WO2005052559A1 - Method of identifying pigments from a single cell using confocal image spectrophotometry in phototrophic communities - Google Patents

Method of identifying pigments from a single cell using confocal image spectrophotometry in phototrophic communities Download PDF

Info

Publication number
WO2005052559A1
WO2005052559A1 PCT/ES2004/000527 ES2004000527W WO2005052559A1 WO 2005052559 A1 WO2005052559 A1 WO 2005052559A1 ES 2004000527 W ES2004000527 W ES 2004000527W WO 2005052559 A1 WO2005052559 A1 WO 2005052559A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
sample
fluorescence
pigments
emission
Prior art date
Application number
PCT/ES2004/000527
Other languages
Spanish (es)
French (fr)
Inventor
María Concepción HERNÁNDEZ MARINÉ
Mónica ROLDÁN MOLINA
Susana Castel Gil
Original Assignee
Universidad De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Barcelona filed Critical Universidad De Barcelona
Publication of WO2005052559A1 publication Critical patent/WO2005052559A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/019Biological contaminants; Fouling

Definitions

  • This invention relates to the field of environmental technologies, and particularly to the identification of living phototrophic organisms, that is, organisms that use light as an energy source.
  • Identification of a complex living community and discrimination between phylogenetic groups are particularly useful in the fields of aquaculture management and the sciences involved in the study of ecosystems, such as ecology, ecophysiology, oceanography, and limnology. Such identification and discrimination can be used, for example, to analyze incidence and to develop control strategies against problematic algal blooms that appear within aquatic and aerophytic ecosystems (organisms that live at the air interface and a nonliving structure such as a building or a wall) in natural and artificial conditions.
  • aquatic and aerophytic ecosystems organisms that live at the air interface and a nonliving structure such as a building or a wall
  • complex problem communities have been difficult to predict in the past, mainly due to the lack of appropriate methodologies and technologies. The nature of the samples and the need to analyze them without prior isolation from the organisms are other important obstacles to overcome.
  • algal pigments are often heterogeneously distributed within each cell, affecting the extent of absorption. Although pigments can be extracted, the extraction procedures carry the risks of the presence of artifacts in the preparation and removal of the original microenvironment from the chromophore.
  • Another known limitation of differentiating algae by absorbance / fluorescence measurements is related to the need for solid empirical approaches to statistically discriminate both the algal component of the composite signal for a given mass of water, and a single algal component by itself (cf. DF Millie et al., "Using absorbance and fluorescence spectra to discriminate microalgae", Eur. J. Phvcol. 2002, vol. 37, pp. 313-22).
  • Phototrophic organisms produce various types of photosynthetic pigments, each of which captures photons in a narrow range of the spectrum. A fraction of the energy absorbed by the pigments can be emitted immediately at a longer wavelength, a phenomenon known as fluorescence. The emitted fluorescence originates primarily from the photosystem II subantenna pigments (PSII) and is the result of the photosystem's inability to use all of the absorbed energy. Since photosynthesis and fluorescence are competitive processes, changes in photosynthetic activity are reflected in variations in fluorescence emission.
  • PSII photosystem II subantenna pigments
  • fluorescence is an indicator of photosynthetic processes in plants, algae and cyanobacteria, being a powerful analysis tool that allows the description of a complex community in terms of its physiological state, transfer energy, evolution cell and discrimination between phylogenetic groups.
  • Fluorescence microscopy techniques have allowed the description of the structure and organization of the samples in two dimensions (2D). These techniques have been used to study photosynthetic microorganisms and various systems have been described both at the microscopic level (cf. L. Ying et al., "Fluorescence emission and absorption spectra of single Anabaena sp. Strain PCC7120 cells", Photochemistrv and Photobiology 2002, vol. 76, pp. 310-3) as at the macroscopic level (cf. HK Lichtenthaler et al., "Detection of vegetation stress via a new high resolution fluorescence imaging system ", __ Plant Phvsiologv 1996. vol. 148, pp. 559-612).
  • CSLM confocal scanning laser microscope
  • Some CSLMs comprise a selective spectrophotometric prism for detecting emission fluorescence.
  • the combination of a CSLM and spectrophotometric detection is referred to herein as "confocal imaging spectrophotometry" (CIS).
  • CIS confocal imaging spectrophotometry
  • the inventors have surprisingly found a new method for identifying fluorescent signals in individual cells based on the combination of the power of the confocal scanning laser microscope (CSLM). with the capabilities of spectrophotometric methods.
  • the new method allows the unequivocal in vivo identification of the taxonomic group of an individual cell, based on its fluorescence signal, without manipulating the phototrophic communities.
  • the invention provides a non-invasive method for analyzing a sample using a CSLM coupled to a spectrophotometer detector, comprising the steps of: (i) selecting a particular area of the sample; (ii) obtaining spectral scanning images of the emission fluorescence from the selected sample area at selected system settings; and (iii) processing said spectral scanning images according to definable algorithms to obtain an emission fluorescence spectrum of said area; where the sample fluoresces under laser excitation, without any previous labeling (that is, without the addition of fluorescent chemicals).
  • Spectral scan images are the result of the spectral scan function ("lambdascan" function) of CIS devices.
  • the fluorescence signal is captured at a predefined interval for each section, moving along the spectrum.
  • Each individual measurement is based on the detection of real confocal images.
  • the method of the present invention uses the selected variables x-y- ⁇ , that is, the optical plane is recorded at different wavelengths.
  • the method uses the variables x-z- ⁇ , x-y- ⁇ -t (t stands for time), and x-y- ⁇ -z.
  • bandwidth as used herein means the range of transmitted frequencies of a given signal.
  • ⁇ steps is meant here the number of individual images detected in a specific range of wavelengths, from a single optical section. Images are recorded within a wavelength range, which is limited by their start and end points.
  • the "step size ⁇ " is the magnitude (expressed in nm) between the lower and upper limits of the wavelength range at which an image is recorded.
  • the appropriate software supplied with the specific CIS apparatus controls the detector during spectral scanning and aids in calculations, using definable algorithms, of the emission spectrum after scanning an image.
  • the emission fluorescence spectrum of the selected area is obtained by processing said spectral scanning images.
  • the selected area corresponds substantially to a single cell.
  • the selected area comprises at least one pixel of phototrophic organisms.
  • pixel based on the words "picture” and "element" represents the smallest, indivisible element of an image in a two-dimensional system. In this description, both the sample points of a specimen and the points of an image are qualified as pixels.
  • phototrophic organisms are selected from the group consisting of plants, algae, cyanobacteria, and mixtures thereof. Plants and algae can be macroscopic or microscopic.
  • the sample has a thickness equal to or less than the detection limit thickness of the used confocal scanning laser microscope.
  • the system settings for obtaining the emission fluorescence sample data from the selected area of the sample are set in order to minimize photobleaching.
  • Photobleaching is the loss of emission fluorescence intensity of the sample due to destruction of fluorescent substances by intense illumination.
  • the step size ⁇ is set between 5 and 40 nm, and the bandwidth is set from 360 to 800 nm.
  • performance and fit are held constant.
  • the performance value (“gain valué”) modifies the amplification of the detected signal and, consequently, the brightness and contrast of the image change.
  • the adjustment value (“offset valué”) defines a threshold value and, therefore, only those signals that are above the threshold value are detected and represented in the image.
  • the laser excitation wavelength is set to one or more of the following values: 351nm (UV Ar laser), 364nm (UV Ar laser), 458nm (Ar laser), 476nm (Ar laser) , 488 nm (Ar laser), 514 nm (Ar laser), 543 nm (HeNe laser) and 633 nm (HeNe laser).
  • the sample data is processed according to definable algorithms that provide two-dimensional plots of the mean fluorescence intensity versus the emission fluorescence wavelengths.
  • the method of the present invention provides the in vivo and three-dimensional localization of each community and the direct analysis of the fluorescent pigments of a single cell in situ. in coarse intact samples. The relationship between these two determinations allows the identification of the pigments, the subsequent identification of the groups and species present in the sample, and the knowledge of the physiological state of each particular organism.
  • the main improvements achieved with the new method are: (i) the analysis of single or multiple fluorescent pixels; (ii) 3D localization in vivo: (iii) direct in situ analysis of single cell fluorescent pigments in coarse samples without prior isolation; (iv) establishing the relationship between fluorescent properties and position within the specific microbial assembly; (v) the possible application of eight excitation wavelengths to obtain spectra of a single cell, providing high-resolution detection and detailed sample information; (vi) rapid access to statistical information on the number of cells and spectral properties of a community; (vii) discrimination of cells with particular fluorescent signals within the colony and correlation with individual cell states; and (viii) the free choice of the emission wavelength, which allows the discovery of new pigment signals.
  • FIG 1. shows the in vivo spectrophotometric analysis of the BF1 biofilm of the Roman catacomb of St. Callistus.
  • FIG. 1A shows the extended focus pseudocolor 3D projection in the xy planes and the orthogonal view in the z direction of the biofilm (49 optical sections).
  • FIGs. 1 BD. I know they represent the in vivo spectral profiles derived from ⁇ exc of 488, 514 and 543 nm, and the standard error (n 5 cells).
  • FIG 2. shows the spectrophotometric analysis of the BF2 biofilm in vivo of the Roman catacomb Domitilla.
  • FIG. 2A shows the extended focus 3D pseudocolor projection in the xy planes and the orthogonal view in the z direction of the biofilm (66 optical sections).
  • Analysis was performed with a CIS microscope, using either the 63x (NA 1.32, oil) or 100x (NA 1.4, oil) objectives (magnification range 1-4).
  • Spectral scanning was performed using the 351 and 364 nm lines of an Ar UV laser; lines 458, 476, 488, and 514 nm from an Ar laser; the 543 nm line from a green HeNe laser and the 633 nm line from a red HeNe laser.
  • the microscope uses spectrophotometric detection that allows the system to perform different scans from 360 to 800 nm of the spectrum using a motorized slit in front of the photomultiplier.
  • each image sequence (that is, the spectral scan or "lambda-scan" function of the system) was obtained by scanning the Same optical section xy using as step size 20nm for detection ( ⁇ coordinate of a data set xy- ⁇ ) to avoid photobleaching.
  • the emission detection was placed 4-9nm further from the excitation wavelength to avoid reflections from the laser beam.
  • the scans were performed using the beam filter, the substrate filter (for UV) or the triple dichroic filter (488/543/633). Data series x, y, ⁇ was acquired at the z position where fluorescence was highest. Background noise in areas without a sample was measured and then used to correct the primary spectra in the thin sections. The laser struck the sample perpendicularly and, to avoid interference with background radiation (light from the laboratory or light from excitation sources), the images were captured in the dark. Performance and contrast were the same for each field at each excitation wavelength and were unaltered throughout the scanning process.
  • the mean fluorescence intensity (MFI) of the xy- ⁇ data series was obtained using the software supplied in conjunction with the microscope.
  • the region of interest (RO ⁇ ) function of the software was used to determine the spectral signal of a selected area of the captured image.
  • An ROI can also be specified to determine the spectrum of each sample and the software displays the average intensity of all pixels within the ROI versus the wavelength.
  • Numerical data were processed with Microsoft Excel ® 97 or 2000. The mean and standard error were calculated for all regions or cells examined in each ⁇ exc . The maximums of the pigments corresponded to their dispersion interval in the different ⁇ exc .
  • the extracted pigments show variations in the fluorescence spectra when compared with the in vivo pigments, therefore a control with pure pigments was performed to compare them with the published studies.
  • Water-soluble pigments such as R-phycoerythrin (R-PE) from Porphyra te ⁇ era and C-phycocyanin (C-PE) from Spirulina sp. they were dissolved in filtered distilled water.
  • Biofilms are made up of populations or communities of microorganisms that adhere to environmental surfaces. These microorganisms are normally immersed in an extracellular polysaccharide that they synthesize themselves. Two aerophytic biofilms were selected in the CSLM observations to test the method with complex natural communities.
  • the biofilms which were described and identified, contained different phylogenetic groups (Cyanobacteria and Bacillariophyta).
  • the first biofilm (BF1) obtained from the catacomb of St. Callistus (Rome, Italy), was mainly made up of Scvtonema julianum and Leptolvngbva sp.
  • the second biofilm (BF2) obtained from the Domitilla catacomb (Rome, Italy), consisted of the Bacillariophyta Diadesmis gallica and an unidentified cyanobacterium from the Chroococcales group. Both biofilms were obtained from artificially lit surfaces. Fragments of biofilms were separated from their substrates (plaster, mortar or speleothems) or, rarely, were taken together with small pieces of their support. Biofilms were maintained in a 2mm layer of 10% agarose BG11 medium (1%, Merck), and processed for the first week. Biofilms and cultures were mounted in Nunc Lab-Tek TM glass bottom chambers. The samples were processed at room temperature in the dark.
  • the extended focus images (that is, the image is divided into three frames representing the maximum fluorescence intensity projection for the xy, xz and yz planes) of the two stratified biofilms showed a differential distribution of the microorganisms in depth in the biofilm (FIG. 1 A and 2A). Emission spectra for 488, 514 and 543 nm of ⁇ exc are shown for each biofilm (FIG. 1 BD and 2B-D).
  • FIG. 1A shows an extended focus pseudocolor 3D projection in the xy and orthogonal planes in the z direction of the biofilm (49 optical sections).
  • the image represents the maximum autofluorescence emitted in the 590-775 nm range when excited at 543 nm.
  • the volume under observation was 465.03 x 465.03 x 398.73 ⁇ m 3 .
  • Z-step 0.4 ⁇ m.
  • Magnification factor 1.
  • Thickness 19.54 ⁇ m.
  • MFI stands for Medium Fluorescence Intensity.
  • FIG. 2A shows optical sections at 66 xy of the laminated biofilm, which consists of two layers, the upper layer consisting of Diadesmis gallica colonies and the lower layer consisting of Chroococcales colonies.
  • the volume under observation was 75.82 x 75.82 x 98.51 ⁇ m 3 .
  • Z-step 0.1 ⁇ m.
  • Magnification factor 3.86.
  • Thickness 6.6 ⁇ m.
  • the image represents the maximum autofluorescence emitted in the 590-775 nm range when excited at 543 nm.
  • Diadesmis gallica (Bacillariophyta) was mainly concentrated at the top of the biofilm while the unidentified Chroococcal formed a discontinuous layer at the bottom (FIG. 2A).
  • D. gallica 3 ⁇ m in diameter, showed less fluorescence than the cyanobacterium.
  • Their ⁇ ma ⁇ , at 676.2 ⁇ 5 nm did not coincide with the ⁇ max of the other groups due to the presence of Chl c.
  • To avoid photobleaching, caused when these cells were consecutively excited with different ⁇ exc different optical fields were used to obtain the emission spectra in all the ⁇ exc .
  • the unidentified Chroococcal presented the same spectral shape as Leptolvngbva sp.
  • TABLE 2 shows the results of the fluorescence emission acquired from biofilms after excitation at four wavelengths ( ⁇ e ⁇ ) (351, 488, 514 and 543 nm). Each ⁇ max value was obtained from 5 cells. TABLE 2. Comparison of ⁇ ma ⁇ for each ⁇ _ * _ of the two aerophytic biofilms.
  • the cyanobacteria showed the highest MFI in the 640-740 nm range at any of the ⁇ exc , when compared with the Bacillariophyta (FIG. 1 BD and 2B-D). Cyanobacteria also had a high MFI at 577-580 nm ⁇ max , due to C-PE.
  • Each photosynthetic pigment present in species absorbs light of a certain wavelength, but in general, pigments pick up photons from a wide range of wavelengths when excited at wavelengths of 351-633 nm. Only at 364 nm (UV) and 458 nm (blue) ⁇ exc was a smaller emission response observed in all microorganisms. In the case of cyanobacteria, this indicates that the minimum efficiency of the photoreceptors is 430-460 nm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The invention relates to a non-invasive method of analysing a sample emitting low-excitation laser fluorescence without any prior labelling, using a confocal laser scanning microscope which is connected to a spectrophotometer detector. The inventive method can be used for in-vivo three-dimensional position finding in relation to each community and for direct in-situ analysis of the fluorescent pigments of an individual cell in intact bulk samples. The relationship between said two determinations enables the pigments to be identified, the groups and species present in the sample to be subsequently identified and the physiological state of each individual organism to be ascertained. The invention can be used to identify problematic proliferations of algae in aquatic and aerophytic ecosystems.

Description

Método de identificación de pigmentos de una sola célula mediante espectrofotometría de imagen confocal en comunidades fototróficas.Identification method of single cell pigments by confocal image spectrophotometry in phototrophic communities.
Esta invención se relaciona con el campo de las tecnologías medioambientales, y particularmente con la identificación de organismos vivos fototróficos, es decir, organismos que utilizan la luz como fuente de energía.This invention relates to the field of environmental technologies, and particularly to the identification of living phototrophic organisms, that is, organisms that use light as an energy source.
ESTADO DE LA TÉCNICA ANTERIORSTATE OF THE PREVIOUS TECHNIQUE
La identificación de una comunidad viva compleja y la discriminación entre los grupos filogenéticos son particularmente útiles en los campos de gestión de la acuicultura y las ciencias involucradas en el estudio de los ecosistemas, como la ecología, la ecofisiología, la oceanografía y la limnología. Dicha identificación y discriminación puede usarse, por ejemplo, para analizar la incidencia y para desarrollar estrategias de control contra proliferaciones algales problemáticas que aparecen dentro de los ecosistemas acuáticos y aerofíticos (organismos que viven en la interfase aire y una estructura no viva como un edificio o una pared) en condiciones naturales y artificiales. Desafortunadamente, en el pasado ha sido difícil prever las comunidades complejas problemáticas, debido principalmente a la ausencia de metodologías y tecnologías apropiadas. La naturaleza de las muestras y la necesidad de analizarlas sin previo aislamiento de los organismos, son otros obstáculos importantes a superar. Los esfuerzos actuales dependen típicamente de la evaluación microscópica, pero ésta tiene limitaciones como las de ser laboriosa, generar datos variables, requerir un programa intrusivo de muestreo con áreas de cobertura limitada, y carecer de cobertura próxima a tiempo real. Como alternativa a la evaluación microscópica, se han propuesto análisis basados en medidas de absorbancia celular y/o fluorescencia (cfr. J.J. Cullen et al., "Optical detection and assessment of algal blooms", Limnol. Oceanogr. 1997, vol. 42, pp. 1223-39), pero estos análisis no están exentos de limitaciones. Una limitación de discriminar algas por medidas de absorbancia/fluorescencia es la necesidad de que los espectros correspondientes a los grupos filogenéticos o especies implicados deben ser suficientemente distintos. Además, los pigmentos algales están distribuidos a menudo de forma heterogénea dentro de cada célula, afectando a la medida de la absorción. Aunque los pigmentos pueden ser extraídos, los procedimientos de extracción conllevan los riesgos de presencia de artefactos en la preparación y la eliminación del microambiente original del cromóforo. Otra limitación conocida de diferenciar algas por medidas de absorbancia/fluorescencia se relaciona con la necesidad de aproximaciones empíricas sólidas para discriminar estadísticamente tanto el componente algal de la señal compuesta para una masa dada de agua, como un solo componente algal por si mismo (cfr. D.F. Millie et al., "Using absorbance and fluorescence spectra to discriminate microalgae", Eur. J. Phvcol. 2002, vol. 37, pp. 313-22). Ha habido intentos para mejorar el uso de las técnicas de absorbancia/fluorescencia celulares, pero las técnicas mejoradas todavía no pueden analizar muestras tridimensionales (3D), un hecho que impide discriminar morfologías, medir los espectros de emisión en una área de un solo píxel y analizar muestras 3D sin alterarlas.Identification of a complex living community and discrimination between phylogenetic groups are particularly useful in the fields of aquaculture management and the sciences involved in the study of ecosystems, such as ecology, ecophysiology, oceanography, and limnology. Such identification and discrimination can be used, for example, to analyze incidence and to develop control strategies against problematic algal blooms that appear within aquatic and aerophytic ecosystems (organisms that live at the air interface and a nonliving structure such as a building or a wall) in natural and artificial conditions. Unfortunately, complex problem communities have been difficult to predict in the past, mainly due to the lack of appropriate methodologies and technologies. The nature of the samples and the need to analyze them without prior isolation from the organisms are other important obstacles to overcome. Current efforts typically depend on microscopic evaluation, but evaluation has limitations such as being laborious, generating variable data, requiring an intrusive sampling program with areas of limited coverage, and lacking near real-time coverage. As an alternative to microscopic evaluation, analyzes based on cellular absorbance and / or fluorescence measurements have been proposed (cf. JJ Cullen et al., "Optical detection and assessment of algal blooms", Limnol. Oceanogr. 1997, vol. 42, pp. 1223-39), but these analyzes are not without limitations. A limitation of discriminating algae by absorbance / fluorescence measurements is the need that the spectra corresponding to the phylogenetic groups or species involved must be sufficiently different. Furthermore, algal pigments are often heterogeneously distributed within each cell, affecting the extent of absorption. Although pigments can be extracted, the extraction procedures carry the risks of the presence of artifacts in the preparation and removal of the original microenvironment from the chromophore. Another known limitation of differentiating algae by absorbance / fluorescence measurements is related to the need for solid empirical approaches to statistically discriminate both the algal component of the composite signal for a given mass of water, and a single algal component by itself (cf. DF Millie et al., "Using absorbance and fluorescence spectra to discriminate microalgae", Eur. J. Phvcol. 2002, vol. 37, pp. 313-22). There have been attempts to improve the use of cellular absorbance / fluorescence techniques, but the improved techniques cannot yet analyze three-dimensional (3D) samples, a fact that prevents discriminating morphologies, measuring emission spectra in a single-pixel area, and analyze 3D samples without altering them.
Los organismos fototróficos producen varios tipos de pigmentos fotosintéticos, donde cada uno de ellos capta fotones en un estrecho intervalo del espectro. Una fracción de la energía absorbida por los pigmentos puede emitirse inmediatamente en una longitud de onda más larga, fenómeno conocido como fluorescencia. La fluorescencia emitida se origina principalmente en los pigmentos subantena del fotosistema II (PSII) y es el resultado de la incapacidad del fotosistema para usar toda la energía absorbida. Puesto que la fotosíntesis y la fluorescencia son procesos competitivos, los cambios en la actividad fotosintética se reflejan en variaciones de la emisión de fluorescencia. Así, la fluorescencia es un indicador de los procesos fotosintéticos en las plantas, algas y cianobacterias, siendo una poderosa herramienta de análisis que permite la descripción de una comunidad compleja por lo que se refiere a su estado fisiológico, la energía de transferencia, la evolución celular y la discriminación entre los grupos filogenéticos.Phototrophic organisms produce various types of photosynthetic pigments, each of which captures photons in a narrow range of the spectrum. A fraction of the energy absorbed by the pigments can be emitted immediately at a longer wavelength, a phenomenon known as fluorescence. The emitted fluorescence originates primarily from the photosystem II subantenna pigments (PSII) and is the result of the photosystem's inability to use all of the absorbed energy. Since photosynthesis and fluorescence are competitive processes, changes in photosynthetic activity are reflected in variations in fluorescence emission. Thus, fluorescence is an indicator of photosynthetic processes in plants, algae and cyanobacteria, being a powerful analysis tool that allows the description of a complex community in terms of its physiological state, transfer energy, evolution cell and discrimination between phylogenetic groups.
Las técnicas de microscopía de fluorescencia han permitido la descripción de la estructura y organización de las muestras en dos dimensiones (2D). Estas técnicas se han usado para estudiar microorganismos fotosintéticos y se han descrito varios sistemas tanto a nivel microscópico (cfr. L. Ying et al., "Fluorescence emission and absorption spectra of single Anabaena sp. strain PCC7120 cells", Photochemistrv and Photobiology 2002, vol. 76, pp. 310-3) como a nivel macroscópico (cfr. H.K. Lichtenthaler et al., "Detection of vegetation stress via a new high resolution fluorescence imaging system", __ Plant Phvsiologv 1996. vol. 148, pp. 559-612). Pero todas estas metodologías no son lo bastante útiles cuando las muestras están constituidas por comunidades complejas, como tapetes microbianos o biofilms. En estos casos, sería deseable hacer una primera prospección de la microestructura en 3D y una subsiguiente localización in vivo de los organismos de interés dentro de la muestra intacta.Fluorescence microscopy techniques have allowed the description of the structure and organization of the samples in two dimensions (2D). These techniques have been used to study photosynthetic microorganisms and various systems have been described both at the microscopic level (cf. L. Ying et al., "Fluorescence emission and absorption spectra of single Anabaena sp. Strain PCC7120 cells", Photochemistrv and Photobiology 2002, vol. 76, pp. 310-3) as at the macroscopic level (cf. HK Lichtenthaler et al., "Detection of vegetation stress via a new high resolution fluorescence imaging system ", __ Plant Phvsiologv 1996. vol. 148, pp. 559-612). But all these methodologies are not useful enough when the samples are made up of complex communities, such as microbial mats or biofilms In these cases, it would be desirable to do a first 3D microstructure survey and a subsequent in vivo location of the organisms of interest within the intact sample.
Así pues, es muy deseable disponer de un nuevo método para la identificación y la discriminación rápidas de comunidades complejas, que supere algunas de las limitaciones de los métodos conocidos en la técnica. En particular, sería útil que este nuevo método fuese capaz de elucidar la localización 3D de cada comunidad in vivo, y analizar los pigmentos fluorescentes de una sola célula in situ. dentro de muestras intactas gruesas.Thus, it is highly desirable to have a new method for rapid identification and discrimination of complex communities that overcomes some of the limitations of the methods known in the art. In particular, it would be useful if this new method were able to elucidate the 3D location of each community in vivo, and analyze the fluorescent pigments of a single cell in situ. within thick intact samples.
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
Hasta la fecha, el microscopio láser confocal de barrido ("confocal scanning láser microscope", CSLM) se ha utilizado principalmente para obtener imágenes 3D de muestras con una mínima preparación o alteración, dada la capacidad del CSLM para utilizar excitaciones múltiples y detectar longitudes de onda a distintas profundidades de foco. El CSLM permite apuntar a elementos específicos dentro de la muestra, como moléculas, estructuras (p.ej. superficies, matrices) y propiedades (p.ej. fase de división celular). Algunos CSLMs comprenden un prisma espectrofotométrico selectivo para la detección de la fluorescencia de emisión. La combinación de un CSLM y la detección espectrofotométrica se refiere aquí como "espectrofotometría de imagen confocal" ("confocal imaging spectrophotometry", CIS). Superando los CSLMs comunes, el aparato CIS tiene la ventaja adicional de determinar la detección óptima y de separar los espectros de emisión de los fluorocromos para evitar el solapamiento (es decir, el solapamiento de canales de señal). La presente invención proporciona una nueva aplicación del aparato CIS.To date, the confocal scanning laser microscope (CSLM) has been used primarily to obtain 3D images of samples with minimal preparation or alteration, given the ability of the CSLM to use multiple excitations and detect lengths of wave at different depths of focus. CSLM allows you to target specific elements within the sample, such as molecules, structures (eg surfaces, matrices) and properties (eg cell division phase). Some CSLMs comprise a selective spectrophotometric prism for detecting emission fluorescence. The combination of a CSLM and spectrophotometric detection is referred to herein as "confocal imaging spectrophotometry" (CIS). Overcoming common CSLMs, the CIS apparatus has the additional advantage of determining optimal detection and separating emission spectra from fluorochromes to avoid overlapping (ie, overlapping of signal channels). The present invention provides a new application for the CIS apparatus.
Los inventores han encontrado sorprendentemente un nuevo método para identificar señales fluorescentes en células individuales basado en la combinación de la potencia del microscopio láser confocal de barrido (CSLM) con las capacidades de los métodos espectrofotométricos. El nuevo método permite la identificación in vivo inequívoca del grupo taxonómico de una célula individual, basándose en su señal de fluorescencia, sin manipular las comunidades fototróficas.The inventors have surprisingly found a new method for identifying fluorescent signals in individual cells based on the combination of the power of the confocal scanning laser microscope (CSLM). with the capabilities of spectrophotometric methods. The new method allows the unequivocal in vivo identification of the taxonomic group of an individual cell, based on its fluorescence signal, without manipulating the phototrophic communities.
Así, la invención proporciona un método no invasivo para el análisis de una muestra utilizando un CSLM acoplado a un detector espectrofotómetro que comprende los pasos de: (i) seleccionar una área particular de la muestra; (ii) obtener imágenes de barrido espectral de la fluorescencia de emisión proveniente del área de muestra seleccionada a unos ajustes del sistema seleccionados; y (iii) procesar dichas imágenes de barrido espectral según algoritmos definibles para obtener un espectro de fluorescencia de emisión de dicha área; donde la muestra emite fluorescencia bajo una excitación láser, sin ningún mareaje previo (es decir, sin la adición de compuestos químicos fluorescentes). Las imágenes de barrido espectral son el resultado de la función de barrido espectral (función "lambdascan") de los aparatos CIS. Con la función de barrido espectral, la señal de fluorescencia es captada en un intervalo predefinido para cada sección, moviéndose a lo largo del espectro. Cada medida individual se basa en la detección de imágenes confocales reales. En una realización particular, el método de la presente invención utiliza las variables seleccionadas x-y-λ, es decir, el plano óptico se registra a diferentes longitudes de onda. En otras realizaciones particulares, el método utiliza las variables x-z-λ, x-y-λ-t (t significa tiempo) y x-y-λ-z. El término "anchura de banda" como se usa aquí, significa el intervalo de frecuencias transmitidas de una señal dada. Por "pasos λ" se entiende aquí el número de imágenes individuales detectadas en un intervalo específico de longitudes de onda, desde una única sección óptica. Las imágenes se registran dentro de un intervalo de longitudes de onda, que está limitado por sus puntos de inicio y final. El "tamaño de paso λ" es la magnitud (expresada en nm) entre los límites inferior y superior del intervalo de longitudes de onda en los que se registra una imagen.Thus, the invention provides a non-invasive method for analyzing a sample using a CSLM coupled to a spectrophotometer detector, comprising the steps of: (i) selecting a particular area of the sample; (ii) obtaining spectral scanning images of the emission fluorescence from the selected sample area at selected system settings; and (iii) processing said spectral scanning images according to definable algorithms to obtain an emission fluorescence spectrum of said area; where the sample fluoresces under laser excitation, without any previous labeling (that is, without the addition of fluorescent chemicals). Spectral scan images are the result of the spectral scan function ("lambdascan" function) of CIS devices. With the spectral sweep function, the fluorescence signal is captured at a predefined interval for each section, moving along the spectrum. Each individual measurement is based on the detection of real confocal images. In a particular embodiment, the method of the present invention uses the selected variables x-y-λ, that is, the optical plane is recorded at different wavelengths. In other particular embodiments, the method uses the variables x-z-λ, x-y-λ-t (t stands for time), and x-y-λ-z. The term "bandwidth" as used herein means the range of transmitted frequencies of a given signal. By "λ steps" is meant here the number of individual images detected in a specific range of wavelengths, from a single optical section. Images are recorded within a wavelength range, which is limited by their start and end points. The "step size λ" is the magnitude (expressed in nm) between the lower and upper limits of the wavelength range at which an image is recorded.
El software adecuado suministrado con el aparato específico CIS, controla el detector durante el barrido espectral y ayuda en los cálculos, mediante algoritmos definibles, del espectro de emisión después del barrido de una imagen. Así, el espectro de fluorescencia de emisión del área seleccionada se obtiene procesando dichas imágenes de barrido espectral. En una realización más particular de la invención, el área seleccionada corresponde sustancialmente a una única célula. En otra realización particular, el área seleccionada comprende al menos un píxel de organismos fototróficos. El término "píxel", basado en las palabras "picture" y "element", representa el elemento más pequeño, indivisible, de una imagen en un sistema de dos dimensiones. En esta descripción, tanto los puntos de la muestra de un espécimen como los puntos de una imagen se califican como píxels. En una realización más particular de la invención, los organismos fototróficos se seleccionan del grupo que consiste en plantas, algas, cianobacterias y sus mezclas. Las plantas y las algas pueden ser macroscópicas o microscópicas. En otra realización particular, la muestra tiene un grosor igual o menor que el grosor límite de detección del microscopio láser confocal de barrido utilizado.The appropriate software supplied with the specific CIS apparatus controls the detector during spectral scanning and aids in calculations, using definable algorithms, of the emission spectrum after scanning an image. Thus, the emission fluorescence spectrum of the selected area is obtained by processing said spectral scanning images. In a more particular embodiment of the invention, the selected area corresponds substantially to a single cell. In another particular embodiment, the selected area comprises at least one pixel of phototrophic organisms. The term "pixel", based on the words "picture" and "element", represents the smallest, indivisible element of an image in a two-dimensional system. In this description, both the sample points of a specimen and the points of an image are qualified as pixels. In a more particular embodiment of the invention, phototrophic organisms are selected from the group consisting of plants, algae, cyanobacteria, and mixtures thereof. Plants and algae can be macroscopic or microscopic. In another particular embodiment, the sample has a thickness equal to or less than the detection limit thickness of the used confocal scanning laser microscope.
En otra realización, los ajustes del sistema para obtener los datos de la muestra de la fluorescencia de emisión, provenientes del área seleccionada de la muestra, se fijan con el objetivo de minimizar el fotoblanqueo. El fotoblanqueo es la pérdida de intensidad de fluorescencia de emisión de la muestra debida a la destrucción de las sustancias fluorescentes por una iluminación intensa. En particular, el tamaño de paso λ se fija entre 5 y 40 nm, y la anchura de banda se fija desde 360 a 800 nm. En otra realización particular, el rendimiento y el ajuste se mantienen constantes. El valor de rendimiento ("gain valué") modifica la amplificación de la señal detectada y, por consiguiente, el brillo y el contraste de la imagen cambian. El valor de ajuste ("offset valué") define un valor umbral y, por tanto, sólo aquellas señales que están por encima del valor umbral son detectadas y representadas en la imagen. Por último, la longitud de onda de excitación láser se fija en uno o más de los siguientes valores: 351 nm (láser UV Ar), 364 nm (láser UV Ar), 458 nm (láser Ar), 476 nm (láser Ar), 488 nm (láser Ar), 514 nm (láser Ar), 543 nm (láser HeNe) y 633 nm (láser HeNe).In another embodiment, the system settings for obtaining the emission fluorescence sample data from the selected area of the sample are set in order to minimize photobleaching. Photobleaching is the loss of emission fluorescence intensity of the sample due to destruction of fluorescent substances by intense illumination. In particular, the step size λ is set between 5 and 40 nm, and the bandwidth is set from 360 to 800 nm. In another particular embodiment, performance and fit are held constant. The performance value ("gain valué") modifies the amplification of the detected signal and, consequently, the brightness and contrast of the image change. The adjustment value ("offset valué") defines a threshold value and, therefore, only those signals that are above the threshold value are detected and represented in the image. Finally, the laser excitation wavelength is set to one or more of the following values: 351nm (UV Ar laser), 364nm (UV Ar laser), 458nm (Ar laser), 476nm (Ar laser) , 488 nm (Ar laser), 514 nm (Ar laser), 543 nm (HeNe laser) and 633 nm (HeNe laser).
En otra realización, los datos de la muestra se procesan según algoritmos definibles que proporcionan gráficos de dos dimensiones de la media de la intensidad de fluorescencia versus las longitudes de onda de fluorescencia de emisión. El método de la presente invención proporciona la localización in vivo y en tres dimensiones de cada comunidad y el análisis directo de los pigmentos fluorescentes de una célula individual jn situ. en muestras intactas gruesas. La relación entre estas dos determinaciones permite la identificación de los pigmentos, la posterior identificación de los grupos y especies presentes en la muestra, y el conocimiento del estado fisiológico de cada organismo particular. En resumen, las principales mejoras conseguidas con el nuevo método son: (i) el análisis de píxels fluorescentes individuales o múltiples; (ii) la localización 3D in vivo: (iii) el análisis directo in situ de pigmentos fluorescentes de una única célula en muestras gruesas sin aislamiento previo; (iv) el establecimiento de la relación entre las propiedades fluorescentes y la posición dentro del ensamblaje microbiano específico; (v) la posible aplicación de ocho longitudes de onda de excitación para obtener espectros de una única célula, proporcionando una detección de alta resolución y una detallada información de la muestra; (vi) el acceso rápido a información estadística sobre el número de células y las propiedades espectrales de una comunidad; (vii) la discriminación de las células con señales fluorescentes particulares dentro de la colonia y la correlación con los estados individuales de las células; y (viii) la libre elección de la longitud de onda de emisión, que permite el descubrimiento de nuevas señales de pigmentos.In another embodiment, the sample data is processed according to definable algorithms that provide two-dimensional plots of the mean fluorescence intensity versus the emission fluorescence wavelengths. The method of the present invention provides the in vivo and three-dimensional localization of each community and the direct analysis of the fluorescent pigments of a single cell in situ. in coarse intact samples. The relationship between these two determinations allows the identification of the pigments, the subsequent identification of the groups and species present in the sample, and the knowledge of the physiological state of each particular organism. In summary, the main improvements achieved with the new method are: (i) the analysis of single or multiple fluorescent pixels; (ii) 3D localization in vivo: (iii) direct in situ analysis of single cell fluorescent pigments in coarse samples without prior isolation; (iv) establishing the relationship between fluorescent properties and position within the specific microbial assembly; (v) the possible application of eight excitation wavelengths to obtain spectra of a single cell, providing high-resolution detection and detailed sample information; (vi) rapid access to statistical information on the number of cells and spectral properties of a community; (vii) discrimination of cells with particular fluorescent signals within the colony and correlation with individual cell states; and (viii) the free choice of the emission wavelength, which allows the discovery of new pigment signals.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. El resumen de esta solicitud se incorpora aquí como referencia. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes realizaciones particulares y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativas de la presente invención.Throughout the description and claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. The summary of this application is incorporated herein by reference. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge in part from the description and in part from the practice of the invention. The following particular embodiments and figures are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS
La FIG 1. muestra el análisis espectrofotométrico del biofilm BF1 in vivo de la catacumba romana de St. Callistus. La FIG. 1A. muestra la proyección 3D pseudocolor de foco extendido en planos x-y y la vista ortogonal en la dirección z del biofilm (49 secciones ópticas). En las FIGs. 1 B-D. se representan los perfiles espectrales in vivo derivados de λexcde 488, 514 y 543 nm, y el error estándar (n = 5 células).FIG 1. shows the in vivo spectrophotometric analysis of the BF1 biofilm of the Roman catacomb of St. Callistus. FIG. 1A. shows the extended focus pseudocolor 3D projection in the xy planes and the orthogonal view in the z direction of the biofilm (49 optical sections). In FIGs. 1 BD. I know they represent the in vivo spectral profiles derived from λ exc of 488, 514 and 543 nm, and the standard error (n = 5 cells).
La FIG 2. muestra el análisis espespectrofotométrico del biofilm BF2 in vivo de la catacumba romana Domitilla. La FIG. 2A. muestra la proyección 3D pseudocolor de foco extendido en planos x-y y la vista ortogonal en la dirección z del biofilm (66 secciones ópticas). En las FIGs. 2B-D. se representan los perfiles espectrales in vivo derivados de λexcde 488, 514 y 543 nm, y el error estándar (n = 5 células).FIG 2. shows the spectrophotometric analysis of the BF2 biofilm in vivo of the Roman catacomb Domitilla. FIG. 2A. shows the extended focus 3D pseudocolor projection in the xy planes and the orthogonal view in the z direction of the biofilm (66 optical sections). In FIGs. 2B-D. The in vivo spectral profiles derived from λ exc of 488, 514 and 543 nm, and the standard error (n = 5 cells) are represented.
EXPOSICIÓN DETALLADA DE MODOS DE REALIZACIÓNDETAILED EXHIBITION OF MODES OF REALIZATION
Funcionamiento del aparato CISCIS apparatus operation
Se llevó a cabo el análisis con un microscopio CIS, usando cualquiera de los objetivos 63x (NA 1.32, aceite) o 100x (NA 1.4, aceite) (intervalo de aumento 1-4). El barrido espectral se realizó usando las líneas de 351 y 364 nm de un láser UV de Ar; las líneas 458, 476, 488 y 514 nm de un láser de Ar; la línea 543 nm de un láser de HeNe verde y la línea 633 nm de un láser de HeNe rojo. El microscopio usa una detección espectrofotométrica que permite al sistema realizar diferentes barridos desde 360 a 800 nm del espectro utilizando una rendija motorizada situada delante del fotomultiplicador. Aunque el aparato CIS podría adquirir imágenes espectrales de 5 nm de tamaño de paso entre 360-800 nm, cada secuencia de imágenes (es decir, el barrido espectral o la función "lambda-scan" del sistema) se obtuvo mediante el barrido de la misma sección óptica x-y usando como tamaño de paso 20 nm para la detección (coordenada λ de un conjunto de datos x-y-λ) para evitar el fotoblanqueo. La detección de la emisión se colocó 4-9 nm más lejos de la longitud de onda de excitación para evitar reflejos del haz de láser.Analysis was performed with a CIS microscope, using either the 63x (NA 1.32, oil) or 100x (NA 1.4, oil) objectives (magnification range 1-4). Spectral scanning was performed using the 351 and 364 nm lines of an Ar UV laser; lines 458, 476, 488, and 514 nm from an Ar laser; the 543 nm line from a green HeNe laser and the 633 nm line from a red HeNe laser. The microscope uses spectrophotometric detection that allows the system to perform different scans from 360 to 800 nm of the spectrum using a motorized slit in front of the photomultiplier. Although the CIS apparatus could acquire spectral images of 5nm in size between 360-800nm, each image sequence (that is, the spectral scan or "lambda-scan" function of the system) was obtained by scanning the Same optical section xy using as step size 20nm for detection (λ coordinate of a data set xy-λ) to avoid photobleaching. The emission detection was placed 4-9nm further from the excitation wavelength to avoid reflections from the laser beam.
Los barridos se realizaron utilizando como filtro separador del haz, el filtro substrato (para UV) o el filtro dicroico triple (488/543/633). La serie de datos x, y, λ fue adquirida en la posición z en la que la fluorescencia era máxima. Se midió el ruido de fondo en áreas sin muestra y, después, se usó para corregir los espectros primarios en las secciones finas. El láser impactaba perpendicularmente en la muestra y, para evitar la interferencia con la radiación de fondo (luz en el laboratorio o luz de fuentes de excitación), las imágenes se captaron en la oscuridad. El rendimiento y el contraste eran los mismos para cada campo en cada longitud de onda de excitación y no se alteraron a lo largo del proceso de barrido.The scans were performed using the beam filter, the substrate filter (for UV) or the triple dichroic filter (488/543/633). Data series x, y, λ was acquired at the z position where fluorescence was highest. Background noise in areas without a sample was measured and then used to correct the primary spectra in the thin sections. The laser struck the sample perpendicularly and, to avoid interference with background radiation (light from the laboratory or light from excitation sources), the images were captured in the dark. Performance and contrast were the same for each field at each excitation wavelength and were unaltered throughout the scanning process.
Análisis de fluorescenciaFluorescence analysis
De los datos anteriores, la intensidad media de fluorescencia ("mean fluorescence intensity", MFI) de las series de datos x-y-λ se obtuvo usando el software subministrado junto con el microscopio. Se utilizó la función región de interés ("región of interest", ROÍ) del software para determinar la señal espectral de una área seleccionada de la imagen captada. Una ROÍ también puede especificarse para determinar el espectro de cada muestra y el software presenta la intensidad media de todos los píxels dentro de la ROÍ versus la longitud de onda. Para las soluciones de los pigmentos, se analizaron ROIs de 1000 μm2 (n = 10 regiones). Para el análisis de los biofilms, se fijaron ROIs de 1 μm2, tomadas de la región fluorescente del tilacoide dentro de la célula, en cada serie de imágenes x-y-λ. Se obtuvieron barridos espectrales (lambdascans) de biofilms (n = 5 células por cada especie presente en el biofilm) para cada longitud de onda de excitación (λΘχc) en por lo menos tres experimentos independientes. Se procesaron los datos numéricos con Microsoft Excel® 97 o 2000. Se calculó la media y el error estándar, para todas las regiones o células examinadas en cada λexc. Los máximos de los pigmentos correspondieron a su intervalo de dispersión en las diferentes λexc.From the above data, the mean fluorescence intensity (MFI) of the xy-λ data series was obtained using the software supplied in conjunction with the microscope. The region of interest (ROÍ) function of the software was used to determine the spectral signal of a selected area of the captured image. An ROI can also be specified to determine the spectrum of each sample and the software displays the average intensity of all pixels within the ROI versus the wavelength. For pigment solutions, ROIs of 1000 µm 2 (n = 10 regions) were analyzed. For biofilm analysis, 1 µm 2 ROIs, taken from the thylakoid fluorescent region within the cell, were fixed in each series of xy-λ images. Spectral sweeps (lambdascans) of biofilms (n = 5 cells for each species present in the biofilm) were obtained for each excitation wavelength (λ Θ χc) in at least three independent experiments. Numerical data were processed with Microsoft Excel ® 97 or 2000. The mean and standard error were calculated for all regions or cells examined in each λ exc . The maximums of the pigments corresponded to their dispersion interval in the different λ exc .
Calibraciones mediante pigmentos purosCalibrations using pure pigments
Los pigmentos extraídos muestran variaciones en los espectros de fluorescencia cuando se comparan con los pigmentos ín vivo, por eso se realizó un control con pigmentos puros para compararlos con los estudios publicados.The extracted pigments show variations in the fluorescence spectra when compared with the in vivo pigments, therefore a control with pure pigments was performed to compare them with the published studies.
Los pigmentos liposolubles, clorofilas (Chis) a y b, obtenidas de Spinacia olerácea y la xantofila (Xant) de Medicago sativa (Sigma, St. Louis, MO, EE.UU.) se disolvieron en etanol puro. Los pigmentos hidrosolubles como R- ficoeritrina (R-PE) de Porphyra teñera y C-ficocianina (C-PE) de Spirulina sp. se disolvieron en agua destilada filtrada. La solución patrón de aloficocianina- XL (APC-XL) de Mastioocladus laminosus estaba disuelta en sulfato de amonio (60%) y fosfato de potasio (el pH = 7) (Sigma-Aldrich) con una concentración final de 38 mM. Cuatrocientos μl de cada solución del pigmento a una concentración final de 1 mg/ml se transfirieron a cámaras de 8 pocilios con fondo de vidrio (Nunc Laboratorio-Tek™, Nalge Nunc International, Roskilde, Dinamarca).The fat-soluble, chlorophyll (Chis) a and b pigments obtained from Spinacia oralacea and xanthophyll (Xant) from Medicago sativa (Sigma, St. Louis, MO, USA) were dissolved in pure ethanol. Water-soluble pigments such as R-phycoerythrin (R-PE) from Porphyra teñera and C-phycocyanin (C-PE) from Spirulina sp. they were dissolved in filtered distilled water. The standard solution of allophycocyanin- Mastioocladus laminosus XL (APC-XL) was dissolved in ammonium sulfate (60%) and potassium phosphate (pH = 7) (Sigma-Aldrich) with a final concentration of 38 mM. Four hundred µl of each pigment solution at a final concentration of 1 mg / ml was transferred to 8-well glass-bottom chambers (Nunc Laboratory-Tek ™, Nalge Nunc International, Roskilde, Denmark).
Los espectros de los pigmentos puros (TABLA 1) se correlacionaron bien con los espectros publicados de pigmentos extraídos. Los datos son la media ± error estándar (n = 10 regiones) a partir de tres experimentos independientes llevados a cabo en las mismas condiciones experimentales. El asterisco significa presencia de un hombro. Los intervalos de emisión máxima de la Chl a (672.4 ± 2.9 nm) y la Chl b (662.4 ± 2.1 nm) se solaparon parcialmente. El máximo de fluorescencia de C-PE se localizó alrededor de 577.2 ± 2.2 nm, con un hombro alrededor de 660.1 ± 3 nm. Este hombro podría corresponder a otra ficobiliproteina contaminante presente en el estándar. El pico de fluorescencia máxima de C-PC, localizado a 656.1 + 4.3 nm, parecía ligeramente desplazado con respecto a las referencias publicadas. Sin embargo, se reflejan cambios en el máximo de fluorescencia de la C-PC en la literatura, dependiendo del método de extracción utilizado. La C-PC extraída de biomasa fresca mostró un gran máximo a 615 nm mientras que en las muestras secas se observó un máximo adicional a 652 nm. The spectra of the pure pigments (TABLE 1) correlated well with the published spectra of extracted pigments. Data are the mean ± standard error (n = 10 regions) from three independent experiments conducted under the same experimental conditions. The asterisk means presence of a shoulder. The maximum emission intervals of Chl a (672.4 ± 2.9 nm) and Chl b (662.4 ± 2.1 nm) partially overlapped. The maximum C-PE fluorescence was located around 577.2 ± 2.2 nm, with a shoulder around 660.1 ± 3 nm. This shoulder could correspond to another contaminating phycobiliprotein present in the standard. The C-PC peak fluorescence peak, located at 656.1 + 4.3 nm, seemed slightly offset from published references. However, changes in C-PC fluorescence maximum are reflected in the literature, depending on the extraction method used. C-PC extracted from fresh biomass showed a large maximum at 615 nm while an additional maximum was observed at 652 nm in dry samples.
TABLA 1. λmax y hombros para diferentes pigmentos puros mediante espectrofotometría de imagen confocal en todas las λ0v-.TABLE 1. λm ax and shoulders for different pure pigments by confocal image spectrophotometry in all λ 0 v-.
Figure imgf000011_0001
Figure imgf000011_0001
Tanto la C-PC como la Xant presentaron una débil fluorescencia como ya era conocido. Mientras la débil fluorescencia de la Xant era de esperar porque la principal ruta de desexcitación ocurre a través de la transición al estado del triplete, que no es fluorescente, no se pudo explicar la razón para esta baja fluorescencia en la C-PC pura. El máximo de fluorescencia para la aloficocianina-entrecruzada (APC-XL) estaba a 676.2 ± 2.4 nm. La estructura especial de APC-XL, que impedía la disociación de la molécula en soluciones diluidas, probablemente afectó al máximo de emisión y no pudo relacionarse con el material de campo. Por otro lado, este máximo coincidía con un tipo específico de APC previamente descrita. Otras formas de baja energía comunes de APC tienen el máximo de fluorescencia cerca de 680 nm, que es similar a la emisión de los ficobilisomas intactos mientras que la APC de las cianobacterias presentó un máximo de emisión a 660 nm.Both C-PC and Xant showed weak fluorescence as was already known. While the weak fluorescence of Xant was to be expected because the main path of de-excitation occurs through the transition to the triplet state, which is not fluorescent, the reason for this low fluorescence in pure C-PC could not be explained. The maximum fluorescence for cross-linked allophycocyanin (APC-XL) was 676.2 ± 2.4 nm. The special structure of APC-XL, which prevented dissociation of the molecule in dilute solutions, probably affected the emission maximum and could not be related to the field material. On the other hand, this maximum coincided with a specific type of APC previously described. Other common low-energy forms of APC have the maximum fluorescence near 680 nm, which is similar to the emission of intact phycobilisomes while the APC of cyanobacteria had an emission maximum at 660 nm.
Preparación y análisis de biofilmsPreparation and analysis of biofilms
Los biofilms están constituidos por poblaciones o comunidades de microorganismos que se adhieren a superficies ambientales. Estos microorganismos normalmente están inmersos en un polisacárido extracellular que ellos mismos sintetizan. Se seleccionaron dos biofilms aerofíticos en las observaciones de CSLM para probar el método con comunidades naturales complejas. Los biofilms, que fueron descritos y identificados, contenían diferentes grupos filogenéticos (Cyanobacteria y Bacillariophyta). El primer biofilm (BF1 ), obtenido de la catacumba de St. Callistus (Roma, Italia), estaba formado principalmente por Scvtonema julianum y Leptolvngbva sp. El segundo biofilm (BF2), obtenido de la catacumba Domitilla (Roma, Italia), estaba formado por la Bacillariophyta Diadesmis gallica y una cianobacteria no identificada del grupo de las Chroococcales. Ambos biofilms se obtuvieron de superficies iluminadas artificialmente. Se separaron los fragmentos de biofilms de sus substratos (yeso, mortero o espeleotemas) o, raramente, se tomaron junto con pequeños pedazos de su soporte. Los biofilms se mantuvieron en una capa de 2 mm de 10% de medio BG11 agarizado (1%, Merck), y se procesaron durante la primera semana. Los biofilms y cultivos se montaron en cámaras con fondo de vidrio Nunc Lab-Tek™. Las muestras se procesaron a temperatura ambiente en la oscuridad.Biofilms are made up of populations or communities of microorganisms that adhere to environmental surfaces. These microorganisms are normally immersed in an extracellular polysaccharide that they synthesize themselves. Two aerophytic biofilms were selected in the CSLM observations to test the method with complex natural communities. The biofilms, which were described and identified, contained different phylogenetic groups (Cyanobacteria and Bacillariophyta). The first biofilm (BF1), obtained from the catacomb of St. Callistus (Rome, Italy), was mainly made up of Scvtonema julianum and Leptolvngbva sp. The second biofilm (BF2), obtained from the Domitilla catacomb (Rome, Italy), consisted of the Bacillariophyta Diadesmis gallica and an unidentified cyanobacterium from the Chroococcales group. Both biofilms were obtained from artificially lit surfaces. Fragments of biofilms were separated from their substrates (plaster, mortar or speleothems) or, rarely, were taken together with small pieces of their support. Biofilms were maintained in a 2mm layer of 10% agarose BG11 medium (1%, Merck), and processed for the first week. Biofilms and cultures were mounted in Nunc Lab-Tek ™ glass bottom chambers. The samples were processed at room temperature in the dark.
Las imágenes de foco extendido ("extended focus", es decir, la imagen se divide en tres marcos que representan la proyección de intensidad máxima de fluorescencia para los planos x-y, x-z e y-z) de los dos biofilms estratificados mostraron una distribución diferencial de los microorganismos en profundidad en el biofilm (FIG. 1 A y 2A). Se muestran los espectros de emisión para 488, 514 y 543 nm de λexc para cada biofilm (FIG. 1 B-D y 2B-D).The extended focus images (that is, the image is divided into three frames representing the maximum fluorescence intensity projection for the xy, xz and yz planes) of the two stratified biofilms showed a differential distribution of the microorganisms in depth in the biofilm (FIG. 1 A and 2A). Emission spectra for 488, 514 and 543 nm of λ exc are shown for each biofilm (FIG. 1 BD and 2B-D).
La FIG. 1A muestra una proyección 3D pseudocolor de foco extendido en planos x-y y ortogonal en la dirección z del biofilm (49 secciones ópticas). La imagen representa la autofluorescencia máxima emitida en el intervalo de 590-775 nm cuando se excitó a 543 nm. El volumen bajo observación fue de 465.03 x 465.03 x 398.73 μm3. Paso en z: 0.4 μm. Factor de aumento: 1. Grosor: 19.54 μm. Las FIGs. 1B-D muestran los perfiles espectrales in vivo derivados de 488, 514 y 543 nm λexc y el error estándar (n = 5 células). MFI significa intensidad media de fluorescencia. Las diferencias obtenidas en los perfiles de fluorescencia de emisión obtenidos en el biofilm indicaban la presencia de diferentes especies de cianobacterias. Leptolvngbva sp. se representa con una línea continua y Scvtonema ¡ulianum con una línea discontinua. Factor de aumento: 2.FIG. 1A shows an extended focus pseudocolor 3D projection in the xy and orthogonal planes in the z direction of the biofilm (49 optical sections). The image represents the maximum autofluorescence emitted in the 590-775 nm range when excited at 543 nm. The volume under observation was 465.03 x 465.03 x 398.73 μm 3 . Z-step: 0.4 μm. Magnification factor: 1. Thickness: 19.54 μm. FIGs. 1B-D show the in vivo spectral profiles derived from 488, 514 and 543 nm λ exc and the standard error (n = 5 cells). MFI stands for Medium Fluorescence Intensity. The differences obtained in the emission fluorescence profiles obtained in the biofilm indicated the presence of different species of cyanobacteria. Leptolvngbva sp. it is represented with a solid line and Scvtonema ulianum with a dashed line. Magnification factor: 2.
Según los datos obtenidos, en el biofilm BF1 , los filamentos delgados de Leptolvngya sp. se orientaron horizontalmente encima del ancho Scvtonema iulianum (FIG. 1A). Ambas cianobacterias tenían un λmaX a 658.4 ± 3 nm amplio, del solapamiento de la Chl a y las ficobiliproteinas (FIG. 1B-D). Además, Leptolvngvbva sp., pero no S. iulianum. presentó un pico de emisión (579.7 ± 3.8 nm) atribuible a la presencia de C-PE (FIG. 2B-D).According to the data obtained, in the biofilm BF1, the thin filaments of Leptolvngya sp. they were oriented horizontally above the width Scvtonema iulianum (FIG. 1A). Both cyanobacteria had a broad λ m at X at 658.4 ± 3 nm, from the overlap of the Chl a and the phycobiliproteins (FIG. 1B-D). Also, Leptolvngvbva sp., But not S. iulianum. presented an emission peak (579.7 ± 3.8 nm) attributable to the presence of C-PE (FIG. 2B-D).
La FIG. 2A muestra secciones ópticas a 66 x-y del biofilm estratificado, que consiste en dos estratos, la capa superior compuesta por colonias de Diadesmis gallica y la capa inferior formadas por colonias de Chroococcales. El volumen bajo observación fue de 75.82 x 75.82 x 98.51 μm3. Paso en z: 0.1 μm. Factor de aumento: 3.86. Grosor: 6.6 μm. La imagen representa la autofluorescencia máxima emitida en el intervalo de 590-775 nm cuando se excitó a 543 nm. Las FIGs. 2B-D muestran los perfiles espectrales in vivo derivados de λexcde 488, 514 y 543 nm, y el error estándar (n = 5 células). La diferencia de los perfiles de emisión obtenidos en el biofilm indican la presencia de grupos diferentes de algas y cianobacterias. Chroococcal se representa con una línea continua y Diadesmis gallica con una línea discontinua. En este biofilm se observó una gran disminución de fluorescencia en la λexc 543 nm, atribuible al fotoblanqueo después de sucesivos barridos espectrales. Factor de aumento: 2.FIG. 2A shows optical sections at 66 xy of the laminated biofilm, which consists of two layers, the upper layer consisting of Diadesmis gallica colonies and the lower layer consisting of Chroococcales colonies. The volume under observation was 75.82 x 75.82 x 98.51 μm 3 . Z-step: 0.1 μm. Magnification factor: 3.86. Thickness: 6.6 μm. The image represents the maximum autofluorescence emitted in the 590-775 nm range when excited at 543 nm. FIGs. 2B-D show the in vivo spectral profiles derived from λ exc of 488, 514 and 543 nm, and the standard error (n = 5 cells). The difference in the emission profiles obtained in the biofilm indicate the presence of different groups of algae and cyanobacteria. Chroococcal is represented with a solid line and Diadesmis gallica with a dashed line. A large decrease in fluorescence was observed in this biofilm at λ exc 543 nm, attributable to photobleaching after successive spectral scans. Magnification factor: 2.
El análisis CSLM reveló dos capas en el biofilm BF2: Diadesmis gallica (Bacillariophyta) estaba principalmente concentrada en la parte superior del biofilm mientras la Chroococcal no identificada formaba una capa discontinua en la parte inferior (FIG. 2A). D. gallica de 3 μm de diámetro, presentó menos fluorescencia que la cianobacteria. Su λmaχ, a 676.2 ± 5 nm (FIG. 2B-D), no coincidía con la λmax de los otros grupos debido a la presencia de Chl c. Para evitar el fotoblanqueo, causado cuando estas células fueron excitadas consecutivamente con diferente λexc, se usaron diferentes campos ópticos para obtener los espectros de emisión en todas las λexc. La Chroococcal no identificada presentó la misma forma espectral que Leptolvngbva sp.CSLM analysis revealed two layers in the BF2 biofilm: Diadesmis gallica (Bacillariophyta) was mainly concentrated at the top of the biofilm while the unidentified Chroococcal formed a discontinuous layer at the bottom (FIG. 2A). D. gallica, 3 μm in diameter, showed less fluorescence than the cyanobacterium. Their λ ma χ, at 676.2 ± 5 nm (FIG. 2B-D), did not coincide with the λ max of the other groups due to the presence of Chl c. To avoid photobleaching, caused when these cells were consecutively excited with different λ exc , different optical fields were used to obtain the emission spectra in all the λ exc . The unidentified Chroococcal presented the same spectral shape as Leptolvngbva sp.
La TABLA 2 muestra los resultados de la emisión de fluorescencia adquirida de los biofilms después de la excitación a cuatro longitudes de onda (λe∞) (351 , 488, 514 y 543 nm). Cada valor λmax se obtuvo a partir de 5 células. TABLA 2. Comparación de λmaχ para cada λ_*_ de los dos biofilms aerofíticos.TABLE 2 shows the results of the fluorescence emission acquired from biofilms after excitation at four wavelengths (λ e ∞) (351, 488, 514 and 543 nm). Each λ max value was obtained from 5 cells. TABLE 2. Comparison of λ ma χ for each λ_ * _ of the two aerophytic biofilms.
Figure imgf000014_0001
Figure imgf000014_0001
Diferencias en la intensidad media de fluorescencia (MFDDifferences in mean fluorescence intensity (MFD
En los biofilms, las cianobacterias presentaron la mayor MFI en el intervalo 640-740 nm a cualquiera de las λexc, cuando se comparan con las Bacillariophyta (FIG. 1 B-D y 2B-D). Las cianobacterias también presentaron una alta MFI a 577-580 nm λmax, debido a la C-PE.In the biofilms, the cyanobacteria showed the highest MFI in the 640-740 nm range at any of the λ exc , when compared with the Bacillariophyta (FIG. 1 BD and 2B-D). Cyanobacteria also had a high MFI at 577-580 nm λ max , due to C-PE.
Cada pigmento fotosintético presente en las especies absorbe la luz de una cierta longitud de onda, pero en general, los pigmentos captan fotones de un amplio intervalo de longitudes de onda cuando se excitan a las longitudes de onda de 351-633 nm. Sólo en el 364 nm (UV) y el 458 nm (azul) λexc se observó una respuesta de emisión más pequeña en todos los microorganismos. En el caso de las cianobacterias, esto indica que la eficiencia mínima de los fotorreceptores está en 430-460 nm. Each photosynthetic pigment present in species absorbs light of a certain wavelength, but in general, pigments pick up photons from a wide range of wavelengths when excited at wavelengths of 351-633 nm. Only at 364 nm (UV) and 458 nm (blue) λ exc was a smaller emission response observed in all microorganisms. In the case of cyanobacteria, this indicates that the minimum efficiency of the photoreceptors is 430-460 nm.

Claims

REIVINDICACIONES
1. Método no invasivo para el análisis de una muestra utilizando un microscopio láser confocal de barrido acoplado a un detector espectrofotómetro que comprende los pasos de:1. Non-invasive method for analyzing a sample using a scanning confocal laser microscope coupled to a spectrophotometer detector comprising the steps of:
(i) seleccionar una área particular de la muestra;(i) select a particular area of the sample;
(¡i) obtener imágenes de barrido espectral de la fluorescencia de emisión proveniente del área de muestra seleccionada a unos ajustes del sistema seleccionados; y(¡I) obtain spectral scan images of the emission fluorescence from the selected sample area at selected system settings; Y
(iii) procesar dichas imágenes de barrido espectral según algoritmos definibles para obtener un espectro de fluorescencia de emisión de dicha área;(iii) process said spectral scan images according to definable algorithms to obtain an emission fluorescence spectrum of said area;
donde la muestra emite fluorescencia bajo una excitación láser, sin ningún mareaje previo.where the sample emits fluorescence under a laser excitation, without any previous marking.
2. Método según la reivindicación 1 , donde las imágenes de barrido espectral son imágenes x-y-λ.2. Method according to claim 1, wherein the spectral scan images are x-y-λ images.
3. Método según cualquiera de las reivindicaciones 1-2, donde el área seleccionada corresponde sustancialmente a una única célula.3. Method according to any of claims 1-2, wherein the selected area corresponds substantially to a single cell.
4. Método según cualquiera de las reivindicaciones 1-2, donde el área seleccionada comprende al menos un píxel de organismos fototróficos.4. Method according to any of claims 1-2, wherein the selected area comprises at least one pixel of phototrophic organisms.
5. Método según la reivindicación 4, donde los organismos fototróficos se seleccionan del grupo que consiste en plantas, algas, cianobacterias y sus mezclas.5. Method according to claim 4, wherein the phototrophic organisms are selected from the group consisting of plants, algae, cyanobacteria and mixtures thereof.
6. Método según cualquiera de las reivindicaciones 1-2, donde los ajustes del sistema se seleccionan para minimizar el fotoblanqueo.6. Method according to any of claims 1-2, wherein the system settings are selected to minimize photobleaching.
7. Método según la reivindicación 6, donde el tamaño de paso λ se fija entre 5 y 40 nm, y la anchura de banda se fija desde 360 a 800 nm. 7. Method according to claim 6, wherein the pitch size λ is set between 5 and 40 nm, and the bandwidth is set from 360 to 800 nm.
8. Método según cualquiera de las reivindicaciones 1-2, donde el rendimiento y el contraste se mantienen constantes.8. Method according to any of claims 1-2, wherein the performance and contrast are kept constant.
9. Método según cualquiera de las reivindicaciones 1-2, donde la longitud de onda de excitación láser se fija en uno o más de los siguientes valores: 351 nm (láser UV Ar), 364 nm (láser UV Ar), 458 nm (láser Ar), 476 nm (láser Ar), 488 nm (láser Ar), 514 nm (láser Ar), 543 nm (láser HeNe) y 633 nm (láser HeNe).9. Method according to any of claims 1-2, wherein the laser excitation wavelength is set to one or more of the following values: 351 nm (UV laser Ar), 364 nm (UV laser Ar), 458 nm ( Ar laser), 476 nm (Ar laser), 488 nm (Ar laser), 514 nm (Ar laser), 543 nm (HeNe laser) and 633 nm (HeNe laser).
10. Método según cualquiera de las reivindicaciones 1-2, donde los algoritmos del paso (iii) proporcionan gráficos de dos dimensiones de la media de la intensidad de fluorescencia versus las longitudes de onda de fluorescencia de emisión.10. Method according to any of claims 1-2, wherein the algorithms of step (iii) provide two-dimensional graphs of the average fluorescence intensity versus the emission fluorescence wavelengths.
11. Método según cualquiera de las reivindicaciones 1-2, donde la muestra tiene un grosor igual o menor que el grosor límite de detección del microscopio láser confocal de barrido utilizado. 11. A method according to any of claims 1-2, wherein the sample has a thickness equal to or less than the detection thickness of the confocal scanning laser microscope used.
PCT/ES2004/000527 2003-11-27 2004-11-26 Method of identifying pigments from a single cell using confocal image spectrophotometry in phototrophic communities WO2005052559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200302905A ES2237319B1 (en) 2003-11-27 2003-11-27 METHOD OF IDENTIFICATION OF PIGMENTS OF A SINGLE CELL BY MEANS OF CONFOCAL IMAGE SPECTROPHOTOMETRY IN PHOTOTROPHIC COMMUNITIES.
ESP200302905 2003-11-27

Publications (1)

Publication Number Publication Date
WO2005052559A1 true WO2005052559A1 (en) 2005-06-09

Family

ID=34629913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000527 WO2005052559A1 (en) 2003-11-27 2004-11-26 Method of identifying pigments from a single cell using confocal image spectrophotometry in phototrophic communities

Country Status (2)

Country Link
ES (1) ES2237319B1 (en)
WO (1) WO2005052559A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058184A1 (en) * 2005-12-01 2007-06-14 Friedrich-Schiller-Universität Jena Motion object e.g. eye-ground, fluorescence and/or reflection spectra detecting method for use during e.g. analysis of sample, involves accumulating local fluorescence and/or reflection signals and spectrometrically evaluating signals
DE102005058185A1 (en) * 2005-12-01 2007-06-14 Friedrich-Schiller-Universität Jena Object e.g. fundus of eye, region`s fluorescence and/or reflection spectra detecting method, involves forming difference signal from accumulated signals for spectral evaluation and presentation of fluorescence and/or reflection spectra

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016313A2 (en) * 1993-01-18 1994-07-21 Evotec Biosystems Gmbh Method and device for assessing the suitability of biopolymers
US5886784A (en) * 1993-09-08 1999-03-23 Leica Lasertechink Gmbh Device for the selection and detection of at least two spectral regions in a beam of light
JP2000097857A (en) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd Scanning sight meter
FR2817346A1 (en) * 2000-11-29 2002-05-31 Edouard Nau Detection and imaging of pollutants in liquid medium comprises laser-induced fluorescence and/or absorption
US6510001B1 (en) * 1998-02-19 2003-01-21 Leica Microsystems Heidelberg Gmbh Optical arrangement with a spectrally selective element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016313A2 (en) * 1993-01-18 1994-07-21 Evotec Biosystems Gmbh Method and device for assessing the suitability of biopolymers
US5886784A (en) * 1993-09-08 1999-03-23 Leica Lasertechink Gmbh Device for the selection and detection of at least two spectral regions in a beam of light
US6510001B1 (en) * 1998-02-19 2003-01-21 Leica Microsystems Heidelberg Gmbh Optical arrangement with a spectrally selective element
JP2000097857A (en) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd Scanning sight meter
FR2817346A1 (en) * 2000-11-29 2002-05-31 Edouard Nau Detection and imaging of pollutants in liquid medium comprises laser-induced fluorescence and/or absorption

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200033, Derwent World Patents Index; Class B04, AN 2000-379002 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058184A1 (en) * 2005-12-01 2007-06-14 Friedrich-Schiller-Universität Jena Motion object e.g. eye-ground, fluorescence and/or reflection spectra detecting method for use during e.g. analysis of sample, involves accumulating local fluorescence and/or reflection signals and spectrometrically evaluating signals
DE102005058185A1 (en) * 2005-12-01 2007-06-14 Friedrich-Schiller-Universität Jena Object e.g. fundus of eye, region`s fluorescence and/or reflection spectra detecting method, involves forming difference signal from accumulated signals for spectral evaluation and presentation of fluorescence and/or reflection spectra

Also Published As

Publication number Publication date
ES2237319A1 (en) 2005-07-16
ES2237319B1 (en) 2006-12-16

Similar Documents

Publication Publication Date Title
US9964489B2 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
US7420674B2 (en) Method and arrangement for analyzing samples
JP5540102B2 (en) Multiple modality contrast and bright field context representation for enhanced pathological determination, and multiple specimen detection in tissues
EP2350617B1 (en) Fluorescence imaging apparatus and method
KR20170055973A (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
EP1894010A2 (en) Optical microscopy with phototransformable optical labels
WO2018175565A1 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
CN110366678A (en) Microscope based on Laser emission
Singh et al. Confocal microscopy: a powerful technique for biological research
Becker et al. High resolution TCSPC lifetime imaging
Hirmiz et al. Highly multiplexed confocal fluorescence lifetime microscope designed for screening applications
ES2237319B1 (en) METHOD OF IDENTIFICATION OF PIGMENTS OF A SINGLE CELL BY MEANS OF CONFOCAL IMAGE SPECTROPHOTOMETRY IN PHOTOTROPHIC COMMUNITIES.
Grigoryeva Studying Cyanobacteria by Means of Fluorescence Methods: A
Krishnan et al. Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy
Buranachai et al. Fluorescence lifetime imaging in living cells
Dey et al. Fluorescence and confocal microscope: basic principles and applications in pathology
Vekshin et al. Artefacts of confocal microscopy
Gould et al. Nanoscale biological fluorescence imaging: Breaking the diffraction barrier
JP2022122181A (en) Correction parameter setting method and data correction method
CA3142188A1 (en) Hyperspectral quantitative imaging cytometry system
Sun et al. Characterization of a time-resolved spectral detector for spectral fluorescence lifetime imaging with the parallel 16-channel FastFLIM and the phasor analysis
JP2012122829A (en) Imaging method and device in vivo
Michalet et al. Fluorescence lifetime microscopy with a time-and space-resolved single-photon counting detector
CN216823420U (en) Visible-near infrared I/II area imaging device
Salih et al. Cellular organization and spectral diversity of GFP-like proteins in live coral cells studied by single and multiphoton imaging and microspectroscopy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase