WO2005052958A1 - Jig for installation inspection - Google Patents

Jig for installation inspection Download PDF

Info

Publication number
WO2005052958A1
WO2005052958A1 PCT/JP2004/017983 JP2004017983W WO2005052958A1 WO 2005052958 A1 WO2005052958 A1 WO 2005052958A1 JP 2004017983 W JP2004017983 W JP 2004017983W WO 2005052958 A1 WO2005052958 A1 WO 2005052958A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
terminal
signal
inspection
connector housing
Prior art date
Application number
PCT/JP2004/017983
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Onishi
Yoshikazu Taniguchi
Mishio Hayashi
Shuji Yamaoka
Akira Nurioka
Original Assignee
Sumitomo Wiring Systems, Ltd.
Oht Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems, Ltd., Oht Inc. filed Critical Sumitomo Wiring Systems, Ltd.
Publication of WO2005052958A1 publication Critical patent/WO2005052958A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/012Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing wire harnesses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/20Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for assembling or disassembling contact members with insulating base, case or sleeve

Definitions

  • the present invention relates to a mounting inspection jig that can be inspected only by replacing a part of jigs even when various types of connector housings are inspected when inspecting the mounting of a cut-off piezoelectric wire having terminals fixed thereto in a connector. It is about. Background art
  • each connection terminal of each input terminal of the input terminal group of the inspection device main body and each connection terminal of each output terminal of the output terminal group is connected to the input side connector and the output side connector of the work panel, respectively.
  • the connectors at both ends of the model harness are fitted to the input and output connectors on the work panel, and the terminals at both ends of each core wire, which are the specifications of the model harness, and each terminal of the connector, was stored as the reference date.
  • each input terminal of the input terminal group from the inspection device body side Inspection signals are sequentially output to the input side connector, one connector, the piezoelectric wire to be inspected, the other connector, the output side connector, and the output terminal of each output terminal of the output terminal group. ⁇ It is determined whether the inspection signal has been input via the terminal in the insertion hole, and it is determined that each core wire of the piezoelectric wire to be inspected and each terminal of the connector attached to both ends of the core are inserted into the insertion hole. Inspection data is collected Was.
  • the inspection data thus obtained is compared with previously stored reference data to determine whether a defect has occurred in the inspection data.
  • Patent Document 1 JP-A-8-146600
  • the inspection probe could be deteriorated, worn, or damaged, resulting in terminal deformation.
  • the present invention has been made in view of the above-described problem, and can confirm the mounting state of a cutting piezoelectric wire terminal in a connector with only a simple configuration, is versatile, and damages a cutting piezoelectric wire terminal.
  • An object of the present invention is to provide an inspection device capable of detecting a mounting position of a cutting piezoelectric wire terminal to a connector in a non-contact manner in a harness manufacturing process without producing the same.
  • this is a mounting inspection jig used for a terminal mounting inspection device capable of inspecting a mounting position of a terminal to which an AC signal is applied in a connector housing in a non-contact manner with the terminal, and housing and holding the connector housing.
  • It is a jig for mounting inspection that can determine the mounting position of the device.
  • the inspection signal is an AC signal
  • the conductive plate can detect an AC signal from the terminal mounted in the connector housing
  • the attachment member is formed according to connector housing specifications. It is characterized in that the holding portion is common regardless of the connector housing specification.
  • a mounting inspection method in a terminal mounting position inspection apparatus capable of determining a mounting position of a terminal to which an AC signal is applied in a connector housing without contacting the terminal, wherein the connector housing is the same as the above-mentioned connector housing.
  • Item 2 An AC signal from a terminal to which a cutting piezoelectric wire to which an AC signal is applied is housed in the housing recess through the attachment member of the mounting inspection jig according to Item 2, and the AC signal is applied in the connector housing.
  • the method is characterized by a method of confirming the mounting position of the terminal for determining the position.
  • FIG. 1 is a schematic diagram for explaining a basic principle of a terminal mounting state checking device for detecting a mounting state of a cut piezoelectric wire terminal to a connector according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a detailed configuration of a test signal processing unit of a test control unit according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of detection in the inspection control unit according to the present embodiment.
  • FIG. 4 is a schematic diagram for explaining a configuration example of a connector holding section according to the present embodiment.
  • FIG. 5 is a flowchart for explaining a mounting inspection method in the device for checking a mounted state of a terminal to a connector according to the present embodiment.
  • FIG. 6 is a diagram illustrating an attachment member according to a second embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a detailed configuration of a test signal processing unit of a test control unit according to a third embodiment of the present invention.
  • the terminal mounting state checking device of the present embodiment is a terminal of a correct cutting piezoelectric wire. This is a device that can determine whether or not the connector is mounted in the correct position of the connector housing without contacting the connector housing and the terminal.If the device of the present embodiment is used, the correct cutting piezoelectric wire terminal is inserted into the connector in the harness manufacturing process. It is possible to determine whether or not the connector has been mounted correctly when mounting on a connector, and it is not necessary to check the mounting status of the connector in a later process.
  • FIG. 1 is a schematic diagram for explaining a basic principle of a terminal mounting state checking device for detecting a mounting state of a cutting piezoelectric wire terminal to a connector according to an embodiment of the present invention.
  • reference numeral 10 denotes a connector housing (hereinafter referred to as a “connector”) that constitutes an end portion of a harness to be inspected.
  • a predetermined position within the connector 10 is provided with a cutting piezoelectric wire having a predetermined specification.
  • One end terminal of 300 is inserted to a predetermined depth.
  • the cutting piezoelectric wire 300 attached to the connector is cut into a predetermined length in advance, and a terminal of a predetermined specification to be attached to the connector 10 is fixed to an end portion by, for example, crimping.
  • the connector 10 is stored in the connector storage section 450 of the connector holding section 400.
  • Y-axis sensors 20a, 20b and X-axis sensors 30a, 30b which will be described later, are disposed so as to face each other. It is configured to be located near the outer wall on the side surface of the connector 10 when housed in 450.
  • 20a and 20b are opposite one side surfaces of the connector 10 disposed on the inner wall portion of the connector storage portion 450, for example, near the inner wall which is both long side surfaces when the connector 10 is rectangular in a top view.
  • the Y-axis sensor plate to be provided, 30a, 30b is the other side of the connector 10 installed on the inner wall of the connector housing 450 If the connector 10 is rectangular when viewed from above, it is an X-axis sensor plate that is arranged near the inner wall that is on both short sides.
  • Reference numeral 100 denotes an inspection control unit that controls the inspection device.
  • the inspection control unit is connected to each sensor plate provided in the connector holding unit 400 by a signal line, and can detect a detection signal from each sensor plate. Is configured.
  • the cut-off piezoelectric wire terminal to which the AC signal is applied is located.
  • the signal from the terminal is detected by the sensor plate (20a, 20b, 30a, 30b), and a detection signal is obtained. Specifically, a detection signal corresponding to the distance from the terminal is detected.
  • the value of the detection signal detected by the pair of opposed sensor plates among the sensor plates (20a, 20, 30a, 30b) is determined. Based on this, the relative distance between the sensor plate and the terminal based on the distance between the sensor plates is detected. This reduces the effects of the level difference (variation in the applied test signal intensity) of the AC signal applied to the cutting piezoelectric wire.
  • Y-axis sensors 20a and 20b detect the position in the Y-axis direction (short side direction) in connector 10 and X-axis sensors 30a and 30b detect the X-axis direction in connector 10 By detecting the position (long side direction), the position of the terminal to which the AC test signal is applied in the connector 10 can be specified, and it can be detected whether or not the terminal has been inserted into the correct position.
  • FIG. 2 is a diagram for explaining the detailed configuration of the signal processing unit of the inspection control unit according to the present embodiment.
  • 11 1 to 11 4 are sensors ⁇ (20 a, 20 b, 30 a , 30a), amplifiers A-D, 121-124 detect the peak value of the detection signal from the sensor plate (20a, 20b, 30a, 30b) The peak detection circuits A to D.
  • 1 3 1 is an X-axis addition circuit that inputs the peak detection signals VX 1 and V x 2 from the X-axis sensors 30 a and 30 b, adds the detected values to ⁇ Vx l + Vx 2), and adds them.
  • 1 4 1 receives the output of the X-axis addition circuit 13 1 and the peak detection signal value from one of the X-axis sensors ⁇ (for example, 30 b), and outputs the X-axis addition signal from the X-axis addition circuit 13 1 ( (Vx l + Vx 2) is the denominator, and ⁇ Vx 2 / (Vx 1 + V x 2) ⁇ is the numerator of the peak detection signal (Vx 2) from one X-axis sensor plate (for example, 30b). This is the X-axis division circuit to be found.
  • the output of the X-axis division circuit 141 indicates the relative change in the detection signals of the X-axis sensors 30a and 30b, and there is a change in the strength of the AC test signal applied to the cutting piezoelectric wire. Can also offset the effects. As a result, the output of the X-axis divider circuit 141 becomes a signal level directly corresponding to the position in the X-axis direction in the connector 10. The X-axis position of the mounted cable terminal can be detected in a non-contact manner.
  • the input 142 receives the output from the Y-axis adder circuit 13 and the peak detection signal value from one of the Y-axis sensor boards (for example, 20b), and the Y-axis from the Y-axis adder circuit 13
  • the added signal (Vy l + Vy 2) is used as the denominator, and one Y-axis sensor plate (for example, ⁇ Vy 2 / (V 1 + Vy 2) ⁇ that uses the peak detection signal (Vy 2) from 20 t as the numerator) This is the desired Y-axis divider circuit.
  • the output of the ⁇ axis division circuit 142 indicates the relative change of the detection signal of the ⁇ axis sensor 20a, 2Ob, and the intensity change to the AC inspection signal applied to the cutting piezoelectric wire. Even if it is, the effects can be offset. As a result, since the output of the Y-axis divider circuit 142 has a signal level directly corresponding to the position in the Y-axis direction in the connector 10, the output of the Y-axis divider circuit 142 is attached to the connector 10 from the output of the Y-axis divider circuit 142. The Y-axis position of the cut-off piezoelectric wire terminal can be detected in a non-contact manner.
  • the mounting position (two-dimensional position) of the piezoelectric wire terminal in the X-Y direction within 10 can be detected without contact.
  • the above circuit configuration is based on the X-axis sensor board and the Y-axis sensor board, where X or Y is n.
  • the detection level of the inspection signal from the conductive plate is a value that is inversely proportional to the distance from each of the cut-off piezoelectric wire terminals. It becomes.
  • the reciprocal operation values (1 / Vx1) and (1 / Vx2) are values that are proportional to the distance from the cut piezoelectric wire terminal, respectively.
  • the sum l / Vnl) + (1 / Vn2) ⁇ is an amount corresponding to the distance (reference distance) between the conductive plates 20a, 20b or 30a, 30b. Therefore, the final quantity [1Z 1 / Vn 2) + (1 / Vn 1) ⁇ ] V nl indicates the position of (l ZVn l) with respect to the reference distance, and the constant variation related to the supply inspection signal Absorbs the minute. Furthermore, the result of this ratio is a quantity proportional to the distance, which is optimal for use in inspections.
  • the reference values include at least a reference value for the X-axis sensor plates 30a and 30B and a reference value for the Y-axis sensor plates 20a and 2Ob.
  • the tolerance of the reference distance is determined by the mechanical accuracy of the holder used, but in the present embodiment, a tolerance of about 0.1 mm can be sufficiently realized.
  • the terminal position can be measured accurately.
  • the test signal detection level detected by a pair of conductive plates differs depending on the terminal mounting position on the connector, but the amplification level and offset when processing test signals from the opposing conductive plates match.
  • Vx 1 and Vx 2 can be obtained as DC voltage values.
  • the inspection signal A voltage value Vx1 corresponding to the mounting position L of the supply terminal can be obtained.
  • the result of the above calculation when the terminal to which the inspection signal is applied is inserted into each position of the connector in advance is checked and held as a reference value, and the terminal to be inspected is When inserted, the insertion position is detected by comparing with this reference value.
  • the arithmetic unit that performs the above addition or division may be configured by a hardware arithmetic circuit, or may be realized by software arithmetic using a computer and a computer program.
  • FIG. 3 shows an example of the inspection result in the inspection control unit.
  • FIG. 3 is a diagram for explaining an example of a detection result in the inspection control unit according to the present embodiment.
  • the terminal holding portion (cavity) of the connector housing is configured to have two rows of upper and lower rows of six rows of lattice-shaped cavities as shown in FIG. 1, and the terminals are positioned in the lower row of the first row of the cavities.
  • This is an example of processing by the hardware operation circuit when the data is sequentially moved and inserted from (1, 2) (the unit is "V").
  • the electrostatic coupling is used to supply the AC test signal to the cutting piezoelectric wire, the level of the test signal cannot be kept constant and is expected to fluctuate greatly. For this reason, when a test signal of 20 Vp-p is given to the disconnecting piezoelectric wire and when a test signal of 10 Vpp is given, the terminal is inserted into each cavity of the connector housing. The detection results are compared in the case where they are performed.
  • the upper stage shows the test signal when the test signal of 20 Vp-p is given.
  • the lower stage gives the test signal of 10 Vp-p.
  • Table 1 shows the detection results.
  • the vertical axis indicates the calculated X voltage value
  • the horizontal axis indicates the terminal insertion row position of the CAPITITY, and indicates the terminal insertion position in each of the first to sixth columns.
  • the left end shown in is the first column, and the right end is the sixth column.
  • Table 2 shows the relationship between the calculated value X of the divider in Table 1 and the cavity position.
  • the connector housing has cavities at approximately 2.5 mm pitch at equal intervals, there is a proportional relationship between the calculated value of X and the position of the cavities. Without being affected by Since the values are almost the same, it is possible to identify the cavities whose terminals have been inserted by the calculated value of X.
  • the insertion position to each cavity in the column direction is specified by the X-axis sensor plates 30a and 30b, and the insertion position to the cavity in the row direction by the Y-axis sensor plates 20a and 2Ob. Can be specified.
  • the connector 10 is positioned and housed in the connector housing 450 of the connector holder 400 at the cutting piezoelectric wire manufacturing site, and each sensor plate is placed on the side of the connector. It must be positioned near or near the bottom.
  • a connector holding portion is used for holding the connector and for positioning the sensor plate.
  • the connector housing section 400 of the present embodiment the connector housing section
  • the present invention is not limited to this case.
  • the size of the connector is smaller than that of the connector housing section 450, the outer shape is almost the same as the internal volume of the connector housing section 450, and is substantially at the center. For example, if an attachment member made of resin was formed with an A-A through hole that could accommodate the connector housing, the attachment member would be stored in the connector storage section 450 before storing the connector. Good.
  • FIG. 4 shows an example of an inspection jig for accommodating the connector housing in the connector accommodating portion via the attachment member of the present embodiment.
  • the connector that holds and holds the connector 100 with the connector 100 positioned This is a connector holding section provided with a storage section 450.
  • the sensor plates (20a, 20b, 30a, 30b) are arranged on the side (not shown in Fig. 4), and the connector housing that can hold and hold the connector housing inside Department. If the outer shape of the connector housing is the same as the inner shape of the connector storage section 450, store the connector housing in the connector storage section 450 as it is.
  • the external shape of the connector housing is smaller than the internal volume (internal shape) of the connector housing section 450, the external shape is almost the same as the connector housing section 450 and almost the same as the external shape of the connector housing to be inspected near the center.
  • the connector housing is stored via an attachment member with a storage space (for example, a through hole or hole).
  • a storage space for example, a through hole or hole.
  • the relatively large connector 10a is housed in the through hole 465a of the left attachment member 460a, and the through hole 465b of the right attachment member 460b.
  • a relatively small connector 10b is stored inside.
  • the X-axis sensor plates 30a, 30b and the Y-axis sensor plates 20a, 2Ob are fixed to each other, and the side of the connector stored in the connector storage portion 450 or the attachment member 460. It is configured to be almost constant distance from the side of the connector held by a and b.
  • the attachment members 460a and 460b are set and held in the connector storage section 450 of the connector holding section 400 when the cutting piezoelectric wire is inserted. Then, simply by housing the connector 10 in the attachment members 460a and b, the mounting inspection of the cutting piezoelectric wire can be performed.
  • the connector is smaller than the connector housing section 450.
  • the connector is housed in an attachment member 460a, b having an external shape formed of, for example, resin and having a connector housing 450 shape, and the attachment member 460a is stored in the connector housing 450.
  • B can be stored, and by replacing this inexpensive attachment member 460, connectors of various specifications can be easily accommodated. In this case, high-precision and reliable inspection can be performed.
  • the terminal insertion position can be processed as coordinate position data. For this reason, even if the specifications of the connector housing are changed, the inspection device can respond by simply changing the terminal insertion position data (coordinate position data).
  • the connector housing is housed in the connector housing section via the attachment member.Therefore, when the specifications of the connector housing are changed, the shape of the through hole of the attachment member with the same external shape is changed.
  • Various types of connector housings can be handled simply by preparing and replacing components.
  • the processing of the attachment member requires only forming a through hole for the connector eight housing outer shape, which is easy to process, except for the outer shape of the connector housing shape. As a result, it is possible to quickly respond to changes in the specifications of the connector housing.
  • FIG. 5 is a flowchart for explaining a mounting inspection method in the apparatus for checking the mounting position of a terminal with respect to a connector according to the present embodiment.
  • step S1 the connector 10 is housed in the connector housing section 450 of the connector holding section 400 shown in FIG. 4, and is held by the connector holding section 400.
  • each sensor plate (20a, 20b, 30a , 30 b) are positioned and arranged so as to be in the vicinity of each side surface of the connector 10, and only the connector 10 is positioned and stored in the connector storage section 450 to be in a testable state described later. For this reason, when the connector 10 is correctly stored, the process may proceed to the process of step S2 and subsequent steps.
  • step S2 the process proceeds to step S2, and the supply of the AC test signal of a predetermined frequency (application of the test signal) to the disconnecting piezoelectric wire 300 to be inserted into the connector 10 is started.
  • the inspection control unit of the inspection apparatus is activated, and a state is established in which it is possible to inspect that the disconnected piezoelectric wire terminal to which the inspection signal has been applied is inserted into the connector.
  • step S4 the inspection controller 100 is driven to start detection of the terminal ⁇ input position (attachment state).
  • the peak detection circuits A to D (121 to 124) are connected to The detection of the peak of the detection signal is started.
  • the worker inserts the mounting terminal of the disconnecting piezoelectric wire to which the inspection signal is applied into a predetermined position of the connector, and performs the mounting work.
  • the detection result of each sensor plate is obtained, and the insertion position of the terminal into the connector is detected from the detected peak value.
  • step S5 the inspection control unit 100 determines that the terminal of the disconnection piezoelectric wire to which the AC signal is applied is inserted into a predetermined connector position. Determine whether or not it has been detected.
  • the detection of attachment is, for example, completion of attachment when the terminal is inserted into the connector 10 and the position of the attached terminal does not change for a certain period of time.
  • the measurement of the terminal insertion position into the connector 10 is performed by measuring a detection signal value in each case when a terminal is inserted into each position of the connector in advance and registering it as a reference measurement value. For example, a threshold value for determining the insertion position is obtained and registered together with a reference measurement value.
  • the measurement detection result of the Y-axis sensor plate is compared with the reference measurement value, and the position of the connector into which the terminal is inserted is determined based on the measurement detection result.
  • the insertion position is determined by comparing the detection result when the correct cutting piezoelectric wire terminal is inserted into the correct position in advance with the detection result when the operator attaches the cutting piezoelectric wire terminal to the correct position. If it is within the specified range, it is determined that the device is properly mounted. In the case of this embodiment, when mounting is not performed at the normal position Since the detection signal from each sensor plate (20a, 20b, 30a, 30b) is different from the normal case, in step S5, If it is not detected that the terminal has been inserted into the predetermined connector position, the process proceeds to step S6 to identify the cause of the failure.
  • the detection result when the correct cutting piezoelectric wire terminal is inserted into the correct position in advance is compared with the detection result when the operator installs the cutting pressure wire terminal. Rather than comparing the calculated terminal insertion position derived from the detection result with the accurate position, the quality of the insertion may be checked.
  • the disconnection piezoelectric wire terminal which should not be attached is attached, or the terminal portion is not connected to the disconnection piezoelectric wire portion ( Disconnection).
  • step S7 the operator is notified of the occurrence of the defect and the cause thereof.
  • the occurrence of a defect is indicated by an alarm sound and a blinking display of an erroneous point, for example, a cause is displayed on a display panel (not shown), and a defective point and a correct insertion position are displayed.
  • the operator receives the error notification and performs necessary error processing thereafter. For example, if the insertion position is incorrect, or if the cutting piezoelectric wire terminal is deformed, remove the inserted cutting piezoelectric wire terminal and insert another new cutting piezoelectric wire terminal into the connector 10. Become.
  • step S100 is performed. Proceed to and judge whether or not all the mounting of the disconnection piezoelectric wire terminals to the connector 10 has been completed. When all of the disconnection piezoelectric wire terminals to the connector 10 have been mounted, this fact is notified by, for example, an end sound, The attachment of the terminal to the connector ends.
  • step S10 if the mounting of the cutting piezoelectric wire terminal to the connector 10 has not been completed, the process proceeds to step S15, where the next cutting piezoelectric wire terminal to be mounted and the inside of the connector 10 are connected. Specify the storage position and proceed to step S2.
  • the present embodiment it is only necessary to dispose the sensor plate in the vicinity of the outer side wall of each side of the connector housing, and to completely touch the cut piezoelectric wire terminal mounted on the connector housing.
  • the mounting position to the connector can be detected, making it possible to detect the occurrence of defective products in the manufacturing process. Manufacturing becomes possible.
  • the terminal insertion position can be inspected only by storing the connector in the connector storage section. Therefore, even if the harness specification is changed and the connector specification is changed, the connector can be used. It is sufficient if it can be stored in the connector storage section.Even if the connector specification changes, it can be handled with only a slight change such as changing the attachment member. In addition, there is no need to contact the test probe with the terminals, and the number of test probe terminals corresponding to the number of connector mounting terminals becomes unnecessary. Many signal lines are no longer required, and only four signal lines connected to the sensor board are used to connect terminals to connectors. Thailand can be inspected.
  • the inspection result of the mounting state of the cutting piezoelectric wire terminal to the connector housing is recognized as detection coordinate data in the connector holding unit, for example, the connector specification is changed. Even if it becomes The next position can be defined as new coordinate data.
  • the inspection jig side requires only a slight change to change the attachment member, and can quickly and easily respond to a wide variety of connector specifications.
  • the attachment member is provided with one storage space for storing the connector substantially at the center.
  • the present invention is not limited to the above example.
  • one attachment member may be provided with two or more storage spaces for storing two or more connectors.
  • two or more attachment members may be accommodated in the connector accommodating portion of the connector holding portion, and the connector may be accommodated in each attachment member. With the above configuration, the state of terminal insertion into two or more connectors may be made inspectable.
  • FIG. 6 is a diagram illustrating an attachment member according to a second embodiment of the present invention.
  • a case where two connectors are stored in the connector storage section of the connector holding section will be described as an example. It is clear that the same test can be performed with two or more pieces.
  • the configuration other than the attachment member is the same as that of the above-described first embodiment, and the following description is made for a configuration different from that of the above-described first embodiment.
  • a description of the configuration other than the connector storage section and the attachment member will be omitted.
  • 6A shows an example in which two connectors are stored in an attachment member
  • FIG. 6B shows an example in which two attachment members are stored in a connector storage portion.
  • the attachment member 460c shown in (A) has two connector storage spaces (connector storage holes) 465c and 4 as attachment members to be stored in the connector storage portion 450.
  • 65 d is provided, and the two connectors are stored in the respective connector storage spaces 465 c and 465 d.
  • the attachment members 460e and 460f shown in FIG. 6B are provided with connector storage spaces 465e and 465f at the center of the attachment members 460e and 460f, respectively. Then, when the two attachment members 460 e and 460 f are arranged, the size becomes exactly the same as the size of the connector storage portion 450 of the connector holding portion 400, and is fitted exactly. For this reason, the attachment members 460 e and 460 f do not rattle.
  • the inspection control unit 100 which performs the mounting inspection of the disconnecting piezoelectric wire terminal supplied with the inspection signal into the connector housing, also determines the value of the detection signal detected by the pair of sensor plates facing each other among the sensor plates. In addition, since the relative distance between the sensor plate and the terminal is detected based on the distance between the sensor plates, an inspection result that is not affected by the number of connectors or the like can be obtained.
  • the insertion state of the terminal inserted into each of two or more connectors can be inspected by one set of terminal position inspection devices.
  • the X-axis or Y-axis sensor plates are disposed to face each other with the connector housing interposed therebetween.
  • the present invention is not limited to the above-described example.
  • the two sensor plates may be positioned and arranged close to each other on one side of the container housing so that they are separated from each other by a certain distance and are almost parallel to each other.
  • sensor plates For example, by attaching sensor plates to both sides of a sheet-like insulating material and arranging them on the inner wall surface of one side of the connector housing, two sensor plates are separated from each other by a certain distance on one side of the connector housing. It is sufficient to position and arrange them so that they are almost parallel.
  • the method of arranging the sensor plate is not limited to the above example.
  • the sensor plate may be embedded in the side wall, or may be attached to the side wall of the attachment member when the attachment member is used. Is also good.
  • FIG. 7 shows the inspection principle of the inspection device in the third embodiment in which two sensor plates are positioned and arranged close to each other on one side of the connector housing so that they are separated from each other by a certain distance and are almost parallel. This will be described below with reference to FIG. FIG. 7 is a diagram for explaining a detailed configuration of the test signal processing unit of the test control unit according to the third embodiment.
  • 20 c, 20 ⁇ 1 is a ⁇ -axis sensor plate
  • 30 c, 30 (1 is an axis sensor plate
  • L 14 is a sensor plate (20 c, 20 d , 30c, 30d) amplifiers A to D and 121 to 124 that amplify the detection signals from the sensor plates (20c, 20d, 30c, 30d) Peak detection circuits A to D for detecting the peak value of the signal.
  • Reference numeral 135 denotes an X-axis subtraction circuit that inputs detection peak signals from the X-axis sensors 30c and 30d and outputs the difference (Vx1-Vx2).
  • Reference numeral 1336 denotes a Y-axis subtraction circuit that inputs the detected peak signals from the Y-axis sensors 20c and 20d and outputs the difference (Vy1-Vy2).
  • the X-axis division circuit 145 represents the relative change in the detection signals of the X-axis sensors 30c and 30d. The effect of the intensity change can be offset.
  • the output of the X-axis division circuit 1 45 has a signal level proportional to the distance between the terminal of the cut-off piezoelectric wire and each of the X-axis sensors 30 c and 30 d. From the output of 45, it can be detected in a non-contact manner whether the terminal is inserted at the correct X-axis position.
  • Vy 1 46 uses the Y-axis difference signal (Vy 1—Vy 2) from the Y-axis subtraction circuit 13 6 as the denominator and the detection signal (Vy 2) from the Y-axis sensor 20 d as the numerator ⁇ V y 2 / (Vy 1-Vy 2) ⁇ .
  • the output of the ⁇ axis divider circuit 146 represents the relative change of the detection signals of the ⁇ axis sensors 20 c and 20 d.
  • the effect of the intensity change can be offset.
  • the output of the Y-axis division circuit 146 becomes a signal level proportional to the distance between the terminal of the cut piezoelectric wire and each of the Y-axis sensors 20c and 20d. From the output of 46, it can be detected in a non-contact manner whether or not the terminal is correctly inserted into the Y-axis mounting position.
  • the above circuit configuration is based on the X-axis sensor board and the Y-axis sensor board, where X or Y is n.
  • V n 1 ⁇ (V n 1 X V n 2) / (Vn 1-Vn 2) ⁇ / V n 1
  • the X-axis sensor 30d and the Y-axis sensor 20d are located behind the X-axis sensor 30c and the Y-axis sensor 20c as viewed from the connector side.
  • the connector 10 is made of a non-conductive material, and the X-axis sensors 30c and 30d and the Y-axis sensors 20c and 20d are both maintained in a high impedance state.
  • the detection value of the AC signal from the terminal in the X-axis sensor 30d and the Y-axis sensor 20d is slightly affected by the X-axis sensor 30c and the Y-axis sensor 20c. The influence is not interrupted by the X-axis sensor 30c and the Y-axis sensor 20c, and a constant level value can be detected without fail.
  • the relative relationship between the detected values of X-axis sensor 30c and X-axis sensor 30d and the relative relationship between the detected values of Y-axis sensor 20c and Y-axis sensor 20d are It is determined only by the insertion position, and the insertion position of the terminal into the connector 10 can be detected almost accurately.
  • the presence of the X-axis sensor 30c and the Y-axis sensor 20c does not prevent the AC signal from being detected from the X-axis sensor 30d and the Y-axis sensor 20d. Even though the detection levels of the X-axis sensor 30d and the Y-axis sensor 20d may slightly decrease due to the presence of the axis sensor 20c, a certain level value can be reliably detected.
  • the detection level of the inspection signal from the conductive plate is inversely proportional to the distance between each input terminal. Value. Therefore, the reciprocal operation value (1 / Vn 1) and (1 / Vn 2) are values proportional to the distance to the terminals.
  • the output of the X-axis division circuit 145 and the output of the Y-axis division circuit 146 can obtain a detection result specific to the distance to the terminal.
  • the detection error of the distance from the sensor to the terminal in the third embodiment is extremely small, and the accuracy required for determining whether or not the terminal is inserted into the current connector can be reliably ensured.
  • the same operation and effect as those of the above-described embodiments can be obtained, and two sensors can be arranged close to each other. Routing becomes easy.
  • an AC inspection signal value proportional to the distance from the sensor plate to the terminal can be detected.
  • the output of the axis divider circuit 145 and the output of the Y-axis divider circuit 146 are the detection results specific to the terminal insertion position, so the insertion position of the cut piezoelectric wire terminal, which greatly affects the reliability of the wire harness, is set to the terminal. It is possible to perform detection completely without contact.
  • a simple attachment member can be exchanged without designing and preparing a dedicated jig having a complicated configuration for each connector specification at the end of the cut piezoelectric wire. It is possible to determine the improper mounting of the cut piezoelectric wire terminal on various types of connector housings.
  • the harness manufacturing process it is possible to detect the mounting position of the cutting piezoelectric wire terminal in the connector and the connection state between the cutting piezoelectric wire and the terminal without damaging the terminal at the end of the cutting piezoelectric wire.
  • the manufacturing process of the harness it is possible to determine the mounting failure of the cutting piezoelectric wire terminal to the connector and to provide a highly reliable harness without going through a special inspection process.

Abstract

An inspection jig for a harness inspection device, where, even when specifications of a connector constituting harness are changed, it can be dealt with by a small change, eliminating need for newly making all jigs, as has been conventionally done, every time when connector specifications are changed. A connector-holding section (400) having a receiving section (450) for receiving a connector housing (10), wherein sensor plates are provided on side inner wall sections, which are opposite to each other, of the receiving section (450), an alternate current signal is applied to a terminal inserted in a connector (10), the alternate current signal from the terminal is detected by the opposite sensor plates, the relative distance between the sensor plates and the terminal is detected by an inspection control section (100) based on the signal detected by the opposite sensor plates, the position of the terminal installed in the connector is detected from a relative value of the detection signal at the sensor plates, and thus whether or not the terminal is correctly inserted is confirmed. When the outer size of the connector is smaller than the connector-receiving section (450), the connector (10) is set in a through-hole (465a,b) of an attachment member (460a, 460b), and the connector (10) is received in the connector-receiving section (450) together with the attachment member (460a,b).

Description

明細書 装着検査用治具 技術分野  Description Mounting inspection jig Technical field
本発明は、 端子が固着された切圧電線のコネクタ内への装着を検査す る際に多種のコネクタハウジングであっても一部治具の交換のみで検査 することができる装着検査用治具に関するものである。 背景技術  The present invention relates to a mounting inspection jig that can be inspected only by replacing a part of jigs even when various types of connector housings are inspected when inspecting the mounting of a cut-off piezoelectric wire having terminals fixed thereto in a connector. It is about. Background art
ハーネスを製造する際に、 ハーネスが正しく組み立てられたかを確認 する必要がある。 従来、 例えば特許文献 1では、 検査装置本体側の入力 端子群の各入力端子、 出力端子群の各出力端子の各接続端子それぞれを 作業盤側の入力側コネクタ、 出力側コネクタにそれぞれ接続し、 検査に 先立つ記憶モード動作において、 作業盤側の入力側、 出力側コネクタに モデルハーネスの両端のコネクタを嵌着し、 モデルハーネスの仕様であ る各芯線両端の端子とコネクタの各端子揷入孔との挿入状態を基準デー 夕として記憶していた。  When manufacturing a harness, it is necessary to check that the harness has been correctly assembled. Conventionally, for example, in Patent Document 1, each connection terminal of each input terminal of the input terminal group of the inspection device main body and each connection terminal of each output terminal of the output terminal group is connected to the input side connector and the output side connector of the work panel, respectively. In the memory mode operation prior to the inspection, the connectors at both ends of the model harness are fitted to the input and output connectors on the work panel, and the terminals at both ends of each core wire, which are the specifications of the model harness, and each terminal of the connector, Was stored as the reference date.
その後、 作業盤側の入力側、 出力側コネクタ間にハーネスを構成する 被検査切圧電線の端部端子が装着されると、 検査モード動作において、 検査装置本体側から入力端子群の各入力端子に順次検査信号を出力し、 入力側コネクタ、 一方のコネクタ、 被検査切圧電線、 他方のコネクタ、 出力側コネクタ、 出力端子群の各出力端子より検査信号を読み取り、 出 力側コネクタのどの端子揷入孔内の端子を介して検査信号が入力された かの判断が繰り返され、 被検査切圧電線の各芯線とその両端に装着され たコネクタの各端子揷入孔との挿入状態である検査データが収集されて いた。 After that, when the end terminal of the cut-off piezoelectric wire that constitutes the harness is attached between the input side and output side connectors on the work panel side, in the inspection mode operation, each input terminal of the input terminal group from the inspection device body side Inspection signals are sequentially output to the input side connector, one connector, the piezoelectric wire to be inspected, the other connector, the output side connector, and the output terminal of each output terminal of the output terminal group.判断 It is determined whether the inspection signal has been input via the terminal in the insertion hole, and it is determined that each core wire of the piezoelectric wire to be inspected and each terminal of the connector attached to both ends of the core are inserted into the insertion hole. Inspection data is collected Was.
このようにして得られた検査データと予め記憶されている基準データ と比較されて検査データ中に不良が生じているか否かの判定がなされて いた。  The inspection data thus obtained is compared with previously stored reference data to determine whether a defect has occurred in the inspection data.
特許文献 1 特開平 8— 1 4 6 0 7 0号  Patent Document 1 JP-A-8-146600
しかしながら、 上述の特許文献 1の方法では、 被検査ハーネスの検査 信号供給側、 検査信号受信側双方の端子部に検査装置よりの検査プロ一 ブを直接接触させて検査する必要があり、 被検査八一ネスを構成する切 圧電線の端子が装着されるコネクタの形状に合わせてその都度専用の検 査プローブを製作して、 コネクタに装着されている端子の少なくとも一 部に確実に接触させなければならなかった。  However, in the method of Patent Document 1 described above, it is necessary to perform the inspection by directly contacting the inspection probe from the inspection device with the terminals of both the inspection signal supply side and the inspection signal receiving side of the inspection harness. A cut-off that constitutes the eighteenthness A special inspection probe must be manufactured each time according to the shape of the connector to which the terminal of the piezoelectric wire is attached, and it must surely contact at least a part of the terminal attached to the connector. I had to.
また、 検査プローブの劣化や摩耗、 あるいは破損が起きて端子変形を 起こす可能性もあった。  In addition, the inspection probe could be deteriorated, worn, or damaged, resulting in terminal deformation.
更に、 コネクタの小型高密度化が進んでおり、 コネクタに合わせた治 具を製作するコストも上がってきていた。 発明の開示  Furthermore, as connectors have become smaller and more dense, the cost of manufacturing jigs that match the connectors has been rising. Disclosure of the invention
本発明は上述した課題に鑑みてなされたもので、 簡単な構成のみで、 コネクタ内での切圧電線端子の装着状態が確認でき、 汎用性もあり、 か つ切圧電線端子を損傷などすることなく、 ハーネスの製造工程において 、 非接触で切圧電線端子のコネクタへの装着位置を検出可能な検査装置 を提供することを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problem, and can confirm the mounting state of a cutting piezoelectric wire terminal in a connector with only a simple configuration, is versatile, and damages a cutting piezoelectric wire terminal. An object of the present invention is to provide an inspection device capable of detecting a mounting position of a cutting piezoelectric wire terminal to a connector in a non-contact manner in a harness manufacturing process without producing the same.
更に、 ハーネスの製造工程においてコネクタへの切圧電線端子の装着 不良を判別し、 特別の検査工程を経ることなく信頼性の高いハーネスを 提供できる検査装置を提供することを目的とする。  It is still another object of the present invention to provide an inspection apparatus which can determine a defective mounting of a cutting piezoelectric wire terminal on a connector in a harness manufacturing process and provide a highly reliable harness without going through a special inspection process.
係る 目的を達成する一手段として例えば以下の構成を備える。 即ち、 交流信号が印加された端子のコネクタハウジング内への装着位 置を端子に非接触で検査可能な端子の装着検査装置に用いる装着検査用 治具であって、 前記コネクタハウジングを収納保持する保持部と、 前記 保持部に収納保持された前記コネクタハウジングの側面近傍位置に対向 して配設され、 コネクタハウジング内に装着される前記端子よりの交流 信号を検出可能な少なくとも一対の導電板とを有し、 交流信号が印加さ れた端子のコネクタハウジング内への装着を前記対向するそれぞれの導 電板よりの交流信号検出結果より前記交流信号が印加されている端子の 前記コネクタハウジング内への装着位置を判別可能とする装着検査用治 具であることを特徴とする。 For example, the following configuration is provided as one means for achieving the object. That is, this is a mounting inspection jig used for a terminal mounting inspection device capable of inspecting a mounting position of a terminal to which an AC signal is applied in a connector housing in a non-contact manner with the terminal, and housing and holding the connector housing. A holding portion, and at least one pair of conductive plates disposed opposite to a position near a side surface of the connector housing stored and held in the holding portion and capable of detecting an AC signal from the terminal mounted in the connector housing; Mounting the terminal to which the AC signal is applied into the connector housing from the detection result of the AC signal from each of the opposing conductive plates into the connector housing of the terminal to which the AC signal is applied. It is a jig for mounting inspection that can determine the mounting position of the device.
また、 検査信号が印加された端子のコネクタハウジング内への装着位 置を検査可能な端子の装着検査装置に用いる装着検査用治具であって、 前記コネクタハウジングを収納可能なアタッチメント部材と、 前記ァ夕 ツチメント部材を収納保持する保持部と、 前記保持部の側面に配設され た少なくとも一対の導電板とを有することを特徴とする。  Also, a mounting inspection jig used for a terminal mounting inspection device capable of inspecting a mounting position of a terminal to which an inspection signal is applied in a connector housing, the attachment member being capable of storing the connector housing, It is characterized by having a holding portion for storing and holding the attachment member, and at least a pair of conductive plates provided on a side surface of the holding portion.
そして例えば、 前記検査信号は交流信号で、 前記導電板はコネクタ八 ウジング内に装着される前記端子よりの交流信号を検出可能であり、 前 記アタッチメント部材は、 コネクタハウジング仕様に合わせて形成され 、 前記保持部はコネクタハウジング仕様に関わらず共通であることを特 徴とする。  And, for example, the inspection signal is an AC signal, the conductive plate can detect an AC signal from the terminal mounted in the connector housing, and the attachment member is formed according to connector housing specifications. It is characterized in that the holding portion is common regardless of the connector housing specification.
または、 交流信号が印加された端子のコネクタハウジング内への装着 位置を端子に非接触で判別可能な端子の装着位置検査装置における装着 検査方法であって、 前記コネクタハウジングを前記請求項 1または請求 項 2記載の装着検査用治具のアタッチメント部材を介して前記収納凹部 内に収納し、 前記コネクタハウジング内に装着される交流信号の印加さ れた切圧電線の装着された端子よりの交流信号を前記対向して設けられ ている少なくとも一対の導電板により検出し、 前記導電板のそれぞれよ りの検出信号の相対検出値より前記交流信号が印加されている切圧電線 に装着された端子の前記コネクタハウジング内への装着位置を判別する 端子の装着位置確認方法とすることを特徴とする。 図面の簡単な説明 A mounting inspection method in a terminal mounting position inspection apparatus capable of determining a mounting position of a terminal to which an AC signal is applied in a connector housing without contacting the terminal, wherein the connector housing is the same as the above-mentioned connector housing. Item 2. An AC signal from a terminal to which a cutting piezoelectric wire to which an AC signal is applied is housed in the housing recess through the attachment member of the mounting inspection jig according to Item 2, and the AC signal is applied in the connector housing. Are provided opposite to each other A terminal mounted on the cutting piezoelectric wire to which the AC signal is applied based on a relative detection value of a detection signal from each of the conductive plates detected by at least a pair of conductive plates. The method is characterized by a method of confirming the mounting position of the terminal for determining the position. Brief Description of Drawings
第 1図は、 本発明に係る一発明の実施の形態例のコネクタへの切圧電 線端子装着状態を検出する端子の装着状態確認装置の基本原理を説明す るための模式図である。  FIG. 1 is a schematic diagram for explaining a basic principle of a terminal mounting state checking device for detecting a mounting state of a cut piezoelectric wire terminal to a connector according to an embodiment of the present invention.
第 2図は、 本実施の形態例の検査制御部の検査信号処理部の詳細構成 を説明するための図である。  FIG. 2 is a diagram for explaining a detailed configuration of a test signal processing unit of a test control unit according to the present embodiment.
第 3図は、 本実施の形態例の検査制御部における検出例を示す図であ る。  FIG. 3 is a diagram illustrating an example of detection in the inspection control unit according to the present embodiment.
第 4図は、 本実施の形態例のコネクタ保持部の構成例を説明するため の模式図である。  FIG. 4 is a schematic diagram for explaining a configuration example of a connector holding section according to the present embodiment.
第 5図は、 本実施の形態例のコネクタに対する端子の装着状態確認装 置における装着検査方法を説明するためのフローチャートである。 第 6図は、 本発明に係る第 2の実施の形態例のアタッチメント部材を 説明する図である。  FIG. 5 is a flowchart for explaining a mounting inspection method in the device for checking a mounted state of a terminal to a connector according to the present embodiment. FIG. 6 is a diagram illustrating an attachment member according to a second embodiment of the present invention.
第 7図は、 本発明に係る第 3の実施の形態例の検査制御部の検査信号 処理部の詳細構成を説明するための図である。 発明を実施するための最良の形態  FIG. 7 is a diagram for explaining a detailed configuration of a test signal processing unit of a test control unit according to a third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明に係る一実施の形態例を詳細に説明する 。  Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
本実施の形態例の端子の装着状態確認装置は、 正しい切圧電線の端子 がコネクタハウジングの正しい位置に装着されたか否かをコネクタハウ ジング及び端子に非接触で判定できる装置であり、 本実施の形態例装置 を用いればハーネスの製造工程で正しい切圧電線端子をコネクタ内に装 着する時に正しく装着されたか否かを判別することができ、 後工程でコ ネクタへの装着状態のチェックが不要になる。 The terminal mounting state checking device of the present embodiment is a terminal of a correct cutting piezoelectric wire. This is a device that can determine whether or not the connector is mounted in the correct position of the connector housing without contacting the connector housing and the terminal.If the device of the present embodiment is used, the correct cutting piezoelectric wire terminal is inserted into the connector in the harness manufacturing process. It is possible to determine whether or not the connector has been mounted correctly when mounting on a connector, and it is not necessary to check the mounting status of the connector in a later process.
〔第 1の実施の形態例〕  [First Embodiment]
まず図 1を参照して本発明が適用される端子の装着状態確認装置の端 子の装着状態の検査原理を説明する。 図 1は本発明に係る一発明の実施 の形態例のコネクタへの切圧電線端子の装着状態を検出する端子の装着 状態確認装置の基本原理を説明するための模式図である。  First, with reference to FIG. 1, a description will be given of the principle of inspecting the terminal mounting state of the terminal mounting state checking device to which the present invention is applied. FIG. 1 is a schematic diagram for explaining a basic principle of a terminal mounting state checking device for detecting a mounting state of a cutting piezoelectric wire terminal to a connector according to an embodiment of the present invention.
図 1において、 1 0は検査対象のハーネス端部を構成するコネクタハ ウジング (以下 「コネクタ」 と称す。) であり、 コネクタ 1 0内の所定 位置には、 予め定められている仕様の切圧電線 3 0 0の一方端部端子が 所定深さまで挿入される。  In FIG. 1, reference numeral 10 denotes a connector housing (hereinafter referred to as a “connector”) that constitutes an end portion of a harness to be inspected. A predetermined position within the connector 10 is provided with a cutting piezoelectric wire having a predetermined specification. One end terminal of 300 is inserted to a predetermined depth.
このコネクタに装着される切圧電線 3 0 0は、 予め所定長さに切断さ れ、 端部にはコネクタ 1 0内に装着されるべき所定仕様の端子が例えば 圧着などによって固着されている。  The cutting piezoelectric wire 300 attached to the connector is cut into a predetermined length in advance, and a terminal of a predetermined specification to be attached to the connector 10 is fixed to an end portion by, for example, crimping.
コネクタ 1 0はコネクタ保持部 4 0 0のコネクタ収納部 4 5 0内に収 納される。 コネクタ収納部の内壁には後述する Y軸センサ 2 0 a, 2 0 bと X軸センサ 3 0 a, 3 0 bとが互いに対向して配設されており、 コ ネクタ 1 0をコネクタ収納部 4 5 0内に収納したときにコネクタ 1 0の 側面の外壁近傍位置となる様に構成されている。  The connector 10 is stored in the connector storage section 450 of the connector holding section 400. On the inner wall of the connector housing, Y-axis sensors 20a, 20b and X-axis sensors 30a, 30b, which will be described later, are disposed so as to face each other. It is configured to be located near the outer wall on the side surface of the connector 10 when housed in 450.
2 0 a , 2 0 bはコネクタ収納部 4 5 0内壁部に配設されたコネクタ 1 0の対向する一方側面、 例えばコネクタ 1 0が上面視長方形であれば 長辺両側面となる内壁近傍に配設される Y軸センサ板、 3 0 a, 3 0 b はコネクタ収納部 4 5 0内壁部に配設されたコネクタ 1 0の対向する他 方側面, 例えばコネクタ 1 0が上面視長方形であれば短辺両側面となる 内壁近傍に配設される X軸センサ板である。 20a and 20b are opposite one side surfaces of the connector 10 disposed on the inner wall portion of the connector storage portion 450, for example, near the inner wall which is both long side surfaces when the connector 10 is rectangular in a top view. The Y-axis sensor plate to be provided, 30a, 30b is the other side of the connector 10 installed on the inner wall of the connector housing 450 If the connector 10 is rectangular when viewed from above, it is an X-axis sensor plate that is arranged near the inner wall that is on both short sides.
1 0 0は検査装置の制御を司る検査制御部であり, コネクタ保持部 4 0 0に配設された各センサ板と信号線で接続されており、 各センサ板よ りの検出信号を検出可能に構成されている。  Reference numeral 100 denotes an inspection control unit that controls the inspection device. The inspection control unit is connected to each sensor plate provided in the connector holding unit 400 by a signal line, and can detect a detection signal from each sensor plate. Is configured.
コネクタ 1 0の各側面近傍にはセンサ板 ( 2 0 a , 2 0 b , 3 0 a , 3 0 b ) が配置された状態となることから、 交流信号が印加されている 切圧電線端子がコネクタ 1 0に装着される場合には、 端子よりの信号が センサ板 (2 0 a , 2 0 b , 3 0 a , 3 0 b ) で検知され、 検出信号が 得られる。 具体的には、 端子からの距離に対応した検出信号が検出され る。  Since the sensor plates (20a, 20b, 30a, 30b) are located near each side of the connector 10, the cut-off piezoelectric wire terminal to which the AC signal is applied is located. When attached to the connector 10, the signal from the terminal is detected by the sensor plate (20a, 20b, 30a, 30b), and a detection signal is obtained. Specifically, a detection signal corresponding to the distance from the terminal is detected.
本実施の形態例の検査制御部 1 0 0では、 センサ板 (2 0 a, 2 0 , 3 0 a , 3 0 b ) のうちの対向する一対のセンサ板で検出される検出 信号の値をもとに、 センサ板間の距離を基準にしたセンサ板と端子との 相対距離を検出することとしている。 これにより、 切圧電線に印加され る交流信号のレベル差 (印加されている検査信号強度のばらつき) の影 響を軽減している。  In the inspection control unit 100 of the present embodiment, the value of the detection signal detected by the pair of opposed sensor plates among the sensor plates (20a, 20, 30a, 30b) is determined. Based on this, the relative distance between the sensor plate and the terminal based on the distance between the sensor plates is detected. This reduces the effects of the level difference (variation in the applied test signal intensity) of the AC signal applied to the cutting piezoelectric wire.
Y軸センサ 2 0 a , 2 0 bによりコネクタ 1 0内の Y軸方向 (短辺方 向) の位置を検出し、 X軸センサ 3 0 a , 3 0 bによりコネクタ 1 0内 の X軸方向 (長辺方向) の位置を検出することにより、 交流検査信号が 印加された端子のコネクタ 1 0内の抻入位置を特定することができ、 正 しい位置に挿入されたか否かを検出できる。  Y-axis sensors 20a and 20b detect the position in the Y-axis direction (short side direction) in connector 10 and X-axis sensors 30a and 30b detect the X-axis direction in connector 10 By detecting the position (long side direction), the position of the terminal to which the AC test signal is applied in the connector 10 can be specified, and it can be detected whether or not the terminal has been inserted into the correct position.
図 1に示す検査制御部 1 0 0の検査信号処理部の詳細構成を図 2を参 照して以下に説明する。 図 2は本実施の形態例の検査制御部の信号処理 部の詳細構成を説明するための図である。  The detailed configuration of the test signal processing unit of the test control unit 100 shown in FIG. 1 will be described below with reference to FIG. FIG. 2 is a diagram for explaining the detailed configuration of the signal processing unit of the inspection control unit according to the present embodiment.
図 2において、 1 1 1〜 1 1 4はセンサ扳 ( 2 0 a , 2 0 b , 3 0 a , 3 0 b) よりの検出信号を増幅する増幅器 A〜D、 1 2 1〜1 24は センサ板 (2 0 a, 20 b, 30 a, 3 0 b) よりの検出信号のピーク 値を検出するためのピーク検出回路 A〜Dである。 In FIG. 2, 11 1 to 11 4 are sensors 扳 (20 a, 20 b, 30 a , 30a), amplifiers A-D, 121-124 detect the peak value of the detection signal from the sensor plate (20a, 20b, 30a, 30b) The peak detection circuits A to D.
1 3 1は X軸センサ 30 a, 30 bよりのピーク検出信号 V X 1, V x 2を入力し、 その検出値を <Vx l +Vx 2) して加算する X軸加算 回路、 1 3 2は Y軸センサ 2 0 a, 2 0 bよりのピーク検出信号 V y 1 , Vy 2を入力し その検出値を (Vy l +V y 2) して加算する Y軸 加算回路である。  1 3 1 is an X-axis addition circuit that inputs the peak detection signals VX 1 and V x 2 from the X-axis sensors 30 a and 30 b, adds the detected values to <Vx l + Vx 2), and adds them. Is a Y-axis addition circuit that inputs peak detection signals Vy1 and Vy2 from the Y-axis sensors 20a and 20b, adds the detected values to (Vyl + Vy2), and adds them.
1 4 1は X軸加算回路 1 3 1の出力と、 一方の X軸センサ扳 (例えば 30 b) よりのピーク検出信号値を入力し、 X軸加算回路 1 3 1よりの X軸加算信号 (Vx l +Vx 2) を分母とし、 一方の X軸センサ板 (例 えば 3 0 b) よりのピーク検出信号 (Vx 2〉 を分子とする {Vx 2/ (Vx 1 +V x 2)} を求める X軸割算回路である。  1 4 1 receives the output of the X-axis addition circuit 13 1 and the peak detection signal value from one of the X-axis sensors 扳 (for example, 30 b), and outputs the X-axis addition signal from the X-axis addition circuit 13 1 ( (Vx l + Vx 2) is the denominator, and {Vx 2 / (Vx 1 + V x 2)} is the numerator of the peak detection signal (Vx 2) from one X-axis sensor plate (for example, 30b). This is the X-axis division circuit to be found.
X軸割算回路 14 1の出力は、 X軸センサ 3 0 a, 3 O bの検出信号 の相対変化を表しており, 切圧電線に印加されている交流検査信号に強 度変化があっても、 その影響を相殺することができる。 この結果、 X軸 割算回路 1 4 1の出力はコネクタ 1 0内の X軸方向の位置に直接対応し た信号レベルとなるため、 X軸割算回路 14 1の出力よりコネクタ 1 0 内に装着される切庄電線端子の: X軸方向位置を非接触で検知できる。  The output of the X-axis division circuit 141 indicates the relative change in the detection signals of the X-axis sensors 30a and 30b, and there is a change in the strength of the AC test signal applied to the cutting piezoelectric wire. Can also offset the effects. As a result, the output of the X-axis divider circuit 141 becomes a signal level directly corresponding to the position in the X-axis direction in the connector 10. The X-axis position of the mounted cable terminal can be detected in a non-contact manner.
1 42は Y軸加算回路 1 3 2よりの出力と、 一方の Y軸センサ板 (例 えば 2 0 b) よりのピーク検出信号値を入力し、 Y軸加算回路 1 3 2よ りの Y軸加算信号 (Vy l +Vy 2〉 を分母とし、 一方の Y軸センサ板 (例えば 2 0 t よりのピーク検出信号 (Vy 2) を分子とする {Vy 2/ (V 1 + Vy 2)} を求める Y軸割算回路である。  The input 142 receives the output from the Y-axis adder circuit 13 and the peak detection signal value from one of the Y-axis sensor boards (for example, 20b), and the Y-axis from the Y-axis adder circuit 13 The added signal (Vy l + Vy 2) is used as the denominator, and one Y-axis sensor plate (for example, {Vy 2 / (V 1 + Vy 2)} that uses the peak detection signal (Vy 2) from 20 t as the numerator) This is the desired Y-axis divider circuit.
Υ軸割算回路 142の出力は、 Υ軸センサ 2 0 a, 2 O bの検出信号 の相対変化を表しており、 切圧電線に印加される交流検査信号に強度変 化があっても、 その影響を相殺することができる。 この結果、 Y軸割算 回路 142の出力はコネクタ 1 0内の Y軸方向の位置に直接対応した信 号レベルとなるため、 Y軸割算回路 1 42の出力よりコネクタ 1 0内に 装着される切圧電線端子の Y軸方向位置を非接触で検知できる。 The output of the Υ axis division circuit 142 indicates the relative change of the detection signal of the Υ axis sensor 20a, 2Ob, and the intensity change to the AC inspection signal applied to the cutting piezoelectric wire. Even if it is, the effects can be offset. As a result, since the output of the Y-axis divider circuit 142 has a signal level directly corresponding to the position in the Y-axis direction in the connector 10, the output of the Y-axis divider circuit 142 is attached to the connector 10 from the output of the Y-axis divider circuit 142. The Y-axis position of the cut-off piezoelectric wire terminal can be detected in a non-contact manner.
X軸割算回路 1 4 1の出力と Y軸割算回路 1 42の出力よりコネクタ Connector from output of X-axis divider circuit 1 4 1 and output of Y-axis divider circuit 1 42
1 0内への切圧電線端子の X— Y方向の装着位置 (二次元位置) を非接 触で検知できる。 The mounting position (two-dimensional position) of the piezoelectric wire terminal in the X-Y direction within 10 can be detected without contact.
以上の回路構成としたのは、 X軸センサ板、 Y軸センサ板では、 X又 は Yを nとすると  The above circuit configuration is based on the X-axis sensor board and the Y-axis sensor board, where X or Y is n.
[ 1 / {( 1 /V n 2 ) + ( 1 /Vn l )}] /Vn l  [1 / {(1 / Vn 2) + (1 / Vn l)}] / Vn l
= {(V n 1 X V n 2 ) / ( V n 1 + V n 2 ) } /Vn l  = {(V n 1 X V n 2) / (V n 1 + V n 2)} / Vn l
= (V n 2 ) / ( V n 1 + V n 2 ) = (V n 2) / (V n 1 + V n 2)
が成り立つからである。 Is satisfied.
即ち、 本実施の形態例では、 静電結合を利用して交流検査信号を検出 しているため、 導電板よりの検査信号の検出レベルは各々の切圧電線端 子との距離に反比例する値となる。  That is, in the present embodiment, since the AC inspection signal is detected using the electrostatic coupling, the detection level of the inspection signal from the conductive plate is a value that is inversely proportional to the distance from each of the cut-off piezoelectric wire terminals. It becomes.
従って、 その逆数演算値 ( 1 /V x 1 ) 及び ( 1 /Vx 2) はそれぞれ 切圧電線端子との距離に比例する値となる。 Therefore, the reciprocal operation values (1 / Vx1) and (1 / Vx2) are values that are proportional to the distance from the cut piezoelectric wire terminal, respectively.
従って、 これらの和 l/Vn l ) + ( 1 /V n 2 )} は導電板 2 0 a, 2 O b又は 3 0 a, 3 0 bの距離 (基準距離) に相当する量となる 。 従って、 最終量 〔1Z 1/Vn 2) + ( 1/Vn 1)}] V n l は、 その基準距離に対する ( l ZVn l ) の位置を示すことになり、 供 給検査信号にかかわる等率変動分を吸収している。 更に、 この比の結果 は距離に比例する量ともなり、 検査に用いるのに最適である。  Therefore, the sum l / Vnl) + (1 / Vn2)} is an amount corresponding to the distance (reference distance) between the conductive plates 20a, 20b or 30a, 30b. Therefore, the final quantity [1Z 1 / Vn 2) + (1 / Vn 1)}] V nl indicates the position of (l ZVn l) with respect to the reference distance, and the constant variation related to the supply inspection signal Absorbs the minute. Furthermore, the result of this ratio is a quantity proportional to the distance, which is optimal for use in inspections.
図 1のように、 コネクタの列方向に直角に配置された 2枚の導電板間 の距離を位置測定時の基準距離とする (測定値を基準距離に対する相対 値として表現する)。 なお、 この基準値としては、 少なくとも X軸セン サ板 3 0 a, 3 O bに対する基準値と、 Y軸センサ板 2 0 a, 2 O bに 対する基準値とがある。 As shown in Fig. 1, the distance between two conductive plates arranged at right angles to the connector row direction is used as the reference distance for position measurement. Expressed as a value). The reference values include at least a reference value for the X-axis sensor plates 30a and 30B and a reference value for the Y-axis sensor plates 20a and 2Ob.
基準距離の公差は、 例えばコネクタを保持するためのホルダ一を使用 するときには使用するホルダ一の機械的精度で定まるが、 本実施の形態 例では 0. 1 mm程度の公差は十分に実現できるため、 端子の位置測定 が正確に行える。  For example, when using a holder for holding a connector, the tolerance of the reference distance is determined by the mechanical accuracy of the holder used, but in the present embodiment, a tolerance of about 0.1 mm can be sufficiently realized. The terminal position can be measured accurately.
実施の測定時には、 一対の導電板で検出される検査信号検出レベルは コネクタへの端子装着位置によりそれぞれ異なるが、 対向するそれぞれ の導電板よりの検査信号を処理する際の増幅度とオフセットを一致させ 例えばピーク値を検出すれば、 Vx 1 と Vx 2を直流電圧値として得る ことができ、 例えば X軸割算回路で {V x 2Z (V x 1 + Vx 2)} を 求めれば、 検査信号供給元端子の装着位置 Lに対応した電圧値 Vx 1 を 得ることができる。  At the time of measurement, the test signal detection level detected by a pair of conductive plates differs depending on the terminal mounting position on the connector, but the amplification level and offset when processing test signals from the opposing conductive plates match. For example, if the peak value is detected, Vx 1 and Vx 2 can be obtained as DC voltage values.For example, if {V x 2Z (V x 1 + Vx 2)} is obtained by the X-axis division circuit, the inspection signal A voltage value Vx1 corresponding to the mounting position L of the supply terminal can be obtained.
このため、 何らかの理由で切圧電線に印加される検査信号のレベルが For this reason, the level of the test signal applied to the cutting piezoelectric wire for some reason
( 1 /2) になったとしても、 V X 1、 V X 2等のすべての値が ( 1 / 2) となるのみで、 位置相当電圧値に影響は出ない。 Even if it becomes (1/2), only the values of V X 1, V X 2 etc. become (1/2), and the position equivalent voltage value is not affected.
そこで、 本実施の形態例においては、 予め検査信号の印加される端子 をコネクタのそれぞれの位置に揷入したときの上記演算の結果を調べて 基準値として保持しておき、 検査対象の端子が挿入された時に、 この基 準値と比較して揷入位置を検出する。  Therefore, in the present embodiment, the result of the above calculation when the terminal to which the inspection signal is applied is inserted into each position of the connector in advance is checked and held as a reference value, and the terminal to be inspected is When inserted, the insertion position is detected by comparing with this reference value.
なお、 上述した加算、 あるいは割算等を行う演算部は、 ハードウェア 演算回路で構成しても、 あるいはコンピュータとコンピュータプロダラ ムを用いたゾフトウエア演算で実現してもよい。  The arithmetic unit that performs the above addition or division may be configured by a hardware arithmetic circuit, or may be realized by software arithmetic using a computer and a computer program.
検査制御部における検査結果の例を図 3に示す。 図 3は本実施の形態 例の検査制御部における検出結果例を説明するための図である。 図 3の例は、 コネクタハウジングの端子保持部 (キヤビティ) を図 1 に示すように、 上下 2段で 6列の格子状のキヤビティを有した構成とし 、 端子を下段第 1列であるキヤビティ位置 ( 1, 2 ) から順次移動して 挿入した場合のハードウェア演算回路で処理した例 (単位は " V " であ る。) である。 Fig. 3 shows an example of the inspection result in the inspection control unit. FIG. 3 is a diagram for explaining an example of a detection result in the inspection control unit according to the present embodiment. In the example of FIG. 3, the terminal holding portion (cavity) of the connector housing is configured to have two rows of upper and lower rows of six rows of lattice-shaped cavities as shown in FIG. 1, and the terminals are positioned in the lower row of the first row of the cavities. This is an example of processing by the hardware operation circuit when the data is sequentially moved and inserted from (1, 2) (the unit is "V").
切圧電線に交流検査信号を供給するのに、 静電結合を利用しているた め、 検査信号のレベルを一定にすることができず、 大きく変動すること が予想される。 このため、 切圧電線に 2 0 V p— pの検査信号を与えた 場合と、 1 0 V p— pの検査信号を与えた場合において、 それぞれコネ クタハウジングの各キヤビティ内へ端子を揷入した場合の検出結果を比 較している。  Since the electrostatic coupling is used to supply the AC test signal to the cutting piezoelectric wire, the level of the test signal cannot be kept constant and is expected to fluctuate greatly. For this reason, when a test signal of 20 Vp-p is given to the disconnecting piezoelectric wire and when a test signal of 10 Vpp is given, the terminal is inserted into each cavity of the connector housing. The detection results are compared in the case where they are performed.
図 3の例では上段が 2 0 V p— pの検査信号を与えた場合の検査信号 検知結果と演算後の割算回路出力例、 下段が 1 0 V p— pの検査信号を 与えた場合の検査信号検知結果と演算後の割算回路出力例であり、 この ように切圧電線へ与える検査信号レベルが大きく変動した場合であって も、 割算回路出力電圧 X 1の変動は 4 %未満であり、 キヤビティ位寧に 固有の検出結果が得られる。  In the example of Fig. 3, the upper stage shows the test signal when the test signal of 20 Vp-p is given. The detection result and the output example of the division circuit after the operation. The lower stage gives the test signal of 10 Vp-p. This is an example of the test signal detection result and the output of the divider circuit after the calculation.In this way, even if the test signal level applied to the cutting piezoelectric wire fluctuates greatly, the variation of the divider circuit output voltage X1 is 4% Less than, and a unique detection result is obtained for the cavity position.
検出結果を表 1に示す。 表 1において、 縦軸は X電圧演算値、 横軸は キヤピティの端子挿入列位置を示しており、 第 1列から第 6列のそれぞ れにおける端子挿入位置を示しており、 図 3の下段に示す左端が第 1列 で、 右端が第 6列となっている。 表 1 Table 1 shows the detection results. In Table 1, the vertical axis indicates the calculated X voltage value, and the horizontal axis indicates the terminal insertion row position of the CAPITITY, and indicates the terminal insertion position in each of the first to sixth columns. The left end shown in is the first column, and the right end is the sixth column. table 1
Figure imgf000013_0001
Figure imgf000013_0001
1 2 3 4 5 6 キヤビティ位置  1 2 3 4 5 6 Cavity position
表 1における割算器の演算値 Xとキヤビティ位置の関係を表 2に示す 表 2  Table 2 shows the relationship between the calculated value X of the divider in Table 1 and the cavity position.
Figure imgf000013_0002
図 3の下部に示すように、 演算結果とキヤビティ位置の関係は上記グ ラフの通りである。
Figure imgf000013_0002
As shown in the lower part of FIG. 3, the relationship between the calculation result and the cavity position is as shown in the above graph.
コネクタハウジングは、 約 2 . 5 mmピッチで等間隔にキヤビティを 有しているので、 Xの演算値とキヤビティ位置には比例関係があり、 更 に表 2に示すコネクタハウジングの上下段、 供給電圧に影響されずにほ ぼ同じ値であることから、 Xの演算値により端子が揷入されたキヤビテ ィの特定が可能である。 Since the connector housing has cavities at approximately 2.5 mm pitch at equal intervals, there is a proportional relationship between the calculated value of X and the position of the cavities. Without being affected by Since the values are almost the same, it is possible to identify the cavities whose terminals have been inserted by the calculated value of X.
これは Y軸センサ板 2 0 a , 2 0 bであっても全く同様であり, 切圧 電線に供給される検査信号に変動があっても、 安定した検出結果が得ら れる切圧電線チェッカーとしている。  This is exactly the same for the Y-axis sensor plates 20a and 20b, and a cut-off piezoelectric wire checker that can obtain stable detection results even if the test signal supplied to the cut-off wire fluctuates. And
以上から、 X軸センサ板 3 0 a, 3 0 bにより列方向の各キヤビティ への掙入位置を特定し、 Y軸センサ板 2 0 a , 2 O bにより行方向のキ ャビティへの挿入位置を特定することができる。  From the above, the insertion position to each cavity in the column direction is specified by the X-axis sensor plates 30a and 30b, and the insertion position to the cavity in the row direction by the Y-axis sensor plates 20a and 2Ob. Can be specified.
なお、 製造工程で使用する検査装置においては、 切圧電線製造現場に おいてコネクタ 1 0をコネクタ保持部 4 0 0のコネクタ収納部 4 5 0内 に位置決め収納し, 各センサ板をコネクタの側面近傍あるいは底面近傍 に位置決めする必要がある。  In the inspection equipment used in the manufacturing process, the connector 10 is positioned and housed in the connector housing 450 of the connector holder 400 at the cutting piezoelectric wire manufacturing site, and each sensor plate is placed on the side of the connector. It must be positioned near or near the bottom.
このため、 本実施の形態例ではコネクタを保持すると共に、 センサ板を 位置決めするためにコネクタ保持部を用いている。 For this reason, in the present embodiment, a connector holding portion is used for holding the connector and for positioning the sensor plate.
本実施の形態例のコネクタ保持部 4 0 0においては、 コネクタ収納部 In the connector holding section 400 of the present embodiment, the connector housing section
4 5 0の側壁部分に各センサ板を S置し、 コネクタの大きさがコネクタ 収納部 4 5 0の大きさとぼぽ同じ場合にはそのまま中に収納することに より良好な検査ができる。 しかし、 この場合に限らず、 コネクタの大き さがコネクタ収納部 4 5 0より小型の場合には、 外側の形状がコネクタ 収納部 4 5 0の内容積とほぽ同じで、 ほぽ中央部にコネクタハウジング をちようど収納できる莨通孔を形成した例えぱ榭脂製のァ夕ツチメント 部材を作成し、 このアタッチメント部材をコネクタ収納部 4 5 0内に収 納してからコネクタを収納すればよい。 When each sensor plate is placed S on the side wall portion of 450, and when the size of the connector is almost the same as the size of the connector housing portion 450, the sensor plate is housed as it is, so that a good inspection can be performed. However, the present invention is not limited to this case. When the size of the connector is smaller than that of the connector housing section 450, the outer shape is almost the same as the internal volume of the connector housing section 450, and is substantially at the center. For example, if an attachment member made of resin was formed with an A-A through hole that could accommodate the connector housing, the attachment member would be stored in the connector storage section 450 before storing the connector. Good.
本実施の形態例のァ夕ツチメント部材を介してコネクタハウジングを コネクタ収納部内に収納する検査治具の一例を図 4に示す。 図 4におい て、 4 0 0がコネクタ 1 0を位置決めした状態で収納保持するコネクタ 収納部 4 5 0を備えるコネクタ保持部である。 FIG. 4 shows an example of an inspection jig for accommodating the connector housing in the connector accommodating portion via the attachment member of the present embodiment. In Fig. 4, the connector that holds and holds the connector 100 with the connector 100 positioned This is a connector holding section provided with a storage section 450.
4 5 0は側面に各センサ板 (2 0 a, 2 0 b , 3 0 a , 3 0 b ) を配 設し (図 4では不図示)、 中にコネクタハウジングを収納保持可能なコ ネクタ収納部である。 コネクタハウジング外形がコネクタ収納部 4 5 0 の内形と同じである場合にはそのままコネクタハウジングをコネクタ収 納部 4 5 0内に収納する。  For 450, the sensor plates (20a, 20b, 30a, 30b) are arranged on the side (not shown in Fig. 4), and the connector housing that can hold and hold the connector housing inside Department. If the outer shape of the connector housing is the same as the inner shape of the connector storage section 450, store the connector housing in the connector storage section 450 as it is.
一方、 コネクタハウジング外形がコネクタ収納部 4 5 0の内容積 (内 形) より小型である場合には外形がコネクタ収納部 4 5 0とほぼ同じで 中央部近傍に検査対象コネクタハウジング外形とほぼ同じ収納空間 (例 えば貫通孔、 あるいは穴) が開設されたアタッチメント部材を介してコ ネクタハウジングを収納する。 以下の説明では、 コネクタハウジングの 収納空間としてもっとも製作が容易な貫通孔で形成した例を説明する。  On the other hand, when the external shape of the connector housing is smaller than the internal volume (internal shape) of the connector housing section 450, the external shape is almost the same as the connector housing section 450 and almost the same as the external shape of the connector housing to be inspected near the center. The connector housing is stored via an attachment member with a storage space (for example, a through hole or hole). In the following description, an example will be described in which the housing space for the connector housing is formed by a through hole that is most easily manufactured.
図 4の 4 6 0 a, 4 6 0 bはコネクタ収納部 4 5 0内に遊嵌し、 中央 貫通孔 4 6 5 a, b内にコネクタハウジング 1 0 a, bを収納するァ夕 ツチメント部材である。  4A and 4Bb of FIG. 4 are loosely fitted in the connector storage section 450, and the connector member for storing the connector housing 10a and b in the center through hole 465a and b. It is.
図 4の例では、 左側のアタッチメント部材 4 6 0 aの貫通孔 4 6 5 a 中には比較的大きなコネクタ 1 0 aが収納され、 右側のアタッチメント 部材 4 6 0 bの貫通孔 4 6 5 b中には比較的小型のコネクタ 1 0 bが収 納されている。  In the example of FIG. 4, the relatively large connector 10a is housed in the through hole 465a of the left attachment member 460a, and the through hole 465b of the right attachment member 460b. A relatively small connector 10b is stored inside.
また、 コネクタ保持部 4 0 0のコネクタ収納部 4 5 0の内壁側面には Also, on the side of the inner wall of the connector storage section 450 of the connector holding section 400
X軸センサ板 3 0 a, 3 0 bと Y軸センサ板 2 0 a , 2 O bがそれぞれ 固着されており、 コネクタ収納部 4 5 0に収納保持されたコネクタ側面 、 あるいはアタッチメント部材 4 6 0 a, bに保持されたコネクタ側面 とほぼ一定距離となるように構成されている。 The X-axis sensor plates 30a, 30b and the Y-axis sensor plates 20a, 2Ob are fixed to each other, and the side of the connector stored in the connector storage portion 450 or the attachment member 460. It is configured to be almost constant distance from the side of the connector held by a and b.
従って、 切圧電線挿入作業時にコネクタ保持部 4 0 0のコネクタ収納 部 4 5 0にアタッチメント部材 4 6 0 a, 4 6 0 bをセッ 卜して保持さ せ、 このアタッチメント部材 4 6 0 a, bに単にコネクタ 1 0を収納す るのみで切圧電線の装着検査が可能となる。 Therefore, the attachment members 460a and 460b are set and held in the connector storage section 450 of the connector holding section 400 when the cutting piezoelectric wire is inserted. Then, simply by housing the connector 10 in the attachment members 460a and b, the mounting inspection of the cutting piezoelectric wire can be performed.
以上の構成を備えることにより、 コネクタのサイズが多種で、 種々の 大きさのコネクタに切圧電線端子を装着する必要がある場合であっても 、 コネクタがコネクタ収納部 4 5 0より小型の場合には、 例えば樹脂な どで形成した外形がコネクタ収納部 4 5 0形状のアタッチメント部材 4 6 0 a , bにコネクタを収納し、 コネクタ収納部 4 5 0内にこのァタツ チメント部材 4 6 0 a, bを収納すればよく、 この廉価なアタッチメン ト部材 4 6 0を交換することで種々の仕様のコネクタに容易に対応でき 、 この場合にも高精度かつ確実に検査が行える。 ノ  With the above configuration, even if the connector has a variety of sizes and it is necessary to attach the cut-off piezoelectric wire terminal to the connector of various sizes, the connector is smaller than the connector housing section 450. For example, the connector is housed in an attachment member 460a, b having an external shape formed of, for example, resin and having a connector housing 450 shape, and the attachment member 460a is stored in the connector housing 450. , B can be stored, and by replacing this inexpensive attachment member 460, connectors of various specifications can be easily accommodated. In this case, high-precision and reliable inspection can be performed. No
コンピュータを利用した検査装置においては端子挿入位置を座標位置 データとして処理することができる。 このため、 コネクタハウジングの 仕様が変更となっても、 検査装置側では端子挿入位置データ (座標位置 データ) を変更するのみで対応することができる。  In an inspection device using a computer, the terminal insertion position can be processed as coordinate position data. For this reason, even if the specifications of the connector housing are changed, the inspection device can respond by simply changing the terminal insertion position data (coordinate position data).
治具側においても、 アタッチメント部材を介してコネクタハウジング をコネクタ収納部内に収納する構成であるため、 コネクタハウジングの 仕様の変更に対して、 外形が共通のアタッチメント部材の貫通孔の形状 を変更したアタッチメント部材を用意して交換するのみで多種のコネク タハウジングに対応できる。  On the jig side, the connector housing is housed in the connector housing section via the attachment member.Therefore, when the specifications of the connector housing are changed, the shape of the through hole of the attachment member with the same external shape is changed. Various types of connector housings can be handled simply by preparing and replacing components.
しかも、 アタッチメント部材の加工は、 外形をコネクタ収納部形状と するほかは、 加工が容易な、 コネクタ八ウジング外形分の貫通孔を形成 するのみでよいため、 簡単かつ迅速にアタッチメント部材を用意するこ とができ、 コネクタハウジングの仕様の変更にも速やかに対応可能とな る。  Moreover, the processing of the attachment member requires only forming a through hole for the connector eight housing outer shape, which is easy to process, except for the outer shape of the connector housing shape. As a result, it is possible to quickly respond to changes in the specifications of the connector housing.
このため、 従来のコネクタ仕様の変更のたびごとに専用の治具を新た に製作しなければならなかったが、 上記構成とすることにより、 外形が 標準化されたものに、 加工がもつとも容易な貫通孔を形成するのみでァ 夕ツチメント部材が製作でき、 短期間で容易かつ廉価で容易に検査治具 を得ることができる。 For this reason, a new dedicated jig had to be manufactured each time the conventional connector specifications were changed. An attachment member can be manufactured by simply forming an easy-to-use through-hole even if it is standardized, and an inspection jig can be obtained easily in a short period of time at low cost.
以上の構成を備える本実施の形態例装置のコネクタ 1 0への切圧電線 端子装着制御を図 5のフローチャートを参照して以下に説明する。 図 5 は本実施の形態例のコネクタに対する端子の装着位置確認装置における 装着検査方法を説明するためのフローチャートである。  With reference to the flowchart of FIG. 5, a description will be given below of the control for mounting the cutting piezoelectric wire terminal to the connector 10 of the apparatus according to the present embodiment having the above configuration. FIG. 5 is a flowchart for explaining a mounting inspection method in the apparatus for checking the mounting position of a terminal with respect to a connector according to the present embodiment.
図 5において、 まずステップ S 1において、 コネクタ 1 0を、 図 4に 示すコネクタ保持部 4 0 0のコネクタ収納部 4 5 0内に収納し、 コネク 夕保持部 4 0 0に保持させる。  In FIG. 5, first, in step S1, the connector 10 is housed in the connector housing section 450 of the connector holding section 400 shown in FIG. 4, and is held by the connector holding section 400.
本実施の形態例では、 コネクタ 1 0を切圧電線の挿入作業位置に位置 決めされたコネクタ収納部 4 5 0内に収納した時に、 各センサ板 ( 2 0 a , 2 0 b , 3 0 a , 3 0 b ) が、 コネクタ 1 0の各側面近傍位置にな るように位置決め配置されており、 コネクタ 1 0をコネクタ収納部 4 5 0に位置決め収納するのみで後述する検査可能状態になる。 このため、 コネクタ 1 0の収納が正しく行われた場合には、 ステップ S 2以下の処 理に移行すればよい。  In this embodiment, when the connector 10 is housed in the connector housing portion 450 positioned at the cutting piezoelectric wire insertion work position, each sensor plate (20a, 20b, 30a , 30 b) are positioned and arranged so as to be in the vicinity of each side surface of the connector 10, and only the connector 10 is positioned and stored in the connector storage section 450 to be in a testable state described later. For this reason, when the connector 10 is correctly stored, the process may proceed to the process of step S2 and subsequent steps.
コネクタの位置決めが行われると、 ステップ S 2に進み、 コネクタ 1 0に揷入するべき切圧電線 3 0 0に所定周波数の交流検査信号の給電 ( 検査信号の印加) を開始する。  When the positioning of the connector is performed, the process proceeds to step S2, and the supply of the AC test signal of a predetermined frequency (application of the test signal) to the disconnecting piezoelectric wire 300 to be inserted into the connector 10 is started.
次のステップ S 3では、 検査装置の検査制御部を起動して、 以後コネ クタに検査信号が印加された切圧電線端子が挿入されたことを検査でき る態勢を整える。  In the next step S3, the inspection control unit of the inspection apparatus is activated, and a state is established in which it is possible to inspect that the disconnected piezoelectric wire terminal to which the inspection signal has been applied is inserted into the connector.
次にステップ S 4において、 検査制御部 1 0 0を駆動し、 端子揷入位 置 (装着状態) の検出を開始する。 検査制御部 1 0 0では上述した動作 により、 ピーク検出回路 A〜D ( 1 2 1〜 1 2 4 ) が各センサ板よりの 検出信号のピーク検出を開始する。 Next, in step S4, the inspection controller 100 is driven to start detection of the terminal 揷 input position (attachment state). In the inspection control unit 100, the peak detection circuits A to D (121 to 124) are connected to The detection of the peak of the detection signal is started.
作業者は、 検査信号の印加されている切圧電線の装着端子をコネクタ の所定の位置に挿入し、 装着する作業を行う。 コネクタへの装着作業が 行われると、 各センサ板の検出結果が得られ、 検出したピーク値より端 子のコネクタへの揷入位置を検出することになる。  The worker inserts the mounting terminal of the disconnecting piezoelectric wire to which the inspection signal is applied into a predetermined position of the connector, and performs the mounting work. When the mounting work to the connector is performed, the detection result of each sensor plate is obtained, and the insertion position of the terminal into the connector is detected from the detected peak value.
切圧電線端子のコネクタへの装着が終了するとステップ S 5に進み、 検査制御部 1 0 0が、 交流信号の印加された切圧電線の端子が予め定め られたコネクタ位置への挿入がなされたことを検出したか否かを判断す る。  When the disconnection piezoelectric wire terminal is attached to the connector, the process proceeds to step S5, and the inspection control unit 100 determines that the terminal of the disconnection piezoelectric wire to which the AC signal is applied is inserted into a predetermined connector position. Determine whether or not it has been detected.
装着の検出は、 例えば、 端子がコネクタ 1 0内に装着され、 装着され た端子の位置が一定時間変化しない状態となったときに装着完了とする The detection of attachment is, for example, completion of attachment when the terminal is inserted into the connector 10 and the position of the attached terminal does not change for a certain period of time.
。 即ち、 各センサ板 (2 0 a, 2 0 b , 3 0 a, 3 0 b ) よりの検出信 号レベルが一定レベル以上でかつ一定時間変化しない状態となったとき に端子の挿入完了と判断することが考えられる。 そのほかに作業者がス ィツチをオンすることで装着終了と判断しても良い。 . That is, when the detection signal level from each sensor board (20a, 20b, 30a, 30b) is higher than a certain level and does not change for a certain time, it is determined that the terminal insertion is completed. It is possible to do. In addition, the worker may determine that the mounting is completed by turning on the switch.
本実施の形態例では、 コネクタ 1 0への端子挿入位置の測定は、 予め コネクタの各位置に端子を挿入したときのそれぞれの場合の検出信号値 を測定して基準測定値として登録すると共に、 例えば挿入位置を判別す るための閾値を求め、 基準測定値と共に登録している。  In the present embodiment, the measurement of the terminal insertion position into the connector 10 is performed by measuring a detection signal value in each case when a terminal is inserted into each position of the connector in advance and registering it as a reference measurement value. For example, a threshold value for determining the insertion position is obtained and registered together with a reference measurement value.
そして、 検査モード時に検出された X軸センサ板での測定検出結果、 Then, the measurement detection result on the X-axis sensor plate detected in the inspection mode,
Y軸センサ板での測定検出結果を基準測定値と比較し、 これらの測定検 出結果から端子を挿入したコネクタ位置を判別している。 The measurement detection result of the Y-axis sensor plate is compared with the reference measurement value, and the position of the connector into which the terminal is inserted is determined based on the measurement detection result.
例えば挿入位置の判断は、 予め正確な位置へ正しい切圧電線端子を揷 入したときの検出結果と、 作業者による切圧電線端子の装着時の検出結 果とを比較して行い、 誤差が所定の範囲内に収まっている場合には正常 な装着と判断する。 本実施の形態例では、 正常位置への装着でない場合 には、 それぞれのセンサ板 ( 2 0 a, 2 0 b , 3 0 a , 3 0 b ) よりの 検出信号が正常な場合と異なるため、 ステップ S 5において、 交流信号 の印加された切圧電線端子の予め定められたコネクタ位置への挿入がな されたことを検出していない場合にはステツプ S 6に進み、 不良原因を 特定する。 For example, the insertion position is determined by comparing the detection result when the correct cutting piezoelectric wire terminal is inserted into the correct position in advance with the detection result when the operator attaches the cutting piezoelectric wire terminal to the correct position. If it is within the specified range, it is determined that the device is properly mounted. In the case of this embodiment, when mounting is not performed at the normal position Since the detection signal from each sensor plate (20a, 20b, 30a, 30b) is different from the normal case, in step S5, If it is not detected that the terminal has been inserted into the predetermined connector position, the process proceeds to step S6 to identify the cause of the failure.
なお、 以上の説明における挿入位置の判断において、 予め正確な位置 へ正しい切圧電線端子を挿入したときの検出結果と、 作業者による切圧 電線端子の装着時の検出結果とを比較して行うのではなく、 検出結果か ら導き出される計算上の端子挿入位置と、 正確な位置とを比較して揷入 の良否を検査してもよい。  In determining the insertion position in the above description, the detection result when the correct cutting piezoelectric wire terminal is inserted into the correct position in advance is compared with the detection result when the operator installs the cutting pressure wire terminal. Rather than comparing the calculated terminal insertion position derived from the detection result with the accurate position, the quality of the insertion may be checked.
例えば、 ほとんど端子の揷入を検知できなかった場合には、 検査信号 の供給されていない、 装着するべきでない切圧電線端子を装着したと、 あるいは端子部と切圧電線部との非接続 (断線) と判断する。  For example, when the input of the terminal is hardly detected, it is determined that the test signal is not supplied, the disconnection piezoelectric wire terminal which should not be attached is attached, or the terminal portion is not connected to the disconnection piezoelectric wire portion ( Disconnection).
そして続くステップ S 7で作業者に不良発生及びその原因を報知する 。 不良発生は警報音での報知及び誤り箇所の点滅表示のほか、 例えば不 図示の表示パネルでの原因表示を行い、 不良箇所及び正しい挿入位置の 表示等を行う。  Then, in step S7, the operator is notified of the occurrence of the defect and the cause thereof. The occurrence of a defect is indicated by an alarm sound and a blinking display of an erroneous point, for example, a cause is displayed on a display panel (not shown), and a defective point and a correct insertion position are displayed.
作業者は、 このエラー報知を受けてその後必要なエラー処理を行う。 例えば、 挿入位置が誤っている場合、 切圧電線端子が変形していた場合 には挿入した切圧電線端子を取り外し、 新たな別の切圧電線端子をコネ クタ 1 0に揷入することになる。  The operator receives the error notification and performs necessary error processing thereafter. For example, if the insertion position is incorrect, or if the cutting piezoelectric wire terminal is deformed, remove the inserted cutting piezoelectric wire terminal and insert another new cutting piezoelectric wire terminal into the connector 10. Become.
一方、 ステップ S 5で検査制御部 1 0 0が、 交流信号の印加された切 圧電線端子の予め定められたコネクタ位置への揷入がなされたことを検 出した場合にはステツプ S 1 0に進み、 コネクタ 1 0への切圧電線端子 の装着がすべて終了したか否かを判断する。 コネクタ 1 0への切圧電線 端子の装着がすべて終了した場合にはその旨を例えば終了音で報知し、 当該コネクタへの端子の装着を終了する。 On the other hand, if the inspection control unit 100 detects in step S5 that the disconnection to which the AC signal has been applied has been inserted into the predetermined connector position of the piezoelectric wire terminal, step S100 is performed. Proceed to and judge whether or not all the mounting of the disconnection piezoelectric wire terminals to the connector 10 has been completed. When all of the disconnection piezoelectric wire terminals to the connector 10 have been mounted, this fact is notified by, for example, an end sound, The attachment of the terminal to the connector ends.
ステツプ S 1 0において、 コネクタ 1 0への切圧電線端子の装着がす ベて終了していない場合にはステップ S 1 5に進み、 次に装着するべき 切圧電線端子とコネクタ 1 0内の収納位置を特定し、 ステップ S 2に進 む。  In step S10, if the mounting of the cutting piezoelectric wire terminal to the connector 10 has not been completed, the process proceeds to step S15, where the next cutting piezoelectric wire terminal to be mounted and the inside of the connector 10 are connected. Specify the storage position and proceed to step S2.
以上説明したように本実施の形態例によれば、 コネクタハウジングの 各側面外壁近傍に対向してセンサ板を配設するのみで、 コネクタ八ウジ ングに装着される切圧電線端子に全くふれることなく、 コネクタハウジ ングへの切圧電線端子の装着工程でコネクタへの装着位置を検知するこ とができ、 不良品の発生を製造工程で発見することが可能となり、 効率 の良い切圧電線の製造が可能となる。  As described above, according to the present embodiment, it is only necessary to dispose the sensor plate in the vicinity of the outer side wall of each side of the connector housing, and to completely touch the cut piezoelectric wire terminal mounted on the connector housing. In the process of attaching the cutting piezoelectric wire terminal to the connector housing, the mounting position to the connector can be detected, making it possible to detect the occurrence of defective products in the manufacturing process. Manufacturing becomes possible.
本実施の形態例ではコネクタ収納部にコネクタを収納するのみで端子 の挿入位置の検査が可能となるため、 ハーネス仕様が変更となり、 コネ クタ仕様が変わったような場合であっても、 コネクタがコネクタ収納部 内に収納できれば足り、 コネクタ仕様が変更となっても、 アタッチメン ト部材を換えるというわずかな変更のみで対応でき、 従来のようにコネ クタ仕様が変わるたびに新たにすべての治具を製作する必要がなくなる 更に、 端子に検査プローブを接触させる必要もなくなり、 コネクタ装 着端子数に対応した検査プローブ端子が不要となり、 コネクタへの装着 端子数が多くなつても、 検査装置から検査プローブまでの多数の信号線 が不要となり、 センサ板に接続されたわずか 4本の信号線のみでコネク 夕内への端子装着状態が検査できる。  In the present embodiment, the terminal insertion position can be inspected only by storing the connector in the connector storage section. Therefore, even if the harness specification is changed and the connector specification is changed, the connector can be used. It is sufficient if it can be stored in the connector storage section.Even if the connector specification changes, it can be handled with only a slight change such as changing the attachment member. In addition, there is no need to contact the test probe with the terminals, and the number of test probe terminals corresponding to the number of connector mounting terminals becomes unnecessary. Many signal lines are no longer required, and only four signal lines connected to the sensor board are used to connect terminals to connectors. Thailand can be inspected.
更に、 本実施の形態例によれば、 コネクタ八ウジングへの切圧電線端 子の装着状態の検査結果をコネクタ保持部における検出座標データとし て認識することになるため、 例えばコネクタ仕様が変更になっても、 コ ネク夕位置を新たな座標データとして定義できる。 この結果、 例えば検 査装置の座標データをコネクタ仕様に対応させて書き換えるのみで、 検 査対象コネクタの仕様変更に対処でき、 非常に汎用性のある検査装置が 実現する。 この場合にも、 検査治具側では、 アタッチメント部材を変え るというわずかな変更で済み、 多種多様のコネクタ仕様に迅速かつ容易 に対応できる。 Further, according to the present embodiment, since the inspection result of the mounting state of the cutting piezoelectric wire terminal to the connector housing is recognized as detection coordinate data in the connector holding unit, for example, the connector specification is changed. Even if it becomes The next position can be defined as new coordinate data. As a result, for example, by simply rewriting the coordinate data of the inspection device in accordance with the connector specifications, it is possible to cope with a change in the specification of the connector to be inspected, and an extremely versatile inspection device is realized. In this case as well, the inspection jig side requires only a slight change to change the attachment member, and can quickly and easily respond to a wide variety of connector specifications.
〔第 2の実施の形態例〕  [Second Embodiment]
以上の説明では、 アタッチメント部材は、 ほぼ中央にコネクタを収納 する収納空間を一つ配設する例を説明した。 しかし、 本発明は以上の例 に限定されるものではなく、 例えば、 一つのアタッチメント部材に 2つ あるいはそれ以上のコネクタを収納する 2つあるいはそれ以上の収納空 間を備える構成としてもよい。 あるいは、 コネクタ保持部のコネクタ収 納部内に 2つあるいはそれ以上のアタッチメント部材を収納する構成と して、 各アタッチメント部材にコネクタを収納してもよい。 以上の構成 として 2つあるいはそれ以上のコネクタへの端子挿入状態を検査可能に してもよい。  In the above description, an example has been described in which the attachment member is provided with one storage space for storing the connector substantially at the center. However, the present invention is not limited to the above example. For example, one attachment member may be provided with two or more storage spaces for storing two or more connectors. Alternatively, two or more attachment members may be accommodated in the connector accommodating portion of the connector holding portion, and the connector may be accommodated in each attachment member. With the above configuration, the state of terminal insertion into two or more connectors may be made inspectable.
コネクタ保持部のコネクタ収納部内に複数のコネクタを収納する本発 明に係る第 2の実施の形態例を図 6を参照して説明する。 図 6は本発明 に係る第 2の実施の形態例のアタッチメント部材を説明する図である。 なお、 以下の説明は、 コネクタ保持部のコネクタ収納部内に 2個のコネ クタを収納する場合を例として行う。 2個以上であっても同様に検査で きることは明らかである。  A second embodiment according to the present invention for accommodating a plurality of connectors in the connector housing section of the connector holding section will be described with reference to FIG. FIG. 6 is a diagram illustrating an attachment member according to a second embodiment of the present invention. In the following description, a case where two connectors are stored in the connector storage section of the connector holding section will be described as an example. It is clear that the same test can be performed with two or more pieces.
第 2の実施の形態例においても、 アタッチメント部材以外の構成は上 述した第 1の実施の形態例と同様であり、 以下の説明は上述した第 1の 実施の形態例と異なる構成について行い、 コネクタ収納部及びアタッチ メント部材以外の構成についての説明を省略する。 図 6の (A ) がアタッチメント部材に 2つのコネクタを収納する例、 ( B ) がコネクタ収納部内に 2つのアタッチメント部材を収納する場合 の例を示している。 Also in the second embodiment, the configuration other than the attachment member is the same as that of the above-described first embodiment, and the following description is made for a configuration different from that of the above-described first embodiment. A description of the configuration other than the connector storage section and the attachment member will be omitted. 6A shows an example in which two connectors are stored in an attachment member, and FIG. 6B shows an example in which two attachment members are stored in a connector storage portion.
図 6において、 コネクタ収納部 4 5 0内に収納するアタッチメント部 材として、 (A ) に示すアタッチメント部材 4 6 0 cには 2つのコネク 夕収納空間 (コネクタ収納孔部) 4 6 5 c、 4 6 5 dが設けられ、 2つ のコネクタがそれぞれのコネクタ収納空間 4 6 5 c、 4 6 5 d内に収納 される。  In FIG. 6, the attachment member 460c shown in (A) has two connector storage spaces (connector storage holes) 465c and 4 as attachment members to be stored in the connector storage portion 450. 65 d is provided, and the two connectors are stored in the respective connector storage spaces 465 c and 465 d.
また、 図 6の (B ) に示すアタッチメント部材 4 6 0 e, 4 6 0 f に は、 それぞれの中央部にコネクタ収納空間 4 6 5 e、 4 6 5 f を配設し ている。 そして、 アタッチメント部材 4 6 0 e , 4 6 0 f を 2つ並べる と、 丁度コネクタ保持部 4 0 0のコネクタ収納部 4 5 0の大きさと同じ 大きさとなり、 ぴったりはめ込まれる。 このため、 アタッチメント部材 4 6 0 e , 4 6 0 f ががたつくようなことはない。  The attachment members 460e and 460f shown in FIG. 6B are provided with connector storage spaces 465e and 465f at the center of the attachment members 460e and 460f, respectively. Then, when the two attachment members 460 e and 460 f are arranged, the size becomes exactly the same as the size of the connector storage portion 450 of the connector holding portion 400, and is fitted exactly. For this reason, the attachment members 460 e and 460 f do not rattle.
検査信号が供給された切圧電線端子のコネクタハウジング内への装着 検査を行う検査制御部 1 0 0では、 センサ板のうちの対向する一対のセ ンサ板で検出される検出信号の値をもとに、 センサ板間の距離を基準に したセンサ板と端子との相対距離を検出することとしているため、 コネ クタの数等に全く影響されない検査結果が得られる。  The inspection control unit 100, which performs the mounting inspection of the disconnecting piezoelectric wire terminal supplied with the inspection signal into the connector housing, also determines the value of the detection signal detected by the pair of sensor plates facing each other among the sensor plates. In addition, since the relative distance between the sensor plate and the terminal is detected based on the distance between the sensor plates, an inspection result that is not affected by the number of connectors or the like can be obtained.
以上説明したように第 2の実施の形態例によれば、 1組の端子位置検 査装置により 2つ、 又はそれ以上のコネクタのそれぞれに揷入される端 子の挿入状態を検査できる。  As described above, according to the second embodiment, the insertion state of the terminal inserted into each of two or more connectors can be inspected by one set of terminal position inspection devices.
〔第 3の実施の形態例〕  [Third Embodiment]
さらに、 以上に説明した実施の形態例では、 X軸あるいは Y軸センサ 板が互いにコネクタハウジングをはさんで対向して配設されている例を 説明した。 しかし、 本発明は以上の例に限定されるものではなく、 コネ クタ収納部の一方側面に 2枚のセンサ板を一定距離離反してほぼ並行と なるように近接して位置決め配設すればよい。 Furthermore, in the above-described embodiment, an example has been described in which the X-axis or Y-axis sensor plates are disposed to face each other with the connector housing interposed therebetween. However, the present invention is not limited to the above-described example. The two sensor plates may be positioned and arranged close to each other on one side of the container housing so that they are separated from each other by a certain distance and are almost parallel to each other.
例えば、 シート状絶縁材の両面にセンサ板をそれぞれ貼着し、 コネク 夕収納部の一方側面内壁表面に配設することにより、 コネクタ収納部の 一方側面に 2枚のセンサ板を一定距離離反してほぼ並行となるように位 置決め配設すればよい。  For example, by attaching sensor plates to both sides of a sheet-like insulating material and arranging them on the inner wall surface of one side of the connector housing, two sensor plates are separated from each other by a certain distance on one side of the connector housing. It is sufficient to position and arrange them so that they are almost parallel.
なお、 センサ板の配置方法は以上の例に限定されるものではなく、 側 壁内に埋め込まれていてもよく、 あるいはアタッチメント部材を使用す る場合にはアタッチメント部材の側壁にそれぞれ貼着してもよい。  The method of arranging the sensor plate is not limited to the above example.The sensor plate may be embedded in the side wall, or may be attached to the side wall of the attachment member when the attachment member is used. Is also good.
コネクタ収納部の一方側面に 2枚のセンサ板を一定距離離反してほぼ 並行となるように近接して位置決め配設した第 3の実施の形態例におけ る検査装置の検査原理を図 7を参照して以下に説明する。 図 7は第 3の 実施の形態例の検査制御部の検査信号処理部の詳細構成を説明するため の図である。  Fig. 7 shows the inspection principle of the inspection device in the third embodiment in which two sensor plates are positioned and arranged close to each other on one side of the connector housing so that they are separated from each other by a certain distance and are almost parallel. This will be described below with reference to FIG. FIG. 7 is a diagram for explaining a detailed configuration of the test signal processing unit of the test control unit according to the third embodiment.
図 7において、 2 0 c、 2 0 <1が丫軸センサ板、 3 0 c、 3 0(1が 軸 センサ板、 1 1 1〜: L 1 4はセンサ板 ( 2 0 c, 2 0 d , 3 0 c , 3 0 d) よりの検出信号を増幅する増幅器 A〜D、 1 2 1〜 1 24はセンサ 板 (2 0 c, 2 0 d, 3 0 c, 3 0 d) よりの検出信号のピーク値を検 出するためのピーク検出回路 A〜Dである。  In FIG. 7, 20 c, 20 <1 is a 丫 -axis sensor plate, 30 c, 30 (1 is an axis sensor plate, and 1 1 to: L 14 is a sensor plate (20 c, 20 d , 30c, 30d) amplifiers A to D and 121 to 124 that amplify the detection signals from the sensor plates (20c, 20d, 30c, 30d) Peak detection circuits A to D for detecting the peak value of the signal.
1 3 5は X軸センサ 3 0 c , 3 0 dよりの検出ピーク信号を入力しそ の差分 (Vx 1— Vx 2) を出力する X軸減算回路である。 1 3 6は Y 軸センサ 2 0 c, 2 0 dよりの検出ピーク信号を入力しその差分 (Vy 1 - Vy 2) を出力する Y軸減算回路である。  Reference numeral 135 denotes an X-axis subtraction circuit that inputs detection peak signals from the X-axis sensors 30c and 30d and outputs the difference (Vx1-Vx2). Reference numeral 1336 denotes a Y-axis subtraction circuit that inputs the detected peak signals from the Y-axis sensors 20c and 20d and outputs the difference (Vy1-Vy2).
1 45は X軸減算回路 1 3 5よりの X軸差分信号 (Vx 1— Vx 2) を分母とし、 X軸センサ 3 0 dよりの検出信号 (Vx 2) を分子とする { Vx 2/ (V X 1 - V X 2 )} を求める X軸割算回路である。 X軸割算回路 1 4 5の出力は、 X軸センサ 3 0 c, 3 0 dの検出信号 の相対変化を表しており、 給電部より切圧電線に印加される (給電され る) 信号の強度変化の影響を相殺することができる。 1 45 uses the X-axis difference signal (Vx 1—Vx 2) from the X-axis subtraction circuit 1 3 5 as the denominator, and uses the detection signal (Vx 2) from the X-axis sensor 30 d as the numerator {Vx 2 / ( VX 1-VX 2)}. The output of the X-axis division circuit 145 represents the relative change in the detection signals of the X-axis sensors 30c and 30d. The effect of the intensity change can be offset.
この結果、 X軸割算回路 1 45の出力は、 切圧電線の端子とそれぞれの X軸センサ 3 0 c , 3 0 dよりの距離に比例した信号レベルとなるため 、 X軸割算回路 1 4 5の出力より端子が正しい X軸位置に挿入されたか 否かを非接触で検知できる。 As a result, the output of the X-axis division circuit 1 45 has a signal level proportional to the distance between the terminal of the cut-off piezoelectric wire and each of the X-axis sensors 30 c and 30 d. From the output of 45, it can be detected in a non-contact manner whether the terminal is inserted at the correct X-axis position.
1 46は Y軸減算回路 1 3 6よりの Y軸差分信号 (Vy 1— Vy 2) を 分母とし、 Y軸センサ 2 0 dよりの検出信号 (Vy 2) を分子とする { V y 2 / (Vy 1 - Vy 2)} を求める Y軸割算回路である。  1 46 uses the Y-axis difference signal (Vy 1—Vy 2) from the Y-axis subtraction circuit 13 6 as the denominator and the detection signal (Vy 2) from the Y-axis sensor 20 d as the numerator {V y 2 / (Vy 1-Vy 2)}.
Υ軸割算回路 1 4 6の出力は、 Υ軸センサ 2 0 c, 2 0 dの検出信号 の相対変化を表しており、 給電部より切圧電線に印加される (給電され る) 信号の強度変化の影響を相殺することができる。  The output of the Υ axis divider circuit 146 represents the relative change of the detection signals of the Υ axis sensors 20 c and 20 d. The effect of the intensity change can be offset.
この結果、 Y軸割算回路 1 46の出力は、 切圧電線の端子とそれぞれの Y軸センサ 2 0 c , 2 0 dよりの距離に比例した信号レベルとなるため 、 Y軸割算回路 1 46の出力より端子が Y軸装着位置に正しく挿入された か否かを非接触で検知できる。 As a result, the output of the Y-axis division circuit 146 becomes a signal level proportional to the distance between the terminal of the cut piezoelectric wire and each of the Y-axis sensors 20c and 20d. From the output of 46, it can be detected in a non-contact manner whether or not the terminal is correctly inserted into the Y-axis mounting position.
X軸割算回路 1 4 5の出力と Y軸割算回路 1 4 6の出力よりコネクタ 1 0内への切圧電線端子の X— Y方向の装着位置 (二次元位置) を非接 触で検知できる。  Cut the X-Y direction mounting position (two-dimensional position) of the piezoelectric wire terminal into the connector 10 from the output of the X-axis division circuit 1 4 5 and the output of the Y-axis division circuit 1 4 6 without contact. Can be detected.
以上の回路構成としたのは、 X軸センサ板、 Y軸センサ板では、 X又 は Yを nとすると  The above circuit configuration is based on the X-axis sensor board and the Y-axis sensor board, where X or Y is n.
C 1 / {( 1 /Vn 2) - ( 1/Vn 1 )}) /Vn 1  C 1 / {(1 / Vn 2)-(1 / Vn 1)}) / Vn 1
= {(V n 1 X V n 2 ) / (Vn 1 - Vn 2 )} /V n 1 = {(V n 1 X V n 2) / (Vn 1-Vn 2)} / V n 1
= (V n 2 ) / (V n 1 - V n 2 ) = (V n 2) / (V n 1-V n 2)
が成り立つからである。 第 3の実施の形態例においては、 X軸センサ 3 0 d、 Y軸センサ 2 0 dは、 いわばコネクタ側からみて X軸センサ 3 0 c、 Y軸センサ 2 0 c の裏側に位置するが、 コネクタ 1 0は非導電材料で成型されており、 ま た、 X軸センサ 3 0 c, 3 0 d及び Y軸センサ 2 0 c , 2 0 dは共にハ ィインピーダンス状態に維持されているため、 X軸センサ 3 0 d、 Y軸 センサ 2 0 dにおける端子よりの交流信号の検出値は多少 X軸センサ 3 0 c、 Y軸センサ 2 0 cの影響を受けても、 端子よりの交流信号の影響 が X軸センサ 3 0 c, Y軸センサ 2 0 cで遮断されてしまうことはなく 、 確実に一定レベルの値が検出できる。 Is satisfied. In the third embodiment, the X-axis sensor 30d and the Y-axis sensor 20d are located behind the X-axis sensor 30c and the Y-axis sensor 20c as viewed from the connector side. The connector 10 is made of a non-conductive material, and the X-axis sensors 30c and 30d and the Y-axis sensors 20c and 20d are both maintained in a high impedance state. The detection value of the AC signal from the terminal in the X-axis sensor 30d and the Y-axis sensor 20d is slightly affected by the X-axis sensor 30c and the Y-axis sensor 20c. The influence is not interrupted by the X-axis sensor 30c and the Y-axis sensor 20c, and a constant level value can be detected without fail.
この結果、 X軸センサ 3 0 cと X軸センサ 3 0 dの検出値の相対的な 関係及び Y軸センサ 2 0 cと Y軸センサ 2 0 dの検出値の相対的な関係 は、 端子の挿入位置のみで定まり、 ほぼ正確にコネクタ 1 0内への端子 の挿入位置を検出できる。  As a result, the relative relationship between the detected values of X-axis sensor 30c and X-axis sensor 30d and the relative relationship between the detected values of Y-axis sensor 20c and Y-axis sensor 20d are It is determined only by the insertion position, and the insertion position of the terminal into the connector 10 can be detected almost accurately.
即ち、 X軸センサ 3 0 c、 Y軸センサ 2 0 cの存在により X軸センサ 3 0 d、 Y軸センサ 2 0 dから交流信号が検出できないといったことは なく、 X軸センサ 3 0 c、 Y軸センサ 2 0 cの存在により X軸センサ 3 0 d、 Y軸センサ 2 0 dの検出レベルがやや下がることはあっても、 確 実に一定レベルの値が検出できる。  That is, the presence of the X-axis sensor 30c and the Y-axis sensor 20c does not prevent the AC signal from being detected from the X-axis sensor 30d and the Y-axis sensor 20d. Even though the detection levels of the X-axis sensor 30d and the Y-axis sensor 20d may slightly decrease due to the presence of the axis sensor 20c, a certain level value can be reliably detected.
これは、 コネクタ 1 0に挿入される端子が最初の端子でない場合であ つても同じであり、 すでに何本かの端子がコネクタ 1 0内に装着されて いる場合には装着されている端子の位置及び数によりセンサ板での検出 レベルに変動があっても、 それぞれの場合の端子挿入位置が正しいか否 かは正確に識別できる。  This is the same even if the terminal inserted into the connector 10 is not the first terminal, and if some terminals are already mounted in the connector 10, the Even if the detection level on the sensor plate fluctuates depending on the position and number, it is possible to accurately identify whether the terminal insertion position is correct in each case.
即ち、 第 3の実施の形態例では、 静電結合を利用して交流検査信号を 検出しているため、 導電板よりの検査信号の検出レベルは各々の揷入さ れる端子との距離に反比例する値となる。 従って、 その逆数演算値 ( 1 /Vn 1) 及び (1/Vn 2) はそれぞれ端子との距離に比例する値と なる。 That is, in the third embodiment, since the AC inspection signal is detected by using the electrostatic coupling, the detection level of the inspection signal from the conductive plate is inversely proportional to the distance between each input terminal. Value. Therefore, the reciprocal operation value (1 / Vn 1) and (1 / Vn 2) are values proportional to the distance to the terminals.
従って、 これらの差分 lZVn 1) - (1/Vn 2)} は、 各 X軸 センサ 30 c , 30 d、 Y軸センサ 20 c , 20 d間の距離 (基準距離 ) に相当する。 よって、 〔1/ {( 1/Vn 1 ) 一 ( l/Vn 2)}〕 /V n lは基準距離に対する (lZVn l) の比を示すことになり、 供給検 査信号にかかわる等率変動分を吸収している。 この比の結果は、 距離に 比例する量ともなり、 検査に用いるのに最適である。  Therefore, these differences lZVn 1)-(1 / Vn 2)} correspond to the distances (reference distances) between the X-axis sensors 30c and 30d and the Y-axis sensors 20c and 20d. Therefore, [1 / {(1 / Vn 1) 1 (l / Vn 2)}] / V nl indicates the ratio of (lZVn l) to the reference distance, and the rate of variation of the constant rate related to the supply inspection signal Has absorbed. The result of this ratio is a quantity that is proportional to the distance, making it ideal for use in inspections.
この結果、 端子が挿入されたときの X軸割算回路 145、 Y軸割算回 路 1 46の出力は、 端子までの距離に固有の検出結果が得られる。 第 3 の実施の形態例におけるセンサから端子までの距離の検出誤差は、 非常 に小さく、 現コネクタへの端子挿入良否の判定に必要な精度を確実に確 保できる。  As a result, when the terminal is inserted, the output of the X-axis division circuit 145 and the output of the Y-axis division circuit 146 can obtain a detection result specific to the distance to the terminal. The detection error of the distance from the sensor to the terminal in the third embodiment is extremely small, and the accuracy required for determining whether or not the terminal is inserted into the current connector can be reliably ensured.
以上説明したように第 3の実施の形態例によれば、 上記した各実施の 形態例と同様の作用効果を奏すると共に、 2つのセンサを近接して配設 できるため、 センサからの信号線の引き回しなどが容易となる。  As described above, according to the third embodiment, the same operation and effect as those of the above-described embodiments can be obtained, and two sensors can be arranged close to each other. Routing becomes easy.
また、 コネクタハウジングの側面近傍に 2枚のセンサ板を配設すると いう簡単な構成で、 センサ板より端子までの距離に比例する交流検査信 号値を検出でき、 端子が挿入されたときの X軸割算回路 145、 Y軸割 算回路 146の出力は、 端子の挿入位置に固有の検出結果となるため、 ワイヤハーネスの信頼性に大きな影響のある切圧電線の端子の挿入位置 を端子に完全非接触で検出することが可能となる。 産業上の利用可能性  In addition, with a simple configuration in which two sensor plates are provided near the side of the connector housing, an AC inspection signal value proportional to the distance from the sensor plate to the terminal can be detected. The output of the axis divider circuit 145 and the output of the Y-axis divider circuit 146 are the detection results specific to the terminal insertion position, so the insertion position of the cut piezoelectric wire terminal, which greatly affects the reliability of the wire harness, is set to the terminal. It is possible to perform detection completely without contact. Industrial applicability
本発明によれば、 切圧電線端部のコネクタ仕様毎に複雑な構成の専用 の治具を設計して用意することなく、 簡単なアタッチメント部材を交換 するのみで多種類のコネクタハウジングへの切圧電線端子の装着不良を 判別できる。 According to the present invention, a simple attachment member can be exchanged without designing and preparing a dedicated jig having a complicated configuration for each connector specification at the end of the cut piezoelectric wire. It is possible to determine the improper mounting of the cut piezoelectric wire terminal on various types of connector housings.
更に、 切圧電線端部の端子を損傷などすることなく、 ハーネスの製造 工程において、 非接触で切圧電線端子のコネクタ内への装着位置、 切圧 電線と端子間の接続状態を検出可能とし、 ハーネスの製造工程において コネクタへの切圧電線端子の装着不良を判別し、 特別の検査工程を経る ことなく信頼性の高いハーネスを提供できる。  Furthermore, in the harness manufacturing process, it is possible to detect the mounting position of the cutting piezoelectric wire terminal in the connector and the connection state between the cutting piezoelectric wire and the terminal without damaging the terminal at the end of the cutting piezoelectric wire. In the manufacturing process of the harness, it is possible to determine the mounting failure of the cutting piezoelectric wire terminal to the connector and to provide a highly reliable harness without going through a special inspection process.

Claims

請求の範囲 The scope of the claims
1 . 交流信号が印加された端子のコネクタハウジング内への装着位置 を端子に非接触で検査可能な端子の装着検査装置に用いる装着検査用治 具であって、 1. A mounting inspection jig used for a terminal mounting inspection apparatus capable of inspecting a mounting position of a terminal to which an AC signal is applied in a connector housing without contacting the terminal,
前記コネクタ八ウジングを収納保持する保持部と、  A holding unit that stores and holds the connector eight housing,
前記保持部に収納保持される前記コネクタ八ウジングの側面近傍位置 に対向して配設され、 コネクタハウジング内に装着される前記端子より の交流信号を検出可能な少なくとも一対の導電板とを有し、  At least one pair of conductive plates disposed opposite the side of the connector housing housed and held in the holding portion and capable of detecting an AC signal from the terminal mounted in the connector housing; ,
交流信号が印加された端子のコネクタハウジング内への装着を前記対 向するそれぞれの導電板よりの交流信号検出結果より前記交流信号が印 加されている端子の前記コネクタハウジング内への装着位置を判別可能 とすることを特徴とする装着検査用治具。  The mounting position of the terminal to which the AC signal is applied into the connector housing is determined based on the result of the detection of the AC signal from each of the opposing conductive plates when the terminal to which the AC signal is applied is mounted in the connector housing. A jig for mounting inspection, wherein the jig can be distinguished.
2 . 検査信号が印加された端子のコネクタハウジング内への装着位置 を検査可能な端子の装着検査装置に用いる装着検査用治具であって、 前記コネクタハウジングを収納可能なアタッチメント部材と、 前記アタッチメン卜部材を収納保持する保持部と、  2. A mounting inspection jig used for a terminal mounting inspection device capable of inspecting a mounting position of a terminal to which an inspection signal is applied in a connector housing, wherein the attachment member is capable of storing the connector housing; A holding portion for storing and holding the lock member;
前記保持部の側面に配設された少なくとも一対の導電板とを有するこ とを特徴とする装着検査用治具。  A jig for mounting inspection, comprising: at least a pair of conductive plates disposed on a side surface of the holding portion.
3 . 前記検査信号は交流信号で、 前記導電板はコネクタハウジング内 に装着される前記端子よりの交流信号を検出可能であり、  3. The inspection signal is an AC signal, and the conductive plate can detect an AC signal from the terminal mounted in the connector housing,
前記アタッチメン卜部材は、 コネクタハウジング仕様に合わせて形成 され、  The attachment member is formed according to a connector housing specification,
前記保持部はコネクタハウジング仕様に関わらず共通であることを特 徴とする請求項 2記載の装着検査用治具。  3. The mounting inspection jig according to claim 2, wherein the holding portion is common regardless of a connector housing specification.
PCT/JP2004/017983 2003-11-28 2004-11-26 Jig for installation inspection WO2005052958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-400163 2003-11-28
JP2003400163A JP4397222B2 (en) 2003-11-28 2003-11-28 Mounting inspection jig

Publications (1)

Publication Number Publication Date
WO2005052958A1 true WO2005052958A1 (en) 2005-06-09

Family

ID=34631631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017983 WO2005052958A1 (en) 2003-11-28 2004-11-26 Jig for installation inspection

Country Status (4)

Country Link
JP (1) JP4397222B2 (en)
KR (1) KR100784571B1 (en)
CN (1) CN100580821C (en)
WO (1) WO2005052958A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892325B1 (en) * 2007-07-05 2009-04-08 오토스프라이스 주식회사 A automatic splicing apparatus
CN108169618B (en) * 2018-01-08 2021-02-09 四川九洲电器集团有限责任公司 Testing device and testing method
KR102093705B1 (en) * 2018-12-27 2020-03-26 주식회사 유라코퍼레이션 Inspection jig for terminal insertion
KR102187079B1 (en) * 2020-03-02 2020-12-04 주식회사 유라코퍼레이션 Inspection jig for terminal insertion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138462A (en) * 1994-11-11 1996-05-31 Yazaki Corp Manufacture of wire harness
JPH11121135A (en) * 1997-10-13 1999-04-30 Tsuda Electric Wire & Cable Co Ltd Inspection method for wire arrangement of harness for connector and inspection equipment
JP2003229225A (en) * 2002-01-31 2003-08-15 Sumitomo Wiring Syst Ltd Inspection method of electric wire connection to connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138462A (en) * 1994-11-11 1996-05-31 Yazaki Corp Manufacture of wire harness
JPH11121135A (en) * 1997-10-13 1999-04-30 Tsuda Electric Wire & Cable Co Ltd Inspection method for wire arrangement of harness for connector and inspection equipment
JP2003229225A (en) * 2002-01-31 2003-08-15 Sumitomo Wiring Syst Ltd Inspection method of electric wire connection to connector

Also Published As

Publication number Publication date
JP2005166303A (en) 2005-06-23
CN100580821C (en) 2010-01-13
JP4397222B2 (en) 2010-01-13
KR100784571B1 (en) 2007-12-10
KR20060116003A (en) 2006-11-13
CN1883016A (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP4121420B2 (en) Harness checker and harness check method
JP4571076B2 (en) Inspection equipment for semiconductor devices
JP4397222B2 (en) Mounting inspection jig
US6563313B2 (en) Electronic device and manufacturing method thereof
KR100876793B1 (en) Terminal insertion amount-inspecting device
JP4351032B2 (en) Inspection signal supply apparatus and inspection signal application method
JP2007329055A (en) Fitting state inspection method of connecting member and fitting state inspection device
JP2020177815A (en) Inspection system and inspection method
JP5316334B2 (en) Electronic component manufacturing apparatus and manufacturing method
US11143695B2 (en) Inspection device and inspection method for inspecting connected parts of a plurality of pins to a wiring board to detect a short circuit failure
JPH11337608A (en) System for correcting pattern inspection device
JP2004119285A (en) Connector insertion method and connector insertion device
JP2008191106A (en) Testing method of soldered state
JP2926587B1 (en) Tray for storing small electronic components with scale for inspection
US6385551B1 (en) Methods and apparatus for obtaining a connection characteristic of a connection assembly
CN115737127A (en) Detection device and detection method for positioning accuracy of tail end of surgical robot
JP2007333492A (en) Method and device for inspecting condition of electric contact
JP2009025214A (en) Testing method for gyro
JP2007141965A (en) Appearance inspection device
JP2004279253A (en) Failure detecting system
JPS6224160A (en) Inspector
JPH09320727A (en) Connector inspection method and device
JP2006177832A (en) System for inspecting substrate insertion
JP2000193719A (en) Semiconductor chip inspecting apparatus
JP2006114773A (en) Distorted state detecting method of substrate and substrate inspecting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480033824.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067010320

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067010320

Country of ref document: KR

122 Ep: pct application non-entry in european phase