JP2007163335A - Attitude locating device, attitude locating method, and attitude locating program - Google Patents

Attitude locating device, attitude locating method, and attitude locating program Download PDF

Info

Publication number
JP2007163335A
JP2007163335A JP2005361369A JP2005361369A JP2007163335A JP 2007163335 A JP2007163335 A JP 2007163335A JP 2005361369 A JP2005361369 A JP 2005361369A JP 2005361369 A JP2005361369 A JP 2005361369A JP 2007163335 A JP2007163335 A JP 2007163335A
Authority
JP
Japan
Prior art keywords
phase difference
value
double phase
calculated
gps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005361369A
Other languages
Japanese (ja)
Inventor
Naoyuki Kajiwara
尚幸 梶原
Takeshi Kuroda
健 黒田
Junichi Takiguchi
純一 瀧口
Yoshihiro Shima
嘉宏 島
Ryujiro Kurosaki
隆二郎 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005361369A priority Critical patent/JP2007163335A/en
Publication of JP2007163335A publication Critical patent/JP2007163335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the enlargement of the error of an attitude angle when an observed value of the double phase difference from at least one baseline vector is obtained in locating the attitude angle. <P>SOLUTION: A double phase difference calculation section 120 calculates the observed value of the double phase difference based on carrier wave phases observed by a plurality of GPS (Global Positioning System) receivers 952. A double phase difference estimation section 130 calculates an estimated value of the double phase difference based on the located value of the attitude angle. A double phase difference residual calculation section 140 calculates difference between the observed value of the double phase difference and the estimated value of the double phase difference. A Kalman filter 150 calculates a corrective amount based on the difference between the observed value and the estimated value of the double phase difference. An attitude angle calculation section 110 corrects, with the corrective amount, the calculated value of the attitude angle calculated by integrating the rate measured by a gyroscope 953, and calculates the located value of the attitude angle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、GPS(Global Positioning System)とジャイロセンサ(以下、ジャイロとする)を用いた姿勢標定処理における姿勢標定装置、姿勢標定方法および姿勢標定プログラムに関するものである。   The present invention relates to an attitude determination device, an attitude determination method, and an attitude determination program in an attitude determination process using a GPS (Global Positioning System) and a gyro sensor (hereinafter referred to as a gyro).

姿勢標定技術にはGPSが用いられ、GPSだけ(非カップリング)を用いて姿勢標定するもの、GPSとジャイロをカップリングして姿勢標定するものがある。
GPSを用いる従来の姿勢標定では、同時刻の搬送波位相について二重位相差を観測する必要があり、GPS受信機間の受信タイミングの同期を取るために、全てのGPS受信機を単一の発信器で駆動する、いわゆる専用受信機が使われている。
また、GPSだけ(非カップリング)を用いた従来の姿勢標定では、エポック(観測周期)毎に搬送波位相の整数値バイアスを探索して二重位相差を求めている。そして、二重位相差で特定される各GPS受信機の相対位置に基づいて2本以上の基線ベクトルを算出し、2本以上の基線ベクトルに基づいて姿勢角を算出している。
また、GPSとジャイロをカップリングした従来の姿勢標定では、ジャイロの測定値に基づく姿勢角とGPS受信機の観測値に基づく姿勢角との差分に基づいてジャイロの測定値に基づく姿勢角を補正(観測更新)して姿勢角を標定している。そして、GPS受信機の観測値に基づく姿勢角の計算値を算出するため、上記のGPSだけ(非カップリング)を用いた従来の姿勢標定と同じく、二重位相差を算出して2本以上の基線ベクトルを算出している。
上記従来の姿勢標定では、1本の基線ベクトルで方位角と仰角とが定まり、2本の基線ベクトルで形成される平面に対して回転角が定まることを利用して姿勢角(回転角[ロール]、仰角[ピッチ]、方位角[ヨー])を算出している。
特開平11−94573号公報
GPS is used as the attitude determination technology, and there are an attitude determination using only GPS (non-coupling) and an attitude determination by coupling GPS and a gyro.
In conventional attitude orientation using GPS, it is necessary to observe a double phase difference with respect to the carrier phase at the same time, and in order to synchronize the reception timing between GPS receivers, all GPS receivers can transmit a single signal. A so-called dedicated receiver is used.
Further, in the conventional attitude orientation using only GPS (non-coupling), an integer value bias of the carrier phase is searched for each epoch (observation period) to obtain a double phase difference. Then, two or more baseline vectors are calculated based on the relative positions of the GPS receivers identified by the double phase difference, and the attitude angle is calculated based on the two or more baseline vectors.
Also, in the conventional attitude orientation that couples GPS and gyro, the attitude angle based on the gyro measurement value is corrected based on the difference between the attitude angle based on the gyro measurement value and the attitude angle based on the observation value of the GPS receiver. (Observation update) and the attitude angle is standardized. And in order to calculate the calculated value of the attitude angle based on the observation value of the GPS receiver, as in the conventional attitude orientation using only the GPS (non-coupling), two or more double phase differences are calculated. The baseline vector is calculated.
In the above conventional orientation determination, the azimuth angle and the elevation angle are determined by one baseline vector, and the rotation angle is determined with respect to the plane formed by the two baseline vectors. ], Elevation angle [pitch], azimuth angle [yaw]).
JP-A-11-94573

しかし、GPSを用いる従来の姿勢標定は、専用受信機を使用するため用途が限定され、ハードウェアの構成も特殊となることから姿勢標定装置は必然的に高価なものとなる。
そして、GPSだけ(非カップリング)を用いた従来の姿勢標定では、2本以上の基線ベクトルに対して二重位相差の観測値が得られていない場合、姿勢角を得ることが出来ない。つまり、3機以上のGPS受信機について搬送波位相を観測し二重位相差の観測値が得られていない場合、2本以上の基線ベクトルを算出できず姿勢角を得ることが出来ない。
さらに、エポック毎に搬送波位相の整数値バイアスを探索する必要があるため、計算負荷が高く、前回のエポックまでに算出した姿勢角を利用して不適切な観測値を棄却することが出来ない。
また、GPSとジャイロをカップリングした従来の姿勢標定では、カップリングに姿勢角が利用されているため、2本以上の基線ベクトルに対して二重位相差が観測されてなければ観測更新が出来ずに姿勢角の標定値の精度が落ちる。
つまり、3機以上のGPS受信機が同時にGPS観測を行う必要があるためGPS観測のアベイラビリティが低下する可能性が高くなる。そこで、姿勢角の標定値の精度を落とさないためには安定性の高いジャイロが必要となり姿勢標定装置が比較的高価なものとなる。
また、オイラー角(局所座標系[例えば、ジャイロの測定値が属する座標系]での姿勢角)には特異点(ピッチが90°)が存在し、特異点ではロールとヨーとを区別して算出することができない。このため、3つ以上のGPS受信機が同時にGPS観測が行える場合でも、特異点においては観測更新が正常に出来ず、姿勢角の標定値の精度が落ちる。
However, the conventional attitude determination using GPS has a limited use because a dedicated receiver is used, and the hardware configuration is also special, so that the attitude determination apparatus is inevitably expensive.
And in the conventional attitude | position orientation which uses only GPS (non-coupling), when the observation value of a double phase difference is not obtained with respect to two or more baseline vectors, an attitude angle cannot be obtained. That is, when the carrier phase is observed for three or more GPS receivers and the observation value of the double phase difference is not obtained, two or more baseline vectors cannot be calculated and the attitude angle cannot be obtained.
Furthermore, since it is necessary to search for an integer value bias of the carrier phase for each epoch, the calculation load is high, and inappropriate observation values cannot be rejected using the attitude angles calculated up to the previous epoch.
In addition, in the conventional attitude orientation that couples GPS and gyro, the attitude angle is used for coupling, so the observation update can be performed if no double phase difference is observed for two or more baseline vectors. The accuracy of the orientation value of the posture angle is reduced.
That is, since it is necessary to perform GPS observation simultaneously by three or more GPS receivers, there is a high possibility that the availability of GPS observation will be reduced. Therefore, in order not to deteriorate the accuracy of the orientation value of the posture angle, a highly stable gyroscope is required, and the posture orientation device becomes relatively expensive.
Also, there is a singular point (pitch is 90 °) in the Euler angle (attitude angle in the local coordinate system [for example, the coordinate system to which the measured value of the gyro belongs)], and the singular point is calculated by distinguishing between roll and yaw. Can not do it. For this reason, even when three or more GPS receivers can perform GPS observation at the same time, the observation update cannot be normally performed at the singular point, and the accuracy of the orientation value of the posture angle is lowered.

本発明は、例えば、少なくとも1本の基線ベクトルに対する二重位相差の観測値が得られる場合に姿勢角の誤差の拡大を抑えることを可能にすることを目的とする。また、例えば、GPS観測のアベイラビリティを向上することを目的とする。また、例えば、安定性の低い低価格なジャイロを使用した構成を可能にすることを目的とする。   An object of the present invention is to make it possible to suppress an increase in an error in posture angle when, for example, an observation value of a double phase difference with respect to at least one baseline vector is obtained. For example, it aims at improving the availability of GPS observation. Another object is to enable a configuration using a low-cost gyro with low stability.

本発明の姿勢標定装置は、ジャイロの測定値を用いて計算した姿勢角の計算値をGPS(Global Positioning System)受信機の観測値に基づいて補正して姿勢角の標定値を算出する姿勢標定装置であり、前記ジャイロの測定値に基づき中央処理装置を用いて姿勢角の計算値を算出する姿勢角計算部と、複数のGPS受信機が観測した搬送波位相を入力し中央処理装置を用いて複数のGPS受信機における二重位相差の観測値を算出する二重位相差算出部と、算出した姿勢角の標定値に基づき中央処理装置を用いて複数のGPS受信機における二重位相差の推定値を算出する二重位相差推定部と、前記二重位相差算出部が算出した複数のGPS受信機における二重位相差の観測値と前記二重位相差推定部が算出した複数のGPS受信機における二重位相差の推定値との差分を中央処理装置を用いて算出する二重位相差残差計算部と、前記二重位相差残差計算部が算出した複数のGPS受信機における二重位相差の観測値と推定値との差分に基づき前記姿勢角計算部が算出した姿勢角の計算値に対する補正量を中央処理装置を用いて算出する補正量算出部と、前記補正量算出部が算出した補正量に基づき前記姿勢角計算部が算出した姿勢角の計算値を中央処理装置を用いて補正して姿勢角の標定値を算出する姿勢角標定部とを備えたことを特徴とする。   The posture orientation apparatus of the present invention corrects the calculated value of the posture angle calculated using the measured value of the gyro based on the observation value of a GPS (Global Positioning System) receiver, and calculates the orientation value of the posture angle. An attitude angle calculation unit that calculates a calculated value of the attitude angle using a central processing unit based on the measured value of the gyro, and a carrier phase that is observed by a plurality of GPS receivers, and the central processing unit is used. A double phase difference calculation unit for calculating an observation value of a double phase difference in a plurality of GPS receivers, and a double phase difference in a plurality of GPS receivers using a central processing unit based on the calculated orientation value of the attitude angle. A double phase difference estimator for calculating an estimated value; a double phase difference observed value in a plurality of GPS receivers calculated by the double phase difference calculator; and a double phase difference estimator calculated by the double phase difference estimator. A plurality of GPS units calculated by the dual phase difference residual calculation unit, and a double phase difference residual calculation unit that calculates a difference from the estimated value of the double phase difference using a central processing unit. A correction amount calculation unit for calculating a correction amount for the calculated value of the attitude angle based on the difference between the observed value and the estimated value of the double phase difference in the receiver using a central processing unit; and A posture angle locator that corrects a calculated value of the posture angle calculated by the posture angle calculator based on the correction amount calculated by the correction amount calculator using a central processing unit and calculates a posture value of the posture angle. It is characterized by that.

本発明によれば、オイラー姿勢角ではなくで二重位相差を利用してGPSとジャイロとをカップリング、つまり、観測更新することにより、例えば、少なくとも1本の基線ベクトルに対する二重位相差の観測値を得られている場合に姿勢角の誤差の拡大を抑えることが可能である。また、例えば、GPS観測のアベイラビリティを向上することができる。また、例えば、安定性の低い低価格なジャイロを使用した構成を可能にすることができる。   According to the present invention, the GPS and the gyro are coupled, that is, the observation is updated by using the double phase difference instead of the Euler attitude angle, for example, the double phase difference with respect to at least one baseline vector is obtained. When the observed value is obtained, it is possible to suppress an increase in the error of the attitude angle. For example, the availability of GPS observation can be improved. Further, for example, a configuration using a low-cost gyro with low stability can be made possible.

二重位相差を利用してGPSとジャイロとをカップリングする姿勢標定装置、姿勢標定方法および姿勢標定プログラムについて以下に説明する。
特に、複数のGPS受信機における二重位相差の観測値とジャイロの測定値に基づく二重位相差の推定値との差分に基づいて、ジャイロの測定値に基づく姿勢角の計算値を補正し姿勢角を標定する姿勢標定装置、姿勢標定方法および姿勢標定プログラムについて説明する。
A posture locating device, a posture locating method, and a posture locating program for coupling a GPS and a gyro using a double phase difference will be described below.
In particular, based on the difference between the observed double phase difference value and the estimated double phase difference value based on the gyro measurement value in multiple GPS receivers, the calculated attitude angle based on the gyro measurement value is corrected. A posture locating device, a posture locating method, and a posture locating program for locating posture angles will be described.

実施の形態1.
図1は、実施の形態1における姿勢標定システム100の構成の概要図である。
1つのプラットフォーム954上にGPSアンテナ951とGPS受信機952とジャイロ953とを配置し、一緒に動くようにする。このとき、複数のGPSアンテナ951間の相対位置関係は拘束されており、変化しない。
姿勢標定装置101はGPSアンテナ951とGPS受信機952とジャイロ953とが配置された姿勢標定対象(特に、移動体)の姿勢角(ロール[回転角]、ピッチ[仰角]、ヨー[方位角])を標定する。
ここで、複数のGPSアンテナ951間の相対位置関係が保てるのであれば、必ずしもプラットフォーム954を設ける必要はない。
また、GPSアンテナ951間の基線ベクトルにより形成される座標系の座標軸とジャイロ953の測定値が属する座標系の座標軸とを平行に位置付けるため、ジャイロ953の設置姿勢のアライメントを物理的に実施するか、座標軸のずれをソフトウェア的に算出して補正する処理を実装する。以下、姿勢標定装置101が、ジャイロ953の座標軸のずれをソフトウェア的に算出して補正する処理を実装する形態について説明する。ここで、基線ベクトルとは、2点間の距離と方向を示すベクトルであり、例えば、図1における主局から従局(1)へのベクトルや主局から従局(2)へのベクトルのことである。
図1では、姿勢標定システム100は、GPSアンテナ951およびGPS受信機952をプラットフォーム954に3台備えているが、備える台数は2台でも4台以上でも構わない。3台のGPS受信機952のうち最低2台がGPSアンテナ951を介してGPS衛星から測位信号である搬送波を受信し観測値を算出(GPS観測)できれば、1つの基線ベクトルが定まり、姿勢標定装置101は姿勢角を観測更新し標定することができる。
また、ジャイロ953は直交する3軸それぞれの方向について角速度を測定する3軸ジャイロである。
なお、姿勢標定装置101は、ジャイロ953が出力した角速度を積分して姿勢角の算出を行う。以下、ジャイロ953が出力する角速度に対してソフトウェア的に補正量を算出してレベリングし、レベリングした角速度を姿勢角の算出に使用する姿勢標定装置101について説明する。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram of a configuration of posture orientation system 100 in the first embodiment.
A GPS antenna 951, a GPS receiver 952, and a gyro 953 are arranged on one platform 954 so as to move together. At this time, the relative positional relationship between the plurality of GPS antennas 951 is constrained and does not change.
The posture locating device 101 includes posture angles (roll [rotation angle], pitch [elevation angle], yaw [azimuth angle]] of a posture determination target (particularly, a moving object) in which a GPS antenna 951, a GPS receiver 952, and a gyro 953 are arranged. ).
Here, the platform 954 is not necessarily provided as long as the relative positional relationship between the plurality of GPS antennas 951 can be maintained.
Also, in order to position the coordinate axis of the coordinate system formed by the base line vector between the GPS antennas 951 and the coordinate axis of the coordinate system to which the measured value of the gyro 953 belongs in parallel, is the installation posture alignment of the gyro 953 physically executed? A process for calculating and correcting the deviation of the coordinate axes by software is implemented. Hereinafter, a mode will be described in which the posture locating apparatus 101 implements a process of calculating and correcting the deviation of the coordinate axis of the gyro 953 by software. Here, the baseline vector is a vector indicating the distance and direction between two points, for example, the vector from the master station to the slave station (1) or the vector from the master station to the slave station (2) in FIG. is there.
In FIG. 1, the posture locating system 100 includes three GPS antennas 951 and GPS receivers 952 on the platform 954, but the number may be two or four or more. If at least two of the three GPS receivers 952 can receive a carrier wave as a positioning signal from a GPS satellite via the GPS antenna 951 and calculate an observed value (GPS observation), one baseline vector is determined, and the attitude locator 101 can observe and update the attitude angle to determine the orientation.
The gyro 953 is a three-axis gyro that measures angular velocities in the directions of three orthogonal axes.
The posture locating device 101 integrates the angular velocity output from the gyro 953 and calculates the posture angle. Hereinafter, the posture locating device 101 that calculates and levels a correction amount in software for the angular velocity output from the gyro 953 and uses the leveled angular velocity for calculating the posture angle will be described.

図2は、実施の形態1における姿勢標定システム100のハードウェア構成図である。
姿勢標定システム100は、複数のGPSアンテナ951と各GPSアンテナ951に接続するGPS受信機952と、3軸方向(ロール、ピッチ、ヨー)の角速度を測定するジャイロ953と、姿勢標定装置101とを備える。
各GPS受信機952は、それぞれが接続するGPSアンテナ951がGPS衛星から受信した測位信号(L1、L2、L5など)の搬送波に基づいて搬送波位相、衛星軌道情報、GPS単独測位結果などの観測値を出力する。
ジャイロ953は3軸方向(ロール、ピッチ、ヨー)の角速度(以下、レートという)を測定し出力する。
FIG. 2 is a hardware configuration diagram of the posture orientation system 100 according to the first embodiment.
The posture orientation system 100 includes a plurality of GPS antennas 951, a GPS receiver 952 connected to each GPS antenna 951, a gyro 953 that measures angular velocities in three axial directions (roll, pitch, yaw), and a posture orientation device 101. Prepare.
Each GPS receiver 952 is based on a carrier wave of a positioning signal (L1, L2, L5, etc.) received from a GPS satellite by a GPS antenna 951 to which each GPS receiver 951 is connected. Is output.
The gyro 953 measures and outputs an angular velocity (hereinafter referred to as a rate) in three axial directions (roll, pitch, yaw).

姿勢標定装置101は、プログラムを実行するCPU(Central Processing Unit:中央処理装置)911を備えている。CPU911はバスを介して記憶装置920と接続され、記憶装置920はRAM、ROM、磁気ディスク装置などの記憶機器で構成される。
記憶装置920には、オペレーティングシステム(OS)921、プログラム群923、ファイル群924が記憶されている。プログラム群923は、CPU911、OS921により実行される。
上記プログラム群923には、実施の形態の説明において「〜部」、「カルマンフィルタ」、「アンテナセパレーション」として説明する機能を実行するプログラムが記憶されている。プログラムは、CPU911により読み出され実行される。
ファイル群924には、実施の形態の説明において、「〜情報」として説明するデータ、「〜部」として説明する機能を実行した際の判定結果・演算結果を示すデータ、「〜部」として説明する機能を実行するプログラム間で受け渡しするデータなどが「〜ファイル」として記憶されている。例えば、標定した姿勢角、ジャイロ953が出力したレート、GPS受信機952が出力した搬送波位相などの情報が「〜ファイル」として記憶される。
また、実施の形態の説明において、フローチャートや構成図の矢印の部分は主としてデータの入出力を示し、そのデータの入出力のためにデータは、記憶装置920、あるいは、信号線やその他の伝送媒体により伝送される。
また、実施の形態の説明において「〜部」として説明するものは、ROMに記憶されたファームウェアで実現されていても構わない。或いは、ソフトウェアのみ、或いは、ハードウェアのみ、或いは、ソフトウェアとハードウェアとの組み合わせ、さらには、ファームウェアとの組み合わせで実施されても構わない。
The posture orientation apparatus 101 includes a CPU (Central Processing Unit) 911 that executes a program. The CPU 911 is connected to a storage device 920 via a bus, and the storage device 920 includes storage devices such as a RAM, a ROM, and a magnetic disk device.
The storage device 920 stores an operating system (OS) 921, a program group 923, and a file group 924. The program group 923 is executed by the CPU 911 and the OS 921.
The program group 923 stores programs for executing functions described as “˜unit”, “Kalman filter”, and “antenna separation” in the description of the embodiment. The program is read and executed by the CPU 911.
In the file group 924, in the description of the embodiment, the data described as “˜information”, the data indicating the determination result / calculation result when the function described as “˜part” is executed, and described as “˜part”. Data to be passed between programs that execute the function to be performed is stored as “˜file”. For example, information such as the orientation angle determined, the rate output by the gyro 953, and the carrier wave phase output by the GPS receiver 952 are stored as “˜file”.
Further, in the description of the embodiments, the arrows in the flowcharts and the configuration diagrams mainly indicate data input / output, and the data for the data input / output is stored in the storage device 920 or a signal line or other transmission medium. It is transmitted by.
Moreover, what is described as “˜unit” in the description of the embodiments may be realized by firmware stored in the ROM. Alternatively, it may be implemented by software alone, hardware alone, a combination of software and hardware, or a combination of firmware.

図3は、実施の形態1における姿勢標定装置101の機能構成図である。
実施の形態1における姿勢標定装置101が備える姿勢標定装置101の機能構成を図3に基づいて以下に説明する。
初期値取得部210は姿勢角の初期値を取得する。
アンテナセパレーション230は各GPSアンテナ951の幾何学的配置(機体座標系の基線ベクトルbBODY)を算出する。
方向余弦行列計算部220は姿勢角に基づいて機体座標系の基線ベクトルbBODYを標定座標系の基線ベクトルbNEDに変換する方向余弦行列C を計算する。以下、局所座標系(姿勢標定装置101が標定する姿勢角の座標系)をNED(North East Down)座標系として説明する。
デザイン行列計算部240は、GPS受信機952が出力する衛星軌道情報を入力し、衛星軌道情報により定まる方向余弦基底ベクトルe(以下、LOS[Line Of Sight]ベクトルeとする)に基づくデザイン行列Aを計算する。方向余弦基底ベクトルeはGPS受信機952からGPS衛星への基底となるベクトルを示す。
二重位相差推定部130はNED座標系の基線ベクトルbNEDとデザイン行列Aとに基づいて二重位相差の推定値Abλを算出する。
二重位相差算出部120は各GPS受信機952が出力したそれぞれの搬送波位相φに基づいて二重位相差の観測値Wλを算出する。
二重位相差残差計算部140は二重位相差の推定値Abλと二重位相差の観測値Wλとの差分dZλを計算する。
カルマンフィルタ150(補正量算出部の一例)は、状態量(例えば、姿勢角やジャイロセンサ測定誤差の推定値)のダイナミクスをモデル化した状態方程式、観測量(例えば、二重位相差の観測値)と状態量との関係を定式化した観測方程式の両方程式に基づいて状態量の誤差推定を行い状態量の推定精度を改善するフィードバックフィルタであり、差分dZλに基づいてジャイロ953のレート誤差補正量・ジャイロ953とGPSアンテナ951との軸ずれ補正量・姿勢角誤差補正量などの補正量を算出する。
レート補正部250(姿勢角標定部の一例)はジャイロ953が出力したレートをレート誤差補正量に基づいて補正する。
姿勢角計算部110(姿勢角標定部の一例)は、ジャイロ953が出力しレート補正部250が補正したレートで前回の姿勢角の標定値または姿勢角の初期値を積分し、軸ずれ補正量、姿勢角誤差補正量で補正して姿勢角の標定値を算出する。
FIG. 3 is a functional configuration diagram of posture orientation apparatus 101 in the first embodiment.
A functional configuration of the posture locating device 101 included in the posture locating device 101 according to the first embodiment will be described below with reference to FIG.
The initial value acquisition unit 210 acquires an initial value of the posture angle.
The antenna separation 230 calculates the geometrical arrangement of each GPS antenna 951 (baseline vector b BODY in the body coordinate system).
The direction cosine matrix calculation unit 220 calculates a direction cosine matrix C B N that converts the base line vector b BODY of the airframe coordinate system into the base line vector b NED of the orientation coordinate system based on the attitude angle. Hereinafter, the local coordinate system (the coordinate system of the posture angle determined by the posture locating apparatus 101) will be described as an NED (North East Down) coordinate system.
The design matrix calculation unit 240 receives satellite orbit information output from the GPS receiver 952 and receives a design matrix A based on a direction cosine basis vector e (hereinafter referred to as LOS [Line Of Light] vector e) determined by the satellite orbit information. Calculate The direction cosine basis vector e indicates a vector serving as a basis from the GPS receiver 952 to the GPS satellite.
The double phase difference estimation unit 130 calculates a double phase difference estimation value Ab λ based on the base line vector b NED of the NED coordinate system and the design matrix A.
The double phase difference calculation unit 120 calculates the observation value W λ of the double phase difference based on each carrier phase φ output from each GPS receiver 952.
The double phase difference residual calculation unit 140 calculates a difference dZ λ between the double phase difference estimated value Ab λ and the double phase difference observed value W λ .
The Kalman filter 150 (an example of a correction amount calculation unit) is a state equation modeling the dynamics of state quantities (for example, estimated values of attitude angles and gyro sensor measurement errors), observation quantities (for example, observation values of double phase differences). Is a feedback filter that improves the estimation accuracy of the state quantity based on both equations of the observation equation that formulates the relationship between the state quantity and the state quantity, and corrects the rate error of the gyro 953 based on the difference dZ λ A correction amount such as a correction amount of an axis deviation between the gyro 953 and the GPS antenna 951 and a correction amount of an attitude angle error are calculated.
The rate correction unit 250 (an example of a posture angle locating unit) corrects the rate output by the gyro 953 based on the rate error correction amount.
The posture angle calculation unit 110 (an example of the posture angle locating unit) integrates the orientation value of the previous posture angle or the initial value of the posture angle at a rate output from the gyro 953 and corrected by the rate correction unit 250, and an axis deviation correction amount. Then, the orientation angle orientation correction value is corrected to calculate the orientation angle orientation value.

図4は、実施の形態1における姿勢標定システム100の姿勢標定処理を示すフローチャートである。
実施の形態1における姿勢標定システム100が実行する姿勢標定処理の流れ(姿勢標定方法)について図4に基づいて以下に説明する。
なお、姿勢標定処理はコンピュータに実行させることができる。姿勢標定処理をコンピュータに実行させるプログラムが姿勢標定プログラムである。
FIG. 4 is a flowchart showing the posture orientation processing of the posture orientation system 100 according to the first embodiment.
A flow of posture orientation processing (posture orientation method) executed by the posture orientation system 100 according to the first embodiment will be described below with reference to FIG.
Note that the orientation determination process can be executed by a computer. A program that causes a computer to execute posture orientation processing is a posture orientation program.

姿勢標定装置101は、GPS受信機952が出力した搬送波位相φに基づいて二重位相差の観測値Wλを算出する(S101〜S102:二重位相差観測値算出処理)と共に、ジャイロ953が測定したレートに基づいて二重位相差の推定値Abλを算出し(S103〜S108:二重位相差推定値算出処理)、二重位相差の観測値Wλと二重位相差の推定値Abλとの差分dZλに基づく補正量で姿勢角を補正し姿勢角の標定値を算出する(S109〜S111:姿勢角標定値算出処理)。 Attitude locating system 101 calculates the observed value W lambda double phase difference based on carrier phase φ of the GPS receiver 952 has output: with (S101 and S102 double phase difference observation value calculation process), the gyro 953 Based on the measured rate, an estimated value Ab λ of the double phase difference is calculated (S103 to S108: double phase difference estimated value calculation processing), and the observed value W λ of the double phase difference and the estimated value of the double phase difference are calculated. The posture angle is corrected by the correction amount based on the difference dZ λ from Ab λ and the orientation angle orientation value is calculated (S109 to S111: orientation angle orientation value calculation processing).

ここで、姿勢標定処理における二重位相差の観測値と推定値との関係について説明する。
まず、二重位相差について説明する。
1機の同じGPS衛星に対する2台のGPS受信機の観測値の差を受信機間の一重差といい、2機のGPS衛星に対するGPS受信機の観測値の差を衛星間の一重差という。そして、2つの受信機間の一重差同士の差、または2つの衛星間の一重差同士の差を二重差といい、二重位相差は位相の二重差のことである。
Here, the relationship between the observed value and the estimated value of the double phase difference in the attitude determination process will be described.
First, the double phase difference will be described.
The difference between the observation values of two GPS receivers for the same GPS satellite is called a single difference between the receivers, and the difference between the GPS receiver observation values for two GPS satellites is called a single difference between the satellites. The difference between the single differences between the two receivers or the difference between the single differences between the two satellites is called a double difference, and the double phase difference is a double difference in phase.

図5は、基線ベクトルbとLOSベクトルeとGPSアンテナからGPS衛星までの距離ρとの関係図である。
図5において、「a」,「b」はGPSアンテナを示し、「i」,「j」はGPS衛星を示す。そして、「bba」はGPSアンテナaからGPSアンテナbへの基線ベクトルを示す。また、「e 」はGPSアンテナaからGPS衛星iへのLOSベクトルを示し、「e 」はGPSアンテナaからGPS衛星jへのLOSベクトルを示す。また、「ρ 」はGPSアンテナaからGPS衛星iまでの距離を示し、「ρ 」はGPSアンテナbからGPS衛星iまでの距離を示し、「ρ 」はGPSアンテナaからGPS衛星jまでの距離を示し、「ρ 」はGPSアンテナbからGPS衛星jまでの距離を示す。
FIG. 5 is a relationship diagram between the base line vector b, the LOS vector e, and the distance ρ from the GPS antenna to the GPS satellite.
In FIG. 5, “a” and “b” indicate GPS antennas, and “i” and “j” indicate GPS satellites. “B ba ” indicates a baseline vector from the GPS antenna a to the GPS antenna b. “E a i ” indicates the LOS vector from the GPS antenna a to the GPS satellite i, and “e a j ” indicates the LOS vector from the GPS antenna a to the GPS satellite j. “Ρ a i ” indicates the distance from the GPS antenna a to the GPS satellite i, “ρ b i ” indicates the distance from the GPS antenna b to the GPS satellite i, and “ρ a j ” indicates the distance from the GPS antenna a. The distance to the GPS satellite j is indicated, and “ρ b j ” indicates the distance from the GPS antenna b to the GPS satellite j.

図5において、距離の二重差「ρab ji」はGPSアンテナからGPS衛星までの距離ρを用いて以下の[式1]で表わされる。 In FIG. 5, the double difference “ρ ab ji ” of the distance is expressed by the following [Equation 1] using the distance ρ from the GPS antenna to the GPS satellite.

ρab ji=(ρ −ρ )−(ρ −ρ ) [式1] ρ ab ji = (ρ b j −ρ a j ) − (ρ b i −ρ a i ) [Formula 1]

また、GPSアンテナからGPS衛星までの距離ρはGPSアンテナ−GPS衛星間の搬送波の数に搬送波の波長λを乗算した値で表わされ、搬送波の数はGPS受信機が観測可能なドップラー(搬送波位相の時間変化率)の積算値である搬送波位相φと、整数値バイアスと呼ばれる搬送波の数の整数値Nとの合計値で表わされる。つまり、GPSアンテナからGPS衛星までの距離ρは以下の[式2]で表わされる。   The distance ρ from the GPS antenna to the GPS satellite is represented by a value obtained by multiplying the number of carriers between the GPS antenna and the GPS satellite by the wavelength λ of the carrier, and the number of carriers is Doppler (carrier wave) that can be observed by the GPS receiver. It is represented by the total value of the carrier phase φ, which is an integrated value of the time change rate of the phase), and an integer value N of the number of carriers called an integer value bias. That is, the distance ρ from the GPS antenna to the GPS satellite is expressed by the following [Equation 2].

ρ=λ(φ+N) [式2]   ρ = λ (φ + N) [Formula 2]

ここで、[式2]を用いて[式1]を表わすと以下の[式3]になる。   Here, when [Expression 1] is expressed using [Expression 2], the following [Expression 3] is obtained.

ρab ji=λ(φab ji−Nab ji) [式3] ρ ab ji = λ (φ ab ji −N ab ji ) [Formula 3]

そして、[式3]の「λ(φab ji−Nab ji)」が距離の二重差の観測値に対応し、「φab ji−Nab ji」が二重位相差の観測値に対応する。 In [Equation 3], “λ (φ ab ji −N ab ji )” corresponds to the observation value of the double difference in distance, and “φ ab ji −N ab ji ” corresponds to the observation value of the double phase difference. Correspond.

また、図5において、距離の二重差「ρab ji」は基線ベクトルbとLOSベクトルeとを用いて以下の[式4]で表わされる。 In FIG. 5, the double difference “ρ ab ji ” of the distance is expressed by the following [Equation 4] using the base line vector b and the LOS vector e.

ρab ji=−(e −e )×bba [式4] ρ ab ji = - (e a j -e a i) × b ba [ Formula 4]

[式4]において、基線ベクトルbbaは姿勢角に応じて機体座標系からNED座標系に変換して算出される計算値であり、[式4]の「−(e −e )×bba」が距離の二重差の推定値に対応し、「(−(e −e )×bba)/λ」が二重位相差の推定値に対応する。 In [Expression 4], the base line vector bba is a calculated value calculated by converting the body coordinate system to the NED coordinate system according to the attitude angle, and “− (e a j −e a i ” in [Expression 4]. ) × b ba "corresponds to the estimated value of the double difference of the distance," (- (e a j -e a i) × b ba) / λ "corresponds to the estimated value of the double phase difference.

また、基線ベクトルbは4つのGPS衛星の位置関係に基づいて特定されるため、GPS衛星を「i」と「j」の2つから「i」・「j」・「k」・「l」の4つに拡張すると上記の[式3]と[式4]とを用いて以下の[関係式5]、[関係式6]が成り立つ。   Further, since the base line vector b is specified based on the positional relationship of the four GPS satellites, the GPS satellites are changed from “i” and “j” to “i”, “j”, “k”, “l”. The following [Relational expression 5] and [Relational expression 6] are established using the above [Expression 3] and [Expression 4].

Figure 2007163335
Figure 2007163335

W=Ab [関係式6]   W = Ab [Relational formula 6]

そして、姿勢標定装置101は、上記[関係式5]、[関係式6]において二重位相差の観測値に対応する「W/λ(以下、二重位相差の観測値Wλとする)」を算出する(S101〜S102:二重位相差観測値算出処理)と共に、二重位相差の推定値に対応する「Ab/λ(以下、二重位相差の推定値Abλとする)」を算出し(S103〜S108:二重位相差推定値算出処理)、WλとAbλとの差分dZλに基づく補正量で姿勢角を補正し姿勢角の標定値を算出する(S109〜S111:姿勢角標定値算出処理)。 Then, the posture locating apparatus 101 uses “W / λ corresponding to the observed value of the double phase difference (hereinafter referred to as the observed value W λ of the double phase difference) in the above [Relational Expression 5] and [Relational Expression 6]. (S101 to S102: double phase difference observation value calculation processing) and “Ab / λ (hereinafter referred to as double phase difference estimation value Ab λ )” corresponding to the double phase difference estimation value (S103 to S108: double phase difference estimation value calculation processing), and the attitude angle is corrected by the correction amount based on the difference dZ λ between W λ and Ab λ to calculate the orientation value of the attitude angle (S109 to S111). : Posture angle orientation value calculation processing).

各処理の詳細を以下に説明する。
二重位相差の観測値Wλを算出する二重位相差観測値算出処理(S101〜S102)について説明する。
<二重位相差観測値算出処理>
まず、各GPS受信機952は、それぞれが接続するGPSアンテナ951を介して、4機のGPS衛星から搬送波を受信し、各GPS衛星について搬送波位相φと衛星軌道情報とを観測し出力する(S101:搬送波位相観測処理)。
そして、二重位相差算出部120は、GPS受信機952が出力した搬送波位相φに基づいて二重位相差の観測値Wλを算出する。このとき、二重位相差算出部120は上記[関係式5]におけるWを整数値バイアスNを省いて「W=λφ」で表わし搬送波の波長λで除算してWλを算出する(S102:二重位相差算出処理)
Details of each process will be described below.
It will be described double phase difference of the observed value W lambda double phase difference observed value calculation process for calculating a (S101 and S102).
<Double phase difference observation value calculation processing>
First, each GPS receiver 952 receives a carrier wave from four GPS satellites via the GPS antenna 951 to which each GPS receiver is connected, and observes and outputs the carrier phase φ and satellite orbit information for each GPS satellite (S101). : Carrier phase observation processing).
Then, the double phase difference calculation unit 120 calculates the observation value W λ of the double phase difference based on the carrier phase φ output from the GPS receiver 952. At this time, the double phase difference calculation unit 120 calculates W λ by dividing W by the wavelength λ of the carrier wave by representing W in the above [Relational expression 5] by “W = λφ” without the integer value bias N (S102: Double phase difference calculation process)

次に、二重位相差の推定値Abλを算出する二重位相差推定値算出処理(S103〜S108)について説明する。
<二重位相差推定値算出処理>
デザイン行列計算部240は、各GPS受信機952が出力した衛星軌道情報で特定される4機のGPS衛星の位置関係に基づいて各LOSベクトルeを算出し、上記[関係式5]に示すデザイン行列Aを計算する(S103:基底ベクトル行列計算処理)。
また、初期値取得部210は任意の方法により姿勢角の初期値を取得する。初期値取得部210は、例えば、Hatch法により整数値バイアスNを算出して上記[関係式5]を満たす基線ベクトルbを2つ算出し、2つの基線ベクトルbに基づいて姿勢角の初期値を算出する。また、ジャイロ953が測定したレートと重力方向との関係式に基づいて算出したロール(回転角)およびピッチ(仰角)と、コンパスを有してコンパスが測定したヨー(方位角)とを姿勢角の初期値に用いてもよい。また、キーボードなどの入力装置を有してユーザに姿勢角の初期値を指定させてもよい(S104:姿勢角初期値取得処理)。
次に、姿勢角計算部110は、初期値取得部210が取得した姿勢角の初期値をジャイロ953が出力したレートで積分して当該時点における姿勢角を算出する(S105:姿勢角計算処理)。
次に、方向余弦行列計算部220は、姿勢角計算部110が算出した姿勢角に基づいて、機体座標系の基線ベクトルbBODYをNED座標系の基線ベクトルbNEDに変換する方向余弦行列C を計算する(S106:座標変換行列計算処理)。
次に、二重位相差推定部130は、方向余弦行列計算部220が計算した方向余弦行列C を用いて局所座標系の基線ベクトルbBODYを変換しNED座標系の基線ベクトルbNEDを算出する。このとき、アンテナセパレーション230は、あらかじめ、各GPSアンテナ951の幾何学的配置に基づいて局所座標系の基線ベクトルbBODYを算出し記憶機器(例えば、記憶装置920)に記憶しておくものとする(S107:基線ベクトル座標系変換処理)。
次に、二重位相差推定部130は、デザイン行列計算部240が計算したデザイン行列Aと二重位相差推定部130が算出したNED座標系の基線ベクトルbNEDとを乗じた値を搬送波の波長λで除算して二重位相差の推定値Abλを算出する(S108:二重位相差推定処理)。
Next, the double phase difference estimated value calculation process (S103 to S108) for calculating the double phase difference estimated value Ab λ will be described.
<Double phase difference estimated value calculation processing>
The design matrix calculation unit 240 calculates each LOS vector e based on the positional relationship of the four GPS satellites specified by the satellite orbit information output from each GPS receiver 952, and the design shown in [Relational Expression 5] above. The matrix A is calculated (S103: basis vector matrix calculation process).
The initial value acquisition unit 210 acquires the initial value of the posture angle by an arbitrary method. The initial value acquisition unit 210 calculates, for example, an integer value bias N by the Hatch method, calculates two baseline vectors b that satisfy the above [Relational Expression 5], and based on the two baseline vectors b, the initial value of the posture angle Is calculated. In addition, a roll (rotation angle) and pitch (elevation angle) calculated based on a relational expression between the rate measured by the gyro 953 and the direction of gravity, and a yaw (azimuth angle) measured by the compass with a compass You may use for the initial value of. In addition, an input device such as a keyboard may be provided to allow the user to specify an initial value of the posture angle (S104: posture angle initial value acquisition process).
Next, the posture angle calculation unit 110 integrates the initial value of the posture angle acquired by the initial value acquisition unit 210 at the rate output by the gyro 953, and calculates the posture angle at that time (S105: posture angle calculation processing). .
Then, the direction cosine matrix calculating unit 220, based on the attitude angle posture angle calculating unit 110 calculates the direction cosine matrix C B for converting the baseline vector b BODY aircraft coordinate system to the baseline vector b NED of NED coordinate system N is calculated (S106: coordinate transformation matrix calculation process).
Next, double phase difference estimation unit 130, a baseline vector b NED of converting the baseline vector b BODY local coordinate system using a direction cosine matrix C B N of the direction cosine matrix calculating unit 220 has calculated NED coordinate system calculate. At this time, the antenna separation 230 calculates the baseline vector b BODY of the local coordinate system based on the geometric arrangement of each GPS antenna 951 and stores it in a storage device (for example, the storage device 920) in advance. (S107: Baseline vector coordinate system conversion process).
Next, the double phase difference estimating unit 130 multiplies the value obtained by multiplying the design matrix A calculated by the design matrix calculating unit 240 and the base line vector b NED of the NED coordinate system calculated by the double phase difference estimating unit 130 of the carrier wave. The double phase difference estimated value Ab λ is calculated by dividing by the wavelength λ (S108: double phase difference estimation process).

次に、二重位相差の観測値Wλと二重位相差の推定値Abλとの差分dZλに基づく補正量で姿勢角を補正し姿勢角の標定値を算出する姿勢角標定値算出処理(S109〜S111)について説明する。 Next, the attitude angle standard value calculation is performed in which the attitude angle is corrected by the correction amount based on the difference dZ λ between the observed double phase difference value W λ and the estimated double phase difference value Ab λ to calculate the attitude angle orientation value. Processing (S109 to S111) will be described.

姿勢角標定値算出処理(S109〜S111)は、姿勢角標定対象に搭載された複数のGPS受信機952による搬送波位相観測値の二重位相差(二重位相差の観測値)とジャイロ953のレート出力を積分することで得られる幾何学的な二重位相差の予測値(二重位相差の推定値)との残差(差分)により、ジャイロ953が出力するレートや姿勢角計算値及びGPSアンテナアレイとジャイロ953のアライメント誤差等の補正量を計算する処理である。
姿勢角を使用して観測更新をする従来の姿勢標定方法では、アレイを構成するGPSアンテナ951間の2本以上の基線ベクトルに対して二重位相差が同時に観測できる必要がある。一方、実施の形態1で説明する二重位相差を使用して観測更新する姿勢標定方法では、アレイを構成する複数のGPSアンテナ951間の少なくとも1本の基線に対して二重位相差が観測できていればよい。このため、観測更新を頻繁に行え、安定性の低い低価格なジャイロ953を使用して姿勢角を精度良く標定することが可能である。また、GPS受信機952の観測周期が、ジャイロ誤差が拡大する時間に対し十分短ければ、二重位相差の観測残差は±0.5λ(波長)に収まり二重位相差の観測残差は小数値に現れるため、以下に説明するように、整数値バイアスを求めることなく観測更新を行うことができる。さらに、2本以上の基線ベクトルについて処理する場合でも、基線ベクトル間でタイミングを取る必要はない。つまり、2本の基線ベクトルに対する二重位相差の算出の周期を同一にする必要はなく、GPS受信機952の選択の自由度が大きくなる。
Attitude angle orientation value calculation processing (S109 to S111) is performed by the dual phase difference (observation value of the double phase difference) of the carrier phase observation values by the plurality of GPS receivers 952 mounted on the orientation angle orientation target and the gyro 953. Based on the residual (difference) with the geometric double phase difference predicted value (estimated double phase difference) obtained by integrating the rate output, the rate and attitude angle calculated values output by the gyro 953 and This is a process of calculating a correction amount such as an alignment error between the GPS antenna array and the gyro 953.
In the conventional attitude locating method in which observation updating is performed using the attitude angle, it is necessary to be able to simultaneously observe a double phase difference with respect to two or more baseline vectors between the GPS antennas 951 constituting the array. On the other hand, in the attitude determination method using the double phase difference described in the first embodiment, the double phase difference is observed with respect to at least one base line between a plurality of GPS antennas 951 constituting the array. It only has to be done. Therefore, the observation angle can be frequently updated, and the attitude angle can be accurately determined using the low-cost gyro 953 with low stability. If the observation period of the GPS receiver 952 is sufficiently short with respect to the time for the gyro error to expand, the observation residual of the double phase difference is within ± 0.5λ (wavelength), and the observation residual of the double phase difference is Since it appears in the decimal value, the observation update can be performed without obtaining the integer value bias as described below. Furthermore, even when processing two or more baseline vectors, there is no need to take timing between the baseline vectors. That is, it is not necessary to make the calculation period of the double phase difference for the two baseline vectors the same, and the degree of freedom of selection of the GPS receiver 952 increases.

<姿勢角標定値算出処理>
まず、二重位相差残差計算部140は、二重位相差算出部120が算出した二重位相差の観測値Wλと二重位相差推定部130が算出した二重位相差の推定値Abλとの差分dZλを算出する。このとき、差分dZλの整数値はGPS受信機の観測周期が、ジャイロ誤差が拡大する時間に対し十分短ければ波長λを超えないため、二重位相差の観測残差は、二重位相差残差計算部140は差分dZλの小数値を二重位相差の差分dZλとする(S109:二重位相差残差計算処理)。
次に、カルマンフィルタ150は、二重位相差残差計算部140が算出した差分dZλを使用して状態方程式と観測方程式により、ジャイロ953のレート誤差補正量、ジャイロ953とGPSアンテナ951との軸ずれ補正量、姿勢角誤差補正量などの補正量を算出する(S110:補正量算出処理)。
そして、姿勢角計算部110は、前回の姿勢角の標定値(初回は初期値取得部210が取得した姿勢角の初期値)をジャイロ953が出力したレートで積分し、積分して算出した当該時点の姿勢角を姿勢角誤差補正量に基づいて補正し姿勢角の標定値を計算する。このとき、レート補正部250は、ジャイロ953が出力したレートをレート誤差補正量で補正する。また、姿勢角計算部110は、補正されたレートを積分して積分値(3軸方向それぞれの変動角度)を軸ずれ補正量で補正する。そして、姿勢角計算部110は、補正した積分値を前回の姿勢角の標定値に加算して当該時点の姿勢角を計算し、当該時点の姿勢角を姿勢角誤差補正量に基づいて補正して姿勢角の標定値を計算する(S111:姿勢角標定処理)。
<Attitude angle standard value calculation processing>
First, the double phase difference residual calculation unit 140 includes the double phase difference observation value W λ calculated by the double phase difference calculation unit 120 and the double phase difference estimation value calculated by the double phase difference estimation unit 130. The difference dZ λ from Ab λ is calculated. At this time, since the integer value of the difference dZ λ does not exceed the wavelength λ if the observation period of the GPS receiver is sufficiently short with respect to the time during which the gyro error is expanded, the observation residual of the double phase difference is the double phase difference. residual calculation section 140 the fractional value of the difference dZ lambda and the difference dZ lambda double phase difference (S109: double phase difference residual calculation process).
Next, the Kalman filter 150 uses the difference dZ λ calculated by the double phase difference residual calculation unit 140 to determine the rate error correction amount of the gyro 953 and the axis of the gyro 953 and the GPS antenna 951 based on the state equation and the observation equation. Correction amounts such as a deviation correction amount and a posture angle error correction amount are calculated (S110: correction amount calculation processing).
Then, the attitude angle calculation unit 110 integrates the orientation value of the previous attitude angle (initial value of the attitude angle acquired by the initial value acquisition unit 210 at the first time) at the rate output by the gyro 953, and calculates the integration. The posture angle at the time is corrected based on the posture angle error correction amount, and the orientation value of the posture angle is calculated. At this time, the rate correction unit 250 corrects the rate output by the gyro 953 with the rate error correction amount. Further, the attitude angle calculation unit 110 integrates the corrected rate and corrects the integral value (variation angle in each of the three axis directions) with the axis deviation correction amount. Then, the posture angle calculation unit 110 adds the corrected integrated value to the orientation value of the previous posture angle to calculate the posture angle at the time point, and corrects the posture angle at the time point based on the posture angle error correction amount. The orientation angle orientation value is calculated (S111: orientation angle orientation processing).

姿勢標定システム100は、姿勢角標定処理(S111)で姿勢角を標定後、姿勢角の標定値を使用して座標変換行列計算処理(S106)から処理を繰り返し、当該時点における姿勢角を標定する。   The posture orientation system 100 after the orientation angle is standardized in the orientation angle location processing (S111), repeats the processing from the coordinate transformation matrix calculation processing (S106) using the orientation value of the orientation angle, and determines the orientation angle at the time point. .

上記二重位相差算出処理(S102)において、二重位相差算出部120は、搬送波を受信したタイミングを複数のGPS受信機952間でソフトウェア的に同期させて、二重位相差の観測値Wλを算出する。 In the double phase difference calculation process (S102), the double phase difference calculation unit 120 synchronizes the timing at which the carrier wave is received with a plurality of GPS receivers 952 by software, and the double phase difference observation value W λ is calculated.

このとき、複数のGPS受信機952がGPS衛星から測位信号の搬送波を受信したタイミングを精度よく求め、二重位相差算出部120が、例えば、主局のGPS受信機952の搬送波位相の観測値を従局のGPS受信機952の受信時刻に合わせて補間し、タイミングの同期を図っている。これにより、基本的には、どんな汎用のGPS受信機952でも姿勢標定システム100に使用することが出来、低価格な姿勢標定システム100を構成することができる。また、機能、性能(受信周波数、観測値の出力周期など)が異なる複数のGPS受信機952を組み合わせて姿勢標定システム100に使用することができる。   At this time, the timing at which the plurality of GPS receivers 952 receive the carrier wave of the positioning signal from the GPS satellite is accurately obtained, and the double phase difference calculation unit 120 is, for example, the observation value of the carrier phase of the GPS receiver 952 of the main station. Is interpolated in accordance with the reception time of the slave GPS receiver 952 to synchronize the timing. Thereby, basically, any general-purpose GPS receiver 952 can be used for the attitude determination system 100, and the low-cost attitude determination system 100 can be configured. Further, a plurality of GPS receivers 952 having different functions and performance (reception frequency, output period of observation values, etc.) can be combined and used in the attitude determination system 100.

また、二重位相差の観測値Wλを算出する方法には、1周波の搬送波を利用する方法と複数の周波(例えば、2周波)の搬送波を利用する方法とがある。 Further, there are two methods for calculating the observed value W λ of the double phase difference: a method using a carrier wave of one frequency and a method using a carrier wave of a plurality of frequencies (for example, two frequencies).

2周波受信機は、現在は高価であるが、L5等の新周波が公開された後は価格が低下すると思われる。そこで、2周波受信機を使用した姿勢標定システム100を想定すると、2周波の搬送波位相の観測値について線形結合を取ったワイドレーンの搬送波位相を用いて二重位相差の観測値を算出することができる。そして、ワイドレーンでの搬送波の波長は単周波(1周波)の波長に比べて長く、このため、ワイドレーンの搬送波位相を用いることで引き込み可能な残差(観測値と推定値との二重位相差の差分)の範囲が広がる。例えば、L1の1周波の波長が約19cm(センチメートル)であるに対し、L1とL5との2周波を線形結合したワイドレーンでの波長は約75cmになる。そして、観測値と推定値との距離の二重差の差分が±0.5λ(波長)に収まると仮定すると、1周波(L1)では距離の二重差の差分が±9.5cmを超えると二重位相差の差分が小数値に収まらないのに対し、2周波(L1とL5)では距離の二重差の差分が±37.5cmを超えなければ二重位相差の差分が小数値に収まる。また、上記二重位相差残差計算処理(S109)において、二重位相差残差計算部140は差分dZλの小数値を二重位相差の差分として処理するため、二重位相差の差分が小数値に収まらなければ標定する姿勢角の精度が落ちる。つまり、引き込み可能な残差の範囲が広がるほど、上記二重位相差残差計算処理(S109)の整合性が高まり、精度の高い姿勢角を標定することが可能になる。 Two-frequency receivers are currently expensive, but prices are expected to drop after new frequencies such as L5 are released. Therefore, assuming the attitude localization system 100 using a two-frequency receiver, the observation value of the double phase difference is calculated using the carrier phase of the wide lane obtained by linearly combining the observation values of the carrier frequency of the two frequencies. Can do. The wavelength of the carrier wave in the wide lane is longer than the wavelength of a single frequency (single frequency). For this reason, a residual that can be drawn by using the carrier phase of the wide lane (a double of the observed value and the estimated value). The range of the phase difference) is widened. For example, the wavelength of one frequency of L1 is about 19 cm (centimeter), whereas the wavelength in a wide lane in which the two frequencies of L1 and L5 are linearly combined is about 75 cm. Assuming that the difference in the double difference between the observed value and the estimated value is within ± 0.5λ (wavelength), the difference in the double difference in distance exceeds ± 9.5 cm at one frequency (L1). The difference in double phase difference does not fall within the decimal value, whereas the difference in double phase difference does not exceed ± 37.5 cm at two frequencies (L1 and L5). Fits in. Further, in the double phase difference residual calculation processing (S109), since double phase difference residual calculation section 140 for processing the fractional value of the difference dZ lambda as the difference double phase difference, the difference of the double phase difference If the value does not fall within the decimal value, the accuracy of the orientation angle to be reduced will decrease. That is, as the range of residuals that can be pulled in increases, the consistency of the double phase difference residual calculation process (S109) increases, and a posture angle with high accuracy can be determined.

以下に、1周波を利用する方法と複数の周波を利用する方法とのそれぞれについて、二重位相差算出部120と二重位相差算出処理(S102)とを説明する。   Hereinafter, the double phase difference calculation unit 120 and the double phase difference calculation process (S102) will be described for each of the method using one frequency and the method using a plurality of frequencies.

図6は、実施の形態1における1周波を利用する二重位相差算出部120の構成図である。
1周波を利用する二重位相差算出部120は以下の機能要素を備える。
受信タイミング算出部121は各GPS受信機952が搬送波を受信した受信時刻trvを算出する。
搬送波位相補間計算部122は補間計算を行い複数のGPS受信機952について同じ受信時刻における搬送波位相φを算出する。
二重位相差ベクトル計算部123は複数のGPS受信機952の同じ受信時刻における搬送波位相φについて二重位相差の観測値Wλを計算する。
FIG. 6 is a configuration diagram of the double phase difference calculation unit 120 using one frequency in the first embodiment.
The double phase difference calculation unit 120 using one frequency includes the following functional elements.
The reception timing calculation unit 121 calculates a reception time t rv when each GPS receiver 952 receives a carrier wave.
The carrier phase interpolation calculation unit 122 performs interpolation calculation to calculate the carrier phase φ X at the same reception time for a plurality of GPS receivers 952.
The double phase difference vector calculation unit 123 calculates the double phase difference observation value W λ for the carrier phase φ at the same reception time of the plurality of GPS receivers 952.

図7は、実施の形態1における1周波を利用する二重位相差算出処理(S102)を示すフローチャートである。
1周波を利用する二重位相差算出処理(S102)を図7に基づいて以下に説明する。
このとき、上記搬送波位相観測処理(S101)において、各GPS受信機952が1周波(例えば、L1)の搬送波を受信して搬送波位相φ(φ、φ、φ)を出力したものとする。
FIG. 7 is a flowchart showing a double phase difference calculation process (S102) using one frequency in the first embodiment.
The double phase difference calculation process (S102) using one frequency will be described below with reference to FIG.
At this time, in the carrier phase observation process (S101), each GPS receiver 952 receives a carrier wave of one frequency (for example, L1) and outputs a carrier phase φ Xa , φ b , φ c ). And

<二重位相差算出処理(S102)>
まず、受信タイミング算出部121は、各GPS受信機952から搬送波の観測時刻trvoを取得し、最小自乗法などにより各GPS受信機952のクロックバイアスtrvBiasを計算する。そして、搬送波の観測時刻trvoからクロックバイアスtrvBiasを減算して搬送波の受信時刻trvを算出する(S201:受信タイミング算出処理)。
次に、搬送波位相補間計算部122は、各GPS受信機952が算出した搬送波位相φと受信タイミング算出部121が算出した各GPS受信機952の搬送波の受信時刻trvX(trva,trvb,trvc)とに基づいて補間計算を行い同じ受信時刻における搬送波位相φ(t)を算出する。補間計算は線形補間、一次補間、二次補間など任意の補間計算で構わない。例えば、二次補間計算の場合、搬送波位相補間計算部122は、図8に示す受信時刻の関係において、各GPS受信機952が出力した搬送波位相φ、φ、φを受信時刻kで同期した搬送波位相φ(k)、φ(k)、φ(k)を以下の[式7]を計算して算出する(S202:搬送波位相補間計算処理)。
<Double phase difference calculation process (S102)>
First, the reception timing calculation unit 121 acquires the observation time t rv of the carrier wave from each GPS receiver 952, and calculates the clock bias t rvBias of each GPS receiver 952 by the least square method or the like. Then, by subtracting the clock bias t RvBias from observation time t rvo carrier calculates the reception time t rv carrier (S201: reception timing calculation process).
Then, the carrier phase interpolation calculation unit 122, reception time t RVX carrier in the GPS receiver 952 carrier phase phi X and reception timing calculation unit 121 by each GPS receiver 952 is calculated is calculated (t rva, t RVB , T rvc ) and interpolation calculation is performed to calculate the carrier phase φ X (t) at the same reception time. The interpolation calculation may be any interpolation calculation such as linear interpolation, primary interpolation, and secondary interpolation. For example, in the case of quadratic interpolation calculation, the carrier phase interpolation calculation unit 122 uses the reception time k shown in FIG. 8 as the reception time k for the carrier phase φ a , φ b , φ c output from each GPS receiver 952. The synchronized carrier phase φ a (k), φ b (k), φ c (k) is calculated by calculating the following [Equation 7] (S202: carrier phase interpolation calculation process).

Figure 2007163335
Figure 2007163335

そして、二重位相差ベクトル計算部123は、搬送波位相補間計算部122が算出した搬送波位相φ(t)に基づいて二重位相差の観測値Wλ(ベクトル)を算出する。このとき、二重位相差ベクトル計算部123は上記[関係式5]におけるWを整数値バイアスNを省いて「W=λφ」で表わし搬送波の波長λで除算してWλを算出する。例えば、GPS衛星iとGPS衛星jそれぞれについて、主局の搬送波位相φ 、φ と従局1の搬送波位相φ 、φ との二重位相差の観測値φab ji(スカラー)を算出する場合、二重位相差ベクトル計算部123は以下の[式8]を計算する。そして、4機のGPS衛星についての二重位相差の観測値Wλ(ベクトル)を算出する(S203:二重位相差観測値計算処理)。 Then, the double phase difference vector calculation unit 123 calculates a double phase difference observation value W λ (vector) based on the carrier phase φ X (t) calculated by the carrier phase interpolation calculation unit 122. At this time, the double phase difference vector calculation unit 123 calculates W λ by dividing W in the above [Relational Expression 5] by “W = λφ”, omitting the integer bias N, and dividing it by the wavelength λ of the carrier wave. For example, for each of the GPS satellite i and the GPS satellite j, the observed value φ ab ji (double phase difference between the carrier phase φ a i , φ a j of the master station and the carrier phase φ b i , φ b j of the slave station 1 When calculating (scalar), the double phase difference vector calculation unit 123 calculates the following [Equation 8]. Then, the observed value W λ (vector) of the double phase difference for the four GPS satellites is calculated (S203: Double phase difference observed value calculation process).

φab ji=φ −φ −(φ −φ ) [式8] φ ab ji = φ b j −φ a j − (φ b i −φ a i ) [Equation 8]

図9は、実施の形態1における2周波を利用する二重位相差算出部120の構成図である。
2周波を利用する二重位相差算出部120は、図9に基づいて説明した1周波を利用する二重位相差算出部120の機能要素に加えて線形結合計算部124を備える。
線形結合計算部124は各GPS受信機952が出力した複数の周波の搬送波位相φXYを線形計算して線形結合後の搬送波位相φを算出する。
FIG. 9 is a configuration diagram of the double phase difference calculation unit 120 using the two frequencies in the first embodiment.
The double phase difference calculation unit 120 using two frequencies includes a linear combination calculation unit 124 in addition to the functional elements of the double phase difference calculation unit 120 using one frequency described with reference to FIG.
The linear combination calculator 124 calculates the carrier phase φ X after the linear combination by linearly calculating the carrier phases φ XY of a plurality of frequencies output from each GPS receiver 952.

図10は、実施の形態1における複数の周波を利用する二重位相差算出処理(S102)を示すフローチャートである。
複数の周波を利用する二重位相差算出処理(S102)を図10に基づいて以下に説明する。
このとき、上記搬送波位相観測処理(S101)において、各GPS受信機952が2周波(例えば、L1とL5)の搬送波を受信して搬送波位相φXY(φa1、φa5、φb1、φb5、φc1、φc5)を出力したものとする(φa1,φb1,φc1:第1の搬送波位相の一例)(φa5,φb5,φc5:第2の搬送波位相の一例)。
FIG. 10 is a flowchart showing a double phase difference calculation process (S102) using a plurality of frequencies in the first embodiment.
The double phase difference calculation process (S102) using a plurality of frequencies will be described below with reference to FIG.
At this time, in the carrier wave phase observation process (S101), each GPS receiver 952 receives a carrier wave of two frequencies (for example, L1 and L5) and receives carrier wave phases φ XYa1 , φ a5 , φ b1 , φ b5 , Φ c1 , φ c5 ) (φ a1 , φ b1 , φ c1 : an example of the first carrier phase) (φ a5 , φ b5 , φ c5 : an example of the second carrier phase).

<二重位相差算出処理(S102)>
まず、受信タイミング算出部121は、各GPS受信機952から各周波それぞれの搬送波の観測時刻trvoを取得し、最小自乗法により各GPS受信機952のクロックバイアスtrvBiasを計算する。そして、搬送波の観測時刻trvoからクロックバイアスtrvBiasを減算して搬送波の受信時刻trvを算出する(S201:受信タイミング算出処理)。
次に、線形結合計算部124は各GPS受信機952が出力した各周波の搬送波位相φXYを線形計算して線形結合後の搬送波位相φを算出する(S302:線形結合計算処理)。
以下、二重位相差算出部120は、S303とS304とをそれぞれ前記S202とS203と同様に実行する。
<Double phase difference calculation process (S102)>
First, the reception timing calculation unit 121 acquires the observation time t rvo of each frequency carrier from each GPS receiver 952, and calculates the clock bias t rvBias of each GPS receiver 952 by the least square method. Then, by subtracting the clock bias t RvBias from observation time t rvo carrier calculates the reception time t rv carrier (S201: reception timing calculation process).
Next, the linear combination calculation unit 124 calculates the carrier phase φ X after linear combination by linearly calculating the carrier phase φ XY of each frequency output from each GPS receiver 952 (S302: linear combination calculation process).
Hereinafter, the double phase difference calculation unit 120 executes S303 and S304 in the same manner as S202 and S203, respectively.

図6、図9には3台のGPS受信機952を示しているが、GPS受信機952は3台以上あればよく、台数を増して構わない。
また、受信タイミング算出部121、搬送波位相補間計算部122、二重位相差ベクトル計算部123および線形結合計算部124をGPS受信機952に対応して複数示しているが、1つずつで構わない。
また、基線ベクトル間で同期して二重位相差の観測値を算出する必要はなく、例えば、図6と図9とに3つ示している搬送波位相補間計算部122の真ん中の1つは処理しなくても構わない。
Although FIG. 6 and FIG. 9 show three GPS receivers 952, three or more GPS receivers 952 may be used, and the number may be increased.
In addition, although a plurality of reception timing calculation units 121, carrier phase interpolation calculation units 122, double phase difference vector calculation units 123, and linear combination calculation units 124 are shown corresponding to the GPS receiver 952, one may be provided. .
Further, it is not necessary to calculate the observation value of the double phase difference in synchronization between the base line vectors. For example, one of the carrier phase interpolation calculation units 122 shown in FIG. 6 and FIG. You don't have to.

上記実施の形態1で説明した姿勢標定装置101は、GPSアンテナ951間の2つの基線ベクトルを求めて算出した姿勢角の初期値をジャイロ953のレート出力により更新(積分)し、時間の経過とともに拡大する各種誤差を、GPS観測に基づく二重位相差を利用して観測更新することで、精度よく姿勢角を出力する装置である。
特に、図3に(1)と(2)で示す、二重位相差算出部120と二重位相差残差計算部140とカルマンフィルタ150とが特徴点である。
The posture locating apparatus 101 described in the first embodiment updates (integrates) the initial value of the posture angle calculated by obtaining two baseline vectors between the GPS antennas 951 with the rate output of the gyro 953, and as time passes. It is a device that outputs attitude angles with high accuracy by updating observations using a double phase difference based on GPS observation.
In particular, the double phase difference calculation unit 120, the double phase difference residual calculation unit 140, and the Kalman filter 150, which are indicated by (1) and (2) in FIG.

上記実施の形態1で説明した姿勢標定装置101は、GPSとジャイロをカップリングすることにより、以下のメリットを有する。
まず、GPS衛星可視時は、観測更新によりジャイロ誤差の高精度な補正を行うことができ、姿勢角の高精度化が可能である。
また、GPS衛星が不可視の時でもジャイロが出力するレートで積分することで姿勢角の出力が可能である。
また、GPS受信機の観測周期に比べ、一般的にジャイロの出力周期は早いため、高周波で姿勢角を出力することが可能である。
The posture locating device 101 described in the first embodiment has the following merits by coupling the GPS and the gyro.
First, when the GPS satellite is visible, the gyro error can be corrected with high precision by updating the observation, and the attitude angle can be highly accurate.
Further, even when the GPS satellite is invisible, it is possible to output the attitude angle by integrating at a rate output by the gyro.
In addition, since the gyro output period is generally faster than the GPS receiver observation period, the attitude angle can be output at a high frequency.

上記実施の形態1で説明した姿勢標定装置101は、単独測位等により高精度に求まる受信時刻を用いて搬送波位相観測値の補間計算を行い、GPS受信機間の同期をソフトウェア的に取っている。これにより、上記実施の形態1で説明した姿勢標定装置は以下のメリットを有する。
基本的には、どんな汎用受信機(GPS受信機)でも使用することが出来、低価格な姿勢標定システム100を構成することができる。
また、機能、性能(受信周波数、観測値の出力周期など)の異なる複数のGPS受信機を組み合わせることが可能となる。そこで、例えば、姿勢標定システム100は測位システムの構成に最適なGPS受信機を測位システムと兼用して姿勢角を標定することができる。
The attitude locating device 101 described in the first embodiment performs interpolation calculation of carrier phase observation values using reception times obtained with high accuracy by single positioning or the like, and synchronizes between GPS receivers in software. . Thereby, the posture locating device described in the first embodiment has the following merits.
Basically, any general-purpose receiver (GPS receiver) can be used, and the low-cost attitude orientation system 100 can be configured.
It is also possible to combine a plurality of GPS receivers having different functions and performance (reception frequency, observation value output cycle, etc.). Therefore, for example, the attitude determination system 100 can determine the attitude angle by using a GPS receiver that is optimal for the configuration of the positioning system as well as the positioning system.

上記実施の形態1で説明した姿勢標定装置101は、従来の姿勢標定方法で利用されたオイラー姿勢角ではなく、二重位相差を利用して観測更新することにより、以下のメリットを有する。
まず、GPSのみを利用した従来の姿勢角の決定には同時刻に2本以上の基線ベクトルに対する二重差位相差の観測値を得ることが必要であるのに対し、少なくとも1本の基線ベクトルに対する二重差位相差の観測値が得られていれば、観測更新が行え、誤差の拡大を抑えることが可能である。
つまり、GPS受信機の観測値に基づく観測更新のアベイラビリティが向上することから、安定性の低い低価格なジャイロを使用した構成が可能である。
また、オイラー角にはその特質上、特異点(ピッチ90°)が存在し、観測更新にオイラー角を利用する従来の姿勢標定方法が特異点において適切な観測更新を実施できないのに対し、観測更新に二重位相差を利用する上記実施の形態1の姿勢標定装置101では特異点において適切な観測更新を実施できないということは一切ない。
また、二重位相差の整数値バイアスを正常に求めて姿勢角の絶対量(姿勢角の初期値)を決定した後は、ジャイロのレート出力を積分することで姿勢角を時間更新することが可能である。
また、GPS受信機の観測周期が、ジャイロ誤差が拡大する時間に対し十分短ければ、二重位相差の観測残差は±0.5λ(波長)に収まることから、整数値バイアスを求めることなく観測更新を行うことができる。
つまり、二重位相差の観測残差が特定の閾値(例えば、±0.2λ)を超えた場合、何らかの原因によりGPS受信機が不適切な観測値を出力した、または、ジャイロが不適切なレートを出力したと判断することができ、これらのデータを適切に棄却することができる。
また、現在の高価な2周波受信機または将来は低価格になることが予想されるL5等の新周波対応受信機を使用すれば、2周波の線形結合によりワイドレーンを利用して観測残差を算出することができる。これにより、二重位相差の残差を引き込める領域(例えば、±0.5λ)の範囲を広げることが出来る。
また、GPSとジャイロとをカップリングするときに利用する観測値がオイラー姿勢角である場合に比べ、二重位相差のノイズモデル(カルマンフィルタで使用する状態方程式や観測方程式)のほうが把握しやすく、推定精度が向上する。
The posture locating apparatus 101 described in the first embodiment has the following advantages by performing observation and updating using a double phase difference instead of the Euler posture angle used in the conventional posture locating method.
First, the determination of the conventional attitude angle using only GPS requires obtaining observation values of the double difference phase difference for two or more baseline vectors at the same time, whereas at least one baseline vector. If the observation value of the double difference phase difference with respect to is obtained, the observation can be updated and the expansion of the error can be suppressed.
That is, since the availability of observation update based on the observation value of the GPS receiver is improved, a configuration using a low-cost gyro with low stability is possible.
In addition, due to the nature of Euler angles, there are singular points (pitch 90 °), and the conventional attitude determination method that uses Euler angles for observation updates cannot perform appropriate observation updates at singular points. In the posture locating apparatus 101 of the first embodiment that uses a double phase difference for updating, there is no case where appropriate observation updating cannot be performed at a singular point.
In addition, after determining the integer value bias of the double phase difference and determining the absolute amount of posture angle (initial value of posture angle), the posture angle can be updated by integrating the gyro rate output. Is possible.
Also, if the GPS receiver's observation period is sufficiently short with respect to the time when the gyro error is expanded, the observation residual of the double phase difference will be within ± 0.5λ (wavelength), so without finding the integer bias Observation updates can be performed.
In other words, when the observation residual of the double phase difference exceeds a specific threshold (for example, ± 0.2λ), the GPS receiver has output an inappropriate observation value for some reason, or the gyro is inappropriate It can be determined that the rate has been output, and these data can be appropriately rejected.
Also, if you use a current expensive dual-frequency receiver or a new frequency-compatible receiver such as L5, which is expected to be low in the future, the residual of observation using a wide lane by linear combination of two frequencies Can be calculated. Thereby, the range of the region (for example, ± 0.5λ) in which the residual of the double phase difference can be drawn can be expanded.
In addition, compared to the case where the observation value used when coupling the GPS and the gyroscope is the Euler attitude angle, the noise model of the double phase difference (state equation and observation equation used in the Kalman filter) is easier to grasp, The estimation accuracy is improved.

上記実施の形態1の説明におけるGPSは、Galileo、GLONASS(GLobal NAvigation Satellite System)などのその他のGNSS(Global Navigation Satellite System)であっても構わない。   The GPS in the description of the first embodiment may be another GNSS (Global Navigation Satellite System) such as Galileo or GLONASS (Global Navigation Satellite System).

実施の形態1における姿勢標定システム100の構成の概要図。1 is a schematic diagram of a configuration of a posture orientation system 100 according to Embodiment 1. FIG. 実施の形態1における姿勢標定システム100のハードウェア構成図。FIG. 3 is a hardware configuration diagram of posture orientation system 100 in the first embodiment. 実施の形態1における姿勢標定装置101の機能構成図。FIG. 3 is a functional configuration diagram of posture orientation apparatus 101 in the first embodiment. 実施の形態1における姿勢標定システム100の姿勢標定処理を示すフローチャート。3 is a flowchart showing posture orientation processing of the posture orientation system 100 according to the first embodiment. 基線ベクトルbとLOSベクトルeとGPSアンテナからGPS衛星までの距離ρとの関係図。FIG. 6 is a relationship diagram between a base line vector b, a LOS vector e, and a distance ρ from a GPS antenna to a GPS satellite. 実施の形態1における1周波を利用する二重位相差算出部120の構成図。FIG. 3 is a configuration diagram of a double phase difference calculation unit 120 that uses one frequency in the first embodiment. 実施の形態1における1周波を利用する二重位相差算出処理(S102)を示すフローチャート。5 is a flowchart showing double phase difference calculation processing (S102) using one frequency in the first embodiment. 主局と従局とにおける搬送波受信時刻の関係図。The relationship figure of the carrier wave reception time in a master station and a slave station. 実施の形態1における2周波を利用する二重位相差算出部120の構成図。FIG. 3 is a configuration diagram of a double phase difference calculation unit 120 that uses two frequencies in the first embodiment. 実施の形態1における複数の周波を利用する二重位相差算出処理(S102)を示すフローチャート。5 is a flowchart showing a double phase difference calculation process (S102) using a plurality of frequencies in the first embodiment.

符号の説明Explanation of symbols

100 姿勢標定システム、101 姿勢標定装置、110 姿勢角計算部、120 二重位相差算出部、121 受信タイミング算出部、122 搬送波位相補間計算部、123 二重位相差ベクトル計算部、124 線形結合計算部、130 二重位相差推定部、140 二重位相差残差計算部、150 カルマンフィルタ、210 初期値取得部、220 方向余弦行列計算部、230 アンテナセパレーション、240 デザイン行列計算部、250 レート補正部、911 CPU、920 記憶装置、921 OS、923 プログラム群、924 ファイル群、951 GPSアンテナ、952 GPS受信機、953 ジャイロ、954 プラットフォーム。   DESCRIPTION OF SYMBOLS 100 Attitude orientation system, 101 Attitude orientation apparatus, 110 Attitude angle calculation part, 120 Double phase difference calculation part, 121 Reception timing calculation part, 122 Carrier phase interpolation calculation part, 123 Double phase difference vector calculation part, 124 Linear combination calculation Unit, 130 double phase difference estimation unit, 140 double phase difference residual calculation unit, 150 Kalman filter, 210 initial value acquisition unit, 220 direction cosine matrix calculation unit, 230 antenna separation, 240 design matrix calculation unit, 250 rate correction unit 911 CPU, 920 storage device, 921 OS, 923 program group, 924 file group, 951 GPS antenna, 952 GPS receiver, 953 gyro, 954 platform.

Claims (7)

ジャイロの測定値を用いて計算した姿勢角の計算値をGPS(Global Positioning System)受信機の観測値に基づいて補正して姿勢角の標定値を算出する姿勢標定装置であり、
前記ジャイロの測定値に基づき中央処理装置を用いて姿勢角の計算値を算出する姿勢角計算部と、
複数のGPS受信機が観測した搬送波位相を入力し中央処理装置を用いて複数のGPS受信機における二重位相差の観測値を算出する二重位相差算出部と、
算出した姿勢角の標定値に基づき中央処理装置を用いて複数のGPS受信機における二重位相差の推定値を算出する二重位相差推定部と、
前記二重位相差算出部が算出した複数のGPS受信機における二重位相差の観測値と前記二重位相差推定部が算出した複数のGPS受信機における二重位相差の推定値との差分を中央処理装置を用いて算出する二重位相差残差計算部と、
前記二重位相差残差計算部が算出した複数のGPS受信機における二重位相差の観測値と推定値との差分に基づき前記姿勢角計算部が算出した姿勢角の計算値に対する補正量を中央処理装置を用いて算出する補正量算出部と、
前記補正量算出部が算出した補正量に基づき前記姿勢角計算部が算出した姿勢角の計算値を中央処理装置を用いて補正して姿勢角の標定値を算出する姿勢角標定部と
を備えたことを特徴とする姿勢標定装置。
An attitude determination device that calculates an attitude angle orientation value by correcting an attitude angle calculation value calculated using a gyro measurement value based on an observation value of a GPS (Global Positioning System) receiver;
A posture angle calculation unit that calculates a calculated value of the posture angle using a central processing unit based on the measured value of the gyro;
A double phase difference calculation unit that inputs the carrier phase observed by a plurality of GPS receivers and calculates an observation value of the double phase difference in the plurality of GPS receivers using a central processing unit;
A double phase difference estimator that calculates a double phase difference estimate in a plurality of GPS receivers using a central processing unit based on the calculated orientation angle orientation value;
The difference between the observed value of the double phase difference in the plurality of GPS receivers calculated by the dual phase difference calculating unit and the estimated value of the double phase difference in the plurality of GPS receivers calculated by the double phase difference estimating unit A double phase difference residual calculation unit for calculating the difference using a central processing unit;
A correction amount for the calculated attitude angle calculated by the attitude angle calculator based on the difference between the observed value and the estimated value of the dual phase difference in the plurality of GPS receivers calculated by the dual phase difference residual calculator. A correction amount calculation unit that calculates using a central processing unit;
A posture angle locator that calculates a posture angle orientation value by correcting a calculated value of the posture angle calculated by the posture angle calculator based on the correction amount calculated by the correction amount calculator using a central processing unit. A posture locating device characterized by that.
前記二重位相差算出部は、
各GPS受信機が観測した搬送波位相と各GPS受信機における搬送波の受信時刻とに基づいて補間計算を行い同時刻における各GPS受信機の搬送波位相を算出し、算出した各GPS受信機の搬送波位相に基づいて複数のGPS受信機における二重位相差の観測値を算出する
ことを特徴とする請求項1記載の姿勢標定装置。
The double phase difference calculator is
Interpolation calculation is performed based on the carrier phase observed by each GPS receiver and the reception time of the carrier at each GPS receiver to calculate the carrier phase of each GPS receiver at the same time, and the calculated carrier phase of each GPS receiver 2. The posture locating apparatus according to claim 1, wherein an observed value of a double phase difference in a plurality of GPS receivers is calculated based on
前記二重位相差算出部は、
複数のGPS受信機がそれぞれ観測した第1の搬送波位相と第2の搬送波位相とを入力し第1の搬送波位相と第2の搬送波位相とを線形結合計算して各GPS受信機の線形結合した搬送波位相を算出し線形結合した搬送波位相に基づいて複数のGPS受信機における二重位相差の観測値を算出する
ことを特徴とする請求項1〜請求項2いずれかに記載の姿勢標定装置。
The double phase difference calculator is
The first carrier wave phase and the second carrier wave phase observed by each of the plurality of GPS receivers are inputted, and the first carrier wave phase and the second carrier wave phase are linearly combined to calculate the linear combination of the GPS receivers. The attitude determination device according to claim 1, wherein an observed value of a double phase difference in a plurality of GPS receivers is calculated based on a carrier phase obtained by calculating a carrier phase and linearly combining the carrier phase.
前記二重位相差推定部は、
前記姿勢標定装置が標定した姿勢角の標定値に基づいて複数のGPS受信機における基線ベクトルを算出し、算出した基線ベクトルと搬送波を送信したGPS衛星に対するGPS受信機の方向余弦基底ベクトルとに基づいて複数のGPS受信機における二重位相差の推定値を算出する
ことを特徴とする請求項1〜請求項3いずれかに記載の姿勢標定装置。
The double phase difference estimator is
Baseline vectors in a plurality of GPS receivers are calculated based on the orientation values of attitude angles determined by the attitude determination device, and based on the calculated baseline vector and the direction cosine basis vector of the GPS receiver with respect to the GPS satellite that transmitted the carrier wave. 4. The posture locating apparatus according to claim 1, wherein an estimated value of a double phase difference in a plurality of GPS receivers is calculated.
前記二重位相差残差計算部は、
前記二重位相差算出部が算出した二重位相差の観測値と前記二重位相差推定部が算出した二重位相差の推定値との差を算出し、算出した差の小数値を複数のGPS受信機における二重位相差の観測値と推定値との差分とする
ことを特徴とする請求項1〜請求項4いずれかに記載の姿勢標定装置。
The double phase difference residual calculation unit is:
The difference between the double phase difference observation value calculated by the double phase difference calculation unit and the double phase difference estimation value calculated by the double phase difference estimation unit is calculated, and a plurality of decimal values of the calculated difference are calculated. The attitude determination device according to any one of claims 1 to 4, wherein a difference between an observed value and an estimated value of a double phase difference in a GPS receiver is provided.
ジャイロの測定値を用いて計算した姿勢角の計算値をGPS(Global Positioning System)受信機の観測値に基づいて補正して姿勢角の標定値を算出する姿勢標定装置の姿勢標定方法であり、
姿勢角計算部がジャイロの測定値に基づき中央処理装置を用いて姿勢角の計算値を算出する姿勢角計算処理と、
二重位相差算出部が各GPS受信機の観測した搬送波位相を入力し中央処理装置を用いて複数のGPS受信機における二重位相差の観測値を算出する二重位相差算出処理と、
二重位相差推定部が前記姿勢標定装置の標定した姿勢角の標定値に基づき中央処理装置を用いて複数のGPS受信機における二重位相差の推定値を算出する二重位相差推定処理と、
二重位相差残差計算部が前記二重位相差算出部の算出した複数のGPS受信機における二重位相差の観測値と前記二重位相差推定部の算出した複数のGPS受信機における二重位相差の推定値との差分を中央処理装置を用いて算出する二重位相差残差計算処理と、
補正量算出部が前記二重位相差残差計算部の算出した複数のGPS受信機における二重位相差の観測値と推定値との差分に基づき前記姿勢角計算部の算出した姿勢角の計算値に対する補正量を中央処理装置を用いて算出する補正量算出処理と、
姿勢角標定部が前記補正量算出部の算出した補正量に基づき前記姿勢角計算部の算出した姿勢角の計算値を中央処理装置を用いて補正して姿勢角の標定値を算出する姿勢角標定処理と
を実行することを特徴とする姿勢標定方法。
An attitude determination method for an attitude determination device that calculates an attitude angle orientation value by correcting an attitude angle calculation value calculated using a gyro measurement value based on an observation value of a GPS (Global Positioning System) receiver,
A posture angle calculation process in which the posture angle calculation unit calculates a calculated value of the posture angle using the central processing unit based on the measured value of the gyro;
A double phase difference calculation unit that inputs a carrier phase observed by each GPS receiver and calculates an observation value of a double phase difference in a plurality of GPS receivers using a central processing unit;
A double phase difference estimation unit for calculating an estimated value of a double phase difference in a plurality of GPS receivers using a central processing unit based on the orientation value of the attitude angle determined by the attitude determination device; ,
The double phase difference residual calculation unit calculates the observation value of the double phase difference in the plurality of GPS receivers calculated by the double phase difference calculation unit and the two values in the plurality of GPS receivers calculated by the double phase difference estimation unit. A double phase difference residual calculation process for calculating a difference from the estimated value of the multiple phase difference using a central processing unit;
Calculation of the posture angle calculated by the posture angle calculation unit based on the difference between the observed value and the estimated value of the double phase difference in the plurality of GPS receivers calculated by the double phase difference residual calculation unit by the correction amount calculation unit Correction amount calculation processing for calculating a correction amount for the value using a central processing unit;
Attitude angle in which the attitude angle locator corrects the calculated value of the attitude angle calculated by the attitude angle calculator based on the correction amount calculated by the correction amount calculator using the central processing unit, and calculates the orientation value of the attitude angle A posture orientation method characterized by executing an orientation process.
請求項6記載の姿勢標定方法をコンピュータに実行させることを特徴とする姿勢標定プログラム。   A posture orientation program that causes a computer to execute the posture orientation method according to claim 6.
JP2005361369A 2005-12-15 2005-12-15 Attitude locating device, attitude locating method, and attitude locating program Pending JP2007163335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361369A JP2007163335A (en) 2005-12-15 2005-12-15 Attitude locating device, attitude locating method, and attitude locating program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361369A JP2007163335A (en) 2005-12-15 2005-12-15 Attitude locating device, attitude locating method, and attitude locating program

Publications (1)

Publication Number Publication Date
JP2007163335A true JP2007163335A (en) 2007-06-28

Family

ID=38246392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361369A Pending JP2007163335A (en) 2005-12-15 2005-12-15 Attitude locating device, attitude locating method, and attitude locating program

Country Status (1)

Country Link
JP (1) JP2007163335A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443746A (en) * 2016-07-19 2017-02-22 招商局重庆交通科研设计院有限公司 Low-cost double-antenna GNSS/AHRS combination attitude determination method
KR20190022149A (en) * 2017-08-25 2019-03-06 국방과학연구소 Global navigation satellite system using variance of tangent angle of baseline vector components and spoofing signal identification method thereof
CN110058288A (en) * 2019-04-28 2019-07-26 北京微克智飞科技有限公司 Unmanned plane INS/GNSS integrated navigation system course error modification method and system
CN110161546A (en) * 2019-05-23 2019-08-23 杭州中科微电子有限公司 A kind of satellite orientation device and method using iteration Weighted Fuzzy degree function method
CN110216715A (en) * 2019-06-28 2019-09-10 炬星科技(深圳)有限公司 Robot navigation's performance test methods, system, test terminal and storage medium
JP2022043546A (en) * 2020-09-04 2022-03-16 株式会社デンソー Inertia sensor calibration device and inertia sensor calibration program
US20220221593A1 (en) * 2019-08-01 2022-07-14 Furuno Electric Co., Ltd. Attitude measuring device, attitude measuring method and attitude measurement program
US11914054B2 (en) 2020-09-10 2024-02-27 Honeywell International S.R.O. System and methods for estimating attitude and heading based on GNSS carrier phase measurements with assured integrity

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505896A (en) * 1994-09-13 1997-06-10 リットン・システムズ・インコーポレイテッド Navigation device with attitude determination
JPH10221109A (en) * 1997-02-01 1998-08-21 Litton Syst Inc Method and apparatus for obtaining observable value for input to kalman filter process for judging rolling and pitching of platform and bearing of nose
JP2001174275A (en) * 1999-12-17 2001-06-29 Furuno Electric Co Ltd Hybrid navigation and its apparatus
JP2002040124A (en) * 2000-07-24 2002-02-06 Furuno Electric Co Ltd Measuring device for carrier phase relative position
JP2003232845A (en) * 2002-02-12 2003-08-22 Furuno Electric Co Ltd Detection device of azimuth and attitude of moving body
JP2004518962A (en) * 2001-02-05 2004-06-24 コーヘン、クラーク Low cost system and method for making dual band GPS measurements
JP2004239643A (en) * 2003-02-03 2004-08-26 Furuno Electric Co Ltd Hybrid navigator
JP2005069866A (en) * 2003-08-25 2005-03-17 Furuno Electric Co Ltd Relative positioning system
JP2005147952A (en) * 2003-11-18 2005-06-09 Toyota Motor Corp Device for detecting position, and method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505896A (en) * 1994-09-13 1997-06-10 リットン・システムズ・インコーポレイテッド Navigation device with attitude determination
JPH10221109A (en) * 1997-02-01 1998-08-21 Litton Syst Inc Method and apparatus for obtaining observable value for input to kalman filter process for judging rolling and pitching of platform and bearing of nose
JP2001174275A (en) * 1999-12-17 2001-06-29 Furuno Electric Co Ltd Hybrid navigation and its apparatus
JP2002040124A (en) * 2000-07-24 2002-02-06 Furuno Electric Co Ltd Measuring device for carrier phase relative position
JP2004518962A (en) * 2001-02-05 2004-06-24 コーヘン、クラーク Low cost system and method for making dual band GPS measurements
JP2003232845A (en) * 2002-02-12 2003-08-22 Furuno Electric Co Ltd Detection device of azimuth and attitude of moving body
JP2004239643A (en) * 2003-02-03 2004-08-26 Furuno Electric Co Ltd Hybrid navigator
JP2005069866A (en) * 2003-08-25 2005-03-17 Furuno Electric Co Ltd Relative positioning system
JP2005147952A (en) * 2003-11-18 2005-06-09 Toyota Motor Corp Device for detecting position, and method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN4006000377; Yunchun Yang: '"Fast Ambiguity Resolution for GPS/IMU Attitude Determination"' ION GPS 2001 , 200109, pages 2990-2997 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443746B (en) * 2016-07-19 2019-05-10 招商局重庆交通科研设计院有限公司 A kind of low cost double antenna GNSS/AHRS combination survey attitude positioning method
CN106443746A (en) * 2016-07-19 2017-02-22 招商局重庆交通科研设计院有限公司 Low-cost double-antenna GNSS/AHRS combination attitude determination method
KR20190022149A (en) * 2017-08-25 2019-03-06 국방과학연구소 Global navigation satellite system using variance of tangent angle of baseline vector components and spoofing signal identification method thereof
KR101986553B1 (en) 2017-08-25 2019-06-07 국방과학연구소 Global navigation satellite system using variance of tangent angle of baseline vector components and spoofing signal identification method thereof
CN110058288A (en) * 2019-04-28 2019-07-26 北京微克智飞科技有限公司 Unmanned plane INS/GNSS integrated navigation system course error modification method and system
CN110058288B (en) * 2019-04-28 2021-04-06 北京微克智飞科技有限公司 Course error correction method and system for unmanned aerial vehicle INS/GNSS combined navigation system
CN110161546B (en) * 2019-05-23 2021-04-16 杭州中科微电子有限公司 Satellite orientation device and method using iterative weighted ambiguity function method
CN110161546A (en) * 2019-05-23 2019-08-23 杭州中科微电子有限公司 A kind of satellite orientation device and method using iteration Weighted Fuzzy degree function method
CN110216715A (en) * 2019-06-28 2019-09-10 炬星科技(深圳)有限公司 Robot navigation's performance test methods, system, test terminal and storage medium
US20220221593A1 (en) * 2019-08-01 2022-07-14 Furuno Electric Co., Ltd. Attitude measuring device, attitude measuring method and attitude measurement program
JP2022043546A (en) * 2020-09-04 2022-03-16 株式会社デンソー Inertia sensor calibration device and inertia sensor calibration program
JP7420023B2 (en) 2020-09-04 2024-01-23 株式会社デンソー Inertial sensor calibration device and inertial sensor calibration program
US11914054B2 (en) 2020-09-10 2024-02-27 Honeywell International S.R.O. System and methods for estimating attitude and heading based on GNSS carrier phase measurements with assured integrity

Similar Documents

Publication Publication Date Title
KR20210008384A (en) Rapid precision positioning method and system
JP4781313B2 (en) Multipath detection device, positioning device, posture orientation determination device, multipath detection method, and multipath detection program
US20070075896A1 (en) Attitude determination exploiting geometry constraints
WO2017066915A1 (en) Method and device for posture measurement in satellite navigation and unmanned aerial vehicle
JP2007163335A (en) Attitude locating device, attitude locating method, and attitude locating program
CN105425261B (en) Integrated navigation and localization method based on GPS/Beidou2/INS
JPH10221109A (en) Method and apparatus for obtaining observable value for input to kalman filter process for judging rolling and pitching of platform and bearing of nose
US9116228B2 (en) Low latency centralized RTK system
JP5301762B2 (en) Carrier phase relative positioning device
US20210190971A1 (en) GNSS-based attitude determination algorithm and triple-antenna GNSS receiver for its implementation
CN110361692B (en) Fusion positioning method and device
AU2015277932B2 (en) Conversion device and program
JP5689126B2 (en) Ultra short baseline GNSS receiver
WO2006082520A2 (en) A system and method for monitoring and surveying movements of the terrain, large infrastructures and civil building works in general, based upon the signals transmitted by the gps navigation satellite system
CN109061559B (en) Research method for modeling and correcting phase center deviation of UWB base station antenna
CN110850461A (en) GNSS attitude real-time measuring device and measuring method based on three antennas
MX2011005844A (en) A system and method of reference position determination.
JP2009025233A (en) Carrier phase positioning system
Willi et al. GNSS attitude determination with non-synchronized receivers and short baselines onboard a spacecraft
JP2001508182A (en) Posture determination method using GPS
JP2014085204A (en) Precision positioning system, precision positioning device, and precision positioning method
WO2019216261A1 (en) Information processing device, information processing method and program
Farkas et al. Small UAV’s position and attitude estimation using tightly coupled multi baseline multi constellation GNSS and inertial sensor fusion
JP2008241079A (en) Navigation system
JP6546730B2 (en) Satellite signal receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925