WO2005051540A1 - Organic/inorganic acid hybrid catalysts, preparation method thereof and use of same - Google Patents

Organic/inorganic acid hybrid catalysts, preparation method thereof and use of same Download PDF

Info

Publication number
WO2005051540A1
WO2005051540A1 PCT/ES2004/070100 ES2004070100W WO2005051540A1 WO 2005051540 A1 WO2005051540 A1 WO 2005051540A1 ES 2004070100 W ES2004070100 W ES 2004070100W WO 2005051540 A1 WO2005051540 A1 WO 2005051540A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid catalyst
catalyst according
alkylation
inorganic
inorganic matrix
Prior art date
Application number
PCT/ES2004/070100
Other languages
Spanish (es)
French (fr)
Inventor
Avelino Corma Canos
Mercedes Alvaro Rodriguez
Debasish Das
Hermenegildo Garcia Gomez
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2005051540A1 publication Critical patent/WO2005051540A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • C07C2/58Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • B01J31/0227Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/06Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with glycerol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1608Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes the ligands containing silicon
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/025Sulfonic acids

Definitions

  • the present invention relates to hybrid acid solid catalysts containing perfluoroalkyl sulfonic groups, their preparation and their use as heterogeneous reusable catalysts for reactions in organic chemistry as well as active components in fuel cells.
  • the alkylsulfonic group is a functionality that has a Bronsted acidity of slightly lower strength than H 2 S0 pure, and whose intrinsic acidity can be modulated by inductive effects, increasing it with the presence of electronegative groups that increase the acid strength of the sulfonic group.
  • cogels formed by partially depolymerized Nafion are cogelified with a silica gel, obtaining an amorphous hybrid material with surface areas up to 200m 2 g -1 .
  • the derivative of depolymerized Nafion deposited on silica is analogous to that indicated in scheme 1 for the polymeric Nafion, but * x "e" and "in the formula are small compared to the polymeric Nafion and may be between 10 and 20.
  • organic-inorganic hybrid materials containing sulfonic groups of high surface area molecules that act as precursors of alkylsulfonic groups such as, for example, 3-mercaptopropyltriethoxysilane have been anchored in silica or structured meso silica of the MCM-41 type.
  • These hybrid materials of large surface area show after the oxidation of the -SH group to sulfonic, the catalytic activity of the sulfonic groups (scheme 2).
  • a material formed by an inorganic matrix containing silicon and / or one or more types of metal atoms is described, for example amorphous silica, silica-alumina, micro and / or mesoporous solids with molecular sieve structure or not, containing perfluoroalkyl sulfonic groups covalently anchored to the walls and which are responsible for the acidity and catalytic properties of the material.
  • the substantial structural fact of the present invention is the existence of covalent bonds between the large surface area support (> 200 m 2 xg _1 ) and the perfluoroalkylsulfonic groups.
  • the materials of this invention are different from Nafion since this does not contain an inorganic component that is the organizer of the surface and responsible for the area of the material and its high catalytic activity.
  • the values of "x" e "and" of scheme 1 are typically 0 or very low but in no case can the polymeric perfluoroalkylsulfonic group be considered.
  • the materials described herein differ from any other organic-inorganic hybrid that has been described with sulfonic groups in the existence of covalent bonds between the inorganic matrix and the organic part of the hybrid.
  • the presence of perfluoroalkylsulfonic groups is essential and is responsible for greater intrinsic acidity of the acid sites and greater stability of the chains with respect to the non-perfluorinated alkylsulfonic groups.
  • the present invention relates to an acid catalyst characterized in that it is an organic-inorganic hybrid solid comprising at least: - an inorganic matrix one or more perfluoroalkyl groups covalently bonded to said 'matrix through COT links, where C represents carbon, 0 represents oxygen and T represents atoms selected from silicon atoms, atoms of a metallic element, atoms of different metal elements, and mixtures from them.
  • T is a metal atom
  • said metal atom is preferably forming part of the corresponding oxide.
  • T is silicon, it is also preferably in the form of silica.
  • the inorganic matrix may be formed by inorganic oxides and may be selected from one or more amorphous inorganic oxides, one or more ordered inorganic oxides and mixtures thereof.
  • said inorganic matrix is one or more structured mesoporous silicates.
  • said structured mesoporous silicate is selected from MCM-41, MCM-48, SBA-15 and mixtures thereof.
  • said inorganic matrix is one or more zeolite.
  • Said zeolite may be a synthetic or suitably modified microporous zeolite, such as the zeolite Y, beta, order, ZSM5, or mixtures thereof.
  • Said zeolite may be one or more delaminated zeolites.
  • the ITQ-2 zeolite for example, the ITQ- ⁇ zeolite or a mixture of both are used.
  • Other materials that may be constitutive of the inorganic matrix are an oxide selected from silica, alumina, silica-alumina, an oxide or metal oxides, and mixtures thereof.
  • the oxide is silica, it can be colloidal or non-colloidal.
  • the metal oxides there are examples of high-area oxides such as Ce0 2 , titania-TiO 2 - (anatase phase, rutile or mixture of both in any proportion), zirconia -Zr0 2 -, ZnO, Nb0 2 A1 2 0 3 (in any of its crystallographic phases or mixtures of them in any proportion), or mixtures thereof.
  • the inorganic matrix may also be one or more types of clays. For example, it may consist of a laminar clay, a fibrous clay or a mixture of both.
  • said clay is selected from montmorillonite, sepiolite, sepiolite in which all or part of the Mg has been extracted, and mixtures thereof.
  • organic-inorganic hybrid acid catalyst is the material formed by the reaction of high surface silicas with the sultone.
  • a second object of the present invention is a process for the preparation of a solid organic-inorganic hybrid catalyst comprising at least one inorganic matrix to which one or more perfluoroalkylsulfonic groups are covalently linked through COT bonds, where C represents carbon, O represents oxygen and T represents atoms selected from silicon atoms, atoms of a metallic element, atoms of different metallic elements, and mixtures thereof, characterized in that it comprises carrying out a reaction in which said inorganic matrix is contacted with a fluorinated reagent , which comprises at least one perfluoralkylsulfonic group and which may contain one or more non-fluorinated alkyl chains away from sulfur.
  • Said fluorinated reagent comprises one or more functional groups -OS0 2 -.
  • the reaction is preferably carried out at a temperature between room temperature and 60 ° C.
  • the reaction is carried out with an inorganic matrix: fluorinated reagent ratio between 100: 1 and 2: 1.
  • the fluorinated reagent is preferably trifluoromethylperfluorosultone.
  • the contact reaction between the inorganic matrix and the partially or fully fluorinated reagent can be carried out by co-gelation of a soluble monomeric precursor of the inorganic matrix with the fluorinated reagent in which said precursor Soluble monomeric inorganic matrix undergoes hydrolysis.
  • the fluorinated reagent is preferably 2- ⁇ triethoxy silyloxy) perfluoro-1-methylethylsulfonic acid.
  • the soluble monomeric precursor of the inorganic matrix is preferably tetraethylorthosilicate.
  • the oxide gel is formed in an aqueous solution or in another medium by hydrolysis at a determined pH in the presence of acid 2 - (triethoxysilyloxy) perfluoro-l-methylethylsulfonic acid which condenses during the process with the oxide precursor.
  • acid 2 - (triethoxysilyloxy) perfluoro-l-methylethylsulfonic acid which condenses during the process with the oxide precursor.
  • An illustrative example of this first embodiment of the process relates to the formation of a silica oxide containing perfluoroalkylsulfonic groups, by co-gelation of the monomeric tetraethylorthosilicate precursor with a perfluorinated reagent which is perfluoro-l-methylethylsulfonic acid 2- (triethoxysilyloxy) acid in which tetraethylorthosilicate undergoes hydrolysis in aqueous medium, and adding dodecylamine as a hydrolyzing agent.
  • the proportion of tetraethylorthosilicate with respect to 2- (triethoxysilyloxy) perfluoro-l-methylethylsulfonic acid is 4: 1.
  • the inorganic matrix is dehydrated, and said dehydrated inorganic matrix is contacted by heat treatment with the fluorinated reagent.
  • Said inorganic matrix is preferably an inorganic oxide.
  • the dehydrated inorganic matrix is contacted by heat treatment with the fluorinated reagent comprising at least one perfluoroalkylsulfonic group and which may or may not contain any alkyl group not bound to the sulfur atom, for a period of time between 5 minutes and 48 hours at a temperature between 20 ° C and 140 ° C.
  • the fluorinated reagent is perfluorinated or partially fluorinated alpha-methyl-beta-sultone.
  • a preferred example of this second embodiment is based on the reaction of an inorganic oxide conveniently dehydrated by heat treatment, with perfluorinated alpha-methyl-beta-sultone, obtaining a suspension.
  • the suspension placed in a reactor, at a temperature between 20 and 140 ° C, is mechanically stirred for a time between 5 minutes and 48 hours, after which, the suspension is cooled and the solid containing the anchored perfluoroalkylsulfonic group is separated by decantation, filtration or centrifugation (scheme 3).
  • the solid / sultone weight ratio can be varied between 100/1 and 2/1.
  • the solid is thoroughly washed with distilled H 2 0 until the wash water has a neutral pH and the presence of sulfur in the wash is not detected.
  • the content of perfluoroalkylsulfonic groups in the solid catalyst can be determined by acid-base titration, by chemical analysis of combustion C, S, by thermogravimetry, by quantitative spectroscopic methods and by combination of any of these methods.
  • acid-base titration a certain amount of the solid catalyst is suspended in distilled water to which a few drops of phenolphthalein are added as an indicator, being titrated by a solution of NaOH of known normality.
  • the IR spectra of these materials can be recorded in the transmission mode by preparing wafers of these solids that are transparent to infrared radiation by compression at pressures between 1 and 10 Tmxcm 2 for a time between 1 and 5 minutes. These self-consistent wafers are placed in a closed cell that allows their heating to a controlled temperature and reduced pressures (between 10 _1 and 10 "4 Pa).
  • Erfluoroalkylsulfonic can be determined by gas adsorption isotherms (N 2 and Ar) applying BET and BJS algorithms, resulting in area measurements similar to the initial materials.
  • the evacuation and pretreatment of the material should be carried out at temperatures below 380 ° C in order not to alter the perfluoroalkylsulfonic groups.
  • Comparison of surface area and porosity measurements before and after anchoring of perfluorinated sulfonic groups, or cogel formation confirms that there is no substantial aggregation or modification of the surface during covalent anchoring treatment.
  • a third object of the present invention is the use of the acid catalysts described in processes of transformation of organic or inorganic compounds.
  • the solid catalysts described herein show a high catalytic activity as acids of a Bronsted nature for reactions of the types described in the chemical literature, and in specific references relating to Nafion, already inorganic-organic hybrids containing alkylsulfonic groups. .
  • the transformations of organic compounds are: esterification, acylation, alkylation, glycosidation reactions (references cited in the background chapter: Synthesis (1986) 513-31; Recent Research Developments in Pur & Applied Chemistry 2 (1998) 297-310 ).
  • An example of an esterification reaction is an esterification under stoichiometric conditions between a fatty acid and monoalcohols, diols or polyols.
  • Products that can be obtained by said esterification reaction are an analogue of jojoba oil, a mixture of glycerin esters, one or more esters of kojic acid, and one or more esters of the sorbitan type.
  • Another process of transforming organic compounds in which these catalysts can be used is a reaction selected from a transposition reaction of
  • alkylations of benzene and its derivatives can be cited with electron donor substituents and using as alkylating agents alkenes or alcohols.
  • alkylation of benzene with linear long-chain 1-alkenes such as the alkylation process of benzene with 1-dodecene.
  • Friedel-Crafts acylation Friedel-Crafts acylations of aromatic compounds with carboxylic acids or anhydrides can be mentioned as acylating agents.
  • a concrete example is an acetylation process of anisole or 2-methoxy naphthalene, as well as acetylation of 4-methoxybenzene.
  • Beckmann transposition reaction mention may be made of obtaining ⁇ -caprolactam and dodecalactam by transposing the cyclodoxanone oxime and the cilododecanone oxime respectively.
  • cyclohexanone to oxime and cyclododecanone to oxime can be carried out in a liquid phase and at temperatures around 170 ° C using a hybrid material where the perfluoroalkylsulfonic group is covalently anchored in the mesoporous silica MCM-41 (MCM-41 —PFS0 3 H) as catalyst at an oxime ratio: catalyst between 2 and 10%.
  • MCM-41 mesoporous silica MCM-41
  • PFS0 3 H mesoporous silica MCM-41
  • a solvent a liquid such as benzonitrile can be used, dicyanobenzene, adipodinitrile or succinodinitrile at a solvent substrate ratio of 1:10.
  • an alkylation reaction a process selected from an alkylation of isoparaffins, an alkylation of olefins and a mixture of both can be cited.
  • a particular example is the alkylation of isobutene by isobutane at temperatures below 100 ° C.
  • the alkylation of isobutene with isobutane can be carried out at a temperature of 50 ° C in order to obtain isooctane that serves to improve the octane number of the gasoline.
  • an example is the alkylation of electron-rich alkenes by the addition of methanol and other alcohols.
  • the methyl catalysts of isobutene and amylene which are used to improve the octane number of gasolines, can be obtained by using the solid catalysts described herein.
  • These ethers can be obtained in a liquid phase at room temperature or below 50 ° C by reaction of the corresponding alkene in excess of methanol using MCM-41-PFSO 3 H as catalyst, in a catalyst alkene ratio between 2 and 10%.
  • the reaction can also be catalyzed at atmospheric pressure and room temperature by passing an equimolar mixture of alkene and methanol over a fixed bed of MCM-41 — PFSO 3 H.
  • the processes of transformation of organic compounds can be carried out in load processes (reactor discontinuous), as well as in continuous processes using for example a fixed bed reactor.
  • the reactions are carried out by contacting the gas and / or liquid phase reagents with the solid catalyst containing the perfluoroalkylsulfonic groups anchored in the inorganic matrix.
  • the temperature and reaction time will depend on the particular reaction to be studied and which are generally known from the knowledge existing in the chemical literature.
  • Other applications of these materials are their use in ion permeable membranes, such as in fuel cells, since they combine high porosity and a high density of acid centers to the large surface area. In this case they are part of a porous electrode.
  • the electrode can be constructed by deposition or immersion of the substrate in a suspension containing the hybrid material, by painting the substrate electrode, by the spin coating technique or any other method that allows a film of the solid to be arranged on the base support.
  • FIGURES Figure 1 shows the X-ray powder diffractogram of MCM-41 (sample MCM-41-PFS0 3 H, solid line) and then (dashed line) of extracting the cetyltrimethylammonium used as the directing agent for structure, in which it is shown that the mesoporous structure of the material has been preserved during the perfluoroalkylation treatment.
  • Figure 2 shows a thermogravimetric analysis and differential scanning calorimetry of the material MCM-41, (sample MCM-41-PFSO 3 H) where it is shown that the decomposition of the perfluoroalkylsulfonic group starts at temperatures above 380 ° C marking the limit of thermal stability of material; and the desorption of adsorption and protonated water in the sample is observed.
  • Figure 3 shows a representative FT-IR spectrum of MCM-41 (self-consistent sample of MCM- 41 — PFSO 3 H), recorded at room temperature after heating the sample at 200 ° C for 1 h; the characteristic vibrations of the groups -S0 3 H and -S0 3 ⁇ have been highlighted.
  • Example 1 Preparation of a material containing perfluoroalkylsulfonic groups anchored in mesostructured amorphous Si0 2 .
  • Aerosil type silica (10 g) is suspended in 5 g. of perfluoro alfa-methyl-beta-sultone and the mixture is heated at 60 ° C for one day in autoclave under autogenous pressure.
  • the autoclave allows mechanical agitation of the suspension that is regulated at 120 revolutions per minute.
  • the solid is collected from the autoclave by decantation and washed thoroughly with distilled water until the pH of the wash waters is greater than 5 units.
  • Example 2 Preparation of a material formed by a perfluoroalkylsulfonic anchor anchored in a long-distance mesoporous silica (MCM-41) 10 g of MCM-41 are added to 5 g. of the perfluorinated sultone and the suspension is heated at 60 ° C for one day in autoclave under autogenous pressure. The suspension is mechanically stirred at 120 revolutions per minute. After treatment, the autoclave is allowed to cool and the solid resulting from the reaction is collected by decantation and washed thoroughly with distilled water until the pH of the wash is greater than 5 units.
  • MCM-411 long-distance mesoporous silica
  • Example 3 Preparation of a material formed by a perfluoroalkylsulfonic anchor anchored in a mesoporous silica without long-distance order (SAM).
  • SAM Long-distance order mesoporous silica
  • 5 g. of perfluoro alfa-methyl-beta-sultone is suspended in 5 g. of perfluoro alfa-methyl-beta-sultone and the mixture is heated at 60 ° C for one day in autoclave under autogenous pressure.
  • the autoclave allows mechanical agitation of the suspension that is regulated at 120 revolutions per minute. After time, the solid is collected from the autoclave by decantation and washed thoroughly with distilled water until the pH of the wash waters is greater than 5 units.
  • Example 4 Preparation of a material formed by a perfluoroalkylsulfonic anchor anchored in a mesoporous silica without long-distance order (S
  • Example 5 Esterification of fatty acids.
  • the esterification of analogous fatty acids of jojoba oil used in cosmetics are achieved with selectivity greater than 95% and acid conversions greater than 90% by treating equivalent amounts of fatty acids and alcohols dissolved in toluene at 60 ° C in the presence of MCM-41 — PFS0H, the substrate catalyst ratio can be varied between 2% and 10%. Once the maximum conversion has been achieved, the catalyst is recovered by simple filtration and can be reused for the same reaction under the same conditions a minimum of times equal to 10.
  • the reaction analysis is carried out following the standard method consisting in the extraction of an aliquot and addition thereof on pyridine followed by silylation using N, N-bis (trimethylsilyl) acetamide as the silylating agent.
  • Example 6 Formation of glycerin onosters with fatty acids. These esters are formed by treating a mixture of fatty acid and glycerin in a ratio between 1: 1 and 1: 5, in the presence of the MCM-41-PFSO3H catalyst in a catalyst: fatty acid ratio between 2 and 10%.
  • the reaction temperature can vary between ambient and 100 ° C, achieving a suitable speed when the reaction is carried out at 60 ° C.
  • the analytical method used is analogous to that described in Example 5. In this case, mixtures of glycerin monoesters and diesters are obtained in which the monoester predominates in a percentage greater than 60% where a primary glycerin alcohol is esterified .
  • Example 7 Esterification of kojic acid.
  • the esters of fatty acid and kojic acid, particularly sterate and palmitate, are used in cosmetics as an active component of depigmenting and anti-aging formulations. These esters can be achieved by reaction of kojic acid and fatty acid in stoichiometric amounts and using a catalyst ratio MCM-41-PFSO3H to substrate between 2 and 10%.
  • the reaction can be carried out at T between ambient and 100 ° C and in different solvents, achieving adequate speeds when the reaction is carried out at 60 ° C in CH 3 CN as solvent, conversions being achieved over 80%.
  • the catalyst is recovered by filtration and can be reused in successive tests.
  • Example 8 Esterification reaction to obtain esters of the sorbitan type. Sorbitol acetonides are prepared by dissolving this sorbitol in acetone by adding a few drops of HC1 as a catalyst. The solution is stirred at room temperature for a space exceeding two hours. To a crude mixture of these acetonides is added the desired fatty acid, in a sorbitol: stoichiometric fatty acid ratio, and MCM-41 — PFS0 3 H in a catalyst: substrate ratio between 2 and 10% is added as catalyst. The reaction is carried out at a temperature between room temperature and 100 ° C, with a suitable temperature being 60 ° C when the reaction is carried out in acetone.

Abstract

The invention relates to an acid catalyst which is characterised in that it consists of an organic/inorganic hybrid solid comprising at least: an inorganic matrix; and one or more perfluoroalkylsulphonic groups which are bound covalently to the matrix by means of C-O-T linkages, wherein C represents carbon, O represents oxygen and T represents atoms that are selected from among silicon atoms, atoms of a metallic element, atoms of different metallic elements and mixtures of same. The invention also relates to the method of preparing said catalysts and to the use thereof in transforming organic compounds or for the production of electrodes.

Description

TituloTitle
Catalizadores ácidos hibridos orgánicos-inorgánicos, procedimiento de preparación y su usoOrganic-inorganic hybrid acid catalysts, preparation process and its use
Campo de la Técnica La presente invención se refiere a catalizadores sólidos ácidos hibridos conteniendo grupos perfluoralquil- sulfónicos, su preparación y su uso como catalizadores heterogéneos reusables para reacciones en química orgánica asi como componentes activos en celdas de combustible.Field of the Art The present invention relates to hybrid acid solid catalysts containing perfluoroalkyl sulfonic groups, their preparation and their use as heterogeneous reusable catalysts for reactions in organic chemistry as well as active components in fuel cells.
Antecedentes Existen catalizadores ácidos orgánicos poliméricos que contienen un esqueleto carbonado completamente perfluorado, donde se encuentran covalentemente unidos a través de enlaces éter grupos perfluoroalquilsulfónicos . El polímero conocido con el nombre comercial registrado "Nafión" es un ejemplo de estos compuestos {esquema 1). (G. A. Olah, P. S. Iyer, and G. K. S. Prakash, Perfluorinated resinsulfonic acid (Nafion-H) catalysis in synthesis, Synthesis (1986) 513-31) El grupo alquilsulfónico es una funcionalidad que presenta una acidez Bronsted de fuerza ligeramente inferior a la del H2S0 puro, y cuya acidez intrínseca puede modularse mediante efectos inductivos, aumentándola con la presencia de grupos electronegativos que incrementan la fuerza acida del grupo sulfónico.Background There are polymeric organic acid catalysts that contain a fully perfluorinated carbon skeleton, where perfluoroalkylsulfonic groups are covalently linked through ether bonds. The polymer known under the registered trade name "Naphion" is an example of these compounds {scheme 1). (GA Olah, PS Iyer, and GKS Prakash, Perfluorinated resinsulfonic acid (Nafion-H) catalysis in synthesis, Synthesis (1986) 513-31) The alkylsulfonic group is a functionality that has a Bronsted acidity of slightly lower strength than H 2 S0 pure, and whose intrinsic acidity can be modulated by inductive effects, increasing it with the presence of electronegative groups that increase the acid strength of the sulfonic group.
Figure imgf000002_0001
esquema 1 En el caso del Nafión se ha discutido sobre si los grupos sulfónicos presentes deben considerarse como grupos superácidos (fuerza acida superior a la del H2S0 puro) ó si su acidez es igual ó ligeramente inferior a la del H2S0 . Asi, Olah y Prakash han descrito para muestras de Nafión una constante de acidez de Hammett de -13, que es ligeramente más negativa que la del H2S0 (H0 del orden de - 12). (T. Yamato, C. Hideshima, G. K. S. Prakash, and G. A. Olah, Organic reactions catalyzed by solid superacids . 5. Perfluorinated sulfonic acid resin (Nafion-H) catalyzed intramolecular Friedel-Crafts acylation, Journal of Organic Chemistry 56 (1991) 3955-7) . Se tratarla por tanto, según estos valores de un sólido superácido . Por otra parte, además del aumento de acidez un efecto adicional asociado a la perfluoración del esqueleto carbonado, es la notable estabilidad térmica y química del catalizador ácido orgánico resultante. Dada la fuerza acida de estos materiales, son numerosas las reacciones de catálisis acida que pueden ser promovidas por el Nafión, entre las que se encuentran las alquilaciones y acilaciones de Friedel-Crafts, esterificaciones, condensaciones aldólicas, deshidrataciones, adiciones electrofílicas etc. En la bibliografía existen revisiones exhaustivas describiendo las aplicaciones de estos materiales poliméricos conteniendo grupos sulfónicos, y más específicamente Nafión como catalizadores (T. Yamato, Recent developments of perfluorinated resin sulfonic acid (Nafion-H) catalysis in organic synthesis, Recent Research Developments in Puré & Applied Chemistry 2 (1998) 297-310) . Sin embargo, existen problemas asociados al uso del Nafion, el más importante de los cuales es la baja área superficial de este material que determina en muchos casos una baja actividad del catalizador a pesar de la fuerza intrínseca de los centros sulfónicos . Con el fin de aumentar el área superficial se han preparado sólidos híbridos orgánicos-inorgánicos en los que subestructuras análogas al Nafion han sido depositadas sobre soportes inorgánicos de gran área superficial, no existiendo ningún enlace covalente entre las cadenas perfluoradas de Nafion y el soporte. Entre estos materiales, el más estudiado es Nafion sobre sílice. En una variante de estos materiales, cógeles formados por Nafion parcialmente despolimerizado se cogelifica con un gel de sílice, obteniéndose un material híbrido amorfo con áreas superficiales hasta 200m2 g-1. El derivado de Nafion despolimerizado depositado sobre sílice es análogo al indicado en el esquema 1 para el Nafion polimérico, pero *x" e "y" en la fórmula son pequeños comparados con el Nafion polimérico pudiendo estar comprendidos entre 10 y 20. Estos materiales, sin embargo, presentan el inconveniente de que los grupos ácidos del Nafion parcialmente despolimerizado presentan una acidez intrínseca por interacción con el soporte notablemente inferior a la que presenta el Nafion no soportado. En cualquiera de los materiales descritos hasta ahora no existe ningún enlace covalente entre el Nafion y el soporte por lo que el catalizador presenta problemas asociados a la poca dispersión y mezcla a nivel atómico entre ambos, así como a la separación y segregación de ambas fases con el uso, junto con la posibilidad de que el Nafion se disuelva en el medio reactivo durante el proceso catalítico. Ninguno de estos problemas ocurrirían si cadenas perfluoroalquilsulfónicas pequeñas estuvieran covalentemente unidas al soporte como se describe en la presente invención. En otra metodología para preparar materiales híbridos orgánicos-inorgánicos conteniendo grupos sulfónicos de elevada área superficial, moléculas que actúan como precursores de grupos alquilsulfónicos como, por ejemplo, 3-mercaptopropiltrietoxisilano han sido ancladas en sílice ó sílice meso estructurada del tipo MCM-41. Estos materiales híbridos de gran área superficial (-1000 mg-l) muestran tras la oxidación del grupo -SH a sulfónicos, la actividad catalítica propia de los grupos sulfónicos (esquema 2) . Hay que hacer notar, sin embargo, que esta actividad es inferior a la que exhiben los grupos perfluoroalquilsulfónicos debido a la ausencia de átomos de flúor en la cadena carbonada que mediante efecto inductivo aumente la fuerza acida de los grupos sulfónicos. (Mohino, F.; Diaz, I.; Pérez-Pariente, J.; Sastre, E. Studies in Surface Science and Catalysis 2002, 142B, 1275-1282; Van Rhijn, W. M.; De Vos, D. E.; Seis, B. F.; Bossaert, . D.; Jacobs, P. A. Chemical Communications (Cambridge) 1998, 317-318) .
Figure imgf000002_0001
scheme 1 In the case of Naphion, it has been discussed whether the sulfonic groups present should be considered as superacid groups (acid strength greater than that of pure H 2 S0) or if their acidity is equal to or slightly lower than that of H 2 S0. Thus, Olah and Prakash have described a Hammett acid constant of -13 for Nafion samples, which is slightly more negative than that of H 2 S0 (H 0 on the order of - 12). (T. Yamato, C. Hideshima, GKS Prakash, and GA Olah, Organic reactions catalyzed by solid superacids. 5. Perfluorinated sulfonic acid resin (Nafion-H) catalyzed intramolecular Friedel-Crafts acylation, Journal of Organic Chemistry 56 (1991) 3955 -7). It is therefore treated, according to these values of an superacid solid. On the other hand, in addition to the increase in acidity an additional effect associated with perfluorination of the carbon skeleton, is the remarkable thermal and chemical stability of the resulting organic acid catalyst. Given the acid strength of these materials, there are numerous acid catalysis reactions that can be promoted by Nafion, among which are Friedel-Crafts alkylations and acylations, esterifications, aldolic condensations, dehydration, electrophilic additions etc. In the literature there are exhaustive reviews describing the applications of these polymeric materials containing sulfonic groups, and more specifically Naphion as catalysts (T. Yamato, Recent developments of perfluorinated resin sulfonic acid (Nafion-H) catalysis in organic synthesis, Recent Research Developments in Puré & Applied Chemistry 2 (1998) 297-310). However, there are problems associated with the use of Nafion, the most important of which is the low surface area of this material that in many cases determines a low activity of the catalyst despite the intrinsic strength of the centers sulfonic In order to increase the surface area, organic-inorganic hybrid solids have been prepared in which substructures analogous to Nafion have been deposited on inorganic supports of large surface area, with no covalent bond between the perfluorinated Nafion chains and the support. Among these materials, the most studied is Nafion on silica. In a variant of these materials, cogels formed by partially depolymerized Nafion are cogelified with a silica gel, obtaining an amorphous hybrid material with surface areas up to 200m 2 g -1 . The derivative of depolymerized Nafion deposited on silica is analogous to that indicated in scheme 1 for the polymeric Nafion, but * x "e" and "in the formula are small compared to the polymeric Nafion and may be between 10 and 20. These materials, however, they have the disadvantage that the acid groups of partially depolymerized Nafion have an intrinsic acidity by interaction with the support significantly lower than that of the unsupported Nafion.In any of the materials described so far there is no covalent bond between the Nafion and the support so that the catalyst presents problems associated with the low dispersion and mixing at the atomic level between the two, as well as the separation and segregation of both phases with use, together with the possibility that the Nafion dissolves in the reactive medium during the catalytic process None of these problems would occur if small perfluoroalkyl sulfonic chains Nails were covalently bound to the support as described in the present invention. In another methodology to prepare organic-inorganic hybrid materials containing sulfonic groups of high surface area, molecules that act as precursors of alkylsulfonic groups such as, for example, 3-mercaptopropyltriethoxysilane have been anchored in silica or structured meso silica of the MCM-41 type. These hybrid materials of large surface area (-1000 m gl) show after the oxidation of the -SH group to sulfonic, the catalytic activity of the sulfonic groups (scheme 2). It should be noted, however, that this activity is lower than that exhibited by perfluoroalkylsulfonic groups due to the absence of fluorine atoms in the carbon chain that inductively increases the acid strength of sulfonic groups. (Mohino, F .; Diaz, I .; Pérez-Pariente, J .; Sastre, E. Studies in Surface Science and Catalysis 2002, 142B, 1275-1282; Van Rhijn, WM; De Vos, DE; Six, BF; Bossaert,. D .; Jacobs, PA Chemical Communications (Cambridge) 1998, 317-318).
Figure imgf000005_0001
dil. H202
Figure imgf000005_0001
dil. H 2 0 2
Figure imgf000005_0002
esquema 2
Figure imgf000005_0002
scheme 2
En la presente invención, se describe un material formado por una matriz inorgánica conteniendo silicio y/o uno o más tipos de átomos metálicos, como por ejemplo sílices amorfas, sílice-alúmina, sólidos micro y/o mesoporosos con estructura de tamiz molecular o no, conteniendo grupos perfluoroalquilsulfónicos covalentemente anclados a las paredes y que son los responsables de la acidez y propiedades catalíticas del material. El hecho estructural sustancial de la presente invención es la existencia de enlaces covalentes entre el soporte de gran área superficial (>200 m2xg_1) y los grupos perfluoroalquilsulfónicos . Los materiales de esta invención son diferentes del Nafion ya que és.te no contiene un componente inorgánico que es el organiza la superficie y el responsable del área del material y de su elevada actividad catalítica. En los materiales objeto de la presente invención los valores de "x" e "y" del esquema 1 son típicamente 0 o muy bajo pero en ningún caso puede considerarse el grupo perfluoroalquilsulfónico polimérico. Por otra parte, los materiales aquí descritos se diferencian de cualquier otro híbrido orgánico-inorgánico que haya sido descrito con grupos sulfónicos en la existencia de enlaces covalentes entre la matriz inorgánica y la parte orgánica del híbrido. Por otra parte, la presencia de los grupos perfluoroalquilsulfónicos es esencial y es responsable de una mayor acidez intrínseca de los sitios ácidos y de una mayor estabilidad de las cadenas con respecto a los grupos alquilsulfónicos no perfluorados .In the present invention, a material formed by an inorganic matrix containing silicon and / or one or more types of metal atoms is described, for example amorphous silica, silica-alumina, micro and / or mesoporous solids with molecular sieve structure or not, containing perfluoroalkyl sulfonic groups covalently anchored to the walls and which are responsible for the acidity and catalytic properties of the material. The substantial structural fact of the present invention is the existence of covalent bonds between the large surface area support (> 200 m 2 xg _1 ) and the perfluoroalkylsulfonic groups. The materials of this invention are different from Nafion since this does not contain an inorganic component that is the organizer of the surface and responsible for the area of the material and its high catalytic activity. In the materials object of the present invention the values of "x" e "and" of scheme 1 are typically 0 or very low but in no case can the polymeric perfluoroalkylsulfonic group be considered. On the other hand, the materials described herein differ from any other organic-inorganic hybrid that has been described with sulfonic groups in the existence of covalent bonds between the inorganic matrix and the organic part of the hybrid. On the other hand, the presence of perfluoroalkylsulfonic groups is essential and is responsible for greater intrinsic acidity of the acid sites and greater stability of the chains with respect to the non-perfluorinated alkylsulfonic groups.
Descripción de la Invención La presente invención se refiere a un catalizador ácido caracterizado porque es un sólido híbrido orgánico- inorgánico que comprende al menos : - una matriz inorgánica uno o más grupos perfluoroalquilsulfónicos unidos covalentemente a dicha ' matriz, a través de enlaces C-O-T, donde C representa carbono, 0 representa oxígeno y T representa átomos seleccionados entre átomos de silicio, átomos de un elemento metálico, átomos de distintos elementos metálicos, y mezclas de ellos. Cuando T es un átomo metálico, dicho átomo metálico está preferentemente formando parte del óxido correspondiente. Cuando T es silicio, también está preferentemente en forma de sílice. La matriz inorgánica puede estar formada por óxidos inorgánicos y puede estar seleccionada entre uno o más óxidos inorgánicos amorfos, uno o más óxidos inorgánicos ordenados y mezclas de ellos. En una realización particular dicha matriz inorgánica es uno o más silicatos mesoporosos estructurados. De manera preferente dicho silicato mesoporoso estructurado está seleccionado entre MCM-41, MCM-48, SBA-15 y mezclas de ellos. En una segunda realización particular dicha matriz inorgánica es una o más zeolita . Dicha zeolita puede ser una zeolita microporosa sintética ó convenientemente modificada, tales como la zeolita Y, beta, ordenita, ZSM5, o mezclas de ellas. Dicha zeolita puede ser una o más zeolitas deslaminadas. Entre las zeolitas deslaminadas se usan por ejemplo la zeolita ITQ-2, la zeolita ITQ-β o mezcla de ambas. Otros materiales que pueden ser constitutivos de la matriz inorgánica son un óxido seleccionado entre sílice, alúmina, sílice-alúmina, un óxido u óxidos metálicos, y mezclas de ellos. Cuando el óxido es sílice, ésta puede ser coloidal o no coloidal. Entre los óxidos metálicos se pueden citar como ejemplos óxidos de alta área como Ce02, titania - TiO 2 - (fase anatasa, rutilo ó mezcla de ambas en cualquier proporción) , zirconia -Zr02-, ZnO, Nb02 A1203 (en cualquiera de sus fases cristalográficas ó mezclas de ellas en cualquier proporción), o mezclas de ellos. La matriz inorgánica puede además ser uno o más tipos de arcillas. Por ejemplo puede estar constituida por una arcilla laminar, una arcilla fibrosa o mezcla de ambas . En una realización adicional de la presente invención dicha arcilla está seleccionada entre la montmorillonita, la sepiolita, la sepiolita en la que se ha extraído todo o parte del Mg, y mezclas de ellas. Un caso particular de catalizador ácido híbrido orgánico-inorgánico es el material formado por la reacción de sílices de alta superficie con la sultona. Un segundo objeto de la presente invención es un procedimiento para la preparación de un catalizador sólido híbrido orgánico-inorgánico que comprende al menos una matriz inorgánica a la que están unidos covalentemente uno o más grupos perfluoroalquilsulfónicos a través de enlaces C-O-T, donde C representa carbono, O representa oxígeno y T representa átomos seleccionados entre átomos de silicio, átomos de un elemento metálico, átomos de distintos elementos metálicos, y mezclas de ellos, caracterizado porque comprende realizar una reacción en la que se pone en contacto dicha matriz inorgánica con un reactivo fluorado, el cual comprende al menos uno grupo perfluoralquilsulfónico y que puede contener una o más cadenas alquílicas no fluoradas alejadas del azufre. Dicho reactivo fluorado comprende uno o más grupos funcionales -OS02- . Según el procedimiento de la presente invención la reacción se lleva a cabo preferentemente a una temperatura comprendida entre temperatura ambiente y 60 °C. Según una realización particular la reacción se lleva a cabo con una relación matriz inorgánica: reactivo fluorado comprendida entre 100:1 y 2:1. El reactivo fluorado es preferentemente trifluorometilperflúorosultona. Según una primera realización del procedimiento de la presente invención la reacción de contacto entre la matriz inorgánica y el reactivo parcial o totalmente fluorado se puede realizar mediante co-gelificación de un precursor monomérico soluble de la matriz inorgánica con el reactivo fluorado en la que dicho precursor monomérico soluble de la matriz inorgánica sufre hidrólisis. En esta primera realización particular el reactivo fluorado es preferentemente ácido 2-{trietoxi- sililoxi) perfluoro-1-metiletilsulfónico. En esta primera realización particular el precursor monomérico soluble de la matriz inorgánica es preferentemente tetraetilortosilicato . En un ejemplo preferido según esta primera realización, a partir de precursores monoméricos de una matriz inorgánica tal como un óxido, se procede a formar el gel del óxido en una disolución acuosa o en otro medio por hidrólisis a un pH determinado en presencia del ácido 2- (trietoxisililoxi)perfluoro-l-metiletilsulfónico que se condensa durante el proceso con el precursor del óxido. Un ejemplo ilustrativo de esta primera realización del procedimiento se refiere a la formación de un óxido de sílice conteniendo grupos perfluoroalquilsulfónicos, mediante co-gelificación del precursor monomérico tetraetilortosilicato con un reactivo perfluorado que es ácido 2- (trietoxisililoxi)perfluoro-l-metiletilsulfónico en la que el tetraetilortosilicato sufre hidrólisis en medio acuoso, y añadiendo dodecilamina como agente hidrolizante . La proporción de tetraetilortosilicato con respecto al ácido 2- (trietoxisililoxi)perfluoro-l-metiletilsulfónico es de 4:1.Description of the Invention The present invention relates to an acid catalyst characterized in that it is an organic-inorganic hybrid solid comprising at least: - an inorganic matrix one or more perfluoroalkyl groups covalently bonded to said 'matrix through COT links, where C represents carbon, 0 represents oxygen and T represents atoms selected from silicon atoms, atoms of a metallic element, atoms of different metal elements, and mixtures from them. When T is a metal atom, said metal atom is preferably forming part of the corresponding oxide. When T is silicon, it is also preferably in the form of silica. The inorganic matrix may be formed by inorganic oxides and may be selected from one or more amorphous inorganic oxides, one or more ordered inorganic oxides and mixtures thereof. In a particular embodiment said inorganic matrix is one or more structured mesoporous silicates. Preferably said structured mesoporous silicate is selected from MCM-41, MCM-48, SBA-15 and mixtures thereof. In a second particular embodiment said inorganic matrix is one or more zeolite. Said zeolite may be a synthetic or suitably modified microporous zeolite, such as the zeolite Y, beta, order, ZSM5, or mixtures thereof. Said zeolite may be one or more delaminated zeolites. Among the delaminated zeolites, for example, the ITQ-2 zeolite, the ITQ-β zeolite or a mixture of both are used. Other materials that may be constitutive of the inorganic matrix are an oxide selected from silica, alumina, silica-alumina, an oxide or metal oxides, and mixtures thereof. When the oxide is silica, it can be colloidal or non-colloidal. Among the metal oxides, there are examples of high-area oxides such as Ce0 2 , titania-TiO 2 - (anatase phase, rutile or mixture of both in any proportion), zirconia -Zr0 2 -, ZnO, Nb0 2 A1 2 0 3 (in any of its crystallographic phases or mixtures of them in any proportion), or mixtures thereof. The inorganic matrix may also be one or more types of clays. For example, it may consist of a laminar clay, a fibrous clay or a mixture of both. In a further embodiment of the present invention said clay is selected from montmorillonite, sepiolite, sepiolite in which all or part of the Mg has been extracted, and mixtures thereof. A particular case of organic-inorganic hybrid acid catalyst is the material formed by the reaction of high surface silicas with the sultone. A second object of the present invention is a process for the preparation of a solid organic-inorganic hybrid catalyst comprising at least one inorganic matrix to which one or more perfluoroalkylsulfonic groups are covalently linked through COT bonds, where C represents carbon, O represents oxygen and T represents atoms selected from silicon atoms, atoms of a metallic element, atoms of different metallic elements, and mixtures thereof, characterized in that it comprises carrying out a reaction in which said inorganic matrix is contacted with a fluorinated reagent , which comprises at least one perfluoralkylsulfonic group and which may contain one or more non-fluorinated alkyl chains away from sulfur. Said fluorinated reagent comprises one or more functional groups -OS0 2 -. According to the process of the present invention, the reaction is preferably carried out at a temperature between room temperature and 60 ° C. According to a particular embodiment, the reaction is carried out with an inorganic matrix: fluorinated reagent ratio between 100: 1 and 2: 1. The fluorinated reagent is preferably trifluoromethylperfluorosultone. According to a first embodiment of the process of the present invention, the contact reaction between the inorganic matrix and the partially or fully fluorinated reagent can be carried out by co-gelation of a soluble monomeric precursor of the inorganic matrix with the fluorinated reagent in which said precursor Soluble monomeric inorganic matrix undergoes hydrolysis. In this first particular embodiment the fluorinated reagent is preferably 2- {triethoxy silyloxy) perfluoro-1-methylethylsulfonic acid. In this first particular embodiment, the soluble monomeric precursor of the inorganic matrix is preferably tetraethylorthosilicate. In a preferred example according to this first embodiment, from the monomeric precursors of an inorganic matrix such as an oxide, the oxide gel is formed in an aqueous solution or in another medium by hydrolysis at a determined pH in the presence of acid 2 - (triethoxysilyloxy) perfluoro-l-methylethylsulfonic acid which condenses during the process with the oxide precursor. An illustrative example of this first embodiment of the process relates to the formation of a silica oxide containing perfluoroalkylsulfonic groups, by co-gelation of the monomeric tetraethylorthosilicate precursor with a perfluorinated reagent which is perfluoro-l-methylethylsulfonic acid 2- (triethoxysilyloxy) acid in which tetraethylorthosilicate undergoes hydrolysis in aqueous medium, and adding dodecylamine as a hydrolyzing agent. The proportion of tetraethylorthosilicate with respect to 2- (triethoxysilyloxy) perfluoro-l-methylethylsulfonic acid is 4: 1.
Figure imgf000010_0001
Et ácido trietoxisililoxiperfluorometilpropilsulfónico tetraetoxiortosilicato
Figure imgf000010_0001
Et triethoxysilyloxyperfluoromethylpropylsulfonic acid tetraethoxyortosilicate
Según una segunda realización del procedimiento de la presente invención, la matriz inorgánica está deshidratada, y dicha matriz inorgánica deshidratada se pone en contacto por tratamiento térmico con el reactivo fluorado. Dicha matriz inorgánica es preferentemente un óxido inorgánico. De manera preferente en esta segunda realización la matriz inorgánica deshidratada se pone en contacto por tratamiento térmico con el reactivo fluorado que comprende al menos un grupo perfluoroalquilsulfónico y que puede contener o no algún grupo alquílico no enlazado al átomo de azufre, durante un tiempo comprendido entre 5 minutos y 48 horas a una temperatura comprendida entre 20°C y 140°C. De manera general en el procedimiento de la presente invención el reactivo fluorado es alfa-metil-beta-sultona perfluorada o parcialmente fluorada. Un ejemplo preferido de esta segunda forma de realización se basa en la reacción de un óxido inorgánico convenientemente deshidratado por tratamiento térmico, con alfa-metil-beta-sultona perfluorada, obteniéndose una suspensión. La suspensión colocada en un reactor, a temperatura entre 20 y 140°C, se agita mecánicamente durante un tiempo comprendido entre 5 minutos y 48 horas, transcurrido el cual, la suspensión se enfría y el sólido conteniendo el grupo perfluoroalquilsulfónico anclado, se separa por decantación, filtración ó centrifugación (esquema 3) .According to a second embodiment of the process of the present invention, the inorganic matrix is dehydrated, and said dehydrated inorganic matrix is contacted by heat treatment with the fluorinated reagent. Said inorganic matrix is preferably an inorganic oxide. Preferably, in this second embodiment, the dehydrated inorganic matrix is contacted by heat treatment with the fluorinated reagent comprising at least one perfluoroalkylsulfonic group and which may or may not contain any alkyl group not bound to the sulfur atom, for a period of time between 5 minutes and 48 hours at a temperature between 20 ° C and 140 ° C. Generally in the process of the present invention the fluorinated reagent is perfluorinated or partially fluorinated alpha-methyl-beta-sultone. A preferred example of this second embodiment is based on the reaction of an inorganic oxide conveniently dehydrated by heat treatment, with perfluorinated alpha-methyl-beta-sultone, obtaining a suspension. The suspension placed in a reactor, at a temperature between 20 and 140 ° C, is mechanically stirred for a time between 5 minutes and 48 hours, after which, the suspension is cooled and the solid containing the anchored perfluoroalkylsulfonic group is separated by decantation, filtration or centrifugation (scheme 3).
tolueno seoc reflujo 6 h
Figure imgf000011_0002
Figure imgf000011_0001
esquema 3
toluene seoc reflux 6 h
Figure imgf000011_0002
Figure imgf000011_0001
scheme 3
En la preparación, la relación en peso sólido/sultona se puede variar entre 100/1 y 2/1. Tras la reacción, el sólido se lava exhaustivamente con H20 destilada hasta que el agua de lavado tenga pH neutro y no se detecte la presencia de azufre en el lavado. El contenido en grupos perfluoroalquilsulfónicos en el catalizador sólido puede determinarse por valoración ácido- base, por análisis químico de combustión C, S, por termogravimetría, por métodos espectroscópicos cuantitativos y por combinación de cualquiera de estos métodos . .En la valoración ácido-base una cantidad determinada del catalizador sólido se suspende en agua destilada a la que se añade unas gotas de fenolftaleína como indicador, procediéndose a su valoración mediante una disolución de NaOH de normalidad conocida. Durante la valoración se puede agitar magnéticamente. Cuando se analiza el contenido de grupos perfluorosulfónicos por análisis de combustión C, S, éste requiere de cantidades superiores a las habituales del catalizador de combustión para asegurar el quemado completo de las cadenas perfluoroalquilsulfónicas . El análisis por termogravimetría determina el contenido del grupo perfluoroalquilsulfónico por pérdida de peso del catalizador sólido cuando este se calienta a temperaturas de hasta 900°C en atmósfera de aire. En este caso se debe tener precaución para evitar dañar la termobalanza por evolución de gases SOx y fluorados . La técnica de espectroscopia IR permite también la caracterización de estos catalizadores sólidos. Así, los espectros de IR de estos materiales pueden registrarse en el modo de transmisión preparando obleas de estos sólidos que sean transparentes a la radiación infrarroja mediante compresión a presiones entre 1 y 10 Tmxcm2 durante un tiempo entre 1 y 5 minutos . Estas obleas autoconsistentes se colocan en una celda cerrada que permita su calentamiento a temperatura controlada y presiones reducidas (comprendidas entre 10_1 y 10"4 Pa) . Este tratamiento permite la deshidratación del material sin deterioro de los enlaces covalentes entre los grupos perfluoroalquilsulfónicos y la matriz inorgánica. En el caso de que la matriz inorgánica sea cristalina ya sea a larga distancia o a corta y larga distancia, la difracción de rayos X en polvo demuestra que la cristalinidad de la matriz inorgánica se mantiene durante el proceso de anclaje covalente de los grupos alquilfluorosulfónicos. Particularmente importante es el caso de una matriz inorgánica con porosidad más inestable como la MCM-41 y MCM-48 donde se ha observado también que la estructura porosa inicial de estas matrices permanece inalterada tras el tratamiento de anclaje de los grupos perfluoroalquilsulfónicos. El área específica de estos catalizadores sólidos conteniendo grupos perfluoroalquilsulfónicos se puede determinar mediante isotermas de adsorción de gases (N2 y Ar) aplicando algoritmos BET y BJS, resultando medidas de área similares al de los materiales iniciales. La evacuación y pretratamiento del material se debe llevar a cabo a temperaturas inferiores a 380°C al objeto de no alterar los grupos perfluoroalquilsulfónicos. La comparación de las medidas de área superficial y porosidad antes y después del anclaje de los grupos sulfónicos perfluorados, o la formación del cogel confirma que no se produce agregación ó modificación sustancial de la superficie durante el tratamiento de anclaje covalente.In the preparation, the solid / sultone weight ratio can be varied between 100/1 and 2/1. After the reaction, the solid is thoroughly washed with distilled H 2 0 until the wash water has a neutral pH and the presence of sulfur in the wash is not detected. The content of perfluoroalkylsulfonic groups in the solid catalyst can be determined by acid-base titration, by chemical analysis of combustion C, S, by thermogravimetry, by quantitative spectroscopic methods and by combination of any of these methods. In the acid-base titration a certain amount of the solid catalyst is suspended in distilled water to which a few drops of phenolphthalein are added as an indicator, being titrated by a solution of NaOH of known normality. During the titration it can be stirred magnetically. When the content of perfluorosulfonic groups is analyzed by combustion analysis C, S, it requires more than usual amounts of the combustion catalyst to ensure complete burning of perfluoroalkylsulfonic chains. Thermogravimetry analysis determines the content of the perfluoroalkylsulfonic group by weight loss of the solid catalyst when it is heated to temperatures of up to 900 ° C in an air atmosphere. In this case, care must be taken to avoid damaging the thermobalance due to evolution of SO x and fluorinated gases. The IR spectroscopy technique also allows the characterization of these solid catalysts. Thus, the IR spectra of these materials can be recorded in the transmission mode by preparing wafers of these solids that are transparent to infrared radiation by compression at pressures between 1 and 10 Tmxcm 2 for a time between 1 and 5 minutes. These self-consistent wafers are placed in a closed cell that allows their heating to a controlled temperature and reduced pressures (between 10 _1 and 10 "4 Pa). This treatment allows the dehydration of the material without deterioration of the covalent bonds between the perfluoroalkylsulfonic groups and the inorganic matrix In the case that the inorganic matrix is crystalline either long distance or short and long distance, powder X-ray diffraction demonstrates that the crystallinity of the inorganic matrix is maintained during the covalent anchoring process of the groups Particularly important is the case of an inorganic matrix with more unstable porosity such as MCM-41 and MCM-48 where it has also been observed that the initial porous structure of these matrices remains unchanged after the anchoring treatment of perfluoroalkylsulfonic groups. specific area of these solid catalysts containing p groups Erfluoroalkylsulfonic can be determined by gas adsorption isotherms (N 2 and Ar) applying BET and BJS algorithms, resulting in area measurements similar to the initial materials. The evacuation and pretreatment of the material should be carried out at temperatures below 380 ° C in order not to alter the perfluoroalkylsulfonic groups. Comparison of surface area and porosity measurements before and after anchoring of perfluorinated sulfonic groups, or cogel formation confirms that there is no substantial aggregation or modification of the surface during covalent anchoring treatment.
Actividad catalítica de los catalizadores ácidos sólidos de la presente invención. Es un tercer objeto de la presente invención el uso de los catalizadores ácidos descritos en procesos de transformación de compuestos orgánicos o inorgánicos. Con carácter general, los catalizadores sólidos descritos en la presente memoria muestran una actividad catalítica elevada como ácidos de naturaleza Brónsted para reacciones de los tipos descritos en la literatura química, y en las referencias específicas relativas al Nafion, y a híbridos orgánicos-inorgánicos conteniendo grupos alquilsulfónicos . Entre las transformaciones de compuestos orgánicos cabe destacar: reacciones de esterificación, acilación, alquilación, glicosidación (referencias citadas en el capítulo de antecedentes: Synthesis (1986) 513-31 ; Recent Research Developments in Pur & Applied Chemistry 2 (1998) 297-310) . Un ejemplo de reacción de esterificación es una esterificación en condiciones estequiométricas entre un ácido graso y monoalcoholes, dioles ó polioles. Productos que se pueden obtener mediante dicha reacción de esterificación son un análogo del aceite de jojoba, una mezcla de esteres de la glicerina, uno o más esteres del ácido kójico, y uno o más esteres del tipo sorbitán. Otro proceso de transformación de compuestos orgánicos en el que pueden usarse estos catalizadores es una reacción seleccionada entre una reacción de transposición deCatalytic activity of the solid acid catalysts of the present invention. A third object of the present invention is the use of the acid catalysts described in processes of transformation of organic or inorganic compounds. In general, the solid catalysts described herein show a high catalytic activity as acids of a Bronsted nature for reactions of the types described in the chemical literature, and in specific references relating to Nafion, already inorganic-organic hybrids containing alkylsulfonic groups. . Among the transformations of organic compounds are: esterification, acylation, alkylation, glycosidation reactions (references cited in the background chapter: Synthesis (1986) 513-31; Recent Research Developments in Pur & Applied Chemistry 2 (1998) 297-310 ). An example of an esterification reaction is an esterification under stoichiometric conditions between a fatty acid and monoalcohols, diols or polyols. Products that can be obtained by said esterification reaction are an analogue of jojoba oil, a mixture of glycerin esters, one or more esters of kojic acid, and one or more esters of the sorbitan type. Another process of transforming organic compounds in which these catalysts can be used is a reaction selected from a transposition reaction of
Beckmann, una acilación de Friedel-Crafts y una alquilación de Friedel-Crafts . Como ejemplo de alquilación de Friedel-Crafts se pueden citar alquilaciones del benceno y sus derivados con sustituyentes electrón dadores y utilizando como agentes alquilantes alquenos o alcoholes. Un ejemplo particular es la alquilación de benceno con 1-alquenos lineales de cadena larga, tal como el proceso de alquilación del benceno con 1-dodeceno. Como ejemplo de acilación de Friedel-Crafts se pueden citar las acilaciones de Friedel-Crafts de compuestos aromáticos con ácidos ó anhídridos carboxílicos como agentes acilantes . Un ejemplo concreto es un proceso de acetilación del anisol ó 2-metoxi naftaleno , así como la acetilación del 4-metoxibenceno. Como ejemplos particulares de la reacción de transposición de Beckmann se pueden citar la obtención de ε-caprolactama y dodecalactama mediante la transposición de la oxima de la ciclohexanona y la oxima de la cilododecanona respectivamente. La transformación de la ciclohexanona a oxima y de ciclododecanona a oxima puede llevarse a cabo en fase líquida y a temperaturas en torno a 170 °C utilizando un material híbrido donde el grupo perfluoroalquilsulfónico se encuentra anclado covalentemente en la sílice mesoporosa MCM-41 (MCM- 41—PFS03H) como catalizador a una relación oxima: catalizador entre un 2 y 10 %. Como disolvente se puede utilizar un líquido como el benzonitrilo, dicianobenceno, adipodinitrilo o el succinodinitrilo a una relación sustrato disolvente de 1:10. Como ejemplo de reacción de alquilación se puede citar un proceso seleccionado entre una alquilación de isoparafinas, una alquilación de olefinas y una mezcla de ambas. Un ejemplo particular es la alquilación del isobuteno por isobutano a temperaturas inferiores a 100 °C. Se puede llevar a cabo la alquilación de isobuteno con isobutano a temperatura de 50 °C al objeto de obtener isooctano que sirva para mejorar el índice de octano de las gasolinas . Entre las reacciones de alquilación utilizando alcoholes como agentes alquilantes un ejemplo es la alquilación de alquenos ricos en electrones por adición de metanol y otros alcoholes . Así se pueden obtener mediante el uso de los catalizadores sólidos descritos en la presente memoria éteres metílicos del isobuteno y del amileno, los cuales son empleados para mejorar el índice de octano de las gasolinas. Estos éteres pueden ser obtenidos en fase líquida a temperatura ambiente o inferior a 50 °C por reacción del alqueno correspondiente en exceso de metanol usando MCM-41—PFSO3H como catalizador, en una relación alqueno catalizador entre 2 y 10 %. También la reacción puede ser catalizada a presión atmosférica y temperatura ambiente pasando una mezcla equimolar de alqueno y metanol sobre un lecho fijo de MCM-41—PFSO3H. Los procesos de transformación de compuestos orgánicos pueden llevarse a cabo en procesos por cargas (reactor discontinuo) , así como en procesos en continuo empleando por ejemplo un reactor de lecho fijo. Las reacciones se llevan a cabo contactando los reactivos en fase gas y/o líquida con el catalizador sólido conteniendo los grupos perfluoroalquilsulfónicos anclados en la matriz inorgánica. La temperatura y el tiempo de reacción dependerán de la reacción particular a estudiar y que son generalmente conocidas a partir del conocimiento existente en la literatura química. Otras aplicaciones de estos materiales son su uso en membranas permeables a iones como, por ejemplo, en celdas de combustibles, ya que combinan a la gran área superficial una porosidad elevada y una gran densidad de centros ácidos. En este caso forman parte de un electrodo poroso. El electrodo se puede construir por deposición o inmersión del sustrato en una suspensión conteniendo el material híbrido, mediante el pintado del electrodo sustrato, mediante la técnica de recubrimiento por giro o cualquier otro método que permita disponer una película del sólido sobre el soporte base.Beckmann, an acylation of Friedel-Crafts and an alkylation of Friedel-Crafts. As an example of alkylation of Friedel-Crafts, alkylations of benzene and its derivatives can be cited with electron donor substituents and using as alkylating agents alkenes or alcohols. A particular example is the alkylation of benzene with linear long-chain 1-alkenes, such as the alkylation process of benzene with 1-dodecene. As an example of Friedel-Crafts acylation, Friedel-Crafts acylations of aromatic compounds with carboxylic acids or anhydrides can be mentioned as acylating agents. A concrete example is an acetylation process of anisole or 2-methoxy naphthalene, as well as acetylation of 4-methoxybenzene. As particular examples of the Beckmann transposition reaction, mention may be made of obtaining ε-caprolactam and dodecalactam by transposing the cyclodoxanone oxime and the cilododecanone oxime respectively. The transformation of cyclohexanone to oxime and cyclododecanone to oxime can be carried out in a liquid phase and at temperatures around 170 ° C using a hybrid material where the perfluoroalkylsulfonic group is covalently anchored in the mesoporous silica MCM-41 (MCM-41 —PFS0 3 H) as catalyst at an oxime ratio: catalyst between 2 and 10%. As a solvent, a liquid such as benzonitrile can be used, dicyanobenzene, adipodinitrile or succinodinitrile at a solvent substrate ratio of 1:10. As an example of an alkylation reaction, a process selected from an alkylation of isoparaffins, an alkylation of olefins and a mixture of both can be cited. A particular example is the alkylation of isobutene by isobutane at temperatures below 100 ° C. The alkylation of isobutene with isobutane can be carried out at a temperature of 50 ° C in order to obtain isooctane that serves to improve the octane number of the gasoline. Among the alkylation reactions using alcohols as alkylating agents, an example is the alkylation of electron-rich alkenes by the addition of methanol and other alcohols. Thus, the methyl catalysts of isobutene and amylene, which are used to improve the octane number of gasolines, can be obtained by using the solid catalysts described herein. These ethers can be obtained in a liquid phase at room temperature or below 50 ° C by reaction of the corresponding alkene in excess of methanol using MCM-41-PFSO 3 H as catalyst, in a catalyst alkene ratio between 2 and 10%. The reaction can also be catalyzed at atmospheric pressure and room temperature by passing an equimolar mixture of alkene and methanol over a fixed bed of MCM-41 — PFSO 3 H. The processes of transformation of organic compounds can be carried out in load processes (reactor discontinuous), as well as in continuous processes using for example a fixed bed reactor. The reactions are carried out by contacting the gas and / or liquid phase reagents with the solid catalyst containing the perfluoroalkylsulfonic groups anchored in the inorganic matrix. The temperature and reaction time will depend on the particular reaction to be studied and which are generally known from the knowledge existing in the chemical literature. Other applications of these materials are their use in ion permeable membranes, such as in fuel cells, since they combine high porosity and a high density of acid centers to the large surface area. In this case they are part of a porous electrode. The electrode can be constructed by deposition or immersion of the substrate in a suspension containing the hybrid material, by painting the substrate electrode, by the spin coating technique or any other method that allows a film of the solid to be arranged on the base support.
Breve descripción de las figuras La figura 1 muestra el difractograma de Rayos X en polvo de MCM-41 (muestra MCM-41—PFS03H, línea continua) y después (línea discontinua) de extraer el cetiltrimetilamonio que se usa como agente director de estructura, en la que se demuestra que la estructura mesoporosa del material se ha preservado durante el tratamiento de perfluoroalquilación. La figura 2 muestra un análisis termogravimétrico y calorimetría diferencial de barrido del material MCM-41, (muestra MCM-41—PFSO3H) donde se muestra que la descomposición del grupo perfluoroalquilsulfónico se inicia a temperaturas superiores a 380 °C marcando el límite de estabilidad térmica de material; y se observa la desorción de agua de adsorción y protonada en la muestra. La figura 3 muestra un espectro de FT-IR representativo de MCM-41 (muestra autoconsistente de MCM- 41—PFSO3H) , registrado a temperatura ambiente después de calentar la muestra a 200 °C durante 1 h; se han resaltado las vibraciones características de los grupos -S03H y -S03 ~.BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows the X-ray powder diffractogram of MCM-41 (sample MCM-41-PFS0 3 H, solid line) and then (dashed line) of extracting the cetyltrimethylammonium used as the directing agent for structure, in which it is shown that the mesoporous structure of the material has been preserved during the perfluoroalkylation treatment. Figure 2 shows a thermogravimetric analysis and differential scanning calorimetry of the material MCM-41, (sample MCM-41-PFSO 3 H) where it is shown that the decomposition of the perfluoroalkylsulfonic group starts at temperatures above 380 ° C marking the limit of thermal stability of material; and the desorption of adsorption and protonated water in the sample is observed. Figure 3 shows a representative FT-IR spectrum of MCM-41 (self-consistent sample of MCM- 41 — PFSO 3 H), recorded at room temperature after heating the sample at 200 ° C for 1 h; the characteristic vibrations of the groups -S0 3 H and -S0 3 ~ have been highlighted.
EJEMPLOSEXAMPLES
Ejemplo 1. Preparación de un material conteniendo grupos perfluoroalquilsulfónicos anclados en Si02 amorfa mesoestructurada. Sílice del tipo Aerosil (10 g) se suspende en 5 g. de perfluoro alfa-metil-beta-sultona y la mezcla se calienta a 60 °C durante un día en autoclave a presión autógena. El autoclave permite la agitación mecánica de la suspensión que se regula a 120 revoluciones por minuto. Transcurrido el tiempo, el sólido se recoge del autoclave por decantación y se lava abundantemente con agua destilada hasta que el pH de las aguas de lavado sea superior a 5 unidades .Example 1. Preparation of a material containing perfluoroalkylsulfonic groups anchored in mesostructured amorphous Si0 2 . Aerosil type silica (10 g) is suspended in 5 g. of perfluoro alfa-methyl-beta-sultone and the mixture is heated at 60 ° C for one day in autoclave under autogenous pressure. The autoclave allows mechanical agitation of the suspension that is regulated at 120 revolutions per minute. After time, the solid is collected from the autoclave by decantation and washed thoroughly with distilled water until the pH of the wash waters is greater than 5 units.
Ejemplo 2. Preparación de un material formado por un perfluoroalquilsulfónico anclado en una sílice mesoporosa con orden a larga distancia (MCM-41) 10 g de MCM-41 se añaden a 5 g. de la sultona perfluorada y la suspensión se calienta a 60 °C durante un día en autoclave en presión autógena. La suspensión se agita mecánicamente a 120 revoluciones por minuto. Tras el tratamiento, el autoclave se deja enfriar y el sólido resultante de la reacción se recoge por decantación y se lava abundantemente con agua destilada hasta que el pH del lavado es superior a 5 unidades . En este caso del material MCM-41, difracción de rayos X en polvo demuestra que la estructura mesoporosa del material se ha preservado durante el tratamiento (fig. 1) . Análisis termogravimétrico del material MCM-41 muestra que la descomposición del grupo perfluoroalquilsulfónico se inicia a temperaturas superiores a 380°C marcando el límite de estabilidad térmica de material (figura 2) . Un espectro de IR representativo se muestra en la figura 3 donde se han resaltado las vibraciones características de los grupos - S03H y -S03-. Estas vibraciones están de acuerdo con los valores descritos en la bibliografía para los mismos grupos en Nafion. Mediante el tratamiento térmico de los discos de IR a temperaturas de 300°C y presión de 10"2 Pa, se ha podido comprobar que la intensidad de las bandas de IR permanece inalterada por lo que permite concluir que la estabilidad térmica de estos materiales es lo suficientemente alta para permitir su calentamiento a temperaturas de 300 °C sin que se produzca ningún cambio apreciable en su estructura.Example 2. Preparation of a material formed by a perfluoroalkylsulfonic anchor anchored in a long-distance mesoporous silica (MCM-41) 10 g of MCM-41 are added to 5 g. of the perfluorinated sultone and the suspension is heated at 60 ° C for one day in autoclave under autogenous pressure. The suspension is mechanically stirred at 120 revolutions per minute. After treatment, the autoclave is allowed to cool and the solid resulting from the reaction is collected by decantation and washed thoroughly with distilled water until the pH of the wash is greater than 5 units. In this case of the MCM-41 material, powder X-ray diffraction demonstrates that the mesoporous structure of the material has been preserved during the treatment (fig. 1). Thermogravimetric analysis of the MCM-41 material shows that the decomposition of the perfluoroalkylsulfonic group begins at temperatures above 380 ° C marking the limit of thermal stability of the material (Figure 2). A representative IR spectrum is shown in Figure 3 where the characteristic vibrations of the groups - S0 3 H and -S0 3 - have been highlighted. These vibrations are in accordance with the values described in the literature for the same groups in Nafion. Through the heat treatment of the IR disks at temperatures of 300 ° C and pressure of 10 "2 Pa, it has been possible to verify that the intensity of the IR bands remains unchanged so it can be concluded that the thermal stability of these materials is high enough to allow heating at temperatures of 300 ° C without any significant change in its structure.
Ejemplo 3. Preparación de un material formado por un perfluoroalquilsulfónico anclado en una sílice mesoporosa sin orden a larga distancia (SAM) . Sílice mesoporosa sin orden a larga distancia (SAM) (10 g) se suspende en 5 g. de perfluoro alfa-metil-beta- sultona y la mezcla se calienta a 60 °C durante un día en autoclave a presión autógena. El autoclave permite la agitación mecánica de la suspensión que se regula a 120 revoluciones por minuto. Transcurrido el tiempo, el sólido se recoge del autoclave por decantación y se lava abundantemente con agua destilada hasta que el pH de las aguas de lavado sea superior a 5 unidades . Ejemplo 4. Preparación de un material formado por un perfluoroalquilsulfónico anclado en una zeolita deslaminada (ITQ-2) Zeolita deslaminada ITQ-2 (10 g) se suspende en 5 g. de perfluoro alfa-metil-beta-sultona y la mezcla se calienta a 60 °C durante un día en autoclave a presión autógena. El autoclave permite la agitación mecánica de la suspensión que se regula a 120 revoluciones por minuto. Transcurrido el tiempo, el sólido se recoge del autoclave por decantación y se lava abundantemente con agua destilada hasta que el pH de las aguas de lavado sea superior a 5 unidades .Example 3. Preparation of a material formed by a perfluoroalkylsulfonic anchor anchored in a mesoporous silica without long-distance order (SAM). Long-distance order mesoporous silica (SAM) (10 g) is suspended in 5 g. of perfluoro alfa-methyl-beta-sultone and the mixture is heated at 60 ° C for one day in autoclave under autogenous pressure. The autoclave allows mechanical agitation of the suspension that is regulated at 120 revolutions per minute. After time, the solid is collected from the autoclave by decantation and washed thoroughly with distilled water until the pH of the wash waters is greater than 5 units. Example 4. Preparation of a material formed by a perfluoroalkylsulfonic anchor anchored in a delaminated zeolite (ITQ-2) Delaminated zeolite ITQ-2 (10 g) is suspended in 5 g. of perfluoro alfa-methyl-beta-sultone and the mixture is heated at 60 ° C for one day in autoclave under autogenous pressure. The autoclave allows mechanical agitation of the suspension that is regulated at 120 revolutions per minute. After time, the solid is collected from the autoclave by decantation and washed thoroughly with distilled water until the pH of the wash waters is greater than 5 units.
Ejemplo 5. Esterificación de ácidos grasos. La esterificación de ácidos grasos análogos del aceite de jojoba empleado en cosmética se consiguen con selectividad mayor del 95% y conversiones de ácido mayor del 90% mediante el tratamiento de cantidades equivalentes de ácidos y alcoholes grasos disueltos en tolueno a 60 °C en presencia de MCM-41—PFS0H, la relación catalizador sustrato puede variarse entre 2% y 10%. Alcanzada la conversión máxima, el catalizador se recupera por simple filtración y puede reutilizarse para la misma reacción en las mismas condiciones un mínimo de veces igual a 10. La analítica de la reacción se lleva a cabo siguiendo el método estándar que consiste en la extracción de una alícuota y adición de la misma sobre piridina seguida de sililación utilizando N,N-bis (trimetilsilil) acetamida como agente sililante. Esta muestra se inyecta en un cromatógrafo de gases utilizando el método on-column . Ejemplo 6. Formación de onoésteres de la glicerina con ácidos grasos. Estos esteres se forman por tratamiento de una mezcla del ácido graso y glicerina en una relación entre 1:1 y 1:5, en presencia del catalizador MCM-41—PFSO3H en una relación catalizador : ácido graso entre 2 y 10 %. La temperatura de reacción puede variar entre la ambiente y 100°C, consiguiéndose una velocidad adecuada cuando la reacción se realiza a 60 °C. El método analítico que se emplea es análogo al descrito en el ejemplo 5. En este caso se obtienen mezclas de monoésteres y diésteres de glicerina en la que predomina en un porcentaje superior al 60% el monoester donde un alcohol primario de la glicerina se encuentra esterificado.Example 5. Esterification of fatty acids. The esterification of analogous fatty acids of jojoba oil used in cosmetics are achieved with selectivity greater than 95% and acid conversions greater than 90% by treating equivalent amounts of fatty acids and alcohols dissolved in toluene at 60 ° C in the presence of MCM-41 — PFS0H, the substrate catalyst ratio can be varied between 2% and 10%. Once the maximum conversion has been achieved, the catalyst is recovered by simple filtration and can be reused for the same reaction under the same conditions a minimum of times equal to 10. The reaction analysis is carried out following the standard method consisting in the extraction of an aliquot and addition thereof on pyridine followed by silylation using N, N-bis (trimethylsilyl) acetamide as the silylating agent. This sample is injected into a gas chromatograph using the on-column method. Example 6. Formation of glycerin onosters with fatty acids. These esters are formed by treating a mixture of fatty acid and glycerin in a ratio between 1: 1 and 1: 5, in the presence of the MCM-41-PFSO3H catalyst in a catalyst: fatty acid ratio between 2 and 10%. The reaction temperature can vary between ambient and 100 ° C, achieving a suitable speed when the reaction is carried out at 60 ° C. The analytical method used is analogous to that described in Example 5. In this case, mixtures of glycerin monoesters and diesters are obtained in which the monoester predominates in a percentage greater than 60% where a primary glycerin alcohol is esterified .
Figure imgf000020_0001
monoesteres de la glicerina
Figure imgf000020_0001
glycerin monosteres
Ejemplo 7. Esterificación del ácido kójico. Los esteres del ácido graso y del ácido kójico, particularmente el esterato y palmitato, se utilizan en cosmética como componente activo de formulaciones despigmentantes y antienvejecimiento. Estos esteres se pueden conseguir por reacción del ácido kójico y el ácido graso en cantidades estequiométricas y empleando una relación catalizador MCM-41—PFSO3H a sustrato entre 2 y 10 % . La reacción puede llevarse a cabo a T entre ambiente y 100 °C y en diferentes disolventes, consiguiéndose velocidades adecuadas cuando la reacción se lleva a cabo a 60°C en CH3CN como disolvente, alcanzándose conversiones superiores al 80%. El catalizador se recupera por filtración y puede reutilizarse en ensayos sucesivos .Example 7. Esterification of kojic acid. The esters of fatty acid and kojic acid, particularly sterate and palmitate, are used in cosmetics as an active component of depigmenting and anti-aging formulations. These esters can be achieved by reaction of kojic acid and fatty acid in stoichiometric amounts and using a catalyst ratio MCM-41-PFSO3H to substrate between 2 and 10%. The reaction can be carried out at T between ambient and 100 ° C and in different solvents, achieving adequate speeds when the reaction is carried out at 60 ° C in CH 3 CN as solvent, conversions being achieved over 80%. The catalyst is recovered by filtration and can be reused in successive tests.
Figure imgf000021_0001
esteres del ácido kójico
Figure imgf000021_0001
esters of kojic acid
Ejemplo 8. Reacción de esterificación para obtener esteres del tipo sorbitán. Acetónidos del sorbitol se preparan por disolución de este sorbitol en acetona añadiendo unas gotas de HC1 como catalizador. La disolución se agita a temperatura ambiente por un espacio superior a dos horas. A una mezcla cruda de estos acetónidos se le añade el ácido graso deseado, en una relación sorbitol: ácido graso estequiométrica, y se le añade como catalizador el MCM-41—PFS03H en una relación catalizador : sustrato entre 2 y 10 % llevándose a cabo la reacción a una temperatura entre ambiente y 100 °C, siendo una temperatura adecuada la de 60°C cuando la reacción se lleva a cabo en acetona. Example 8. Esterification reaction to obtain esters of the sorbitan type. Sorbitol acetonides are prepared by dissolving this sorbitol in acetone by adding a few drops of HC1 as a catalyst. The solution is stirred at room temperature for a space exceeding two hours. To a crude mixture of these acetonides is added the desired fatty acid, in a sorbitol: stoichiometric fatty acid ratio, and MCM-41 — PFS0 3 H in a catalyst: substrate ratio between 2 and 10% is added as catalyst. The reaction is carried out at a temperature between room temperature and 100 ° C, with a suitable temperature being 60 ° C when the reaction is carried out in acetone.

Claims

REIVINDICACIONES . 1.- Un catalizador ácido caracterizado porque es un sólido híbrido orgánico-inorgánico que comprende al menos: - una matriz inorgánica - uno o más grupos perfluoroalquilsulfónicos unidos covalentemente a dicha matriz, a través de enlaces C-O-T, donde C representa carbono, O representa oxígeno y T representa átomos seleccionados entre átomos de silicio, átomos de un elemento metálico, átomos de distintos elementos metálicos, y mezclas de ellos.CLAIMS. 1. An acid catalyst characterized in that it is an organic-inorganic hybrid solid comprising at least: - an inorganic matrix - one or more perfluoroalkylsulfonic groups covalently bonded to said matrix, through COT bonds, where C represents carbon, O represents oxygen and T represents atoms selected from silicon atoms, atoms of a metallic element, atoms of different metallic elements, and mixtures thereof.
2.- Un catalizador ácido según la reivindicación 1, caracterizado porque dicha matriz inorgánica está seleccionada entre uno o más óxidos inorgánicos amorfos, uno o más óxidos inorgánicos ordenados, y mezclas de ellos.2. An acid catalyst according to claim 1, characterized in that said inorganic matrix is selected from one or more amorphous inorganic oxides, one or more ordered inorganic oxides, and mixtures thereof.
3.- Un catalizador ácido según la reivindicación 1, caracterizado porque dicha matriz inorgánica es uno o más silicatos mesoporosos estructurados.3. An acid catalyst according to claim 1, characterized in that said inorganic matrix is one or more structured mesoporous silicates.
4.- Un catalizador ácido según la reivindicación 3, caracterizado porque dicho silicato mesoporoso estructurado está seleccionado entre MCM-41, MCM-48, SBA-15, y mezclas de ellos.4. An acid catalyst according to claim 3, characterized in that said structured mesoporous silicate is selected from MCM-41, MCM-48, SBA-15, and mixtures thereof.
5.- Un catalizador ácido según la reivindicación 1, caracterizado porque dicha matriz inorgánica es una o más zeolitas . 5. An acid catalyst according to claim 1, characterized in that said inorganic matrix is one or more zeolites.
6. Un catalizador ácido según la reivindicación 1, caracterizado porque dicha matriz inorgánica es una o más zeolitas deslaminadas . 6. An acid catalyst according to claim 1, characterized in that said inorganic matrix is one or more delaminated zeolites.
7. Un catalizador ácido según la reivindicación 1, caracterizado porque dicha zeolita deslaminada está seleccionada entre zeolita ITQ-2, zeolita ITQ-β y una mezcla de ambas.7. An acid catalyst according to claim 1, characterized in that said delaminated zeolite is selected from ITQ-2 zeolite, ITQ-β zeolite and a mixture of both.
8. Un catalizador ácido según la reivindicación 5, caracterizado porque dicha zeolita está seleccionada entre zeolita Y, zeolita β, MORDENITA, ZSM5, y mezclas de ellas. 8. An acid catalyst according to claim 5, characterized in that said zeolite is selected from zeolite Y, zeolite β, MORDENITE, ZSM5, and mixtures thereof.
9. Un catalizador ácido según la reivindicación 2, caracterizado porque dicho óxido está seleccionado entre sílice, un óxido u óxidos metálicos, y mezclas de ellos.9. An acid catalyst according to claim 2, characterized in that said oxide is selected from silica, an oxide or metal oxides, and mixtures thereof.
10. Un catalizador ácido según la reivindicación 9, caracterizado porque dicho óxido metálico está seleccionado entre alúmina, titania, zirconia, Ce0, ZnO, Nb0 , y mezclas de ellos .10. An acid catalyst according to claim 9, characterized in that said metal oxide is selected from alumina, titania, zirconia, Ce0, ZnO, Nb0, and mixtures thereof.
11. Un catalizador ácido según la reivindicación 10, caracterizado porque dicho óxido metálico está seleccionado entre titania en fase anatasa, rutilo y una mezcla de ambas en cualquier proporción.11. An acid catalyst according to claim 10, characterized in that said metal oxide is selected from titania in anatase phase, rutile and a mixture of both in any proportion.
12. Un catalizador ácido según la reivindicación 10, caracterizado porque dicho óxido metálico está seleccionado entre alúmina en cualquiera de sus fases cristalográficas y mezclas de ellas en cualquier proporción.12. An acid catalyst according to claim 10, characterized in that said metal oxide is selected from alumina in any of its crystallographic phases and mixtures thereof in any proportion.
13. Un catalizador ácido según la reivindicación 1, caracterizado porque dicha matriz inorgánica está seleccionada entre una arcilla laminar, una arcilla fibrosa y mezcla de ambas . 13. An acid catalyst according to claim 1, characterized in that said inorganic matrix is selected from a laminar clay, a fibrous clay and a mixture of both.
14. Un catalizador ácido según la reivindicación 13, caracterizado porque dicha matriz inorgánica está seleccionada entre la montmorillonita, la sepiolita, la sepiolita en la que se ha extraído todo o parte del Mg, y mezclas de ellas.14. An acid catalyst according to claim 13, characterized in that said inorganic matrix is selected from montmorillonite, sepiolite, sepiolite in which all or part of the Mg has been extracted, and mixtures thereof.
15. Un procedimiento para la preparación de un catalizador que es un sólido híbrido orgánico-inorgánico que comprende una matriz inorgánica a la que están unidos covalentemente un o más grupos perfluoroalquilsulfónicos a través de enlaces C-O-T, en los que C representa carbono, O representa oxígeno y T representa átomos seleccionados entre átomos de silicio, átomos de un elemento metálico, átomos de distintos elementos metálicos, y mezclas de ellos, caracterizado porque comprende poner en contacto dicha matriz inorgánica con un reactivo fluorado, el cual comprende al menos un grupo perfluoralquilsulfónico y que puede contener una o más cadenas alquílicas no fluoradas alejadas del azufre.15. A process for the preparation of a catalyst that is an organic-inorganic hybrid solid comprising an inorganic matrix to which one or more perfluoroalkylsulfonic groups are covalently linked through COT bonds, in which C represents carbon, O represents oxygen and T represents atoms selected from silicon atoms, atoms of a metallic element, atoms of different metallic elements, and mixtures thereof, characterized in that it comprises contacting said inorganic matrix with a fluorinated reagent, which comprises at least one perfluoralkylsulfonic group and which may contain one or more non-fluorinated alkyl chains away from sulfur.
16. Un procedimiento según la reivindicación 15, caracterizado porque el reactivo fluorado es cíclico y comprende uno o más grupos funcionales -0S02-. 16. A method according to claim 15, characterized in that the fluorinated reagent is cyclic and comprises one or more functional groups -0S0 2 -.
17. Un procedimiento según la reivindicación 15, caracterizado porque la reacción se lleva a cabo a una temperatura comprendida entre temperatura ambiente y 60 °C.17. A process according to claim 15, characterized in that the reaction is carried out at a temperature between room temperature and 60 ° C.
18. Un procedimiento según la reivindicación 15, caracterizado porque la reacción se lleva a cabo con una relación matriz inorgánica: reactivo fluorado comprendida entre 100:1 y 2:1. 18. A process according to claim 15, characterized in that the reaction is carried out with an inorganic matrix: fluorinated reagent ratio between 100: 1 and 2: 1.
19. Un procedimiento según la reivindicación 15, caracterizado porque el reactivo fluorado es trifluorometilperfluorosultona .19. A process according to claim 15, characterized in that the fluorinated reagent is trifluoromethylperfluorosultone.
20. Un procedimiento según la reivindicación 15, caracterizado porque se realiza mediante co-gelificación de un precursor monomérico soluble de la matriz inorgánica con el reactivo fluorado en la que dicho precursor monomérico soluble de la matriz inorgánica sufre hidrólisis.20. A method according to claim 15, characterized in that it is carried out by co-gelation of a soluble monomeric precursor of the inorganic matrix with the fluorinated reagent in which said soluble monomeric precursor of the inorganic matrix undergoes hydrolysis.
21. Un procedimiento según la reivindicación 20, caracterizado porque el reactivo fluorado es ácido 2- (trietoxisililoxi) perfluoro-1-metiletilsulfónico. 21. A process according to claim 20, characterized in that the fluorinated reagent is 2- (triethoxysilyloxy) perfluoro-1-methylethylsulfonic acid.
22. Un procedimiento según la reivindicación 20, caracterizado porque el precursor monomérico soluble es tetraetilortosilicato .22. A process according to claim 20, characterized in that the soluble monomeric precursor is tetraethylorthosilicate.
23. Un procedimiento según la reivindicación 20, caracterizado porque se realiza mediante co-gelificación de un precursor monomérico soluble de la matriz inorgánica que es tetraetilortosilicato con un reactivo perfluorado que es ácido 2- (trietoxisililoxi)perfluoro-l-metiletilsulfónico en la que dicho precursor monomérico soluble de la matriz inorgánica sufre hidrólisis, siendo la proporción de tetraetilorotsilicato con respecto al ácido 2- (trietoxisililoxi)perfluoro-l-metiletilsulfónico es 4:1 y la hidrólisis se lleva a cabo añadiendo dodecilamina a un medio acuoso.23. A method according to claim 20, characterized in that it is carried out by co-gelation of a soluble monomeric precursor of the inorganic matrix which is tetraethylorthosilicate with a perfluorinated reagent which is 2- (triethoxysilyloxy) perfluoro-l-methylethylsulfonic acid wherein said Soluble monomeric precursor of the inorganic matrix undergoes hydrolysis, the proportion of tetraethylorotsilicate with respect to 2- (triethoxysilyloxy) perfluoro-l-methylethylsulfonic acid is 4: 1 and the hydrolysis is carried out by adding dodecylamine to an aqueous medium.
24. Un procedimiento según la reivindicación 15, caracterizado porque la matriz inorgánica está deshidratada y se pone en contacto por tratamiento térmico con el reactivo fluorado . 24. A process according to claim 15, characterized in that the inorganic matrix is dehydrated and is brought into contact by heat treatment with the fluorinated reagent.
25. Un procedimiento según la reivindicación 24, caracterizado porque la matriz inorgánica deshidratada se pone en contacto por tratamiento térmico con el reactivo fluorado durante un tiempo comprendido entre 5 minutos y 48 horas, a una temperatura comprendida entre 20°C y 140°C.25. A process according to claim 24, characterized in that the inorganic dehydrated matrix is contacted by heat treatment with the fluorinated reagent for a time between 5 minutes and 48 hours, at a temperature between 20 ° C and 140 ° C.
26. Un procedimiento según la reivindicación 15, caracterizado porque el reactivo fluorado es perfluoro alfa-metil-beta-sultona.26. A method according to claim 15, characterized in that the fluorinated reagent is perfluoro alpha-methyl-beta-sultone.
27.- Uso de un catalizador ácido definido en cualquiera de las reivindicaciones 1 a 14 en procesos de transformación de compuestos orgánicos o inorgánicos.27.- Use of an acid catalyst defined in any of claims 1 to 14 in processes of transformation of organic or inorganic compounds.
28. Uso de un catalizador ácido según la reivindicación 27, caracterizado porque dicho proceso de transformación de compuestos orgánicos es una reacción seleccionada entre una esterificación, acilación, alquilación y una glicosidación.28. Use of an acid catalyst according to claim 27, characterized in that said organic compound transformation process is a reaction selected from an esterification, acylation, alkylation and a glycosidation.
29. Uso de un catalizador ácido según la reivindicación 28, caracterizado porque dicha reacción de esterificación se lleva a cabo en condiciones estequiométricas entre un ácido graso y monoalcoholes, dioles ó pblioles.29. Use of an acid catalyst according to claim 28, characterized in that said esterification reaction is carried out under stoichiometric conditions between a fatty acid and monoalcohols, diols or pblioles.
30. Uso de un catalizador ácido según la reivindicación 28, caracterizado porque mediante dicha reacción de esterificación se obtiene un producto seleccionado entre un análogo del aceite de jojoba, una mezcla de esteres de la glicerina, uno o más esteres del ácido kójico, y uno o más esteres del tipo sorbitán. 30. Use of an acid catalyst according to claim 28, characterized in that said esterification reaction produces a product selected from an analogue of jojoba oil, a mixture of glycerin esters, one or more esters of kojic acid, and one or more esters of the sorbitan type.
31. Uso de un catalizador ácido según la reivindicación 28, caracterizado porque dicha alquilación es una alquilación de Friedel-Crafts. 31. Use of an acid catalyst according to claim 28, characterized in that said alkylation is a Friedel-Crafts alkylation.
32.- Uso de un catalizador ácido según la reivindicación 31, caracterizado porque dicha reacción de alquilación es una alquilación del benceno o sus derivados, utilizando como agentes alquilantes alquenos o alcoholes. 32.- Use of an acid catalyst according to claim 31, characterized in that said alkylation reaction is an alkylation of benzene or its derivatives, using alkynes or alcohols as alkylating agents.
33.- Uso de un catalizador ácido según la reivindicación 31, caracterizado porque dicha reacción de alquilación es una alquil ación de benceno con 1-alquenos lineales de cadena larga. 33.- Use of an acid catalyst according to claim 31, characterized in that said alkylation reaction is a benzene alkyl ation with linear long-chain 1-alkenes.
34.- Uso de un catalizador ácido según la reivindicación 33, caracterizado porque dicho 1-alqueno lineal de cadena larga es 1-dodeceno.34. Use of an acid catalyst according to claim 33, characterized in that said linear long-chain 1-alkene is 1-dodecene.
35. Uso de un catalizador ácido según la reivindicación 28, caracterizado porque dicha alquilación es una alquilación seleccionada entre .una alquilación de isoparafinas, una alquilación de olefinas y una mezcla de ambas . 35. Use of an acid catalyst according to claim 28, characterized in that said alkylation is an alkylation selected from an alkylation of isoparaffins, an alkylation of olefins and a mixture of both.
36. Uso de un catalizador ácido según la reivindicación 35, caracterizado porque dicho proceso de alquilación es una alquilación del isobuteno por isobutano a temperaturas inferiores a 100 °C. 36. Use of an acid catalyst according to claim 35, characterized in that said alkylation process is an alkylation of the isobutene by isobutane at temperatures below 100 ° C.
37. Uso de un catalizador ácido según la reivindicación 35, caracterizado porque dicha alquilación es una alquilación de olefinas con alcoholes como agentes alquilantes . 37. Use of an acid catalyst according to claim 35, characterized in that said alkylation is an alkylation of olefins with alcohols as alkylating agents.
38.- Uso de un catalizador ácido según la reivindicación 37, caracterizado porque dicha alquilación es una alquilación de olefinas con alcoholes en la que se obtiene un producto seleccionado entre metil ter-butil éter y metil ter-amil éter.38. Use of an acid catalyst according to claim 37, characterized in that said alkylation is an alkylation of olefins with alcohols in which a product selected from methyl tert-butyl ether and methyl tertiary amyl ether is obtained.
39.- Uso de un catalizador ácido según la reivindicación 28, caracterizado porque dicha reacción de acilación es una acilación de Friedel-Crafts .39. Use of an acid catalyst according to claim 28, characterized in that said acylation reaction is a Friedel-Crafts acylation.
40.- Uso de un catalizador ácido según la reivindicación 28, caracterizado porque dicha acilación es una acetilación del anisol, del 2-metoxi naftaleno o del 4- metoxibenceno.40.- Use of an acid catalyst according to claim 28, characterized in that said acylation is an acetylation of anisole, 2-methoxy naphthalene or 4-methoxybenzene.
41.- Uso de un catalizador ácido según la reivindicación 27, caracterizado porque dicha transformación de compuestos orgánicos es una transposición de Beckmann.41.- Use of an acid catalyst according to claim 27, characterized in that said transformation of organic compounds is a Beckmann transposition.
42.- Uso de un catalizador ácido según la reivindicación 41, caracterizado porque dicha transposición de Beckmann da lugar a un producto seleccionado entre ε- caprolactama y dodecalactama.42.- Use of an acid catalyst according to claim 41, characterized in that said Beckmann transposition results in a product selected from ε-caprolactam and dodecalactam.
43. Uso de un catalizador ácido según la reivindicación 27 como componente de un electrodo poroso para la construcción de una celda de combustible. 43. Use of an acid catalyst according to claim 27 as a component of a porous electrode for the construction of a fuel cell.
PCT/ES2004/070100 2003-11-25 2004-11-22 Organic/inorganic acid hybrid catalysts, preparation method thereof and use of same WO2005051540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200302850A ES2233211B1 (en) 2003-11-25 2003-11-25 ORGANIC-INORGANIC HYBRID ACID CATALYSTS, PREPARATION PROCEDURE AND ITS USE.
ESP200302850 2003-11-25

Publications (1)

Publication Number Publication Date
WO2005051540A1 true WO2005051540A1 (en) 2005-06-09

Family

ID=34629912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070100 WO2005051540A1 (en) 2003-11-25 2004-11-22 Organic/inorganic acid hybrid catalysts, preparation method thereof and use of same

Country Status (2)

Country Link
ES (1) ES2233211B1 (en)
WO (1) WO2005051540A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2050755A1 (en) 2007-10-19 2009-04-22 Total Petrochemicals Research Feluy Supported ionic liquids or activating supports
EP2070953A1 (en) 2007-12-11 2009-06-17 Total Petrochemicals Research Feluy Activating supports based on phosphonium complexes
CN106040282A (en) * 2016-05-27 2016-10-26 南京工业大学 SO3H-SBA-15 molecular sieve catalyst for catalyzing isobutene and carboxylic acid to synthesize carboxylic acid tert-butyl ester and preparation method and application thereof
CN108217684A (en) * 2018-02-11 2018-06-29 中国科学院大连化学物理研究所 A kind of method for promoting Beta Zeolite synthesis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT109991A (en) * 2017-03-24 2018-09-24 Univ Do Porto Heterogeneous catalysts, process for preparation and their application in the process of producing fatty acid alkali esters.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034061A2 (en) * 1980-02-07 1981-08-19 Sumitomo Chemical Company, Limited Method and apparatus for removal of heat from an olefin polymerization reactor
US5922635A (en) * 1997-05-07 1999-07-13 Olah; George A. Nanoscale solid superacid catalysts with pendant fluoroalkylsulfonic acid or fluoro, perfluoroalkylsulfonic acid groups

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034061A2 (en) * 1980-02-07 1981-08-19 Sumitomo Chemical Company, Limited Method and apparatus for removal of heat from an olefin polymerization reactor
US5922635A (en) * 1997-05-07 1999-07-13 Olah; George A. Nanoscale solid superacid catalysts with pendant fluoroalkylsulfonic acid or fluoro, perfluoroalkylsulfonic acid groups

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALVARO M. ET AL: "Single-step and catalytic activity of mesoporous MCM-41 and SBA-15 silicas functionalized with perfluoroalkylsulfonic acid groups analogous to Nafion", CHEM. COMMUN., 11 March 2004 (2004-03-11), pages 956 - 957 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2050755A1 (en) 2007-10-19 2009-04-22 Total Petrochemicals Research Feluy Supported ionic liquids or activating supports
EP2070953A1 (en) 2007-12-11 2009-06-17 Total Petrochemicals Research Feluy Activating supports based on phosphonium complexes
CN106040282A (en) * 2016-05-27 2016-10-26 南京工业大学 SO3H-SBA-15 molecular sieve catalyst for catalyzing isobutene and carboxylic acid to synthesize carboxylic acid tert-butyl ester and preparation method and application thereof
CN108217684A (en) * 2018-02-11 2018-06-29 中国科学院大连化学物理研究所 A kind of method for promoting Beta Zeolite synthesis

Also Published As

Publication number Publication date
ES2233211A1 (en) 2005-06-01
ES2233211B1 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
Fang et al. Mesoporous TS-1: Nanocasting synthesis with CMK-3 as template and its performance in catalytic oxidation of aromatic thiophene
Sun et al. Highly dispersed iron oxide nanoclusters supported on ordered mesoporous SBA-15: A very active catalyst for Friedel–Crafts alkylations
Usai et al. Sulfonic acid-functionalized mesoporous silicas: Microcalorimetric characterization and catalytic performance toward biodiesel synthesis
Yang et al. Ethane-bridged hybrid mesoporous functionalized organosilicas with terminal sulfonic groups and their catalytic applications
Kosslick et al. Suzuki reaction over palladium-complex loaded MCM-41 catalysts
Esquivel et al. Formation and functionalization of surface Diels–Alder adducts on ethenylene-bridged periodic mesoporous organosilica
Esquivel et al. Thermal behaviour, sulfonation and catalytic activity of phenylene-bridged periodic mesoporous organosilicas
Sakthivel et al. Esterification of glycerol by lauric acid over aluminium and zirconium containing mesoporous molecular sieves in supercritical carbon dioxide medium
Mitchell et al. Preparation of organic-functionalized mesoporous ZSM-5 zeolites by consecutive desilication and silanization
Mnasri et al. Evolution of Brönsted and Lewis acidity of single and mixed pillared bentonite
van Grieken et al. Etherification of benzyl alcohols with 1-hexanol over organosulfonic acid mesostructured materials
Thunyaratchatanon et al. 5-Hydroxymethylfurfural production from hexose sugars using adjustable acid-and base-functionalized mesoporous SBA-15 catalysts in aqueous media
Kugita et al. Mesoporous Al-containing MCM-41 molecular sieves: highly active catalysts for Diels–Alder reaction of cyclopentadiene with α, β-unsaturated aldehydes
ES2233211B1 (en) ORGANIC-INORGANIC HYBRID ACID CATALYSTS, PREPARATION PROCEDURE AND ITS USE.
Ghiaci et al. Vapor-phase alkylation of toluene by benzyl alcohol on H3PO4-modified MCM-41 mesoporous silicas
Selvaraj et al. Synthesis of ethyl β-naphthyl ether (neroline) using SO42−/Al-MCM-41 mesoporous molecular sieves
Zane et al. Active and recyclable sulphated zirconia catalysts for the acylation of aromatic compounds
Conesa et al. Development of mesoporous Al, B-MCM-41 materials: Effect of reaction temperature on the catalytic performance of Al, B-MCM-41 materials for the cyclohexanone oxime rearrangement
Sadou et al. Facile Preparation of Supported Copper-modified SBA-15 Catalysts for efficient Benzaldehyde Hydrogenation
US6960551B2 (en) Functionalized periodic mesoporous materials, their synthesis and use
Parambadath et al. Synthesis, characterization and catalytic properties of benzyl sulphonic acid functionalized Zr-TMS catalysts
Selvaraj et al. Direct synthesis and catalytic performance of ultralarge pore GaSBA-15 mesoporous molecular sieves with high gallium content
Jiménez-Jiménez et al. Sol− Gel Synthesis of Dodecyltrimethylammonium-Expanded Zirconium Phosphate and Its Application to the Preparation of Acidic Porous Oligomeric Gallium (III)-Exchanged Materials
Shen et al. Alkylation of isobutane/1-butene over periodic mesoporous organosilica functionalized with perfluoroalkylsulfonic acid group
TWI500453B (en) Preparation of aryl-sulfonic acid functionalized solid acids

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase