WO2005050247A1 - Position detection device and method - Google Patents

Position detection device and method Download PDF

Info

Publication number
WO2005050247A1
WO2005050247A1 PCT/JP2004/016989 JP2004016989W WO2005050247A1 WO 2005050247 A1 WO2005050247 A1 WO 2005050247A1 JP 2004016989 W JP2004016989 W JP 2004016989W WO 2005050247 A1 WO2005050247 A1 WO 2005050247A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
satellite
dynamic state
repetitions
detecting
Prior art date
Application number
PCT/JP2004/016989
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Yamashita
Kazunori Kagawa
Hirohisa Onome
Yasuhiro Tajima
Sueo Sugimoto
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2005050247A1 publication Critical patent/WO2005050247A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • the present invention relates to a position detecting device and method for detecting a position of a mobile station.
  • phase integrated value includes an uncertain element (integer value carrier phase ambiguity (hereinafter simply referred to as “integer value bias”) corresponding to an integer multiple of the carrier wavelength.
  • integer value bias unlike the clock error, the integer value bias cannot be eliminated by taking a single phase difference or a double phase difference of the phase integrated value. Therefore, in the field of GPS surveying, there have been proposed techniques to eliminate the integer bias, which is an uncertain element, by taking the triple phase difference of the phase integrated value, and to obtain the integer bias itself! You.
  • a technique for determining an integer value bias a technique using a Kalman filter is known (for example, see Non-Patent Document 1).
  • the position on the positioning side and an integer-valued bias are used as state variables, and the single phase difference of the integrated phase on the positioning side with respect to the reference side is used as an observation amount, and the state variable is updated each time observation is repeated
  • a tracking filter is configured.
  • As another technique for determining the integer bias there is a technique for obtaining an integer bias of a double phase difference under predetermined conditions by a least squares method using a double phase difference of a carrier including an integer bias. It is known (for example, see Patent Document 1).
  • Non-Patent Document 1 Patrick Y. C. Hwang, "Kinematic GPS for Differential
  • Patent Document 1 JP 2003-98245 A
  • an object of the present invention is to provide a position detection device and method capable of determining an integer value bias or the like with high accuracy even when the positioning side moves.
  • a position detecting device for detecting a position of a mobile station
  • Integration means for integrating the number of repetitions of a repetition signal from a satellite received by a receiver of the mobile station
  • Detecting means for detecting a dynamic state quantity relating to the movement of the mobile station, wherein an integer of the number of repetitions is based on at least an integrated value of the two types of repetitions while considering the detection result of the dynamic state quantity. Estimating the initial value of the part
  • a position detecting device is provided.
  • a position detecting device for detecting a position of a mobile station
  • Receiving means provided in the mobile station for receiving a repetitive signal transmitted from a satellite; integrating means for integrating the number of repetitions of the repetitive signal received by the receiving means; detecting a dynamic state quantity relating to movement of the mobile station Detecting means for
  • the dynamic state quantity is a moving speed of the mobile station, a moving speed vector of the mobile station, a moving acceleration of the mobile station, or a moving acceleration vector of the mobile station.
  • the position detection method according to this aspect uses a computer readable program, CD-RO
  • a recording medium such as M or DVD.
  • a position detecting device for detecting a position of the mobile station, the receiving device comprising: a receiving unit provided in the mobile station for receiving a satellite signal transmitted from a satellite; Device,
  • the arithmetic unit is configured to calculate a relationship between the double phase difference of the integrated value of the carrier phase of the satellite signal received at the receiving unit and the known point, the satellite position at the same time, and the position of the mobile station at the same time. Based on the relational expression obtained by deriving an expression and updating the position of the mobile station based on the detection result of the dynamic state quantity relating to the movement of the mobile station, the expression is included in the integrated value of the carrier phase.
  • a position detecting device for estimating an integer bias is provided.
  • the position detecting device is mounted on a navigation device of a vehicle as a mobile station, or mounted on another moving object (eg, a walking robot, a mobile phone, a PDA, etc.). Alternatively, it may be realized in a facility (including a fixed station) capable of two-way communication with a mobile station.
  • a navigation device of a vehicle as a mobile station
  • another moving object eg, a walking robot, a mobile phone, a PDA, etc.
  • the integer bias (the initial value of the integer part of the number of repetitions) necessary for detecting the position of the mobile station is determined with high accuracy. so Wear.
  • FIG. 1 is a configuration diagram of a GPS positioning system according to the present invention.
  • FIG. 2 is a functional block diagram showing one embodiment of a position detecting device 34 according to the present invention mounted on a mobile station 30.
  • FIG. 3 is a flowchart showing a flow of calculating an integer bias by the position detection device 34.
  • FIG. 4 is a diagram showing a relationship between a world coordinate system and a local coordinate system, and a relationship between a local coordinate system and a body coordinate.
  • FIG. 5 is a diagram showing a vehicle motion model.
  • FIG. 1 is a configuration diagram of a GPS positioning system according to the present invention. As shown in FIG. 1, the GPS positioning system can move around the earth with a GPS satellite 10, a fixed reference station 20 installed at a predetermined position on the earth, And a mobile station 30.
  • GPS satellite 10 constantly broadcasts navigation messages to the earth.
  • the navigation message Orbit information, the clock correction value, and the ionospheric correction coefficient for the corresponding GPS satellite 10 are included.
  • the navigation message is spread by the CZA code, carried on the L1 carrier (frequency: 1575.42MHz), and is constantly broadcast to the earth.
  • GPS satellites 10 are orbiting the earth at an altitude of about 20, OOOkm, and each of the four GPS satellites 10 is equivalent to six orbital planes inclined at 55 degrees. It is located at Therefore, as long as the sky is open, at least five or more GPS satellites 10 can always be observed anywhere on the earth.
  • the mobile station 30 includes a receiver 32.
  • An oscillator (not shown) that matches the carrier frequency of the SGPS satellite 10 is built in the receiver 32.
  • the receiver 32 converts the radio wave received from the GPS satellite 10 into an intermediate frequency, synchronizes the CZA code using the CZA code generated in the receiver 32, and extracts a navigation message.
  • the receiver 32 measures the integrated phase value D of the carrier wave phase based on the carrier wave from each GPS satellite 10.
  • the number assigned to the GPS satellite 10 is shown, and the suffix u indicates that it is an integrated value on the mobile station 30 side.
  • the phase integrated value D is expressed as the difference between the phase ⁇ (tO) of the oscillator at the carrier reception time tO and the carrier phase ⁇ (tO ⁇ ) when the satellite signal is generated by the GPS satellite 10, as shown in the following equation. can get.
  • u indicates the travel time from the GPS satellite 10 to the receiver 32.
  • the receiver 32 can accurately measure the phase within one wavelength of the carrier phase, but cannot determine the wavelength corresponding to the phase. Therefore, as shown in the above equation, an integer bias N is introduced as an uncertain element in the phase integrated value D.
  • the reference station 20 includes a similar receiver 22.
  • the receiver 22 measures the integrated value D of the carrier wave phase based on the carrier wave of each GPS satellite as much as 10 as shown in the following equation.
  • the subscript “b” indicates the integrated value on the reference station 20 side.
  • FIG. 2 is a functional block diagram showing one embodiment of the position detecting device 34 according to the present invention mounted on the mobile station 30.
  • the position detecting device 34 of the present embodiment includes the above-described receiver 32 and a computing unit 40.
  • the arithmetic unit 40 is connected with various sensors 50 mounted on the mobile station 30 in addition to the receiver 32 described above.
  • the various sensors 50 detect a predetermined dynamic state quantity of the mobile station 30 as described later.
  • the arithmetic unit 40 may be built in the receiver 32. Further, when the mobile station 30 is a vehicle, the receiver 32 and the Z or the arithmetic unit 40 may be implemented in the navigation device.
  • the arithmetic unit 40 includes a satellite position calculating unit 42, a dynamic state quantity introducing unit 44, and a state variable estimating unit 46.
  • the function of the arithmetic unit 40 will be described with reference to the flowchart of FIG.
  • the satellite position calculation unit 42 determines the position of each observable GPS satellite 10 in the world coordinate system (X Calculate (tO), Y (tO), Z (tO)) (see step 2 in Figure 3). Since the GPS satellite 10 is one of artificial satellites, its motion is limited to a certain plane (orbit plane) including the center of gravity of the earth. The orbit of the GPS satellite 10 is an elliptical motion with the center of gravity of the earth as one focal point, and the position of the GPS satellite 10 on the orbit plane can be calculated by sequentially calculating the Kepler equation.
  • the position (X (tO), Y (to), Z (to)) of each GPS satellite 10 at the carrier wave reception time tO is such that the orbital plane of the GPS satellite 10 and the equatorial plane of the world coordinate system are in a rotational relationship.
  • the position of the GPS satellite 10 on the orbital plane can be obtained by three-dimensional rotational coordinate conversion.
  • the world coordinate system is defined by an X-axis and a Y-axis orthogonal to each other in the equatorial plane with the center of gravity of the earth as an origin and a Z-axis orthogonal to both axes, as shown in FIG.
  • the dynamic state quantity introducing unit 44 calculates a predetermined dynamic state quantity of the mobile station 30 based on output signals of the various sensors 50 input at a predetermined cycle, and a state variable estimating unit 46 described later. Create a known input to the system (see step 3 in Figure 3).
  • Rw represents the tire radius of the vehicle
  • ⁇ 3 (tO) and ⁇ 4 (tO) represent the rotational speed of each non-driven wheel at the carrier wave reception time tO.
  • the longitudinal speed Vx (tO) of the vehicle may be calculated by time-integrating the output signal of the longitudinal G acceleration sensor 54 for detecting the longitudinal acceleration of the vehicle.
  • the dynamic state quantity introduction unit 44 calculates the vehicle angular velocity ⁇ z (tO) at the carrier wave reception time tO by the following equation based on the output signal of the wheel speed sensor 52. .
  • Tr represents the tread length of the non-driven wheels.
  • the yaw angular velocity ⁇ (tO) may be detected based on the output signal of the yaw rate sensor 56!
  • the dynamic state quantity introduction unit 44 calculates the Yaw angle ⁇ (tO) at the carrier wave reception time tO by integrating the Yaw angular velocity coz (t) with time according to the following equation.
  • the dynamic state quantity introducing unit 44 calculates the left-right velocity Vy (tO) of the vehicle at the carrier wave reception time tO by using the Yaw angular velocity ⁇ (tO) according to the following equation.
  • Vy (tO) LrX ⁇ ( ⁇ ) Equation (3)
  • Lr represents the distance between the vehicle center of gravity and the rear wheel.
  • the lateral speed Vy (t 0) of the vehicle may be calculated by time-integrating the output signal of the lateral G acceleration sensor 59 for detecting the lateral acceleration of the vehicle.
  • the velocity vectors (Vx (tO), Vy (tO)) of the vehicle calculated as described above are based on the body coordinate system based on the vehicle body. Converts the velocity vector (Vx (tO), Vy (tO)) to the world coordinate system via the local coordinate system. Normally, coordinate rotation conversion can be realized using Euler angles.However, here, regarding the conversion from the body coordinate system to the local coordinate system, the roll angle and the pitch angle are assumed to be small, and only one angle ⁇ (tO) is used. (However, it is necessary to consider the roll angle and pitch angle.) Of course, it is possible. 0 ) In addition, regarding the conversion of the local coordinate system force to the world coordinate system, the vehicle position is realized by the conversion using the longitude ⁇ (to) and the latitude (to) of the vehicle position.
  • the longitude ⁇ (tO) and the latitude (tO) used here may be the known longitude and latitude (fixed value) of a predetermined point for which surveying has already been completed.
  • the longitude ⁇ (to) and the latitude ⁇ (tO) may be the longitude ⁇ (tO) and the latitude (tO) (variation value) of the mobile station 30 obtained by the independent positioning.
  • the single positioning is obtained by measuring the time when the radio wave is emitted from the GPS satellite 10 and the time when the radio wave reaches the receiver of the observer, and multiplying this time difference by the speed of light. The positioning is performed based on the distance (pseudo-range) between the GPS satellite 10 and the mobile station 30.
  • [] T means transpose of the matrix
  • rot ( ⁇ , ⁇ ) and rot ( ⁇ ) are as follows.
  • the state variable estimating unit 46 sets the following state equation using the known input of the above equation (91).
  • represents a state variable
  • the position [X u , Y u , Z] of the mobile station 30 in the world coordinate system and a double phase difference N of an integer value bias
  • (k) represents a sample.
  • the double phase difference N of the integer bias is defined by the following equation.
  • the double phase difference N of the integer bias needs to be at least four or more, for example, 5 ybu
  • Observation Z is the double phase difference D of the integrated phase value and is defined by the following equation.
  • phase integration values D, D (above equation (A) ib iu
  • the double phase difference D of the phase integrated value is (distance between GPS satellite 10 and receiver 22 or 32) i] bu 1
  • sqrt represents The position [Xb, Yb, Zb] of the reference station 20 in the world coordinate system is known.
  • Equations (15) and (18) are filter equations
  • equation (17) is a filter gain
  • equations (16) and (19) are covariance equations.
  • H and ( +) indicated by superscripts indicate before and after updating.
  • the state variable estimating unit 46 obtains the estimated value of the integer bias as a real solution (see step 4 in FIG. 3). However, since the integer value bias is actually an integer value, the closest integer solution (ie, wave number) to the obtained real number solution is obtained (see step 5 in FIG. 3). In this method, the integer value bias is decorrelated, the search space for the integer solution is narrowed, and the solution is identified.
  • the MBDA method or the like may be used.
  • the receivers 22 and 32 are dual-frequency receivers that can receive both the L1 wave and the L2 wave emitted from the GPS satellite 10, the L1 wave and the L2 wave For each of them, the same estimation as described above is performed in parallel at the same time, and a sum (wide lane) of both periods can be created. This can be used to further narrow down integer solution candidates.
  • the position of the mobile station 30 is determined by the interference positioning method (positioning is started).
  • the state variables estimated as described above may be associated with each GPS satellite 10 and the reference station 20, and may be stored and managed as a double phase difference D. Therefore, mobile station 30
  • the above-described estimation processing may be executed again based on information from the new GPS satellites 10 and the reference station 20. .
  • the present embodiment it is possible to calculate the state variables (positioning, integer value bias) even while the mobile station 30 is moving, and to input the known external input U (k) to the Kalman filter.
  • the model estimation error due to the movement of the mobile station 30 is reduced (the bias of the estimation error can be removed), and the calculation accuracy of the state variable improves.
  • model errors can be eliminated in a feed-forward manner, the calculation accuracy of state variables (positioning, integer value bias) is improved, and the time until the start of positioning can be shortened.
  • front and rear G sensor left and right G sensor and wheel speed sensor (non-driving wheel, 2 pieces), also calculate the front and rear speed and left and right speed by integrating the G sensor signal force.
  • a mode for calculating an angle A mode in which the front-rear speed and the left-right speed are calculated from the wheel speed sensor signals using a wheel speed sensor (two non-driven wheels, two azimuth meters) and the yaw angle is calculated from the azimuth meter.
  • a mode in which the front and rear speed, the yaw rate sensor signal force, the left and right speed, and the azimuth meter force are calculated by integrating the G sensor signal force using the front and rear G sensor, yaw rate sensor, and azimuth meter.
  • the above-mentioned use modes are enumerated in order to effectively use an existing sensor that can be generally mounted on a vehicle, but the present invention is not limited to this.
  • the effects of the initial phase of the oscillator in the receivers 22 and 32 and the clock error are eliminated by taking the double phase difference as described above.
  • a configuration in which a single phase difference that can eliminate only the initial phase of the satellite 10 and the GPS clock error may be adopted.
  • the ionospheric refraction effect, the troposphere refraction effect, and the force ignoring the influence of multipath may be considered.
  • the GPS satellite 101 is used as a reference satellite for convenience, but another GPS satellite 10 may be used as a reference satellite depending on the positions of the mobile station 30 and the reference station 20 and the like. Also, As long as the mobile station 30 and the reference station 20 secure at least two or more double phase difference forces relating to a common GPS satellite, the combination of GPS satellites when taking a double phase difference is arbitrary.
  • the mobile station 30 includes a forklift, a robot equipped with the receivers 32 and Z or the arithmetic unit 40, and a Includes information terminals such as built-in mobile phones.

Abstract

A position detection device (34) for detecting the position of a mobile station (30) includes: accumulation means (40) for accumulating the number of repetitions of a repetited signal received from a satellite by a receiver of the mobile station (30); means for acquiring an accumulated value Dib of the number of repetitions of the repeted signal received from the satellite at the same time by a fixed station (20) installed at a known point; and detection means (50) for detecting a dynamic state amount associated with the movement of the mobile station (30) (such as a movement speed vector of the mobile station (30)). Considering the detection result of the dynamic state amount and at least according to the accumulated values Diu, Dib of the number of repetitions of the two types (for example, at least according to the dual phase difference Dijbu), the initial values Niu, Nib of the integer portion of the number of repetitions (or the dual phase difference Nijbu) are estimated.

Description

明 細 書  Specification
位置検出装置及び方法  Position detecting apparatus and method
技術分野  Technical field
[0001] 本発明は、移動局の位置を検出する位置検出装置及び方法に関する。  The present invention relates to a position detecting device and method for detecting a position of a mobile station.
背景技術  Background art
[0002] 近年、測量の分野では、搬送波位相による GPS測量が広く利用されている。この搬 送波位相による GPS測量では、基準側の受信機と測位側の受信機とが、複数の衛 星力 送られる衛星信号を同時に受信し、基準側と測位側とで各衛星信号の搬送波 位相の積算値をそれぞれ独立に算出する。この搬送波位相の積算値 (以下、単に「 位相積算値」という)には、搬送波の波長の整数倍に相当する不確定な要素 (整数値 搬送波位相アンビギュイティ(以下、単に「整数値バイアス」 、う)が含まれて 、るが 、この整数値バイアスは、時計誤差等とは異なり、位相積算値の一重位相差や二重 位相差を取ることによつても消去することができない。このため、 GPS測量の分野に お!、て、位相積算値の三重位相差を取ることで不確定要素である整数値バイアスを 消去することや、整数値バイアスそのものを求める技術が提案されて!ヽる。  [0002] In recent years, in the field of surveying, GPS surveying using carrier phase has been widely used. In the GPS survey using this carrier phase, the receiver on the reference side and the receiver on the positioning side simultaneously receive satellite signals transmitted by multiple satellites, and the carrier wave of each satellite signal is transmitted between the reference side and the positioning side. The integrated values of the phases are independently calculated. The integrated value of the carrier phase (hereinafter simply referred to as “phase integrated value”) includes an uncertain element (integer value carrier phase ambiguity (hereinafter simply referred to as “integer value bias”) corresponding to an integer multiple of the carrier wavelength. However, unlike the clock error, the integer value bias cannot be eliminated by taking a single phase difference or a double phase difference of the phase integrated value. Therefore, in the field of GPS surveying, there have been proposed techniques to eliminate the integer bias, which is an uncertain element, by taking the triple phase difference of the phase integrated value, and to obtain the integer bias itself! You.
[0003] ここで、整数値バイアスを確定する技術として、カルマンフィルタを用いる技術が知 られている (例えば、非特許文献 1参照)。この技術では、測位側の位置と整数値バイ ァスを状態変数とし、基準側に対する測位側の位相積算値の一重位相差を観測量と して、観測を重ねる毎に前記状態変数を更新する追尾フィルタが構成される。また、 整数値バイアスを確定するその他の技術として、整数値バイアスを含んだ搬送波の 二重位相差を用いて、最小二乗法により所定の条件で二重位相差の整数値バイァ スを求める技術が知られている(例えば、特許文献 1参照)。  [0003] Here, as a technique for determining an integer value bias, a technique using a Kalman filter is known (for example, see Non-Patent Document 1). In this technique, the position on the positioning side and an integer-valued bias are used as state variables, and the single phase difference of the integrated phase on the positioning side with respect to the reference side is used as an observation amount, and the state variable is updated each time observation is repeated A tracking filter is configured. As another technique for determining the integer bias, there is a technique for obtaining an integer bias of a double phase difference under predetermined conditions by a least squares method using a double phase difference of a carrier including an integer bias. It is known (for example, see Patent Document 1).
非特許文献 1: Patrick Y. C. Hwang," Kinematic GPS for Differential  Non-Patent Document 1: Patrick Y. C. Hwang, "Kinematic GPS for Differential
Positioning:Resolving Integer Ambiguities on the Fly", Navigation, Vol.38,  Positioning: Resolving Integer Ambiguities on the Fly ", Navigation, Vol.38,
No.1, Spring 1991  No.1, Spring 1991
特許文献 1:特開 2003— 98245号公報  Patent Document 1: JP 2003-98245 A
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems the invention is trying to solve
[0004] し力しながら、上述の各従来技術は、測位側が長時間固定されていることを前提と した測量の分野での技術であるため、測位側が移動し得る技術分野 (例えば、移動 局の位置を測位する分野)では適用できな ヽ (即ち、整数値バイアスを高精度に確定 できない)という、問題点がある。  [0004] However, since each of the above-mentioned prior arts is a technology in the field of surveying on the assumption that the positioning side is fixed for a long time, a technology field in which the positioning side can move (for example, a mobile station) However, there is a problem that it cannot be applied in the field of positioning the position of (that is, the integer value bias cannot be determined with high accuracy).
[0005] そこで、本発明は、測位側が移動して ヽる場合であっても整数値バイアス等を高精 度に確定できる、位置検出装置及び方法の提供を目的とする。  [0005] Therefore, an object of the present invention is to provide a position detection device and method capable of determining an integer value bias or the like with high accuracy even when the positioning side moves.
課題を解決するための手段  Means for solving the problem
[0006] 上記目的を達成するため、本発明の一局面によれば、移動局の位置を検出する位 置検出装置であって、 [0006] To achieve the above object, according to one aspect of the present invention, there is provided a position detecting device for detecting a position of a mobile station,
前記移動局の受信機により受信される衛星からの繰り返し信号の繰り返し回数を積 算する積算手段と、  Integration means for integrating the number of repetitions of a repetition signal from a satellite received by a receiver of the mobile station;
既知点に設置される固定局により同時刻に受信される衛星からの繰り返し信号の 繰り返し回数の積算値を取得する手段と、  Means for acquiring an integrated value of the number of repetitions of a repetition signal from a satellite received at the same time by a fixed station installed at a known point;
前記移動局の移動に関する動的状態量を検出する検出手段とを含み、 前記動的状態量の検出結果を考慮しつつ、前記 2種類の繰り返し回数の積算値に 少なくとも基づいて前記繰り返し回数の整数部の初期値を推定することを特徴とする Detecting means for detecting a dynamic state quantity relating to the movement of the mobile station, wherein an integer of the number of repetitions is based on at least an integrated value of the two types of repetitions while considering the detection result of the dynamic state quantity. Estimating the initial value of the part
、位置検出装置が提供される。 , A position detecting device is provided.
[0007] また、本発明の他の一局面によれば、移動局の位置を検出する位置検出装置であ つて、 [0007] According to another aspect of the present invention, there is provided a position detecting device for detecting a position of a mobile station,
移動局に設けられ、衛星から送信される繰り返し信号を受信する受信手段と、 前記受信手段が受信した繰り返し信号の繰り返し回数を積算する積算手段と、 前記移動局の移動に関する動的状態量を検出する検出手段と、  Receiving means provided in the mobile station for receiving a repetitive signal transmitted from a satellite; integrating means for integrating the number of repetitions of the repetitive signal received by the receiving means; detecting a dynamic state quantity relating to movement of the mobile station Detecting means for
前記繰り返し回数の整数部の初期値を、前記動的状態量の検出結果を考慮して 推定する手段とを含む、位置検出装置が提供される。  Means for estimating the initial value of the integer part of the number of repetitions in consideration of the result of detection of the dynamic state quantity.
[0008] これらの局面において、前記動的状態量は、前記移動局の移動速度、前記移動局 の移動速度ベクトル、前記移動局の移動加速度、若しくは、前記移動局の移動加速 度ベクトルであってよ 、。 [0009] また、本発明の他の一局面によれば、移動局の位置を検出する位置検出方法であ つて、 [0008] In these aspects, the dynamic state quantity is a moving speed of the mobile station, a moving speed vector of the mobile station, a moving acceleration of the mobile station, or a moving acceleration vector of the mobile station. Yo, [0009] According to another aspect of the present invention, there is provided a position detecting method for detecting a position of a mobile station,
移動局にて受信した衛星からの繰り返し信号の繰り返し回数の積算値と、既知点に て同一時刻に受信した同繰り返し信号の繰り返し回数の積算値との 2重位相差を算 出するステップと、  Calculating a double phase difference between the integrated value of the number of repetitions of the repetition signal from the satellite received by the mobile station and the integrated value of the number of repetitions of the same repetition signal received at the same time at a known point;
移動局の移動に関する動的状態量を検出するステップと、  Detecting a dynamic state quantity related to movement of the mobile station;
前記動的状態量に基づいて前記移動局の位置を時間更新するステップと、 同一時刻に係る、前記 2重位相差と、衛星位置と、移動局の位置との間の関係式を Time updating the position of the mobile station based on the dynamic state quantity; anda relational expression between the double phase difference, the satellite position, and the position of the mobile station at the same time.
、所定のタイミング毎に導出するステップと、 Deriving for each predetermined timing;
前記導出した関係式に基づ 、て、繰り返し回数の整数部の初期値を推定するステ ップとを含む、位置検出方法が提供される。  A step of estimating an initial value of an integer part of the number of repetitions based on the derived relational expression.
[0010] 本局面の位置検出方法は、コンピューター読取り可能なプログラムとして、 CD— RO[0010] The position detection method according to this aspect uses a computer readable program, CD-RO
Mや DVD等の記録媒体に記憶されてよ ヽ。 It is stored on a recording medium such as M or DVD.
[0011] また、本発明の他の一局面によれば、移動局に設けられ衛星から送信される衛星 信号を受信する受信手段と、演算部とを含む、移動局の位置を検出する位置検出装 置であって、 [0011] Further, according to another aspect of the present invention, a position detecting device for detecting a position of the mobile station, the receiving device comprising: a receiving unit provided in the mobile station for receiving a satellite signal transmitted from a satellite; Device,
演算部は、前記受信手段及び既知点で受信した衛星信号の搬送波位相の積算値 の 2重位相差と、同一時刻での衛星位置と、同一時刻での移動局の位置との間の関 係式を導出し、移動局の移動に関する動的状態量の検出結果に基づいて前記移動 局の位置を時間更新した前記関係式に基づ!/、て、前記搬送波位相の積算値に含ま れて ヽる整数値バイアスを推定する、位置検出装置が提供される。  The arithmetic unit is configured to calculate a relationship between the double phase difference of the integrated value of the carrier phase of the satellite signal received at the receiving unit and the known point, the satellite position at the same time, and the position of the mobile station at the same time. Based on the relational expression obtained by deriving an expression and updating the position of the mobile station based on the detection result of the dynamic state quantity relating to the movement of the mobile station, the expression is included in the integrated value of the carrier phase. A position detecting device for estimating an integer bias is provided.
[0012] 上述の各局面による位置検出装置は、移動局としての車両のナビゲーシヨン装置 に実装されてよぐ若しくは、他の移動体 (例えば、歩行ロボット、携帯電話、 PDA等) に実装されてよぐ或いは、移動局との間で双方向通信可能な施設(固定局を含む) で実現されてもよい。 The position detecting device according to each of the above aspects is mounted on a navigation device of a vehicle as a mobile station, or mounted on another moving object (eg, a walking robot, a mobile phone, a PDA, etc.). Alternatively, it may be realized in a facility (including a fixed station) capable of two-way communication with a mobile station.
発明の効果  The invention's effect
[0013] 本発明によれば、測位側である移動局が移動する場合であっても、移動局の位置 検出に必要な整数値バイアス (繰り返し回数の整数部の初期値)を高精度に確定で きる。 According to the present invention, even when the mobile station on the positioning side moves, the integer bias (the initial value of the integer part of the number of repetitions) necessary for detecting the position of the mobile station is determined with high accuracy. so Wear.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明に係る GPS測位システムの構成図である。  FIG. 1 is a configuration diagram of a GPS positioning system according to the present invention.
[図 2]移動局 30に搭載される本発明による位置検出装置 34の一実施例を示す機能 ブロック図である。  FIG. 2 is a functional block diagram showing one embodiment of a position detecting device 34 according to the present invention mounted on a mobile station 30.
[図 3]位置検出装置 34による整数値バイアスの算出流れを示すフローチャートである  FIG. 3 is a flowchart showing a flow of calculating an integer bias by the position detection device 34.
[図 4]ワールド座標系とローカル座標系との関係、及び、ローカル座標系とボディ座標 との関係を示す図である。 FIG. 4 is a diagram showing a relationship between a world coordinate system and a local coordinate system, and a relationship between a local coordinate system and a body coordinate.
[図 5]車両運動モデルを示す図である。  FIG. 5 is a diagram showing a vehicle motion model.
符号の説明  Explanation of symbols
10 GPS衛星  10 GPS satellites
20 基準局  20 Reference station
22 受信機  22 receiver
30 移動局  30 mobile stations
32 受信機  32 receiver
34 位置検出装置  34 Position detector
40 演算器  40 arithmetic unit
42 衛星位置算出部  42 Satellite position calculator
44 動的状態量導入部  44 Dynamic state quantity introduction unit
46 状態変数推定部  46 State variable estimator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。  Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
[0017] 図 1は、本発明に係る GPS測位システムの構成図である。図 1に示すように、 GPS測 位システムは、地球周りを周回する GPS衛星 10と、地球上の所定位置に設置される 固定型の基準局 20と、地球上に位置し地球上を移動しうる移動局 30とから構成され る。 FIG. 1 is a configuration diagram of a GPS positioning system according to the present invention. As shown in FIG. 1, the GPS positioning system can move around the earth with a GPS satellite 10, a fixed reference station 20 installed at a predetermined position on the earth, And a mobile station 30.
[0018] GPS衛星 10は、航法メッセージを地球に向けて常時放送する。航法メッセージには 、対応する GPS衛星 10に関する軌道情報、時計の補正値、電離層の補正係数が含 まれている。航法メッセージは、 CZAコードにより拡散され L1搬送波 (周波数: 1575.42MHz)に乗せられて、地球に向けて常時放送されている。 [0018] GPS satellite 10 constantly broadcasts navigation messages to the earth. The navigation message Orbit information, the clock correction value, and the ionospheric correction coefficient for the corresponding GPS satellite 10 are included. The navigation message is spread by the CZA code, carried on the L1 carrier (frequency: 1575.42MHz), and is constantly broadcast to the earth.
[0019] 尚、現在、 24個の GPS衛星 10が高度約 20, OOOkmの上空で地球を一周しており 、各 4個の GPS衛星 10が 55度ずつ傾いた 6つの地球周回軌道面に均等に配置され ている。従って、天空が開けている場所であれば、地球上のどの場所にいても、常時 、少なくとも 5個以上の GPS衛星 10が観測可能である。  [0019] Currently, 24 GPS satellites 10 are orbiting the earth at an altitude of about 20, OOOkm, and each of the four GPS satellites 10 is equivalent to six orbital planes inclined at 55 degrees. It is located at Therefore, as long as the sky is open, at least five or more GPS satellites 10 can always be observed anywhere on the earth.
[0020] 移動局 30は、受信機 32を備える。受信機 32内には、その周波数力 SGPS衛星 10の 搬送周波数と一致する発振器 (図示せず)が内蔵されている。受信機 32は、 GPS衛 星 10から受信した電波を中間周波数に変換後、受信機 32内で発生させた CZAコ ードを用いて CZAコード同期を行 、、航法メッセージを取り出す。  [0020] The mobile station 30 includes a receiver 32. An oscillator (not shown) that matches the carrier frequency of the SGPS satellite 10 is built in the receiver 32. The receiver 32 converts the radio wave received from the GPS satellite 10 into an intermediate frequency, synchronizes the CZA code using the CZA code generated in the receiver 32, and extracts a navigation message.
[0021] また、受信機 32は、各 GPS衛星 10からの搬送波に基づいて、搬送波位相の位相 積算値 D を計測する。尚、位相積算値 D について、添え字 i( = l, 2, …;)は、各 [0021] Further, the receiver 32 measures the integrated phase value D of the carrier wave phase based on the carrier wave from each GPS satellite 10. For the phase integrated value D, the subscript i (= l, 2,…;)
GPS衛星 10に割り当てられた番号を示し、添え字 uは移動局 30側での積算値である ことを示す。位相積算値 D は、次式に示すように、搬送波受信時刻 tOでの発振器の 位相 Φ (tO)と、 GPS衛星 10での衛星信号発生時の搬送波位相 Φ (tO— τ )との差 として得られる。 The number assigned to the GPS satellite 10 is shown, and the suffix u indicates that it is an integrated value on the mobile station 30 side. The phase integrated value D is expressed as the difference between the phase Φ (tO) of the oscillator at the carrier reception time tO and the carrier phase Φ (tO−τ) when the satellite signal is generated by the GPS satellite 10, as shown in the following equation. can get.
D = Φ (ίΟ) -Φ (tO- τ ) +Ν + ε (tO) 式 (A)  D = Φ (ίΟ) -Φ (tO- τ) + Ν + ε (tO) Equation (A)
iu iu iu u iu iu  iu iu iu u iu iu
ここで、 て uは、 GPS衛星 10から受信機 32までのトラベル時間を示す。また、位相差 の観測開始時点では、受信機 32は、搬送波位相の 1波長以内の位相を正確に測定 できるが、それが何波長目に相当するかを確定できない。このため、位相積算値 D には、上式に示すように、不確定な要素として整数値バイアス N が導入される。 Here, u indicates the travel time from the GPS satellite 10 to the receiver 32. At the start of the phase difference observation, the receiver 32 can accurately measure the phase within one wavelength of the carrier phase, but cannot determine the wavelength corresponding to the phase. Therefore, as shown in the above equation, an integer bias N is introduced as an uncertain element in the phase integrated value D.
[0022] 同様に、基準局 20も、同様の受信機 22を備える。同様に、受信機 22は、各 GPS衛 星 10力もの搬送波に基づいて、次式に示すように、搬送波位相の積算値 Dを計測 i ib する。  [0022] Similarly, the reference station 20 includes a similar receiver 22. Similarly, the receiver 22 measures the integrated value D of the carrier wave phase based on the carrier wave of each GPS satellite as much as 10 as shown in the following equation.
D = Φ (tO)— Φ (tO— τ ) +N + ε (tO) 式(B)  D = Φ (tO) — Φ (tO— τ) + N + ε (tO) Equation (B)
ib ib ib b ib ib  ib ib ib b ib ib
尚、位相積算値 D について、添え字 bは基準局 20側での積算値であることを示す。  For the phase integrated value D, the subscript “b” indicates the integrated value on the reference station 20 side.
ib  ib
基準局 20は、計測した位相積算値 Dを移動局 30に送信する。 [0023] 図 2は、移動局 30に搭載される本発明による位置検出装置 34の一実施例を示す 機能ブロック図である。本実施例の位置検出装置 34は、上述の受信機 32と、演算器 40とを含む。演算器 40には、上述の受信機 32の他、移動局 30に搭載される各種セ ンサ 50が接続される。各種センサ 50は、後述する如ぐ移動局 30の所定の動的状 態量を検出する。尚、演算器 40は、受信機 32に内蔵されるものであってもよい。また 、移動局 30が車両の場合、受信機 32及び Z又は演算器 40は、ナビゲーシヨン装置 内に実装されてよい。 The reference station 20 transmits the measured phase integrated value D to the mobile station 30. FIG. 2 is a functional block diagram showing one embodiment of the position detecting device 34 according to the present invention mounted on the mobile station 30. The position detecting device 34 of the present embodiment includes the above-described receiver 32 and a computing unit 40. The arithmetic unit 40 is connected with various sensors 50 mounted on the mobile station 30 in addition to the receiver 32 described above. The various sensors 50 detect a predetermined dynamic state quantity of the mobile station 30 as described later. The arithmetic unit 40 may be built in the receiver 32. Further, when the mobile station 30 is a vehicle, the receiver 32 and the Z or the arithmetic unit 40 may be implemented in the navigation device.
[0024] 演算器 40は、図 2に示すように、衛星位置算出部 42と、動的状態量導入部 44と、 状態変数推定部 46とから構成される。以下、演算器 40の機能を、図 3のフローチヤ ートを参照しつつ説明する。  As shown in FIG. 2, the arithmetic unit 40 includes a satellite position calculating unit 42, a dynamic state quantity introducing unit 44, and a state variable estimating unit 46. Hereinafter, the function of the arithmetic unit 40 will be described with reference to the flowchart of FIG.
[0025] 衛星位置算出部 42は、受信機 32が受信した航法メッセージの軌道情報に基づい て(図 3のステップ 1参照)、観測可能な各 GPS衛星 10の、ワールド座標系での位置( X (tO) , Y (tO)、 Z (tO) )を計算する(図 3のステップ 2参照)。尚、 GPS衛星 10は、人 工衛星の 1つであるので、その運動は、地球重心を含む一定面内(軌道面)に限定さ れる。また、 GPS衛星 10の軌道は地球重心を 1つの焦点とする楕円運動であり、ケプ ラーの方程式を逐次数値計算することで、軌道面上での GPS衛星 10の位置が計算 できる。また、搬送波受信時刻 tOでの各 GPS衛星 10の位置 (X (tO)、 Y (to)、 Z (to ) )は、 GPS衛星 10の軌道面とワールド座標系の赤道面が回転関係にあることを考慮 して、軌道面上での GPS衛星 10の位置を 3次元的な回転座標変換することで得られ る。尚、ワールド座標系とは、図 4に示すように、地球重心を原点として、赤道面内で 互いに直交する X軸及び Y軸、並びに、この両軸に直交する Z軸により定義される。  [0025] The satellite position calculation unit 42, based on the orbit information of the navigation message received by the receiver 32 (see step 1 in Fig. 3), determines the position of each observable GPS satellite 10 in the world coordinate system (X Calculate (tO), Y (tO), Z (tO)) (see step 2 in Figure 3). Since the GPS satellite 10 is one of artificial satellites, its motion is limited to a certain plane (orbit plane) including the center of gravity of the earth. The orbit of the GPS satellite 10 is an elliptical motion with the center of gravity of the earth as one focal point, and the position of the GPS satellite 10 on the orbit plane can be calculated by sequentially calculating the Kepler equation. Also, the position (X (tO), Y (to), Z (to)) of each GPS satellite 10 at the carrier wave reception time tO is such that the orbital plane of the GPS satellite 10 and the equatorial plane of the world coordinate system are in a rotational relationship. Taking this into consideration, the position of the GPS satellite 10 on the orbital plane can be obtained by three-dimensional rotational coordinate conversion. The world coordinate system is defined by an X-axis and a Y-axis orthogonal to each other in the equatorial plane with the center of gravity of the earth as an origin and a Z-axis orthogonal to both axes, as shown in FIG.
[0026] 動的状態量導入部 44は、所定周期で入力される各種センサ 50の出力信号に基づ いて、移動局 30の所定の動的状態量を算出し、後述する状態変数推定部 46への既 知入力を作成する(図 3のステップ 3参照)。  [0026] The dynamic state quantity introducing unit 44 calculates a predetermined dynamic state quantity of the mobile station 30 based on output signals of the various sensors 50 input at a predetermined cycle, and a state variable estimating unit 46 described later. Create a known input to the system (see step 3 in Figure 3).
[0027] この具体例として、図 5の車両運動モデルを参照して、移動局 30が車両の場合に ついて説明する。動的状態量導入部 44は、車両の非駆動輪に設定された 2つの車 輪速センサ 52の出力信号に基づいて、次式により、搬送波受信時刻 tOでの車両の 前後速度 Vx (tO)を算出する。 Vx(tO)=0. 5X (co3(tO) + co4(tO)) XRw 式(1) As a specific example, a case where the mobile station 30 is a vehicle will be described with reference to a vehicle motion model in FIG. Based on the output signals of the two wheel speed sensors 52 set for the non-driving wheels of the vehicle, the dynamic state quantity introducing unit 44 calculates the longitudinal speed Vx (tO) of the vehicle at the carrier wave reception time tO by the following equation. Is calculated. Vx (tO) = 0.5X (co3 (tO) + co4 (tO)) XRw Equation (1)
ここで、 Rwは車両のタイヤ半径を表わし、 ω 3 (tO)、 ω 4 (tO)は、搬送波受信時刻 tO での各非駆動輪の回転速度を表わす。尚、車両の前後速度 Vx (tO)は、車両の前後 加速度を検出する前後 G加速度センサ 54の出力信号を時間積分することにより算出 されてちょい。  Here, Rw represents the tire radius of the vehicle, and ω 3 (tO) and ω 4 (tO) represent the rotational speed of each non-driven wheel at the carrier wave reception time tO. The longitudinal speed Vx (tO) of the vehicle may be calculated by time-integrating the output signal of the longitudinal G acceleration sensor 54 for detecting the longitudinal acceleration of the vehicle.
[0028] また、動的状態量導入部 44は、同様に、車輪速センサ 52の出力信号に基づいて、 次式により、搬送波受信時刻 tOでの車両のョー角速度 ω z (tO)を算出する。  Similarly, the dynamic state quantity introduction unit 44 calculates the vehicle angular velocity ω z (tO) at the carrier wave reception time tO by the following equation based on the output signal of the wheel speed sensor 52. .
ω z (tO) = ( ω 3 (tO) - ω 4 (tO) ) /Tr 式(2)  ω z (tO) = (ω 3 (tO)-ω 4 (tO)) / Tr formula (2)
ここで、 Trは非駆動輪のトレッド長を表わす。尚、ョー角速度 ωζ (tO)は、ョーレート センサ 56の出力信号に基づ 、て検出されてもよ!、。  Here, Tr represents the tread length of the non-driven wheels. Incidentally, the yaw angular velocity ωζ (tO) may be detected based on the output signal of the yaw rate sensor 56!
[0029] 動的状態量導入部 44は、次式により、ョー角速度 coz(t)を時間積分することで搬 送波受信時刻 tOでのョー角度 φ (tO)を算出する。 The dynamic state quantity introduction unit 44 calculates the Yaw angle φ (tO) at the carrier wave reception time tO by integrating the Yaw angular velocity coz (t) with time according to the following equation.
φ (tO) = J oz(t) -dt  φ (tO) = J oz (t) -dt
ここで、積分区間は t=o— toであり、初期値 (即ち、 t=0の φ (to)の値)は、方位角 計 58を用いて決定されてよい。また、ョー角度 φ (tO)自体も、方位角計 58を用いて 検出されてもよい。  Here, the integration interval is t = o—to, and the initial value (ie, the value of φ (to) at t = 0) may be determined using the azimuth meter 58. Further, the yaw angle φ (tO) itself may be detected using the azimuth angle meter 58.
[0030] また、動的状態量導入部 44は、ョー角速度 ωζ (tO)を用いて、次式により、搬送波 受信時刻 tOでの車両の左右速度 Vy (tO)を算出する。  Further, the dynamic state quantity introducing unit 44 calculates the left-right velocity Vy (tO) of the vehicle at the carrier wave reception time tO by using the Yaw angular velocity ωζ (tO) according to the following equation.
Vy(tO)=LrX ωζ(ίθ) 式(3)  Vy (tO) = LrX ωζ (ίθ) Equation (3)
ここで、 Lrは車両重心位置力も後輪までの距離を表わす。尚、車両の左右速度 Vy(t 0)は、車両の左右加速度を検出する左右 G加速度センサ 59の出力信号を時間積分 することにより算出されてもよい。  Here, Lr represents the distance between the vehicle center of gravity and the rear wheel. Note that the lateral speed Vy (t 0) of the vehicle may be calculated by time-integrating the output signal of the lateral G acceleration sensor 59 for detecting the lateral acceleration of the vehicle.
[0031] ここで、上述の如く算出される車両の速度ベクトル (Vx (tO)、 Vy(tO))は、車体を 基準としたボディ座標系に基づいているため、動的状態量導入部 44は、速度べタト ル (Vx (tO)、 Vy (tO) )を、ローカル座標系を介してワールド座標系へと座標変換す る。通常、座標の回転変換は、オイラー角を用いて実現できるが、ここでは、ボディ座 標系からローカル座標系への変換に関しては、ロール角及びピッチ角が小さいとして ョ一角 φ (tO)のみで実現することとする(但し、ロール角及びピッチ角を考慮すること も当然に可能である。 )0また、ローカル座標系力もワールド座標系への変換に関し ては、車両位置の経度 φ (to)及び緯度え(to)を用いた変換で実現される。 [0031] Here, the velocity vectors (Vx (tO), Vy (tO)) of the vehicle calculated as described above are based on the body coordinate system based on the vehicle body. Converts the velocity vector (Vx (tO), Vy (tO)) to the world coordinate system via the local coordinate system. Normally, coordinate rotation conversion can be realized using Euler angles.However, here, regarding the conversion from the body coordinate system to the local coordinate system, the roll angle and the pitch angle are assumed to be small, and only one angle φ (tO) is used. (However, it is necessary to consider the roll angle and pitch angle.) Of course, it is possible. 0 ) In addition, regarding the conversion of the local coordinate system force to the world coordinate system, the vehicle position is realized by the conversion using the longitude φ (to) and the latitude (to) of the vehicle position.
[0032] 尚、ここで用いられる経度 φ (tO)及び緯度え (tO)は、測量が既に完了している所 定地点の既知の経度及び緯度(固定値)であってよい。但し、経度 φ (to)及び緯度 λ (tO)は、単独測位により得られる移動局 30の経度 φ (tO)及び緯度え (tO) (変動 値)であってもよい。尚、単独測位とは、 GPS衛星 10から電波が発射された時刻とそ の電波が観測者の受信機に到達した時の時刻を測定し、この時間差に光速度を乗 じることで得られる GPS衛星 10と移動局 30との距離 (疑似距離)に基づいて測位を行 うものである。 Note that the longitude φ (tO) and the latitude (tO) used here may be the known longitude and latitude (fixed value) of a predetermined point for which surveying has already been completed. However, the longitude φ (to) and the latitude λ (tO) may be the longitude φ (tO) and the latitude (tO) (variation value) of the mobile station 30 obtained by the independent positioning. The single positioning is obtained by measuring the time when the radio wave is emitted from the GPS satellite 10 and the time when the radio wave reaches the receiver of the observer, and multiplying this time difference by the speed of light. The positioning is performed based on the distance (pseudo-range) between the GPS satellite 10 and the mobile station 30.
[0033] ワールド座標系における車両位置を (X、 Y、 Z )とすると、ワールド座標系で表わ した車両の速度ベクトル dZdt[X、 Y、 Z ]は、次式の通りである。  [0033] Assuming that the vehicle position in the world coordinate system is (X, Y, Z), the velocity vector dZdt [X, Y, Z] of the vehicle expressed in the world coordinate system is as follows.
d/dt[X、 Υ、Ζ
Figure imgf000010_0001
λ ) τοΐ ( ) - [Vx, Vy]T 式(4)
d / dt [X, Υ, Ζ
Figure imgf000010_0001
λ) τοΐ ()-[Vx, Vy] T- expression (4)
ここで、 []Tは行列の転置を意味し、 rot ( φ、 λ )及び rot ( φ )は、次の通りとする。 Here, [] T means transpose of the matrix, and rot (φ, λ) and rot (φ) are as follows.
[0034] [数 1]  [0034] [Equation 1]
Figure imgf000010_0002
Figure imgf000010_0002
上記式 (4)の右辺を入力 U01、 U02及び U03と置いて、離散化すれば次のように なる。 If the right side of the above equation (4) is set as inputs U01, U02 and U03 and discretized, the following is obtained.
X (k) =X (k-l) +DT-U01 式(7)  X (k) = X (k-l) + DT-U01 Equation (7)
Y (k) =Y (k-l) +DT-U02 式(8)  Y (k) = Y (k-l) + DT-U02 Equation (8)
Z (k) =Z (k-l) +DT-U03 式(9)  Z (k) = Z (k-l) + DT-U03 Equation (9)
よって、最終的な既知入力は、次の通りとなる。  Therefore, the final known input is as follows.
U= [DT-U01, DT-U02, DT-U03]T 式(9—1) 尚、上式において、 DTは、サンプル時間(データ更新間隔)であり、(k)は、サンプル 時間毎に実行される演算の k回目の値を意味する。 U = [DT-U01, DT-U02, DT-U03] T- expression (9-1) In the above equation, DT is the sample time (data update interval), and (k) means the k-th value of the operation executed for each sample time.
[0035] 状態変数推定部 46では、上記式 (9 1)の既知入力を用いて、次の状態方程式が 設定される。 The state variable estimating unit 46 sets the following state equation using the known input of the above equation (91).
7? (k) = 7? (k-1) +U (k— 1) +W(k-1) 式(10)  7? (K) = 7? (K-1) + U (k-1) + W (k-1) Equation (10)
ここで、 ηは、状態変数を表わし、移動局 30のワールド座標系における位置 [Xu、 Yu 、 Z ]、及び、整数値バイアスの 2重位相差 N であり、 (k)は、サンプル時間毎に実 u ybu Here, η represents a state variable, the position [X u , Y u , Z] of the mobile station 30 in the world coordinate system, and a double phase difference N of an integer value bias, and (k) represents a sample. Real time u ubu
行される演算の k回目の値を意味する。整数値バイアスの 2重位相差 N は、次式で 定義される。  It means the k-th value of the operation to be performed. The double phase difference N of the integer bias is defined by the following equation.
N = (N— N )—(N— N ) 式(11)  N = (N-N)-(N-N) Equation (11)
ybu ib iu jb ]U  ybu ib iu jb] U
但し、 i≠j  Where i ≠ j
ここで、整数値バイアスの 2重位相差 N は少なくとも 4個以上必要であり、例えば、 5 ybu  Here, the double phase difference N of the integer bias needs to be at least four or more, for example, 5 ybu
つの GPS衛星 101— 5が観測可能な場合、 GPS衛星 101を基準として、 r? = [X、 Y 、Ζ、Ν 、Ν 、Ν 、Ν ]であってよい。また、 U及び Wは、それぞれ、上述 u 12bu 13bu 14bu 15bu  If two GPS satellites 101-5 are observable, r? = [X, Y, Ζ, Ν, Ν, Ν, Ν] with respect to GPS satellite 101. U and W are respectively the above u 12bu 13bu 14bu 15bu
の既知入力及び外乱 (システム雑音:正規性白色雑音)である。  Are known inputs and disturbances (system noise: normal white noise).
[0036] また、状態変数推定部 46では、次の観測方程式が用いられる。  [0036] In the state variable estimating unit 46, the following observation equation is used.
Z (k) =H (k) - 7? (k) +V (k) 式(12)  Z (k) = H (k)-7? (K) + V (k) Equation (12)
ここで、 Z及び Vは、それぞれ、観測量及び観測ノイズ (正規性白色雑音)を示す。観 測量 Zは、位相積算値の 2重位相差 D であり、次式で定義される。  Here, Z and V indicate the amount of observation and the observation noise (normalized white noise), respectively. Observation Z is the double phase difference D of the integrated phase value and is defined by the following equation.
i]bu  i] bu
D = (D -D )-(D -D ) 式(13)  D = (D-D)-(D-D) Equation (13)
ijbu ib iu jb ju  ijbu ib iu jb ju
但し、 i≠j  Where i ≠ j
ここで、観測量 Zは、 7} = [X、Y、Z、N 、N 、N 、N ]に対応して、 Z = u u u 12bu 13bu 14bu 15bu  Where the observable Z is 7} = [X, Y, Z, N, N, N, N], and Z = u u u 12bu 13bu 14bu 15bu
[D 、D 、D 、D ]であってよい。尚、状態変数推定部 46には、上述の如 [D, D, D, D]. Note that the state variable estimator 46
12bu 13bu 14bu 15bu 12bu 13bu 14bu 15bu
く観測された基準局 20側と移動局 30側の双方の位相積算値 D 、D (上記式 (A) ib iu  The phase integration values D, D (above equation (A) ib iu
及び式 (B)参照)が所定周期で入力されて!、る。  And (Equation (B)) are input at predetermined intervals!
[0037] 位相積算値の 2重位相差 D は、(GPS衛星 10と受信機 22若しくは 32との距離) i]bu 1 [0037] The double phase difference D of the phase integrated value is (distance between GPS satellite 10 and receiver 22 or 32) i] bu 1
= (搬送波の波長 L) X (位相積算値)という物理的な意味合いから、次のようになる。 D = [{sqrt ( (X -X) 2+ (Y -Y) 2+ (Z Z ) 2)— sqrt ( (X— X) 2+ (Y— Y) 2+ (Z ijbu b i b i b i u i u i u -Z)2)}-{sqrt((X-X)2+(Y-Y)2+(Z-Z)2)-sqrt((X-X)2+(Y-Y)2+( = (Wavelength L of carrier) X (phase integrated value) D = [(sqrt ((X -X) 2 + (Y -Y) 2 + (ZZ) 2 ) — sqrt ((X—X) 2 + (Y—Y) 2 + (Z ijbu bibibiuiuiu -Z) 2 )}-{sqrt ((XX) 2 + (YY) 2 + (ZZ) 2 ) -sqrt ((XX) 2 + (YY) 2 + (
b j b j b j j j b j b j b j j j
Z-Z)2)}]/L + N 式 (14) ZZ) 2 )}] / L + N formula (14)
但し、 i≠j  Where i ≠ j
ここで、 sqrtは を表わす。尚、基準局 20のワールド座標系における位置 [Xb、 Yb、 Zb]は既知である。  Here, sqrt represents The position [Xb, Yb, Zb] of the reference station 20 in the world coordinate system is known.
[0038] 上記式(10)の状態方程式は線形であるが、観測量 Zは、状態変数 Xu、 Yu及び Z uに関して非線形であるため、線形化する必要がある。ここでは、式(14)の各項を状 態変数 Xu、 Yu及び Zuのそれぞれで偏微分して、式(12)の Hが求められる。  [0038] Although the state equation of the above equation (10) is linear, the observable Z is nonlinear with respect to the state variables Xu, Yu, and Zu, and thus needs to be linearized. Here, each term of equation (14) is partially differentiated by each of the state variables Xu, Yu, and Zu, and H of equation (12) is obtained.
[0039] 従って、上記式(10)の状態方程式及び上記式(12)の観測方程式にカルマンフィ ルタを適用すると、以下の式が得られる。  Therefore, when the Kalman filter is applied to the state equation of the above equation (10) and the observation equation of the above equation (12), the following equation is obtained.
時間更新として、  As a time update,
η (k)(—)=r? (k— l)(+)+U(k— 1) 式(15)  η (k) (—) = r? (k—l) (+) + U (k—1) Equation (15)
P (k) H=P(k-l) (+) +Q (k— 1) 式(16) P (k) H = P (kl) (+) + Q (k—1) Equation (16)
また、観測更新として、  Also, as an observation update,
K(k)=P (k) (― ) · HT (k) · (H (k) · P (k) (— ) · HT (k) + R (k) ) 1 式( 17) r? (k) (+)= r? (k) H+K(k) - (Z(k)-H(k) - r? (k) H) 式 (18) K (k) = P (k ) (-) · H T (k) · (H (k) · P (k) (-) · H T (k) + R (k)) 1 formula (17) r ? (k) (+) = r? (k) H + K (k)-(Z (k) -H (k)-r? (k) H ) Equation (18)
P(k)(+) = P(k) H-K (k) · H (k) · P (k) H 式( 19) P (k) (+) = P (k) H -K (k) · H (k) · P (k) H formula (19)
ここで、 Q, Rは、外乱の共分散行列及び観測ノイズの共分散行列をそれぞれ表わす 。尚、上記式(15)及び式(18)がフィルタ方程式、上記式(17)がフィルタゲイン、上 記式(16)及び式(19)が共分散方程式となる。また、上付き文字で示す H及び (+)は 、更新前後を示す。 Here, Q and R represent the covariance matrix of the disturbance and the covariance matrix of the observation noise, respectively. Equations (15) and (18) are filter equations, equation (17) is a filter gain, and equations (16) and (19) are covariance equations. H and ( +) indicated by superscripts indicate before and after updating.
[0040] この場合、状態変数推定部 46では、整数値バイアスの推定値は、実数解として求 められる(図 3のステップ 4参照)。しかし、整数値バイアスは、実際には整数値である ので、求めた実数解に対して最も近い整数解 (即ち、波数)を求める(図 3のステップ 5参照)。この手法としては、整数値バイアスの無相関化をはかり、整数解の探索空間 を狭めて解を特定する LA  In this case, the state variable estimating unit 46 obtains the estimated value of the integer bias as a real solution (see step 4 in FIG. 3). However, since the integer value bias is actually an integer value, the closest integer solution (ie, wave number) to the obtained real number solution is obtained (see step 5 in FIG. 3). In this method, the integer value bias is decorrelated, the search space for the integer solution is narrowed, and the solution is identified.
MBDA法等が使用されてよい。また、受信機 22、 32が、 GPS衛星 10から発射される L1波及び L2波の双方を受信可能な 2周波受信機である場合には、 L1波及び L2波 のそれぞれに対して上述と同様の推定が同時に並列的に実行され、双方の周期の 和(ワイドレーン)が作成できるので、これを用いて整数解の候補を一層絞り込むこと が可能となる。 The MBDA method or the like may be used. When the receivers 22 and 32 are dual-frequency receivers that can receive both the L1 wave and the L2 wave emitted from the GPS satellite 10, the L1 wave and the L2 wave For each of them, the same estimation as described above is performed in parallel at the same time, and a sum (wide lane) of both periods can be created. This can be used to further narrow down integer solution candidates.
[0041] 状態変数推定部 46は、このようにして状態変数を算出すると、以後、当該算出結果  [0041] When the state variable estimating unit 46 calculates the state variable in this manner, the calculation result
(整数値バイアス)に基づいて干渉測位法により移動局 30の位置を確定していく(測 位を開始する)。尚、上述の如く推定される状態変数は、各 GPS衛星 10と基準局 20と に対応付けられ、 2重位相差 D として記憶 '管理されてよい。従って、移動局 30の  Based on the (integer value bias), the position of the mobile station 30 is determined by the interference positioning method (positioning is started). The state variables estimated as described above may be associated with each GPS satellite 10 and the reference station 20, and may be stored and managed as a double phase difference D. Therefore, mobile station 30
ljbu  ljbu
移動に伴って受信可能な各 GPS衛星 10や基準局 20が変化した場合には、新たな各 GPS衛星 10及び基準局 20からの情報に基づ 、て、上述の推定処理が再び実行さ れてよい。  When the receivable GPS satellites 10 and the reference station 20 change due to the movement, the above-described estimation processing may be executed again based on information from the new GPS satellites 10 and the reference station 20. .
以上のとおり、本実施例によれば、移動局 30が移動しながらでも状態変数 (測位、 整数値バイアス)の算出が可能であり、また、既知の外部入力 U (k)をカルマンフィル タに入力することで、移動局 30の移動に起因したモデル推定誤差が減少し (推定誤 差のバイアスを取り除くことができ)、状態変数の算出精度が向上する。また、フィード フォワード的にモデル誤差を消去できるので状態変数 (測位、整数値バイアス)の算 出精度が向上すると共に、測位開始までの時間を短縮できる。  As described above, according to the present embodiment, it is possible to calculate the state variables (positioning, integer value bias) even while the mobile station 30 is moving, and to input the known external input U (k) to the Kalman filter. By inputting, the model estimation error due to the movement of the mobile station 30 is reduced (the bias of the estimation error can be removed), and the calculation accuracy of the state variable improves. In addition, since model errors can be eliminated in a feed-forward manner, the calculation accuracy of state variables (positioning, integer value bias) is improved, and the time until the start of positioning can be shortened.
[0042] 尚、上述の実施例において、上記式(9 1)の既知入力を与えるためのセンサ出力 の使用態様として以下の複数の組み合わせが考えられる。 In the above-described embodiment, the following combinations are conceivable as usage modes of the sensor output for providing the known input of the above equation (91).
(1)車輪速センサ (非駆動輪、 2個)を用いて、上記式(1)から前後速度、上記式 (3) から左右速度、上記式 (2)からョー角度を算出する態様。  (1) Using a wheel speed sensor (two non-driven wheels) to calculate the front-rear speed from the above equation (1), the left / right speed from the above equation (3), and the yaw angle from the above equation (2).
(2)車輪速センサ(非駆動輪、 2個)及びョーレートセンサを用いて、上記式(1)から 前後速度、上記式 (3)から左右速度、ョーレートセンサ信号力 積分によりョー角度 を算出する態様。  (2) Using a wheel speed sensor (two non-driven wheels) and a yaw rate sensor, calculating the yaw angle by the forward / backward speed from the above equation (1), the left / right speed from the above equation (3), and the yaw rate sensor signal force integration.
(3)前後 Gセンサ、左右 Gセンサ及びョーレートセンサを用いて、各センサ信号から 積分により前後速度、左右速度及びョー角度を算出する態様。  (3) A mode in which the front-rear speed, the left-right speed, and the yaw angle are calculated by integration from each sensor signal using the front-back G sensor, the left-right G sensor, and the yaw rate sensor.
(4)前後 Gセンサ、左右 Gセンサ及び車輪速センサ (非駆動輪、 2個)を用いて、 Gセ ンサ信号力も積分により前後速度及び左右速度を算出し、車輪速センサ信号カもョ 一角度を算出する態様。 (5)車輪速センサ (非駆動輪、 2個)及び方位角計を用いて、車輪速センサ信号から 前後速度及び左右速度を算出し、方位角計からョー角度を算出する態様。 (4) Using front and rear G sensor, left and right G sensor and wheel speed sensor (non-driving wheel, 2 pieces), also calculate the front and rear speed and left and right speed by integrating the G sensor signal force. A mode for calculating an angle. (5) A mode in which the front-rear speed and the left-right speed are calculated from the wheel speed sensor signals using a wheel speed sensor (two non-driven wheels, two azimuth meters) and the yaw angle is calculated from the azimuth meter.
(6)車輪速センサ (非駆動輪、 2個)、ョーレートセンサ及び方位角計を用いて、車輪 速センサ信号から前後速度、ョーレートセンサ信号力 左右速度、方位角計力 ョー 角度を算出する態様。  (6) A mode in which the front-rear speed, the yaw rate sensor signal force, the left / right speed, the azimuth meter force, and the yaw angle are calculated from the wheel speed sensor signal using a wheel speed sensor (two non-driven wheels), a yaw rate sensor, and an azimuth meter.
(7)前後 Gセンサ、ョーレートセンサ及び方位角計を用いて、 Gセンサ信号力も積分 により前後速度、ョーレートセンサ信号力 左右速度、方位角計力 ョー角度を算出 する態様。  (7) A mode in which the front and rear speed, the yaw rate sensor signal force, the left and right speed, and the azimuth meter force are calculated by integrating the G sensor signal force using the front and rear G sensor, yaw rate sensor, and azimuth meter.
(8)前後 Gセンサ、左右 Gセンサ、車輪速センサ (非駆動輪、 2個)及び方位角計を用 いて、各センサ信号から積分により前後速度及び左右速度、方位角計からョー角度 を算出する態様。  (8) Using front and rear G sensor, left and right G sensor, wheel speed sensor (2 non-driven wheels) and azimuth meter, calculate front and rear speed and left and right speed by integration from each sensor signal, and calculate yaw angle from azimuth meter. Mode.
[0043] 尚、ここでは、一般的に車両の搭載されうる既存のセンサを有効に利用することを 意図して、上述の使用態様を列挙したが、本発明は、これに限定されることはなぐ例 えば、上述の実施例において、既知入力を与える特別なセンサを用意することも可 能である。  Here, the above-mentioned use modes are enumerated in order to effectively use an existing sensor that can be generally mounted on a vehicle, but the present invention is not limited to this. For example, in the above-described embodiment, it is possible to prepare a special sensor that gives a known input.
[0044] 以上、本発明の好ましい実施例について詳説した力 本発明は、上述した実施例 に制限されることはなぐ本発明の範囲を逸脱することなぐ上述した実施例に種々の 変形及び置換を加えることができる。  As described above, the present invention has been described in detail with reference to the preferred embodiments. The present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.
[0045] 例えば、上述した実施例では、上記式(10)の状態方程式及び上記式(12)の観測 方程式にカルマンフィルタを適用するものであった力 最小 2乗法等の他の推定手法 を適用して状態量を推定することも可能である。  For example, in the above-described embodiment, another estimation method such as a force least square method, which applied the Kalman filter to the state equation of the above equation (10) and the observation equation of the above equation (12), is applied. It is also possible to estimate the state quantity by using
[0046] また、上述した実施例では、上述の如く 2重位相差を取ることで受信機 22, 32内で の発振器の初期位相、及び、時計誤差等の影響を消去しているが、 GPS衛星 10の 初期位相及び GPS時計誤差のみを消去できる一重位相差を取る構成であってもよい 。また、本実施例では、電離層屈折効果、対流圏屈折効果及びマルチパスの影響を 無視している力 これらを考慮するものであってもよい。  In the above-described embodiment, the effects of the initial phase of the oscillator in the receivers 22 and 32 and the clock error are eliminated by taking the double phase difference as described above. A configuration in which a single phase difference that can eliminate only the initial phase of the satellite 10 and the GPS clock error may be adopted. Further, in the present embodiment, the ionospheric refraction effect, the troposphere refraction effect, and the force ignoring the influence of multipath may be considered.
[0047] また、上述の説明では、便宜上、 GPS衛星 101を参照衛星としているが、移動局 30 と基準局 20の位置等に依存して、他の GPS衛星 10が参照衛星となりえる。また、移 動局 30と基準局 20において共通の GPS衛星に関する 2重位相差力 個以上確保さ れる限り、 2重位相差を取る際の GPS衛星の組み合わせは任意である。 In the above description, the GPS satellite 101 is used as a reference satellite for convenience, but another GPS satellite 10 may be used as a reference satellite depending on the positions of the mobile station 30 and the reference station 20 and the like. Also, As long as the mobile station 30 and the reference station 20 secure at least two or more double phase difference forces relating to a common GPS satellite, the combination of GPS satellites when taking a double phase difference is arbitrary.
上述の説明では、移動局 30の例として車両を挙げた力 移動局 30は、受信機 32 及び Z又は演算器 40が実装されたホークリフト、ロボットや、受信機 32及び Z又は 演算器 40を内蔵する携帯電話等の情報端末を含む。  In the above description, a force is used for a vehicle as an example of the mobile station 30. The mobile station 30 includes a forklift, a robot equipped with the receivers 32 and Z or the arithmetic unit 40, and a Includes information terminals such as built-in mobile phones.

Claims

請求の範囲 The scope of the claims
[1] 移動局の位置を検出する位置検出装置であって、  [1] A position detecting device for detecting a position of a mobile station,
前記移動局の受信機により受信される衛星からの繰り返し信号の繰り返し回数を積 算する積算手段と、  Integration means for integrating the number of repetitions of a repetition signal from a satellite received by a receiver of the mobile station;
既知点に設置される固定局により同時刻に受信される衛星からの繰り返し信号の 繰り返し回数の積算値を取得する手段と、  Means for acquiring an integrated value of the number of repetitions of a repetition signal from a satellite received at the same time by a fixed station installed at a known point;
前記移動局の移動に関する動的状態量を検出する検出手段とを含み、 前記動的状態量の検出結果を考慮しつつ、前記 2種類の繰り返し回数の積算値に 少なくとも基づいて前記繰り返し回数の整数部の初期値を推定することを特徴とする 、位置検出装置。  Detecting means for detecting a dynamic state quantity relating to the movement of the mobile station; and A position detecting device for estimating an initial value of a unit.
[2] 移動局の位置を検出する位置検出装置であって、 [2] A position detecting device for detecting a position of a mobile station,
移動局に設けられ、衛星から送信される繰り返し信号を受信する受信手段と、 前記受信手段が受信した繰り返し信号の繰り返し回数を積算する積算手段と、 前記移動局の移動に関する動的状態量を検出する検出手段と、  Receiving means provided in the mobile station for receiving a repetitive signal transmitted from a satellite; integrating means for integrating the number of repetitions of the repetitive signal received by the receiving means; detecting a dynamic state quantity relating to movement of the mobile station Detecting means for
前記繰り返し回数の整数部の初期値を、前記動的状態量の検出結果を考慮して 推定する手段とを含む、位置検出装置。  Means for estimating the initial value of the integer part of the number of repetitions in consideration of the detection result of the dynamic state quantity.
[3] 前記動的状態量は、前記移動局の移動速度である、請求項 1又は 2記載の位置検 出装置。 3. The position detection device according to claim 1, wherein the dynamic state quantity is a moving speed of the mobile station.
[4] 前記動的状態量は、前記移動局の移動速度ベクトルである、請求項 1又は 2記載 の位置検出装置。  4. The position detecting device according to claim 1, wherein the dynamic state quantity is a moving speed vector of the mobile station.
[5] 前記動的状態量は、前記移動局の移動加速度である、請求項 1又は 2記載の位置 検出装置。  5. The position detecting device according to claim 1, wherein the dynamic state quantity is a moving acceleration of the mobile station.
[6] 前記動的状態量は、前記移動局の移動加速度ベクトルである、請求項 1又は 2記 載の位置検出装置。  6. The position detecting device according to claim 1, wherein the dynamic state quantity is a moving acceleration vector of the mobile station.
[7] 移動局の位置を検出する位置検出方法であって、 [7] A position detection method for detecting the position of a mobile station,
移動局にて受信した衛星力 の繰り返し信号の繰り返し回数の積算値と、既知点に て同一時刻に受信した同繰り返し信号の繰り返し回数の積算値との 2重位相差を算 出するステップと、 移動局の移動に関する動的状態量を検出するステップと、 Calculating a double phase difference between an integrated value of the number of repetitions of the repetition signal of the satellite power received by the mobile station and an integrated value of the number of repetitions of the same repetition signal received at the same time at a known point; Detecting a dynamic state quantity related to movement of the mobile station;
前記動的状態量に基づいて前記移動局の位置を時間更新するステップと、 同一時刻に係る、前記 2重位相差と、衛星位置と、移動局の位置との間の関係式を 、所定のタイミング毎に導出するステップと、  Time updating the position of the mobile station based on the dynamic state quantity; and a relational expression between the double phase difference, the satellite position, and the position of the mobile station at the same time, Deriving for each timing;
前記導出した関係式に基づ 、て、繰り返し回数の整数部の初期値を推定するステ ップとを含む、位置検出方法。  Estimating an initial value of an integer part of the number of repetitions based on the derived relational expression.
[8] 移動局に設けられ衛星から送信される衛星信号を受信する受信手段と、演算部と を含む、移動局の位置を検出する位置検出装置であって、 [8] A position detecting device for detecting the position of the mobile station, comprising: a receiving unit provided in the mobile station for receiving a satellite signal transmitted from a satellite; and an arithmetic unit,
演算部は、前記受信手段及び既知点で受信した衛星信号の搬送波位相の積算値 の 2重位相差と、同一時刻での衛星位置と、同一時刻での移動局の位置との間の関 係式を導出し、移動局の移動に関する動的状態量の検出結果に基づいて前記移動 局の位置を時間更新した前記関係式に基づ!/、て、前記搬送波位相の積算値に含ま れている整数値バイアスを推定する、位置検出装置。  The arithmetic unit is configured to calculate a relationship between the double phase difference of the integrated value of the carrier phase of the satellite signal received at the receiving means and the known point, the satellite position at the same time, and the position of the mobile station at the same time. An equation is derived, and based on the relational expression obtained by time updating the position of the mobile station based on the detection result of the dynamic state quantity relating to the movement of the mobile station, based on the relational expression! Position detection device that estimates the integer value bias.
PCT/JP2004/016989 2003-11-18 2004-11-16 Position detection device and method WO2005050247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-388235 2003-11-18
JP2003388235A JP2005147952A (en) 2003-11-18 2003-11-18 Device for detecting position, and method therefor

Publications (1)

Publication Number Publication Date
WO2005050247A1 true WO2005050247A1 (en) 2005-06-02

Family

ID=34616184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016989 WO2005050247A1 (en) 2003-11-18 2004-11-16 Position detection device and method

Country Status (2)

Country Link
JP (1) JP2005147952A (en)
WO (1) WO2005050247A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163335A (en) * 2005-12-15 2007-06-28 Mitsubishi Electric Corp Attitude locating device, attitude locating method, and attitude locating program
JP4757068B2 (en) * 2006-03-20 2011-08-24 富士通株式会社 Positioning calculation device
JP2008039690A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Carrier-wave phase type position measuring instrument
JP4918829B2 (en) * 2006-08-31 2012-04-18 株式会社日立製作所 Positioning method and apparatus
JP2010071686A (en) * 2008-09-16 2010-04-02 Sumitomo Electric Ind Ltd Positioning apparatus, computer program, and positioning method
JP5262786B2 (en) * 2009-02-10 2013-08-14 トヨタ自動車株式会社 Turning characteristic control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253734A (en) * 1997-03-12 1998-09-25 Japan Radio Co Ltd Positioning device
JPH11281728A (en) * 1998-03-31 1999-10-15 Japan Aviation Electronics Ind Ltd Positioning method combining kinematic type gps and inertial navigation system
US5991691A (en) * 1997-02-20 1999-11-23 Raytheon Aircraft Corporation System and method for determining high accuracy relative position solutions between two moving platforms
US6127968A (en) * 1998-01-28 2000-10-03 Trimble Navigation Limited On-the-fly RTK positioning system with single frequency receiver
JP2002040124A (en) * 2000-07-24 2002-02-06 Furuno Electric Co Ltd Measuring device for carrier phase relative position
US6469663B1 (en) * 2000-03-21 2002-10-22 Csi Wireless Inc. Method and system for GPS and WAAS carrier phase measurements for relative positioning
JP2003194911A (en) * 2001-12-25 2003-07-09 Churyo Eng Kk Method for resetting error in location measurement after cycle slip in gps satellite radio wave

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991691A (en) * 1997-02-20 1999-11-23 Raytheon Aircraft Corporation System and method for determining high accuracy relative position solutions between two moving platforms
JPH10253734A (en) * 1997-03-12 1998-09-25 Japan Radio Co Ltd Positioning device
US6127968A (en) * 1998-01-28 2000-10-03 Trimble Navigation Limited On-the-fly RTK positioning system with single frequency receiver
JPH11281728A (en) * 1998-03-31 1999-10-15 Japan Aviation Electronics Ind Ltd Positioning method combining kinematic type gps and inertial navigation system
US6469663B1 (en) * 2000-03-21 2002-10-22 Csi Wireless Inc. Method and system for GPS and WAAS carrier phase measurements for relative positioning
JP2002040124A (en) * 2000-07-24 2002-02-06 Furuno Electric Co Ltd Measuring device for carrier phase relative position
JP2003194911A (en) * 2001-12-25 2003-07-09 Churyo Eng Kk Method for resetting error in location measurement after cycle slip in gps satellite radio wave

Also Published As

Publication number Publication date
JP2005147952A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
Godha Performance evaluation of low cost MEMS-based IMU integrated with GPS for land vehicle navigation application
US7292185B2 (en) Attitude determination exploiting geometry constraints
US6496778B1 (en) Real-time integrated vehicle positioning method and system with differential GPS
US7409290B2 (en) Positioning and navigation method and system thereof
US6167347A (en) Vehicle positioning method and system thereof
US7498980B2 (en) Carrier phase GPS positioning device and method
US20110238308A1 (en) Pedal navigation using leo signals and body-mounted sensors
US20090115656A1 (en) Systems and Methods for Global Differential Positioning
JP5078082B2 (en) POSITIONING DEVICE, POSITIONING SYSTEM, COMPUTER PROGRAM, AND POSITIONING METHOD
Georgy et al. Vehicle navigator using a mixture particle filter for inertial sensors/odometer/map data/GPS integration
JP2000502802A (en) Improved vehicle navigation system and method utilizing GPS speed
CN102436004A (en) Positioning system and method thereof
JP2000506604A (en) Improved vehicle navigation system and method
US20110153266A1 (en) Augmented vehicle location system
KR100443550B1 (en) IMU-GPS Integrated System including error correction system, Method for reducing search space of integer ambiguity, Method for detecting Cycle slip, and position, velocity, attitude determination Method using the same
JP2008039691A (en) Carrier-wave phase type position measuring instrument
JP2008039690A (en) Carrier-wave phase type position measuring instrument
Li et al. A high-precision vehicle navigation system based on tightly coupled PPP-RTK/INS/odometer integration
JP2010223684A (en) Positioning apparatus for moving body
Elmezayen et al. Performance evaluation of real-time tightly-coupled GNSS PPP/MEMS-based inertial integration using an improved robust adaptive Kalman filter
WO2005050247A1 (en) Position detection device and method
Vana et al. Benefits of motion constraining for robust, low-cost, dual-frequency GNSS PPP+ MEMS IMU navigation
JP2010112759A (en) Mobile body positioning apparatus
JP4400330B2 (en) Position detection apparatus and position detection method
Elisson et al. Low cost relative GNSS positioning with IMU integration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase