WO2005053194A1 - Optical component comprising cascade-connected resonant microstructures - Google Patents

Optical component comprising cascade-connected resonant microstructures Download PDF

Info

Publication number
WO2005053194A1
WO2005053194A1 PCT/FR2003/003201 FR0303201W WO2005053194A1 WO 2005053194 A1 WO2005053194 A1 WO 2005053194A1 FR 0303201 W FR0303201 W FR 0303201W WO 2005053194 A1 WO2005053194 A1 WO 2005053194A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
level
microstructure
wavelengths
component
Prior art date
Application number
PCT/FR2003/003201
Other languages
French (fr)
Inventor
Philippe Guignard
Philippe Grosso
Dominique Bosc
Original Assignee
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom filed Critical France Telecom
Priority to AU2003295007A priority Critical patent/AU2003295007A1/en
Priority to PCT/FR2003/003201 priority patent/WO2005053194A1/en
Publication of WO2005053194A1 publication Critical patent/WO2005053194A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the invention relates to WDM optical components. These components perform switching, extraction or combination of wavelength functions in optical devices. They find particular application in the field of optical data transport or telecommunications networks as well as in the field of multiplex optical sensors. In the field of optical networks, these components can be integrated into filtering, multiplexing / demultiplexing, routing or wavelength mixing nodes. These optical components make it possible to extract or reintroduce into a network of optical fibers a wavelength or wavelength trains.
  • multiplexer / demultiplexer integrated optical components based on phase control network technologies (Phased Arrays or PHASAR).
  • Multiplexer / demultiplexer optical components are also known based on Mach-Zehnder interferometer technologies. However, these components are relatively bulky.
  • microstructures such as micro-spheres, micro-discs, micro-rings or race-tracks (in the form of a racetrack) obtained by photoengraving.
  • resonant microstructures such as micro-spheres, micro-discs, micro-rings or race-tracks (in the form of a racetrack) obtained by photoengraving.
  • This microstructure technology leads to a significant integration rate of the components and therefore, it makes it possible to simultaneously manufacture a large number of components in the same unitary wafer.
  • An object of the invention is to provide an architecture of an optical component having improved performance. Another object of the invention is to provide a component architecture whose implementation would be simplified compared to the components of the prior art.
  • the invention proposes an optical component with a spectral separation or combination function, adapted in a first direction of light propagation, to receive a multiplex optical input signal composed of a plurality of predefined wavelengths and to return a plurality of optical output signals, each output signal comprising one or more components corresponding to different wavelengths of the input signal, the component comprising a first filtering level and a second filtering level each including a resonant microstructure, characterized in that the microstructure of the first filtering level is dimensioned for, when the component is used according to the first direction of propagation, separating the input signal into a transmitted signal and an extracted signal each including several of the wavelengths of the input signal, and in that the second level includes at least one resonant microstructure receiving the transmitted signal or the extracted signal, this resonant microstructure being sized to separate r said signal transmitted or extracted as a function of the wavelengths it contains, the component also being capable of operating in the opposite direction of light propagation.
  • the optical component of the invention is here defined as a component with a spectral separation function.
  • this same component can be used as a component with a spectral combination function.
  • this component can be used as a multiplexer, demultiplexer, insertion or extraction component (Add-Drop).
  • the resonant microstructures being arranged in at least two levels. The first level carries out a first separation of the signal into two parts and the following levels carry out the separation of these two parts to obtain the output signals.
  • the proposed component architecture limits the number of microstructures of small dimensions (typically of diameter less than
  • the component of the invention can comprise a plurality of successive levels, each level including at least one microstructure.
  • the microstructures of successive levels are connected to each other in a cascade so that the transmitted and extracted signals generated by a microstructure of a given level are each sent to a microstructure of a next level for separation.
  • the microstructures are arranged in cascade and their effects combine to extract the wavelengths of the output signals.
  • the component comprises a number e of successive levels, each level i (1 ⁇ i ⁇ e) including 2 (l "1) microstructures, each microstructure of a level i (i ⁇ e) being connected to two microstructures of a level following i + 1, each of the microstructures of level i + 1 receiving a transmitted signal or an extracted signal emitted by the microstructure of level i.
  • FIG. 1 schematically represents an architecture of optical component in accordance with an embodiment of the invention, operating as a demultiplexer
  • - Figure 2 shows the transfer function of the first resonant microstructure of the component of Figure 1.
  • the optical component shown is a multiplexer / demultiplexer a able to combine or separate eight wavelengths.
  • the optical component operates as a demultiplexer.
  • the optical component receives an input signal 11 composed of the eight wavelengths ⁇ i, ⁇ 2 , ⁇ 3 , ⁇ ⁇ ⁇ 5 , ⁇ 6 , ⁇ 7 and ⁇ 8 arranged around 1550 ⁇ m, spaced 0.4 nm apart (i.e. 50 GHz), and returns eight output signals 41, 42, 43, 44, 45, 46, 47 and 48 of respective wavelength ⁇ i, ⁇ 5 , ⁇ 3 , ⁇ 7 , ⁇ 2 , ⁇ , ⁇ 4, and ⁇ s, corresponding to the eight components of the input signal .
  • the optical component comprises an input guide through which the input signal 11 is brought, seven resonant micro-rings connected together by wave guides, these micro-rings being divided into three filtering levels, and output guides by which the output signals are collected.
  • the output guides are connected to single-mode fibers.
  • the first filtering level comprises an inlet micro-ring 110 having a diameter of 658 ⁇ m.
  • the micro-ring 110 receives the input signal 11 and separates it into a transmitted signal 21 and an extracted signal 22.
  • the transmitted signal 21 is composed of a train of four wavelengths ( ⁇ i, ⁇ 3 , ⁇ 5 , ⁇ ).
  • the extracted signal 22 is composed of a train of four wavelengths ( ⁇ 2 , ⁇ 4 , ⁇ 6 , ⁇ 8 ).
  • the micro-ring 110 is dimensioned so as to present a
  • the diameter of the micro-ring 110 is suitable for selecting one wavelength out of two from the wavelengths ⁇ -i, ⁇ 2 , ⁇ 3 , ⁇ , ⁇ s, ⁇ , ⁇ and ⁇ s.
  • the train of wavelengths is represented at A
  • the wavelengths are spaced from each other by an interval of 0, 4 nm.
  • the transfer function of the input micro-ring 110 has also been shown in B. As can be seen in this figure, the input micro-ring 110 has an ISL of 0.8 nm which enables it to select half the wavelength on the train.
  • the transmitted wavelengths are shown in dotted lines while the resonant wavelengths (extracted signal) are shown in solid lines.
  • FIG. 1 the transmitted wavelengths (transmitted signal) are shown in dotted lines while the resonant wavelengths (extracted signal) are shown in solid lines.
  • the optical component comprises a second filtering level comprising two micro-rings 210 and 220 having a diameter of 239 ⁇ m.
  • the second level micro-rings 210 and 220 filters are dimensioned so as to present an ISL of 0.16 nm suitable for separating a train of four interlaced wavelengths, respectively ( ⁇ , ⁇ 3 , ⁇ 5) ⁇ 7 ), and ( ⁇ 2 , ⁇ 4 , ⁇ 6 , ⁇ 8 ).
  • the micro-ring 220 receives the extracted signal 22 from the input micro-ring 110 and composed of the wavelengths ⁇ 2 , ⁇ 4, ⁇ , and ⁇ 8 . It separates the signal into a transmitted signal 33 and an extracted signal 34.
  • the transmitted signal 33 and the extracted signal 34 are each composed of a train of two wavelengths respectively ( ⁇ 2 , ⁇ ), and ( ⁇ 4 , ⁇ 8 ).
  • the micro-ring 210 receives the transmitted signal 21 from the input micro-ring 110 and composed of the wavelengths ⁇ -i, ⁇ 3 , ⁇ 5 , and ⁇ 7 . It separates the signal into a transmitted signal 31 and an extracted signal 32.
  • the transmitted signal 31 and the extracted signal 32 are each composed of a train of two wavelengths respectively ( ⁇ i, ⁇ s), and ( ⁇ 3 , ⁇ 7 ).
  • the optical component of FIG. 1 comprises a third filtering level comprising four micro-rings 420, 440, 460 and 480 having a diameter of 164.5 ⁇ m.
  • Each micro-ring 420, 440, 460 and 480 separates the signal 31, 32, 33 and 34 which it receives from micro-rings 210 and 220 of the second level, into a transmitted signal and an extracted signal, respectively 41 and 42, 43 and 44, 45 and 46, 47 and 48. Signals 41, 42, 43, 44, 45, 46, 47 and 48 are sent to output optical guides.
  • Each output signal 41, 42, 43, 44, 45, 46, 47 and 48 is composed of a wavelength respectively ⁇ -i, ⁇ s, ⁇ 3 , ⁇ , ⁇ 2 , ⁇ , ⁇ 4 , and ⁇ 8 .
  • e 3 filtering levels.
  • the same architecture can be implemented with a greater or lesser number of levels.
  • Each level i (1 ⁇ i ⁇ e) includes 2 (l) microstructures whose dimensions vary from one level to another.
  • Each microstructure of a given level i has dimensions greater than the dimensions of the microstructures of a next level i + 1.
  • the cascading of micro-structures by adapting their dimensions at each level, makes it possible to extract or combine a number k of wavelengths among n.
  • the proposed component architecture limits the number of small microstructures (typically less than 300 ⁇ m in diameter) required for the separation or combination of a given number of wavelengths. Consequently, the losses in a component according to the invention are limited with regard to the losses generated in the components of the prior art.
  • a multiplexer / demultiplexer component according to FIG. 1 occupies an area of the order of 3 ⁇ 4 mm 2 .
  • the component of the invention can be obtained by known microgravure technologies.
  • a film of core polymer with a refractive index of the order of 1.58 at a wavelength of 1550 nm is deposited.
  • the silica layer has a thickness of 13 ⁇ m and a refractive index of 1.44 at the wavelength of 1550 nm, it serves as an optical sheath (confinement layer or optical buffer).
  • the pattern of the guides and the multiplexers is transferred into the core polymer layer which is then covered with an optical sheath with an index of the order of 1.45 at the wavelength. 1550 nm.
  • the contrasts of the core-cladding index are thus of the order of 13 ⁇ 10 ⁇ 2 allowing radii of curvature less than 50 ⁇ m with losses of the order of 0.01 dB / cm in the curves.
  • the linear losses in these polymers can be less than 0.5 dB / cm.
  • the section of the guides has dimensions of the order of 2x2 ⁇ m 2 so as to constitute single-mode guides.
  • the coupling of the output guides can be carried out in part by an adapter mode and micro-optics at the end of the fiber making it possible to reduce the coupling losses of these narrow guides to less than 1 dB.
  • At least one hundred multiplexers / demultiplexers can be produced on a wafer having a diameter of 76.2 mm. diameter (about 3 inches) The different elements are then cleaved to be coupled to fibers and connectorized.

Abstract

The invention relates to an optical spectral-separation component which receives a multiplexed input optical signal (11) comprising a plurality of pre-defined wavelengths ( lambda 1- lambda 8) and which returns a plurality of output optical signals (41-48), each output signal comprising one or more components corresponding to different wavelengths of the input signal. The inventive component comprises first and second filter stages, each stage including a resonant microstructure. According to the invention, the microstructure (110) of the first filter stage is dimensioned in order to separate the input signal (11) into a transmitted signal (21) and an extracted signal (22), each of said signals including several wavelengths of the input signal. The second stage includes at least one resonant microstructure (210, 220) which receives the transmitted signal (21) or the extracted signal (22), said resonant microstructure being dimensionsed in order to separate the transmitted or extracted signal as a function of the wavelengths contained therein. The invention can also be used as a spectral combination component when operating in the opposite light propagation direction.

Description

COMPOSANT OPTIQUE INCLUANT DES MICRO-STRUCTURES RESONANTES CONNECTEES EN CASCADE OPTICAL COMPONENT INCLUDING RESONANT MICRO-STRUCTURES CONNECTED IN CASCADE
L'invention concerne les composants optiques WDM. Ces composants réalisent des fonctions d'aiguillage, d'extraction ou de combinaison de longueurs d'onde dans des dispositifs optiques. Ils trouvent notamment application dans le domaine des réseaux optiques de transport de données ou de télécommunication ainsi que dans le domaine des capteurs optiques multiplexes. Dans le domaine des réseaux optiques, ces composants peuvent être intégrés dans des nœuds de filtrage, de multiplexage/démultiplexage, d'aiguillage ou de brassage en longueurs d'onde. Ces composants optiques permettent d'extraire ou de réintroduire dans un réseau de fibres optiques une longueur d'onde ou des trains de longueur d'onde. On connaît des composants optiques intégrés multiplexeurs/démultiplexeurs basés sur des technologies à réseaux à commande de phase (Phased Arrays ou PHASAR). On connaît également des composants optiques multiplexeurs/démultiplexeurs basés sur les technologies à interferomètre de Mach-Zehnder. Toutefois, ces composants sont relativement encombrants. On connaît également des composants optiques intégrés comprenant des microstructures résonantes telles que des micro-sphères, micro-disques, micro-anneaux ou race-track (en forme d'hippodrome) obtenus par photogravure. L'utilisation de ces microstructures permet d'obtenir des composants compacts par rapport aux solutions précédemment cités. Cette technologie à microstructures conduit à un taux d'intégration important des composants et par conséquent, elle permet de fabriquer simultanément un grand nombre de composants dans une même plaquette unitaire. Le document « Précise control of wavelength channel spacing of microring resonator add-drop filter array », Shuishi Suzuki, Yutaka Hatakeyama, Yasuo Kokubun, Journal of Light ave technology, vol.20, n°4, avril 2002, décrit ainsi un composant optique d'insertion/extraction de longueurs d'ondes (Add-Drop) comprenant une pluralités de micro-anneaux présentant chacun un rayon de l'ordre de 15 μm. Les micro-anneaux sont disposés alignés le long d'un guide d'onde d'amenée d'un signal multiplexe. Chaque micro-anneau agit comme un filtre qui sélectionne une longueur d'onde donnée du signal optique multiplexe pour l'extraire. Le document « Box-like filter response by vertically séries coupled midroring resonator filter », Yuji Yanagase, Shuichi Suzuki, Yasuo Kokubun, Sai Tak Chu, ECOC 2001 décrit un composant optique d'insertion/extraction comprenant une pluralité de micro-anneaux couplés verticalement les uns aux autres, ce composant permettant d'extraire une longueur d'onde donnée d'un signal multiplexe. Dans ces composants, chaque micro-structure doit être capable d'extraire une longueur d'onde donnée parmi une pluralité de longueurs d'onde. Ces composants nécessitent donc la réalisation de micro-structures de très petite taille (dimensions de l'ordre de quelques micromètres à quelques dizaines de micromètres), capables de sélectionner précisément une longueur d'onde et de rejeter les autres. Il s'ensuit que ces micro-structures sont de réalisation complexe car elles requièrent des techniques de gravure de précision. Or, les techniques actuelles de gravure ne permettent pas d'obtenir une précision de gravure inférieure à 0,5 micromètres. En outre, les microstructures de petite taille induisent des pertes de puissance optique (pertes aux courbures) qui limitent les performances des composants optiques obtenus. Un but de l'invention est de fournir une architecture de composant optique présentant des performances améliorées. Un autre but de l'invention est de fournir une architecture de composant dont la réalisation serait simplifiée par rapport aux composant de l'art antérieur. A cet effet, l'invention propose un composant optique à fonction de séparation ou de combinaison spectrale, apte selon un premier sens de propagation de la lumière, à recevoir un signal optique d'entrée multiplexe composé d'une pluralité de longueurs d'onde prédéfinies et à renvoyer une pluralité de signaux optiques de sortie, chaque signal de sortie comprenant une ou plusieurs composantes correspondant à différentes longueurs d'onde du signal d'entrée, le composant comportant un premier niveau de filtrage et un deuxième niveau de filtrage incluant chacun une microstructure résonante, caractérisé en ce que la microstructure du premier niveau de filtrage est dimensionnée pour, lorsque le composant est utilisé selon le premier sens de propagation, séparer le signal d'entrée en un signal transmis et un signal extrait incluant chacun plusieurs des longueurs d'onde du signal d'entrée, et en ce que le deuxième niveau inclut au moins une microstructure résonante recevant le signal transmis ou le signal extrait, cette microstructure résonante étant dimensionnée pour séparer ledit signal transmis ou extrait en fonction des longueurs d'onde qu'il contient, le composant étant également apte à fonctionner dans le sens inverse de propagation de la lumière. Le composant optique de l'invention est ici défini comme un composant à fonction de séparation spectrale. Bien entendu, selon le principe de retour inverse de la lumière, ce même composant peut être utilisé comme un composant à fonction de combinaison spectrale. En particulier, ce composant peut être utilisé comme multiplexeur, démultiplexeur, composant d'insertion ou d'extraction (Add-Drop). Les microstructures résonantes étant disposées selon au moins deux niveaux. Le premier niveau réalise une première séparation du signal en deux parties et les niveaux suivants réalisent la séparation de ces deux parties pour obtenir les signaux de sortie. L'architecture de composant proposée limite le nombre de microstructures de faible dimensions (typiquement de diamètre inférieur àThe invention relates to WDM optical components. These components perform switching, extraction or combination of wavelength functions in optical devices. They find particular application in the field of optical data transport or telecommunications networks as well as in the field of multiplex optical sensors. In the field of optical networks, these components can be integrated into filtering, multiplexing / demultiplexing, routing or wavelength mixing nodes. These optical components make it possible to extract or reintroduce into a network of optical fibers a wavelength or wavelength trains. There are known multiplexer / demultiplexer integrated optical components based on phase control network technologies (Phased Arrays or PHASAR). Multiplexer / demultiplexer optical components are also known based on Mach-Zehnder interferometer technologies. However, these components are relatively bulky. There are also known integrated optical components comprising resonant microstructures such as micro-spheres, micro-discs, micro-rings or race-tracks (in the form of a racetrack) obtained by photoengraving. The use of these microstructures makes it possible to obtain components that are compact compared to the previously mentioned solutions. This microstructure technology leads to a significant integration rate of the components and therefore, it makes it possible to simultaneously manufacture a large number of components in the same unitary wafer. The document "Precise control of wavelength channel spacing of microring resonator add-drop filter array", Shuishi Suzuki, Yutaka Hatakeyama, Yasuo Kokubun, Journal of Light ave technology, vol.20, n ° 4, April 2002, thus describes an optical component for insertion / extraction of wavelengths (Add-Drop) comprising a plurality of micro-rings each having a radius of the order of 15 μm. The micro-rings are arranged aligned along a waveguide for supplying a multiplex signal. Each micro-ring acts as a filter which selects a given wavelength of the multiplex optical signal to extract it. The document “Box-like filter response by vertically series coupled midroring resonator filter”, Yuji Yanagase, Shuichi Suzuki, Yasuo Kokubun, Sai Tak Chu, ECOC 2001 describes an optical insertion / extraction component comprising a plurality of vertically coupled micro-rings to each other, this component making it possible to extract a given wavelength from a multiplex signal. In these components, each microstructure must be capable of extracting a given wavelength from a plurality of wavelengths. These components therefore require the production of very small micro-structures (dimensions of the order of a few micrometers to a few tens of micrometers), capable of precisely selecting one wavelength and rejecting the others. It follows that these micro-structures are complex to produce because they require precision etching techniques. However, current etching techniques do not make it possible to obtain an etching precision of less than 0.5 micrometers. In addition, small microstructures induce optical power losses (curvature losses) which limit the performance of the optical components obtained. An object of the invention is to provide an architecture of an optical component having improved performance. Another object of the invention is to provide a component architecture whose implementation would be simplified compared to the components of the prior art. To this end, the invention proposes an optical component with a spectral separation or combination function, adapted in a first direction of light propagation, to receive a multiplex optical input signal composed of a plurality of predefined wavelengths and to return a plurality of optical output signals, each output signal comprising one or more components corresponding to different wavelengths of the input signal, the component comprising a first filtering level and a second filtering level each including a resonant microstructure, characterized in that the microstructure of the first filtering level is dimensioned for, when the component is used according to the first direction of propagation, separating the input signal into a transmitted signal and an extracted signal each including several of the wavelengths of the input signal, and in that the second level includes at least one resonant microstructure receiving the transmitted signal or the extracted signal, this resonant microstructure being sized to separate r said signal transmitted or extracted as a function of the wavelengths it contains, the component also being capable of operating in the opposite direction of light propagation. The optical component of the invention is here defined as a component with a spectral separation function. Of course, according to the principle of reverse light return, this same component can be used as a component with a spectral combination function. In particular, this component can be used as a multiplexer, demultiplexer, insertion or extraction component (Add-Drop). The resonant microstructures being arranged in at least two levels. The first level carries out a first separation of the signal into two parts and the following levels carry out the separation of these two parts to obtain the output signals. The proposed component architecture limits the number of microstructures of small dimensions (typically of diameter less than
300μm) nécessaires pour la séparation ou la combinaison d'un nombre donné de longueurs d'onde. Par conséquent, les pertes dans un composant conforme à l'invention sont limitées en regard des pertes générées dans les composants de l'art antérieur. Le composant de l'invention peut comprendre une pluralité de niveaux successifs, chaque niveau incluant au moins une microstructure. Les microstructures des niveaux successifs sont connectées les unes aux autres en cascade de sorte les signaux transmis et extrait générés par une microstructure d'un niveau donné sont envoyés chacun vers une microstructure d'un niveau suivant pour séparation. Ainsi les microstructures sont disposées en cascade et leurs effets se combinent pour extraire les longueurs d'onde des signaux de sortie. Dans une mise en œuvre préférée de l'invention, le composant comprend un nombre e de niveaux successifs, chaque niveau i (1<i≤e) incluant 2(l"1) microstructures, chaque microstructure d'un niveau i (i<e) étant connectée à deux microstructures d'un niveau suivant i+1 , chacune des microstructures du niveau i+1 recevant un signal transmis ou un signal extrait émis par la microstructure du niveau i. D'autres caractéristiques et avantages ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative et doit être lue en regard des figures annexées parmi lesquelles : - la figure 1 représente schématiquement une architecture de composant optique conforme à un mode de mise en œuvre de l'invention, fonctionnant en démultiplexeur, - la figure 2 représente la fonction de transfert de la première microstructure résonante du composant de la figure 1. Sur la figure 1 , le composant optique représenté est un multiplexeur/démultiplexeur apte à combiner ou à séparer huit longueurs d'onde. Sur cette figure, le composant optique fonctionne en démultiplexeur.300μm) necessary for the separation or the combination of a given number of wavelengths. Therefore, losses in a component according to the invention are limited with regard to the losses generated in the components of the prior art. The component of the invention can comprise a plurality of successive levels, each level including at least one microstructure. The microstructures of successive levels are connected to each other in a cascade so that the transmitted and extracted signals generated by a microstructure of a given level are each sent to a microstructure of a next level for separation. Thus the microstructures are arranged in cascade and their effects combine to extract the wavelengths of the output signals. In a preferred implementation of the invention, the component comprises a number e of successive levels, each level i (1 <i≤e) including 2 (l "1) microstructures, each microstructure of a level i (i < e) being connected to two microstructures of a level following i + 1, each of the microstructures of level i + 1 receiving a transmitted signal or an extracted signal emitted by the microstructure of level i. Other characteristics and advantages will also emerge from the description which follows, which is purely illustrative and not limiting and must be read with reference to the appended figures among which: - Figure 1 schematically represents an architecture of optical component in accordance with an embodiment of the invention, operating as a demultiplexer , - Figure 2 shows the transfer function of the first resonant microstructure of the component of Figure 1. In Figure 1, the optical component shown is a multiplexer / demultiplexer a able to combine or separate eight wavelengths. In this figure, the optical component operates as a demultiplexer.
Bien entendu, selon le principe du retour inverse de la lumière, ce même composant peut fonctionner en multiplexeur. Le composant optique reçoit un signal d'entrée 11 composé des huit longueurs d'onde λi, λ2, λ3, λ ι λ5, λ6, λ7 et λ8 disposées autour de 1550 μm, espacées de 0,4 nm (soit 50 GHz), et renvoie huit signaux de sortie 41 , 42, 43, 44, 45, 46, 47 et 48 de longueur d'onde respective λi, λ5, λ3, λ7, λ2, λβ, λ4, et λs, correspondant aux huit composantes du signal d'entrée. Comme on peut le voir sur la figure 1 , le composant optique comprend un guide d'entrée par lequel est amené le signal d'entrée 11 , sept micro-anneaux résonants connectés entre eux par des guides d'onde, ces micro-anneaux étant répartis en trois niveaux de filtrage, et des guides de sortie par lesquels sont collectés les signaux de sortie. Les guides de sortie sont connectés à des fibres monomodes. Le premier niveau de filtrage comprend un micro-anneau d'entrée 110 présentant un diamètre de 658 μm. Le micro-anneau 110 reçoit le signal d'entrée 11 et le sépare en un signal transmis 21 et un signal extrait 22. Le signal transmis 21 est composé d'un train de quatre longueurs d'onde (λi, λ3, λ5, λ ). Le signal extrait 22 est composé d'un train de quatre longueurs d'onde (λ2, λ4, λ6, λ8). Le micro-anneau 110 est dimensionné de manière à présenter unOf course, according to the principle of reverse light return, this same component can operate as a multiplexer. The optical component receives an input signal 11 composed of the eight wavelengths λi, λ 2 , λ 3 , λ ι λ 5 , λ 6 , λ 7 and λ 8 arranged around 1550 μm, spaced 0.4 nm apart (i.e. 50 GHz), and returns eight output signals 41, 42, 43, 44, 45, 46, 47 and 48 of respective wavelength λi, λ 5 , λ 3 , λ 7 , λ 2 , λβ, λ 4, and λs, corresponding to the eight components of the input signal . As can be seen in FIG. 1, the optical component comprises an input guide through which the input signal 11 is brought, seven resonant micro-rings connected together by wave guides, these micro-rings being divided into three filtering levels, and output guides by which the output signals are collected. The output guides are connected to single-mode fibers. The first filtering level comprises an inlet micro-ring 110 having a diameter of 658 μm. The micro-ring 110 receives the input signal 11 and separates it into a transmitted signal 21 and an extracted signal 22. The transmitted signal 21 is composed of a train of four wavelengths (λi, λ 3 , λ 5 , λ). The extracted signal 22 is composed of a train of four wavelengths (λ 2 , λ 4 , λ 6 , λ 8 ). The micro-ring 110 is dimensioned so as to present a
Intervalle Spectral Libre (ISL) de 0,8 nm égal à deux fois l'espacement entre deux longueurs d'onde successives. Le diamètre du micro-anneau 110 est adapté pour sélectionner une longueur d'onde sur deux parmi les longueurs d'onde λ-i, λ2, λ3, λ , λs, λβ, λ et λs. Sur la figure 2, on a représenté en A le train de longueurs d'onde0.8 nm Free Spectral Interval (ISL) equal to twice the spacing between two successive wavelengths. The diameter of the micro-ring 110 is suitable for selecting one wavelength out of two from the wavelengths λ-i, λ 2 , λ 3 , λ, λs, λβ, λ and λs. In FIG. 2, the train of wavelengths is represented at A
(λi, λ2, λ3, λ4, λ5, λ6, λ7, λ8) composant le signal d'entrée 11. Les longueurs d'onde sont espacées les unes des autres d'un intervalle de 0,4 nm. On a également représenté en B la fonction de transfert du micro-anneau d'entrée 110. Comme on peut le voir sur cette figure, le micro-anneau d'entrée 110 présente un ISL de 0,8 nm qui lui permet de ne sélectionner qu'une longueur d'onde sur deux dans le train. Sur cette figure, les longueurs d'onde transmises (signal transmis) sont représentées en traits pointillés tandis que les longueurs d'onde résonantes (signal extrait) sont représentées en traits pleins. Sur la figure 1 , le composant optique comprend un deuxième niveau de filtrage comprenant deux micro-anneaux 210 et 220 présentant un diamètre de 239 μm. Les micro-anneaux 210 et 220 du deuxième niveau de filtrage sont dimensionnés de manière à présenter un ISL de 0,16 nm adapté pour séparer un train de quatre longueurs d'ondes entrelacées, respectivement (λι, λ3, λ5) λ7), et (λ2, λ4, λ6, λ8). Le micro-anneau 220 reçoit le signal extrait 22 en provenance du micro-anneau d'entrée 110 et composé des longueurs d'onde λ2, λ4, λβ, et λ8. Il sépare le signal en un signal transmis 33 et un signal extrait 34. Le signal transmis 33 et le signal extrait 34 sont composés chacun d'un train de deux longueurs d'onde respectivement (λ2, λβ), et (λ4, λ8). De même, le micro-anneau 210 reçoit le signal transmis 21 en provenance du micro-anneau d'entrée 110 et composé des longueurs d'onde λ-i, λ3, λ5, et λ7. Il sépare le signal en un signal transmis 31 et un signal extrait 32. Le signal transmis 31 et le signal extrait 32 sont composés chacun d'un train de deux longueurs d'onde respectivement (λi, λs), et (λ3, λ7). Enfin, le composant optique de la figure 1 comprend un troisième niveau de filtrage comprenant quatre micro-anneaux 420, 440, 460 et 480 présentant un diamètre de 164,5 μm. Les micro-anneaux 420, 440, 460 et(λi, λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , λ 7 , λ 8 ) composing the input signal 11. The wavelengths are spaced from each other by an interval of 0, 4 nm. The transfer function of the input micro-ring 110 has also been shown in B. As can be seen in this figure, the input micro-ring 110 has an ISL of 0.8 nm which enables it to select half the wavelength on the train. In this figure, the transmitted wavelengths (transmitted signal) are shown in dotted lines while the resonant wavelengths (extracted signal) are shown in solid lines. In FIG. 1, the optical component comprises a second filtering level comprising two micro-rings 210 and 220 having a diameter of 239 μm. The second level micro-rings 210 and 220 filters are dimensioned so as to present an ISL of 0.16 nm suitable for separating a train of four interlaced wavelengths, respectively (λι, λ 3 , λ 5) λ 7 ), and (λ 2 , λ 4 , λ 6 , λ 8 ). The micro-ring 220 receives the extracted signal 22 from the input micro-ring 110 and composed of the wavelengths λ 2 , λ 4, λβ, and λ 8 . It separates the signal into a transmitted signal 33 and an extracted signal 34. The transmitted signal 33 and the extracted signal 34 are each composed of a train of two wavelengths respectively (λ 2 , λβ), and (λ 4 , λ 8 ). Similarly, the micro-ring 210 receives the transmitted signal 21 from the input micro-ring 110 and composed of the wavelengths λ-i, λ 3 , λ 5 , and λ 7 . It separates the signal into a transmitted signal 31 and an extracted signal 32. The transmitted signal 31 and the extracted signal 32 are each composed of a train of two wavelengths respectively (λi, λs), and (λ 3 , λ 7 ). Finally, the optical component of FIG. 1 comprises a third filtering level comprising four micro-rings 420, 440, 460 and 480 having a diameter of 164.5 μm. The micro-rings 420, 440, 460 and
480 du troisième niveau de filtrage sont dimensionnés de manière à présenter un ISL de 0,32 nm adapté pour séparer un train de deux longueurs d'ondes, respectivement (λ-i, λs), (λ3, λ7), (λ2, λ6), et (λ4, λ8). Chaque micro-anneau 420, 440, 460 et 480 sépare le signal 31, 32, 33 et 34 qu'il reçoit en provenance des micro-anneaux 210 et 220 du deuxième niveau, en un signal transmis et un signal extrait, respectivement 41 et 42, 43 et 44, 45 et 46, 47 et 48. Les signaux 41 , 42, 43, 44, 45, 46, 47 et 48 sont envoyés vers des guides optiques de sortie. Chaque signal de sortie 41, 42, 43, 44, 45, 46, 47 et 48 est composé d'une longueur d'onde respectivement λ-i, λs, λ3, λ , λ2, λβ, λ4, et λ8. On a décrit un exemple de composant à e=3 niveaux de filtrage. Cette architecture permet de séparer ou de combiner n=8 longueurs d'onde. Bien entendu, la même architecture peut être réalisée avec un nombre plus ou moins important de niveaux. Selon le même principe, une architecture comprenant un nombre e de niveaux permettra de séparer ou de combiner n=2e longueurs d'onde. Chaque niveau i (1<i≤e) comprend 2( l) microstructures dont les dimensions varient d'un niveau à l'autre. Chaque microstructure d'un niveau i donné présente des dimensions supérieures aux dimensions des microstructures d'un niveau i+1 suivant. De manière générale, la mise en cascade des micro-structures, moyennant une adaptation de leurs dimensions à chaque niveau, permet d'extraire ou de combiner un nombre k de longueurs d'onde parmi n. L'architecture de composant proposée limite le nombre de microstructures de faible dimensions (typiquement de diamètre inférieur à 300μm) nécessaires pour la séparation ou la combinaison d'un nombre donné de longueurs d'onde. Par conséquent, les pertes dans un composant conforme à l'invention sont limitées en regard des pertes générées dans les composants de l'art antérieur. Typiquement, un composant multiplexeur/démultiplexeur conforme à la figure 1 occupe une surface de l'ordre de 3x4 mm2. Un composant équivalent réalisé par une technologie d'optique intégré classique, en silice ou polymère (par exemple de type PHASAR), réalisant la même fonction de séparation/combinaison, occupe une surface 50 à 100 fois supérieure au composant de l'invention. Le composant de l'invention peut être obtenu par des technologies connues de microgravure. Sur une plaquette (wafer) en silice sur silicium, on dépose un film de polymère de cœur d'indice de réfraction de l'ordre de 1 ,58 à la longueur d'onde de 1550 nm. La couche de silice présente une épaisseur de 13 μm et un indice de réfraction de 1 ,44 à la longueur d'onde de 1550 nm, elle sert de gaine optique (couche de confinement ou buffer optique). Par une technique classique de photolithographie, le motif des guides et des multiplexeurs est transféré dans la couche de polymère de cœur qui est ensuite recouverte d'une gaine optique d'indice de l'ordre de 1 ,45 à la longueur d'onde de 1550 nm. Les contrastes d'indice cœur-gaine sont ainsi de l'ordre de 13.10"2 autorisant des rayons de courbure inférieurs à 50 μm avec des pertes de l'ordre de 0,01 dB/cm dans les courbes. Les pertes linéiques dans ces polymères peuvent être inférieures à 0,5 dB/cm. La section des guides présente des dimensions de l'ordre de 2x2 μm2 de manière à constituer des guides monomodes. Le couplage des guides de sortie peut être réalisé en partie par un adaptateur de mode et des micro-optiques en bout de fibre permettant de réduire les pertes de couplage de ces guides étroits à moins de 1 dB. Une centaine au moins de multiplexeurs/démultiplexeurs peuvent être réalisés sur une plaquette présentant un diamètre de 76,2 mm de diamètre (environ 3 pouces). Les différents éléments sont ensuite clivés pour être couplés à des fibres et connectorisés. 480 of the third filtering level are dimensioned so as to present an ISL of 0.32 nm suitable for separating a train of two wavelengths, respectively (λ-i, λs), (λ 3 , λ 7 ), (λ 2 , λ 6 ), and (λ 4 , λ 8 ). Each micro-ring 420, 440, 460 and 480 separates the signal 31, 32, 33 and 34 which it receives from micro-rings 210 and 220 of the second level, into a transmitted signal and an extracted signal, respectively 41 and 42, 43 and 44, 45 and 46, 47 and 48. Signals 41, 42, 43, 44, 45, 46, 47 and 48 are sent to output optical guides. Each output signal 41, 42, 43, 44, 45, 46, 47 and 48 is composed of a wavelength respectively λ-i, λs, λ 3 , λ, λ 2 , λβ, λ 4 , and λ 8 . We have described an example of a component with e = 3 filtering levels. This architecture makes it possible to separate or combine n = 8 wavelengths. Of course, the same architecture can be implemented with a greater or lesser number of levels. According to the same principle, an architecture comprising an e number of levels will make it possible to separate or combine n = 2 e wavelengths. Each level i (1 <i≤e) includes 2 (l) microstructures whose dimensions vary from one level to another. Each microstructure of a given level i has dimensions greater than the dimensions of the microstructures of a next level i + 1. In general, the cascading of micro-structures, by adapting their dimensions at each level, makes it possible to extract or combine a number k of wavelengths among n. The proposed component architecture limits the number of small microstructures (typically less than 300 μm in diameter) required for the separation or combination of a given number of wavelengths. Consequently, the losses in a component according to the invention are limited with regard to the losses generated in the components of the prior art. Typically, a multiplexer / demultiplexer component according to FIG. 1 occupies an area of the order of 3 × 4 mm 2 . An equivalent component produced by a conventional integrated optical technology, in silica or polymer (for example of the PHASAR type), performing the same separation / combination function, occupies an area 50 to 100 times greater than the component of the invention. The component of the invention can be obtained by known microgravure technologies. On a wafer made of silica on silicon, a film of core polymer with a refractive index of the order of 1.58 at a wavelength of 1550 nm is deposited. The silica layer has a thickness of 13 μm and a refractive index of 1.44 at the wavelength of 1550 nm, it serves as an optical sheath (confinement layer or optical buffer). By a conventional photolithography technique, the pattern of the guides and the multiplexers is transferred into the core polymer layer which is then covered with an optical sheath with an index of the order of 1.45 at the wavelength. 1550 nm. The contrasts of the core-cladding index are thus of the order of 13 × 10 −2 allowing radii of curvature less than 50 μm with losses of the order of 0.01 dB / cm in the curves. The linear losses in these polymers can be less than 0.5 dB / cm. The section of the guides has dimensions of the order of 2x2 μm 2 so as to constitute single-mode guides. The coupling of the output guides can be carried out in part by an adapter mode and micro-optics at the end of the fiber making it possible to reduce the coupling losses of these narrow guides to less than 1 dB. At least one hundred multiplexers / demultiplexers can be produced on a wafer having a diameter of 76.2 mm. diameter (about 3 inches) The different elements are then cleaved to be coupled to fibers and connectorized.

Claims

REVENDICATIONS
1. Composant optique à fonction de séparation ou de combinaison spectrale, apte selon un premier sens de propagation de la lumière, à recevoir un signal optique d'entrée (11) multiplexe composé d'une pluralité de longueurs d'onde (λrλ8) prédéfinies et à renvoyer une pluralité de signaux optiques de sortie (41-48), chaque signal de sortie comprenant une ou plusieurs composantes correspondant à différentes longueurs d'onde du signal d'entrée, le composant comportant un premier niveau de filtrage et un deuxième niveau de filtrage incluant chacun une microstructure résonante, caractérisé en ce que la microstructure (110) du premier niveau de filtrage est dimensionnée pour, lorsque le composant est utilisé selon le premier sens de propagation, séparer le signal d'entrée (11) en un signal transmis (21) et un signal extrait (22) incluant chacun plusieurs des longueurs d'onde du signal d'entrée, et en ce que le deuxième niveau inclut au moins une microstructure résonante (210, 220) recevant le signal transmis (21) ou le signal extrait (22), cette microstructure résonante étant dimensionnée pour séparer ledit signal transmis ou extrait en fonction des longueurs d'onde qu'il contient, le composant étant également apte à fonctionner dans le sens inverse de propagation de la lumière. 1. Optical component with a spectral separation or combination function, capable of receiving a multiplex input optical signal (11) composed of a plurality of wavelengths (λrλ 8 ) in a first direction of light propagation. predefined and to return a plurality of optical output signals (41-48), each output signal comprising one or more components corresponding to different wavelengths of the input signal, the component comprising a first filtering level and a second filtering level each including a resonant microstructure, characterized in that the microstructure (110) of the first filtering level is dimensioned for, when the component is used according to the first direction of propagation, to separate the input signal (11) into a transmitted signal (21) and an extracted signal (22) each including several of the wavelengths of the input signal, and in that the second level includes at least one res microstructure onante (210, 220) receiving the transmitted signal (21) or the extracted signal (22), this resonant microstructure being dimensioned to separate said transmitted or extracted signal according to the wavelengths it contains, the component also being capable to operate in the opposite direction of light propagation.
2. Composant optique selon la revendication 1 , caractérisé en ce qu'il comprend une pluralité de niveaux de filtrage successifs, chaque niveau incluant au moins une microstructure (110, 210, 220), les microstructures des niveaux successifs étant connectées les unes aux autres en cascade de sorte que lorsque le composant est utilisé selon le premier sens de propagation, les signaux transmis (21) et extrait (22) générés par une microstructure (110) d'un niveau donné sont envoyés chacun vers une microstructure (210, 220) d'un niveau suivant pour séparation. 2. Optical component according to claim 1, characterized in that it comprises a plurality of successive filtering levels, each level including at least one microstructure (110, 210, 220), the microstructures of the successive levels being connected to each other in a cascade so that when the component is used in the first direction of propagation, the transmitted (21) and extracted (22) signals generated by a microstructure (110) of a given level are each sent to a microstructure (210, 220 ) a next level for separation.
3. Composant optique selon l'une des revendications 1 ou 2, caractérisé en ce qu'il comprend un nombre e de niveaux de filtrage successifs, chaque niveau i (1<i≤e) incluant 2(l"1) microstructures (110), chaque microstructure (110) d'un niveau i (i<e) étant connectée à deux microstructures (210, 220) d'un niveau suivant i+1, et lorsque le composant est utilisé selon le premier sens de propagation, chacune des microstructures (210, 220) du niveau i+1 reçoit un signal transmis (21) ou un signal extrait (22) émis par la microstructure (110) du niveau i. 3. Optical component according to one of claims 1 or 2, characterized in that it comprises a number e of successive filtering levels, each level i (1 <i≤e) including 2 (l "1) microstructures (110 ), each microstructure (110) of a level i (i <e) being connected to two microstructures (210, 220) of a level following i + 1, and when the component is used according to the first direction of propagation, each microstructures (210, 220) of level i + 1 receive a transmitted signal (21) or an extracted signal (22) emitted by the microstructure (110) of level i.
4. Composant optique, selon l'une des revendications qui précèdent, caractérisé en ce que chaque microstructure résonante (110) d'un niveau de filtrage donné est dimensionnée pour, lorsque le composant est utilisé selon le premier sens de propagation, sélectionner une longueur d'onde sur deux parmi les longueurs d'onde (λι-λ8) composant le signal qu'elle reçoit (11) et pour générer d'une part un signal extrait (22) composé des longueurs d'onde sélectionnées (λ2, λ4, λ6, λ8) et d'autre part un signal transmis (21) composé des longueurs d'onde non sélectionnées (λ-i, λ3, λ5, λ7). 4. Optical component, according to one of the preceding claims, characterized in that each resonant microstructure (110) of a given filtering level is dimensioned for, when the component is used according to the first direction of propagation, to select a length of two of the wavelengths (λι-λ 8 ) making up the signal it receives (11) and for generating, on the one hand, an extracted signal (22) composed of the selected wavelengths (λ 2 , λ 4 , λ 6 , λ 8 ) and on the other hand a transmitted signal (21) composed of the wavelengths not selected (λ-i, λ 3 , λ 5 , λ 7 ).
5. Composant selon la revendication 4, caractérisé en ce que chaque microstructure résonante d'un niveau de filtrage donné (110) est dimensionnée pour présenter un Intervalle Spectral Libre (ISL) égal à deux fois l'espacement entre deux longueurs d'onde successives (λι-λ8) composant le signal (11) qu'elle reçoit. 5. Component according to claim 4, characterized in that each resonant microstructure of a given filtering level (110) is dimensioned to present a Free Spectral Interval (ISL) equal to twice the spacing between two successive wavelengths (λι-λ 8 ) composing the signal (11) that it receives.
6. Composant selon l'une des revendications qui précèdent, caractérisé en ce que chaque microstructure d'un niveau de filtrage donné présente des dimensions supérieures aux dimensions des microstructures d'un niveau suivant. 6. Component according to one of the preceding claims, characterized in that each microstructure of a given filtering level has dimensions greater than the dimensions of the microstructures of a next level.
7. Composant selon l'une des revendications qui précèdent, caractérisé en ce qu'il constitue un multiplexeur/démultiplexeur. 7. Component according to one of the preceding claims, characterized in that it constitutes a multiplexer / demultiplexer.
PCT/FR2003/003201 2003-10-28 2003-10-28 Optical component comprising cascade-connected resonant microstructures WO2005053194A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003295007A AU2003295007A1 (en) 2003-10-28 2003-10-28 Optical component comprising cascade-connected resonant microstructures
PCT/FR2003/003201 WO2005053194A1 (en) 2003-10-28 2003-10-28 Optical component comprising cascade-connected resonant microstructures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2003/003201 WO2005053194A1 (en) 2003-10-28 2003-10-28 Optical component comprising cascade-connected resonant microstructures

Publications (1)

Publication Number Publication Date
WO2005053194A1 true WO2005053194A1 (en) 2005-06-09

Family

ID=34630218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003201 WO2005053194A1 (en) 2003-10-28 2003-10-28 Optical component comprising cascade-connected resonant microstructures

Country Status (2)

Country Link
AU (1) AU2003295007A1 (en)
WO (1) WO2005053194A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169281A (en) * 2008-01-18 2009-07-30 Toshiba Corp Optical multiplexer/demultiplexer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195187B1 (en) * 1998-07-07 2001-02-27 The United States Of America As Represented By The Secretary Of The Air Force Wavelength-division multiplexed M×N×M cross-connect switch using active microring resonators
WO2001022141A1 (en) * 1999-09-21 2001-03-29 Nanovation Technologies, Inc. Wavelength-slicing architecture for wavelength demultiplexing using micro-ring resonators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195187B1 (en) * 1998-07-07 2001-02-27 The United States Of America As Represented By The Secretary Of The Air Force Wavelength-division multiplexed M×N×M cross-connect switch using active microring resonators
WO2001022141A1 (en) * 1999-09-21 2001-03-29 Nanovation Technologies, Inc. Wavelength-slicing architecture for wavelength demultiplexing using micro-ring resonators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABSIL P P ET AL: "VERTICALLY COUPLED MICRORING RESONATORS USING POLYMER WAFER BONDING", IEEE PHOTONICS TECHNOLOGY LETTERS, IEEE INC. NEW YORK, US, vol. 13, no. 1, January 2001 (2001-01-01), pages 49 - 51, XP001025427, ISSN: 1041-1135 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169281A (en) * 2008-01-18 2009-07-30 Toshiba Corp Optical multiplexer/demultiplexer

Also Published As

Publication number Publication date
AU2003295007A1 (en) 2005-06-17

Similar Documents

Publication Publication Date Title
EP2141842B1 (en) Optical signal switching device
US6754411B2 (en) Mach-zehnder based filter demultiplexers and method
US9780903B2 (en) Optical wavelength demultiplexer having optical interference filters connected in cascade
FR2731280A1 (en) OPTICAL INSERTION-EXTRACTION MULTIPLEXER WITH HIGH INSULATION
EP0707223A1 (en) Wavelength selective optical delay line
US6411748B1 (en) Wide tuning range acousto-optical fiber Bragg grating filter (FBGF)
FR2933256A1 (en) Optical signal switching device for meshed transparent wavelength division multiplexing optical network, has optical connectors broadcasting optical incoming signal received by broadcast couplers, towards selective switches, simultaneously
WO2005053194A1 (en) Optical component comprising cascade-connected resonant microstructures
EP1213866B1 (en) Interleaved bands demultiplexing/multiplexing system
Stampoulidis et al. Microring-Resonator-Assisted, All-Optical Wavelength Conversion Using a Single SOA and a Second-Order Si $ _ {3} $ N $ _ {4} $–SiO $ _ {2} $ ROADM
FR2736480A1 (en) COLORING DEVICE FOR OPTICAL SIGNALS
JP3832742B2 (en) Optical multiplexer / demultiplexer
EP1076470B1 (en) Hybrid space and wavelength selector and optical switching matrix containing such selectors
US7418168B2 (en) Optical add/drop module
JP2005348270A (en) Optical add/drop multiplexing apparatus
EP1353459A1 (en) Optical signal generation
EP0874252B1 (en) Optical fibres wavelength multiplexer-demultiplexer
WO2003046627A1 (en) Device for multiplexing an array of optical channels, use for wavelength and add-drop multiplexing
Pu et al. Micro-machined optical add/drop multiplexer with client configurability
Wang et al. Low-crosstalk 1× 40 100 GHz spacing Cascaded Planar Echelle Gratings for Mux/Demux on 3-μm Silicon platform
Ramani Optical MEMS: boom, bust and beyond
EP1379100B1 (en) Optical cross-connect with multigranular architecture
EP1455551A2 (en) Selection unit for optical switches and optical switch.
NL1020609C2 (en) Device and method for processing optical signals.
FR2937815A1 (en) Optical signal i.e. wavelength-multiplexed optical signal, switching device for meshed wavelength division optical network, has spatial optical switching matrixes and optical links arranged to permit broadcast of signal towards switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP