309A (pt) 2007-09-11
AU2004294376A1 (en) 2005-06-16
KR20060123759A (ko) 2006-12-04
ATE444305T1 (de) 2009-10-15
RU2336900C2 (ru) 2008-10-27
NZ547520A (en) 2009-07-31
EP1693378A2 (en) 2006-08-23
ZA200604556B (en) 2007-03-28
WO2005054281A3 (es) 2005-08-04
CU23237A1 (es) 2007-09-26
AR047263A1 (es) 2006-01-11
CA2547317A1 (en) 2005-06-16
US7691971B2 (en) 2010-04-06
ES2334138T3 (es) 2010-03-05
US20070218000A1 (en) 2007-09-20
EP1693378B9 (en) 2010-05-19
EP1693378B1 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
ZA200604492B (en) Protein NMB0928 and use thereof in pharmaceutical formulations
WO2007112702A2 (es) Composición farmacéutica que comprende la proteína nmb0938
WO2007112703A2 (es) Composición farmacéutica que comprende la proteína nmb0606
WO2009000217A1 (es) Composición farmacéutica que comprende la proteína nmb1796
EP1977761A2 (en) Pharmaceutical compositions containing protein nma0939
ES2334138T3 (es) Proteina nmb1125 y uso de la misma en formulaciones farmaceuticas.
WO2009056075A1 (es) Composición farmacéutica que comprende la proteína nmb0873
MXPA06006267A (es) Proteina nmbo928 y su uso en formulaciones farmaceuticas
MXPA06006266A (es) Proteina nmb1125 y su uso en formulaciones farmaceuticas
MX2008008580A (es) Composiciones farmaceuticas que contienen la proteina nma0939

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035877.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2547317

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004802607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 547520

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020067010712

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/006266

Country of ref document: MX

Ref document number: 200604556

Country of ref document: ZA

Ref document number: 2006/04556

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2004294376

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3646/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006123434

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2004294376

Country of ref document: AU

Date of ref document: 20041202

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004294376

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004802607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007218000

Country of ref document: US

Ref document number: 10580508

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067010712

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0417309

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10580508

Country of ref document: US