Procédé de combustion pour moteurs alternatifs La présente invention a trait à un procédé de combustion pour moteur alternatif. Le procédé prévoit de maintenir ou introduire dans le cylindre une charge de gaz brûlés recyclés et d'introduire une charge d'air frais et de les maintenir séparées pendant la compression. De préférence le taux de gaz brûlés recyclés est suffisant pour supprimer la formation des NOX, par exemple supérieur à 30% de la masse totale des gaz présents dans le cylindre. Le carburant est distribué dans la charge de gaz brûlés avant ou pendant la compression pour obtenir en fin de compression un mélange carburé où la concentration de vapeur est sensiblement homogène et où la concentration de gaz brûlés est partout suffisante pour limiter la température de flamme au dessous du seuil de formation des NOX, quel que soit l'apport d'oxygène. La combustion se développe au rythme du mélange par diffusion de la charge carburée dans la charge d'air frais pendant les transferts entre le cylindre et la chambre de combustion au voisinage du point mort haut. L'absence d'accumulation locale de carburant dans la zone réactive garantit une combustion exempte de particules. The present invention relates to a combustion method for a reciprocating engine. The method involves maintaining or introducing a charge of recycled burnt gases into the cylinder and introducing a charge of fresh air and keeping them separated during compression. Preferably the rate of burnt gases recycled is sufficient to suppress the formation of NOX, for example greater than 30% of the total mass of the gases present in the cylinder. The fuel is distributed in the charge of burnt gases before or during the compression in order to obtain at the end of the compression a fuel mixture where the vapor concentration is substantially homogeneous and where the concentration of burnt gases is everywhere sufficient to limit the flame temperature below NOX formation threshold, regardless of oxygen supply. Combustion develops at the rate of mixing by diffusion of the carburetted charge into the charge of fresh air during transfers between the cylinder and the combustion chamber in the vicinity of the top dead center. The absence of local fuel accumulation in the reactive zone guarantees particle-free combustion.
Problème non résolu par l'art antérieur. Dans les moteurs à allumage par compression on s'efforce d'homogénéiser la charge comburante composée d'air frais et de gaz brûlés recyclés pour limiter la température locale de flamme au seuil de formation des NOX. Le carburant est généralement introduit sous forme de brouillard au point mort haut quand la charge gazeuse a atteint une température qui permet un autoallumage rapide. Malgré les perfectionnements des dispositifs d'injection à rail commun, cette méthode crée des accumulations locales de carburant génératrices de particules.
De plus les petites zones prémélangées s'allument avec un cognement désagréable en circulation urbaine. Depuis quelques années d'autres procédés d'introduction du carburant dans la charge gazeuse homogène ont mis en évidence la possibilité d'éliminer à la source les NOX et les particules. Ils consistent à créer pendant le remplissage et/ou pendant la compression un prémélange plus ou moins homogène de gaz comburant et de vapeur de carburant qui s'enflamme massivement par autoallumage en fin de compression. Ces procédés sont connus sous le sigle anglosaxon HCCI (Homogeanous Charge Compression Ignition). En effet dans un mélange parfaitement homogène d'air,de gaz brûlés plus ou moins refroidis et de vapeur de carburant dont la richesse est inférieure à la stoechiométrie on peut dire en tous points :Problem not resolved by the prior art. In compression ignition engines, efforts are made to homogenize the oxidizing charge composed of fresh air and recycled burnt gases to limit the local flame temperature to the threshold of NOX formation. The fuel is generally introduced in the form of a fog at top dead center when the gas charge has reached a temperature which allows rapid self-ignition. Despite improvements in common rail injection devices, this method creates local accumulations of particle-generating fuel. In addition, the small premixed areas light up with an unpleasant knock in urban traffic. In recent years other methods of introducing fuel into the homogeneous gaseous charge have demonstrated the possibility of eliminating NOX and particles at the source. They consist in creating during filling and / or during compression a more or less homogeneous premix of oxidizing gas and fuel vapor which ignites massively by self-ignition at the end of compression. These processes are known by the acronym HCCI (Homogeanous Charge Compression Ignition). In fact, in a perfectly homogeneous mixture of air, more or less cooled burnt gases and fuel vapor, the richness of which is less than stoichiometry, we can say in all points:
Que toute molécule de carburant est entourée de suffisamment d'oxygène pour une combustion totale sans formation de suies. Que le comburant et le carburant sont chauffés simultanément pendant la compression jusqu'au seuil d'autoallumage sans surchauffe du milieu comburant. Que la présence en tous points de gaz ne participant pas à la réaction permet de maintenir partout la température au dessous du seuil de formation des NOX. Hélas, la mise en oeuvre de ces procédés est limitée par le caractère explosif de l'auto-allumage quand il se produit simultanément en tous points d'un volume. L'auto allumage n'est progressif qu'aux faibles charges très diluées où il démarre en certains points discrets répartis dans la masse dont la préoxydation a été initiée précocement par des radicaux actifs présents dans les gaz recirculés, par leur ordre d'arrivée dans le comburant ou par de petits gradients de température.
Après l'allumage la cinétique de la combustion due à échauffement par compression n'est plus contrôlable pour des pressions moyennes efficaces supérieures à 8 bars où le niveau sonore devient inacceptable. L'autre difficulté est de placer l'allumage au PMH (point mort haut). Ceci impose d'agir sur le délai d'oxydation lente, c'est à dire sur l'histoire de la charge carburée. L'exercice est possible en régime stabilisé mais périlleux dans les transitoires rapides des moteurs automobiles. De plus, le développement des flammes froides favorise la formation de CO et de HC qui seront difficilement oxydés dans le cylindre compte tenu des basses températures en fin de cycle, qui sont, de plus, insuffisantes pour la turbocompression. En conclusion il est très difficile de contrôler simultanément l'initiation et le développement de la combustion d'une charge parfaitement homogène. La turbocompression permet de recycler une part importante des gaz brûlés dans tout le champs d'utilisation du moteur comme le montre la demande de brevet déposée en France le 26 Mars 2003 sous le numéro 03 03728, dont le contenu est incorporé ici par référence. Le but de la présente invention est d'obtenir à toutes les charges du moteur une combustion sans cognement, exempte de NOX et de particules par une' séquence spaciotemporelle nouvelle de mise en présence des espèces qui participeront à la combustion.That every fuel molecule is surrounded by enough oxygen for total combustion without the formation of soot. That the oxidizer and the fuel are heated simultaneously during compression to the self-ignition threshold without overheating of the oxidizing medium. That the presence at all points of gas not participating in the reaction makes it possible to maintain the temperature everywhere below the threshold for the formation of NOX. Unfortunately, the implementation of these methods is limited by the explosive nature of self-ignition when it occurs simultaneously at all points of a volume. Self-ignition is progressive only at very diluted low charges where it starts at certain discrete points distributed in the mass, the preoxidation of which was initiated early by active radicals present in the recirculated gases, by their order of arrival in oxidizer or by small temperature gradients. After ignition, the kinetics of combustion due to heating by compression are no longer controllable for effective average pressures above 8 bars where the noise level becomes unacceptable. The other difficulty is to place the ignition at TDC (top dead center). This requires acting on the slow oxidation time, that is to say on the history of the fuel charge. Exercise is possible in a stabilized but perilous regime in the rapid transients of automobile engines. In addition, the development of cold flames promotes the formation of CO and HC which will be difficult to oxidize in the cylinder given the low temperatures at the end of the cycle, which are, moreover, insufficient for turbocharging. In conclusion it is very difficult to simultaneously control the initiation and the development of the combustion of a perfectly homogeneous charge. Turbocharging makes it possible to recycle a large part of the burnt gases throughout the field of use of the engine, as shown by the patent application filed in France on March 26, 2003 under number 03 03728, the content of which is incorporated here by reference. The object of the present invention is to obtain at all engine loads combustion without knocking, free of NOX and of particles by a ' new spaciotemporal sequence of bringing together the species which will participate in the combustion.
Description de l'invention. L'invention a pour objet un procédé de combustion pour un moteur alternatif adapté pour fonctionner avec un taux élevé de gaz brûlés recyclés, ledit moteur comprenant au moins un cylindre délimité par un piston et une culasse déterminant une chambre de travail d'une masse gazeuse et une chambre de combustion, caractérisé en ce que : - pendant la phase d'aspiration du piston, on crée ladite masse gazeuse à partir d'une première zone contenant essentiellement des gaz brûlés recyclés ayant une concentration d'oxygène résiduel insuffisante pour
permettre un auto-allumage précoce et d'une seconde zone contenant sensiblement la totalité d'une charge comburante d'air frais, lesdites zones étant maintenues séparées pendant la compression du piston, - on introduit dans la première zone un carburant pour créer un mélange carburé de gaz brûlés recyclés et de vapeur de carburant aussi homogène que possible en fin de compression, et - par la compression de la première et de la seconde zone on chauffe séparément la charge comburante d'air frais et le mélange carburé et on mélange au voisinage du point mort haut du piston ladite charge comburante et ledit mélange carburé pour entretenir une flamme de diffusion avec les mélanges mis en contact. L'invention concerne également des moteurs adaptés à ce procédé. Contrairement à l'art antérieur où le mélange d'air frais et de gaz brûlés recyclés présent dans le cylindre est homogène en fin de compression, la présente invention prévoit de limiter au maximum la zone de mélange pour conserver jusqu'à la fin de la compression une zone remplie de gaz brûlés ne contenant que l'oxygène résiduel du cycle précédent et une zone remplie d'air frais. Dans la zone intermédiaire mélangée, la concentration d'oxygène varie donc entre la valeur résiduelle de la combustion précédente et celle de l'air frais. Contrairement à l'art antérieur où le carburant est introduit dans un mélange comburant où la concentration d'oxygène est suffisante pour en assurer l'oxydation par diffusion locale, la présente invention prévoit d'introduire le carburant au cœur de la zone remplie de gaz brûlés peu oxygénés. Un mélange plus ou moins stratifié de gaz brûlés et de vapeur de carburant s'homogénéise en s'échauffant jusqu'à la fin de la compression dans une zone du cylindre alors que l'air frais et la zone de mélange s'échauffent dans une autre partie du cylindre.
Le mélange carburé doit être organisé pour que, en fin de compression, la dilution de la vapeur de carburant par les gaz brûlés soit partout suffisante pour interdire la formation de NOX dans une combustion localement stœchiométrique. Schématiquement l'art antérieur dilue par des gaz brûlés toute la charge d'oxygène avant d'introduire le carburant liquide. La température locale est limitée par la concentration massique d'oxygène quelle que soit la concentration locale de carburant créée par l'injecteur qui accumule le carburant autour des gouttelettes en générant des particules. Au contraire, la présente invention dilue par des gaz brûlés toute la vapeur de carburant avant d'introduire l'oxygène frais dans la zone réactionnelle. La température locale est limitée par la faible concentration locale de carburant qui élimine simultanément la formation de NOX et les points riches générateurs de particules. En fin de compression les températures des zones carburée et comburante sont suffisantes pour qu'un autoallumage se déclenche dès la mise en présence par diffusion des molécules d'hydrocarbures et des molécules d'oxygène sans formation de prémélange important. La combustion peut démarrer par un autoallumage du prémélange carburé, qui s'ajoute à la compression pour activer les produits à brûler. La concentration d'oxygène résiduel de la zone carburée est suffisamment faible pour que l'auto allumage éventuel du prémélange carburé se développe sur un mode HCCI silencieux. Le point d'allumage éventuel du prémélange peut être contrôlé par le point d'injection ,par la richesse, par le taux de compression, par la température des gaz recyclés ou tout autre moyen connu pour contrôler le procédé HCCI. La combustion principale se développe au voisinage du point mort haut au rythme de la diffusion turbulente de la charge carburée dans la
charge comburante consécutive à la chasse des gaz du cylindre dans la chambre de combustion provoquée par le mouvement du piston. Ce processus de mélange doit être rapide et complet pour garantir une oxydation totale du combustible. Il est avantageux de générer l'énergie de mélange pendant la phase de remplissage en communiquant à la charge gazeuse une énergie cinétique de rotation qui se dégradera en turbulence lors du transfert centripète dans une chambre de combustion de diamètre très inférieur à l'alésage. Si la rencontre entre gaz comburant et gaz carburé s'effectue à la périphérie de la chambre dans ce mouvement de rotation, les gaz brûlés à haute température s'évacuent vers l'axe de la chambre pour laisser la périphérie à des produits réactionnels frais. Le phénomène de mélange est ainsi accéléré par la combustion. Un avantage supplémentaire de ce mécanisme est de concentrer les gaz chauds au cœur de la charge et de limiter les pertes thermiques aux parois de la chambre de travail. Selon d'autres caractéristiques de l'invention : - on introduit le carburant sous la forme d'un brouillard propulsé par un injecteur à haute pression vers la première zone au moment où ladite première zone atteint une température suffisante pour vaporiser les gouttelettes liquides du carburant, - on injecte le carburant dans les gaz brûlés recyclés de la première zone pendant leur introduction dans le cylindre, - les gaz brûlés recyclés de la première zone contiennent la majorité des imbrûlés du cycle précédent, - les gaz brûlés recyclés de la première zone contiennent la majorité des gaz ayant subi un refroidissement au contact des parois de la chambre de travail pendant le cycle précédent, - la chambre de travail possède une symétrie de révolution autour de l'axe du cylindre correspondant,
- la chambre de combustion est formée par une cavité coaxiale au cylindre correspondant ménagé dans le piston et/ou la culasse et dont le diamètre est inférieur à celui du cylindre de 50 à 60%, - le mélange carburé de la première zone est animé d'un mouvement de rotation rapide autour de l'axe du cylindre correspondant et, en fin de compression, ce mélange carburé est intégralement transféré dans la chambre de combustion correspondante quand la charge comburante est encore dans l'espace annulaire entre le piston et la culasse, - le mélange carburé de la première zone est localisé contre le piston correspondant, - la cavité formant la chambre de combustion est formée par un bol de combustion aménagé dans le piston, - la culasse comporte une protubérance destinée à pénétrer dans le bol de combustion au point mort haut du piston correspondant pour ménager un jeu annulaire variable en fonction de la position de ce piston et pour maintenir une vitesse de transfert des gaz sensiblement indépendante de la position de ce piston, - la charge comburante d'air frais de la seconde zone est concentrée contre le cylindre correspondant et les gaz brûlés recyclés sont concentrés dans une zone centrale de ce cylindre et la chambre de combustion est ménagée pour moitié dans le piston et pour moitié dans la culasse correspondante, - on provoque l'allumage de la masse gazeuse à la périphérie de la chambre de combustion où la charge comburante d'air frais de la seconde zone commence à oxygéner le mélange carburé de la première zone, - on provoque l'allumage de la masse gazeuse au sein du mélange carburé de la première zone au moment où ce mélange atteint la température d'auto-allumage et/ou la charge comburante d'air frais de la seconde zone commence à pénétrer dans la chambre de combustion,
- on provoque l'allumage de la masse gazeuse immédiatement après l'injection du carburant dans les gaz brûlés recyclés chauds de la première zone un peu avant le point mort haut du piston correspondant, - on réalise une stratification du mélange carburé de la première zone et de la charge comburante d'air frais de la seconde zone en introduisant successivement ce mélange carburé et cette charge comburante dans le cylindre correspondant et de préférence en introduisant le mélange carburé de la première zone avant la charge comburante, - la stratification du mélange carburé de la première zone et de la charge comburante d'air frais de la seconde zone est préparée dans une chambre de stratification oblongue extérieure au cylindre correspondant et débouchant d'un côté dans un collecteur d'alimentation en air frais et de l'autre côté dans un conduit d'admission de la culasse correspondante. Par exemple dans un moteur alternatif adapté au cycle à quatre temps, on alimente la chambre de stratification en gaz brûlés recyclés par un conduit d'échappement du cylindre correspondant distinct du conduit d'alimentation d'une turbine, en les faisant circuler dans un réfrigérant et dans un conduit d'admission de la culasse correspondante. Par exemple dans un moteur alternatif adapté au cycle à deux temps, un réfrigérant des gaz brûlés recyclés situé dans la partie de la chambre de stratification débouchant dans le conduit d'admission de la culasse correspondante et un clapet anti-retour situé entre la chambre de stratification et le collecteur d'alimentation d'air frais interdit tout écoulement de ladite chambre vers ledit collecteur et on transfère les gaz chauds à refroidir et à recycler du cylindre vers la chambre de stratification correspondante en ouvrant une soupape d'admission à la fin de la course de détente du piston correspondant, le clapet anti-retour se trouvant de ce fait en position fermée, et on introduit la masse gazeuse ainsi préparée dans la chambre de stratification, dans le cylindre correspondant par le conduit d'admission en ouvrant une soupape d'échappement pour évacuer les gaz
chauds contenus dans ledit cylindre, la chute de pression ainsi créée dans la chambre de stratification ouvrant le clapet anti-retour pour y introduire la charge d'air frais du cycle suivant. Fonctionnement de l'invention L'autoallumage du prémélange très riche, quand il existe, se développe sans cognement, faute d'oxygène pour accélérer la réaction dans le ballast de gaz brûlés et de carburant excédentaire. Il se développe sans formation de NOX compte tenu de la très faible concentration d'oxygène. II se développe très au dessous de la température de formation des suies dans un milieu exempt d'accumulation locale de carburant. La combustion principale par diffusion ne forme pas de NOX car la dilution par des gaz brûlés de la vapeur de carburant limite la température locale même en excès d'oxygène. La combustion principale par diffusion ne forme pas de particules car la vapeur de carburant a eu le temps de se disperser dans la masse de gaz brûlés en éliminant les points d'accumulation. La combustion principale n'est pas bruyante car elle se développe au rythme de la diffusion gazeuse de la charge comburante dans la charge carburée. L'autoallumage de la charge carburée doit se produire avant que son mélange avec la charge comburante soit suffisamment avancé pour être le siège d'une combustion détonante en prémélange. La combustion éventuelle en mode HCCI de l'oxygène prémélangé dans la charge carburée s'associe au mouvement du piston pour échauffer par compression la charge comburante au dessus du seuil d'auto allumage.Description of the invention. The subject of the invention is a combustion method for an alternative engine adapted to operate with a high rate of recycled burnt gases, said engine comprising at least one cylinder delimited by a piston and a cylinder head determining a working chamber of a gaseous mass. and a combustion chamber, characterized in that: - during the suction phase of the piston, said gaseous mass is created from a first zone containing essentially burnt recycled gases having an insufficient concentration of residual oxygen for allow early self-ignition and a second zone containing substantially all of an oxidizing charge of fresh air, said zones being kept separate during the compression of the piston, - a fuel is introduced into the first zone to create a mixture fuel from recycled burnt gases and fuel vapor as homogeneous as possible at the end of compression, and - by compression of the first and second zones, the oxidizing charge of fresh air and the fuel mixture are heated separately and mixed with near the top dead center of the piston, said oxidizing charge and said fuel mixture for maintaining a diffusion flame with the mixtures brought into contact. The invention also relates to motors suitable for this method. Unlike the prior art where the mixture of fresh air and recycled burnt gases present in the cylinder is homogeneous at the end of compression, the present invention provides for limiting the mixing zone as much as possible to preserve until the end of the compression an area filled with burnt gases containing only residual oxygen from the previous cycle and an area filled with fresh air. In the mixed intermediate zone, the oxygen concentration therefore varies between the residual value of the previous combustion and that of the fresh air. Unlike the prior art where the fuel is introduced into an oxidizing mixture where the oxygen concentration is sufficient to ensure its oxidation by local diffusion, the present invention provides for introducing the fuel into the heart of the zone filled with gas. burned with little oxygen. A more or less stratified mixture of burnt gases and fuel vapor is homogenized by heating up to the end of compression in a zone of the cylinder while the fresh air and the mixing zone heat up in a other part of the cylinder. The fuel mixture must be organized so that, at the end of compression, the dilution of the fuel vapor by the burnt gases is sufficient everywhere to prevent the formation of NOX in a locally stoichiometric combustion. Schematically the prior art dilutes by burnt gases all the oxygen charge before introducing the liquid fuel. The local temperature is limited by the mass concentration of oxygen whatever the local concentration of fuel created by the injector which accumulates the fuel around the droplets by generating particles. On the contrary, the present invention dilutes by burnt gases all the fuel vapor before introducing fresh oxygen into the reaction zone. The local temperature is limited by the low local concentration of fuel which simultaneously eliminates the formation of NOX and the rich points which generate particles. At the end of compression, the temperatures of the carburetted and oxidizing zones are sufficient for an auto-ignition to be triggered as soon as the hydrocarbon molecules and oxygen molecules are brought into contact with one another without significant premix formation. Combustion can start by self-ignition of the fuel premix, which is added to the compression to activate the products to be burned. The concentration of residual oxygen in the fuel zone is low enough for the possible self-ignition of the fuel premix to develop in a silent HCCI mode. The possible point of ignition of the premix can be controlled by the injection point, by the richness, by the compression ratio, by the temperature of the recycled gases or any other known means for controlling the HCCI process. The main combustion develops in the vicinity of the top dead center at the rate of the turbulent diffusion of the fuel charge in the oxidizing charge following the flushing of gas from the cylinder into the combustion chamber caused by the movement of the piston. This mixing process must be rapid and complete to guarantee total oxidation of the fuel. It is advantageous to generate the mixing energy during the filling phase by communicating to the gaseous charge a kinetic energy of rotation which will degrade in turbulence during the centripetal transfer in a combustion chamber of diameter much smaller than the bore. If the combustion gas and fuel gas meet at the periphery of the chamber in this rotational movement, the gases burned at high temperature evacuate towards the axis of the chamber to leave the periphery for fresh reaction products. The mixing phenomenon is thus accelerated by combustion. An additional advantage of this mechanism is to concentrate the hot gases at the heart of the load and to limit the heat losses at the walls of the working chamber. According to other characteristics of the invention: - the fuel is introduced in the form of a mist propelled by a high pressure injector towards the first zone when said first zone reaches a temperature sufficient to vaporize the liquid droplets of the fuel , - the fuel is injected into the burnt gases recycled from the first zone during their introduction into the cylinder, - the burnt gases recycled from the first zone contain the majority of the unburnt products from the previous cycle, - the burnt gases recycled from the first zone contain the majority of gases having undergone cooling in contact with the walls of the working chamber during the previous cycle, - the working chamber has a symmetry of revolution around the axis of the corresponding cylinder, - the combustion chamber is formed by a cavity coaxial with the corresponding cylinder formed in the piston and / or the cylinder head and whose diameter is less than that of the cylinder by 50 to 60%, - the fuel mixture of the first zone is animated by '' a rapid rotational movement around the axis of the corresponding cylinder and, at the end of compression, this fuel mixture is fully transferred into the corresponding combustion chamber when the oxidizing charge is still in the annular space between the piston and the cylinder head , - the fuel mixture of the first zone is located against the corresponding piston, - the cavity forming the combustion chamber is formed by a combustion bowl arranged in the piston, - the cylinder head has a protuberance intended to penetrate into the combustion bowl at top dead center of the corresponding piston to provide a variable annular clearance depending on the position of this piston and to maintain a speed of trans fert gas substantially independent of the position of this piston, - the oxidizing charge of fresh air from the second zone is concentrated against the corresponding cylinder and the recycled burnt gases are concentrated in a central zone of this cylinder and the combustion chamber is half provided in the piston and half in the corresponding cylinder head, - the gas mass is ignited at the periphery of the combustion chamber where the oxidizing charge of fresh air from the second zone begins to oxygenate the fuel mixture of the first zone, - the gas mass is ignited within the fuel mixture of the first zone when this mixture reaches the self-ignition temperature and / or the oxidizing charge of fresh air in the second area begins to enter the combustion chamber, - the gas mass is ignited immediately after the injection of the fuel into the hot recycled burnt gases of the first zone a little before the top dead center of the corresponding piston, - the fuel mixture of the first zone is stratified and the oxidizing charge of fresh air from the second zone by successively introducing this fuel mixture and this oxidizing charge into the corresponding cylinder and preferably by introducing the fuel mixture from the first zone before the oxidizing charge, - the stratification of the fuel mixture of the first zone and the oxidizing charge of fresh air of the second zone is prepared in an oblong stratification chamber external to the corresponding cylinder and opening on one side into a fresh air supply manifold and on the other side in an intake duct of the corresponding cylinder head. For example, in an alternative engine suitable for the four-stroke cycle, the stratification chamber is supplied with recycled burnt gas by an exhaust duct of the corresponding cylinder distinct from the supply duct of a turbine, by circulating them in a refrigerant. and in an intake duct of the corresponding cylinder head. For example in an alternative engine suitable for the two-stroke cycle, a refrigerant for recycled burnt gases located in the part of the stratification chamber opening into the intake duct of the corresponding cylinder head and a non-return valve located between the stratification and the fresh air supply manifold prevents any flow from said chamber to said manifold and the hot gases to be cooled and recycled are transferred from the cylinder to the corresponding stratification chamber by opening an inlet valve at the end of the expansion stroke of the corresponding piston, the non-return valve being thereby in the closed position, and the gaseous mass thus prepared is introduced into the stratification chamber, into the corresponding cylinder by the intake duct by opening a valve exhaust to exhaust gases hot contained in said cylinder, the pressure drop thus created in the laminating chamber opening the non-return valve to introduce the charge of fresh air for the next cycle. Operation of the invention The self-ignition of the very rich premix, when it exists, develops without knocking, lack of oxygen to accelerate the reaction in the ballast of burnt gases and excess fuel. It develops without NOX formation due to the very low oxygen concentration. It develops very below the soot-forming temperature in an environment free of local fuel accumulation. The main combustion by diffusion does not form NOX because the dilution by burnt gases of fuel vapor limits the local temperature even in excess of oxygen. The main combustion by diffusion does not form particles because the fuel vapor had time to disperse in the mass of burnt gases by eliminating the accumulation points. The main combustion is not noisy because it develops at the rate of the gaseous diffusion of the oxidizing charge in the carburetted charge. The self-ignition of the carburetted charge must occur before its mixing with the oxidizing charge is sufficiently advanced to be the site of a detonating combustion in premix. The possible combustion in HCCI mode of the premixed oxygen in the carburetted charge is associated with the movement of the piston to heat by compression the oxidizing charge above the self-ignition threshold.
• Le procédé implique que la charge gazeuse reste stratifiée pendant la compression pour éviter la rencontre de l'oxygène et du carburant avant que le piston s'approche du point mort haut.
La charge gazeuse trappée dans le cylindre est construite à partir des composants suivants: L'air frais prélevé à l'atmosphère pour chaque cycle, par exemple, à 350°K environ, Les gaz brûlés des cycles précédents retenus dans le cylindre à 900°K environ, par exemple, Le cas échéant, les gaz brûlés des cycles précédents recirculés dans le cylindre après un refroidissement externe jusqu'à, par exemple, 450°K environ. Dans un mouvement de rotation autour de l'axe du cylindre, ces trois composants sont avantageusement stratifiés radialement avec l'air frais contre le cylindre, les gaz brûlés refroidis à l'intérieur de la couche d'air frais et la colonne de gaz chauds retenus au centre du cylindre. Les mélanges entre couches constituent en fin de compression un gradient radial de concentration d'oxygène maximale contre le cylindre et faible au centre ainsi qu'un gradient radial de température faible au cylindre et maximale au centre. La combustion selon l'invention s'organise essentiellement pendant les transferts entre le cylindre et le bol de combustion créés par le piston sur, par exemple, 20 à 30 degrés de vilebrequin de part et d'autre du point mort haut. Le processus d'introduction du carburant dépend de sa volatilité et de son inflammabilité. Le gazole est avantageusement atomisé à haute pression précocement pendant la course de compression dans le centre du cylindre rempli de gaz brûlés trop pauvres en oxygène pour déclencher une combustion détonante au point mort haut. Dans ces conditions, l'autoallumage éventuel du prémélange est réglé par l'angle de début d'injection qui fixe l'origine des phénomènes de pré oxydation.
La masse de gaz brûlés recyclés doit être suffisante pour maintenir partout la température de flamme au dessous du seuil de formation des NOX thermiques. Il est avantageux de donner aux gaz recyclés une forte turbulence pour homogénéiser la charge carburée après l'injection du carburant et pour accélérer la diffusion ultérieure de l'oxygène pendant les transferts de gaz entre le cylindre et la chambre de combustion au voisinage du point mort haut. Quand les gaz recyclés sont trop chauds pour éviter un autoallumage précoce le carburant doit être injecté plus tardivement dans les gaz brûlés, par exemple au début de la période de transfert de la charge comburante dans la chambre de combustion. A haute température la vaporisation est presque instantanée et le mélange entre la vapeur et les gaz résiduels peut s'effectuer immédiatement avant la pénétration diffusante de l'oxygène dans la zone réactionnelle. L'organisation du mélange entre le carburant et les gaz brûlés est, dans ce cas, essentiellement assurée par l'injecteur. La charge d'air frais admise pour oxyder le carburant injecté est maintenue séparée de la charge carburée jusqu'au voisinage du point mort haut par une zone tampon comportant de l'air frais à l'extérieur et des gaz brûlés à l'intérieur. • The process implies that the gaseous charge remains stratified during compression to avoid the encounter of oxygen and fuel before the piston approaches the top dead center. The gaseous charge trapped in the cylinder is constructed from the following components: Fresh air taken from the atmosphere for each cycle, for example, at around 350 ° K, The burnt gases from previous cycles retained in the cylinder at 900 ° K approximately, for example, if necessary, the burnt gases from the preceding cycles recirculated in the cylinder after external cooling down to, for example, approximately 450 ° K. In a rotational movement around the cylinder axis, these three components are advantageously laminated radially with the fresh air against the cylinder, the burnt gases cooled inside the layer of fresh air and the column of hot gases. retained in the center of the cylinder. The mixtures between layers constitute at the end of compression a radial gradient of maximum oxygen concentration against the cylinder and low in the center as well as a radial gradient of low temperature in the cylinder and maximum in the center. The combustion according to the invention is mainly organized during transfers between the cylinder and the combustion bowl created by the piston on, for example, 20 to 30 degrees of crankshaft on either side of the top dead center. The fuel introduction process depends on its volatility and flammability. Diesel is advantageously atomized at high pressure early during the compression stroke in the center of the cylinder filled with burnt gases too poor in oxygen to trigger an explosive combustion at top dead center. Under these conditions, the possible self-ignition of the premix is regulated by the angle of start of injection which fixes the origin of the pre-oxidation phenomena. The mass of recycled burnt gases must be sufficient to keep the flame temperature everywhere below the threshold for the formation of thermal NOX. It is advantageous to give the recycled gases a strong turbulence in order to homogenize the carburetted charge after the injection of the fuel and to accelerate the subsequent diffusion of oxygen during the gas transfers between the cylinder and the combustion chamber in the vicinity of neutral high. When the recycled gases are too hot to avoid early self-ignition, the fuel must be injected later into the burnt gases, for example at the start of the transfer period of the oxidizing charge in the combustion chamber. At high temperature the vaporization is almost instantaneous and the mixing between the vapor and the residual gases can take place immediately before the diffusing penetration of the oxygen into the reaction zone. The organization of the mixture between the fuel and the burnt gases is, in this case, essentially ensured by the injector. The charge of fresh air admitted to oxidize the injected fuel is kept separate from the fuel charge up to the vicinity of top dead center by a buffer zone comprising fresh air outside and burnt gases inside.
• Pendant la compression, la charge carburée, la charge oxygénée et la zone tampon se réchauffent séparément jusqu'à la température d'auto- allumage. Pour limiter la température de l'azote de la charge comburante, il est avantageux de porter le mélange carburé à une température supérieure pour atteindre le seuil d'autoallumage associé à la présence des radicaux actifs préoxydés. Cette stratégie prend en compte la difficulté de refroidir les gaz brûlés au même niveau que l'air frais.
Un peu avant le point mort haut la zone carburée s'enflamme éventuellement sur le mode HCCI • During compression, the fuel charge, the oxygen charge and the buffer zone heat up separately to the self-ignition temperature. To limit the temperature of the nitrogen in the oxidizing charge, it is advantageous to bring the fuel mixture to a higher temperature to reach the self-ignition threshold associated with the presence of the preoxidized active radicals. This strategy takes into account the difficulty of cooling the flue gases to the same level as the fresh air. A little before top dead center the carburetted area may ignite in HCCI mode
• Immédiatement après, les deux charges sont mélangées par le mouvement du piston au rythme de la diffusion gazeuse générée par l'aérodynamique interne dans la zone réactionnelle. La combustion principale se développe au rythme de cette diffusion. Après l'autoallumage éventuel du prémélange très pauvre en oxygène, le dégagement d'énergie est rythmé par le développement de la diffusion entre les deux charges réactives qui doit être organisée au voisinage du point mort haut. La diffusion turbulente requiert un gradient de vitesse entre les gaz carbures et les gaz comburants. Cette mise en vitesse peut être générée par le mouvement du piston, par le processus de remplissage, par l'injection du carburant et par la dilatation locale des gaz due à la combustion. Les solutions sont nombreuses et dépendent de la structure de la stratification générée par les transferts en phases ouverte et fermée. Ce procédé suppose que la combustion soit voisine de la stoechiométrie au moins dans la zone de la chambre qui sera recyclée et irriguée et que la charge carburée se mélange peu à la zone oxygénée jusqu'à la fin de la course de compression. Les éventuels imbrûlés présents dans cette zone pourront ainsi être recyclés. Au contraire la zone de la chambre qui sera évacuée, par exemple, vers une turbine peut être plus oxygénée pour supprimer les imbrûlés dans les gaz d'échappement. II est donc préférable que les gaz à recycler soient orientés vers un circuit indépendant du circuit d'alimentation de la turbine. A la fin de la course de détente on distingue deux zones dans le cylindre :
Une zone, pauvre en hydrocarbures imbrûlés qui peut contenir de l'oxygène résiduel pour d'éventuels post-traitements. Elle sera détendue dans la turbine. De préférence, cette zone ne comporte pas de gaz brûlés ayant subi un refroidissement aux parois de la chambre de travail. Une zone qui comporte éventuellement des hydrocarbures imbrûlés et qui comporte de préférence les gaz brûlés ayant subi un refroidissement au contact des parois. Elle sera retenue dans le cylindre ou refroidie extérieurement pour être recyclée ultérieurement afin d'oxyder les imbrûlés. Cette zone sera irriguée par la nouvelle charge de carburant. II est avantageux d'organiser la chambre de combustion pour maintenir la zone riche qui sera recyclée contre les parois de la chambre de travail afin d'inclure les pertes de chaleur du cycle fermé dans les pertes par refroidissement des gaz brûlés recyclés. La partie la plus chaude de la charge gazeuse est prioritairement évacuée vers la turbine. Les phases délicates du procédé sont successivement : La génération de la stratification et le maintien pendant la compression de la séparation entre la charge de gaz brûlés et la charge comburante. La création d'un mélange quasi homogène entre les gaz brûlés et la vapeur de carburant. La diffusion rapide et totale de la charge comburante dans la charge carburée au point mort haut combustion. Génération de la stratification. Les procédés sont nombreux pour générer la stratification et ne seront décrits ci après que certains exemples faciles à mettre en œuvre dans les cycles à 4 et à 2 temps. Les principes généraux sont les suivants : Contrairement à l'approche homogène où les gaz recyclés sont dosés simultanément pour tous les cylindres dans un mélangeur commun avec l'air frais, l'approche stratifiée impose un dosage cylindre par cylindre des gaz recyclés.
Contrairement à l'air frais qui est délivré par un compresseur commun à tous les cylindres, les gaz sont émis par chaque cylindre individuellement pendant le processus de vidange précis et répétitif. La présente invention prévoit d'utiliser ce processus pour doser la quantité de gaz adressée au cylindre récepteur. La géométrie des circuits d'alimentation et d'évacuation des cylindres doit être identique pour assurer un dosage équilibré des gaz recyclés et de l'air frais. La zone parasite de mélange entre l'air frais et les gaz recyclés se développe sensiblement proportionnellement au temps de présence dans le cylindre. Le cycle à 2 temps est plus favorable à la stratification que le cycle à 4 temps parce que la durée de cohabitation des deux charges dans le cylindre y est environ trois fois plus courte. La solution la plus simple pour recycler des gaz chauds consiste à les retenir dans le cylindre d'un cycle à l'autre. Un dosage précis de la masse retenue peut être assuré par le calage des soupapes qui peut être réglé en marche par un déphaseur d'arbre à cames . Dans un cycle à 4 temps la fermeture précoce de l'échappement s'accompagne d'une phase inutile de compression détente des gaz recyclés génératrice de pertes par frottements. Dans un cycle à 2 temps il suffit de sous-balayer le cylindre pour y retenir des gaz brûlés du cycle précédent. Pour stratifier la charge, l'air frais doit être orienté vers une partie du cylindre en évitant au maximum les phénomènes de mélange avec les gaz déjà présents. L'inconvénient de cette méthode est la forte température des gaz recyclés qui peut s'avérer trop élevée pour éliminer les NOX.
Cette solution peut être viable dans un cycle à 2 temps très suralimenté asymétrique à fort taux de détente pour diminuer la température en fin de détente et à faible taux de compression pour diminuer échauffement pendant la compression. On injectera avantageusement le carburant en début de compression afin de refroidir les gaz avant de les comprimer. En général, il faut refroidir les gaz à l'extérieur du cylindre. Pour pouvoir recycler la zone polluée de la chambre de combustion, on ne décrira que les procédés de stratification où la traçabilité des gaz recyclés est sauvegardée entre les cylindres émetteurs et les cylindres récepteurs. Ceci implique que la vidange du cylindre s'effectue en deux phases distinctes vers la turbine et vers le circuit de recyclage par des orifices de préférence différents. Il est très difficile d'installer une stratification en introduisant simultanément l'air frais et les gaz brûlés dans le cylindre. On préférera donc les procédés où les gaz et l'air sont introduits successivement et particulièrement où les gaz sont introduits d'abord. La stratification pourrait alors être générée pendant le remplissage en ouvrant successivement des orifices d'admission distincts pour les gaz brûlés recirculés et pour l'air frais. Le passage d'un orifice à l'autre implique néanmoins une phase de mélange où une soupape se ferme pendant que l'autre s'ouvre. Afin de ne pas interrompre le remplissage et de profiter de toute la section d'admission, il est plus avantageux de préparer la charge stratifiée à l'extérieur du cylindre et de l'introduire sans discontinuité par un même orifice qui verra passer successivement des gaz recyclés puis de l'air frais par exemple. Pour atteindre ce but l'invention prévoit, avantageusement, de disposer une chambre de stratification individuelle dans le conduit d'admission de chaque cylindre.Bien qu'un moteur à 2 temps d'architecture axisymétrique
permettrait une application optimale du procédé, l'invention sera décrite sur un moteur à 4 temps d'architecture classique pour faciliter l'exposé. On se réfère maintenant à la description suivante, faite à titre d'exemple non limitatif et se référant au dessin annexé, dans lequel : les figures 1 et 2 représentent un moteur 4 temps mis en œuvre dans l'invention, les figures 3 à 9 représentent schématiquement l'aérodynamique en coupe méridienne d'un cylindre pendant le fonctionnement, les figures 10 et 11 représentent schématiquement les diffusions pour deux formes de chambres de combustion, la figure 12 représente un moteur dans un mode de mise en œuvre simplifiée. On se réfère maintenant à la figure 1 qui représente un moteur à 4 temps, 4 cylindres et 4 soupapes par cylindre actionnées par deux arbres à cames. Les soupapes d'admission A1 , A2 diamétralement opposées sont associées à un canal directif pour créer des jets d'air tangents au cylindre et très couchés sur le plan de culasse afin de générer un écoulement hélicoïdal de révolution qui envahit le cylindre à partie de la culasse, par exemple, conformément à la demande de brevet France n° 03 03728. Un premier arbre à cames AàC1 actionne une soupape d'échappement Et qui alimente la turbine et une soupape d'admission A1. L'autre arbre à cames A à C2, de préférence déphasable par rapport au premier, actionne une soupape d'échappement Er qui alimente le circuit de recyclage et l'autre soupape d'admission A2. La chambre de stratification 1 de volume voisin de la cylindrée unitaire 2 a de préférence une forme oblongue pour limiter la surface de contact 3 entre les gaz et l'air frais. La chambre 1 est placée entre les orifices d'admission 4 du cylindre et le collecteur 5 d'arrivée d'air refroidi du compresseur 6.
Pendant chaque cycle, la chambre 1 subit une phase de remplissage et une phase de vidange dans le cylindre auquel elle est associée. Elle se remplit d'air frais par sa jonction 7 avec le collecteur d'admission 5 et de gaz brûlés refroidis issus du même cylindre par sa 5 jonction 8 avec les orifices d'admission 4. Son alimentation en gaz brûlés doit être répétitive de cycle à cycle et identique pour tous les cylindres. On a vu précédemment l'intérêt d'une vidange du cylindre en deux temps fixés par l'ouverture décalée de deux orifices d'échappement • Immediately afterwards, the two charges are mixed by the movement of the piston at the rate of the gas diffusion generated by the internal aerodynamics in the reaction zone. The main combustion develops at the rate of this diffusion. After the possible self-ignition of the very oxygen-poor premix, the release of energy is punctuated by the development of the diffusion between the two reactive charges which must be organized in the vicinity of the top dead center. Turbulent diffusion requires a speed gradient between carbide gases and oxidizing gases. This speed up can be generated by the movement of the piston, by the filling process, by the injection of fuel and by the local expansion of the gases due to combustion. The solutions are numerous and depend on the structure of the stratification generated by the transfers in open and closed phases. This process assumes that the combustion is close to stoichiometry at least in the zone of the chamber which will be recycled and irrigated and that the carburetted charge mixes little with the oxygenated zone until the end of the compression stroke. Any unburnt materials present in this area can thus be recycled. On the contrary, the area of the chamber which will be evacuated, for example, towards a turbine can be more oxygenated to remove unburnt in the exhaust gases. It is therefore preferable for the gases to be recycled to be directed to a circuit independent of the turbine supply circuit. At the end of the rebound stroke, there are two areas in the cylinder: An area, poor in unburnt hydrocarbons which may contain residual oxygen for possible post-treatments. It will be relaxed in the turbine. Preferably, this zone does not include burnt gases having undergone cooling at the walls of the working chamber. An area which optionally includes unburnt hydrocarbons and which preferably includes the burnt gases which have undergone cooling in contact with the walls. It will be retained in the cylinder or cooled externally for subsequent recycling in order to oxidize the unburnt. This area will be irrigated by the new fuel charge. It is advantageous to organize the combustion chamber to maintain the rich zone which will be recycled against the walls of the working chamber in order to include the heat losses of the closed cycle in the losses by cooling of the recycled burnt gases. The hottest part of the gas charge is first evacuated to the turbine. The delicate phases of the process are successively: The generation of the stratification and the maintenance during compression of the separation between the charge of burnt gases and the oxidizing charge. The creation of an almost homogeneous mixture between the burnt gases and the fuel vapor. The rapid and total diffusion of the oxidizing charge in the carburetted charge at high combustion dead center. Stratification generation. There are many methods for generating the stratification and will be described below only some examples which are easy to implement in 4 and 2-stroke cycles. The general principles are as follows: Unlike the homogeneous approach where the recycled gases are dosed simultaneously for all the cylinders in a common mixer with fresh air, the stratified approach imposes a cylinder by cylinder dosage of the recycled gases. Unlike the fresh air which is delivered by a compressor common to all the cylinders, the gases are emitted by each cylinder individually during the precise and repetitive emptying process. The present invention provides for using this process to dose the quantity of gas addressed to the receiving cylinder. The geometry of the cylinder supply and discharge circuits must be identical to ensure a balanced metering of recycled gases and fresh air. The parasitic mixing zone between the fresh air and the recycled gases develops substantially in proportion to the time of presence in the cylinder. The 2-stroke cycle is more favorable for stratification than the 4-stroke cycle because the duration of coexistence of the two charges in the cylinder is about three times shorter there. The simplest solution for recycling hot gases is to keep them in the cylinder from one cycle to the next. A precise metering of the retained mass can be ensured by the timing of the valves which can be adjusted in operation by a camshaft phase shifter. In a 4-stroke cycle, the early closing of the exhaust is accompanied by an unnecessary phase of expansion compression of the recycled gases, generating friction losses. In a 2-stroke cycle, it suffices to sub-sweep the cylinder to retain the burnt gases from the previous cycle. To stratify the load, the fresh air must be directed towards a part of the cylinder, avoiding as much as possible the phenomena of mixing with the gases already present. The disadvantage of this method is the high temperature of the recycled gases which may prove to be too high to remove the NOX. This solution can be viable in a very supercharged asymmetrical 2-stroke cycle with a high expansion rate to decrease the temperature at the end of expansion and at a low compression rate to reduce heating during compression. The fuel will advantageously be injected at the start of compression in order to cool the gases before compressing them. In general, the gases outside the cylinder must be cooled. In order to be able to recycle the polluted zone of the combustion chamber, only the stratification processes will be described where the traceability of the recycled gases is saved between the emitting cylinders and the receiving cylinders. This implies that the emptying of the cylinder takes place in two distinct phases towards the turbine and towards the recycling circuit by preferably different orifices. It is very difficult to install a stratification by simultaneously introducing fresh air and burnt gases into the cylinder. We therefore prefer the processes where the gases and air are introduced successively and particularly where the gases are introduced first. Stratification could then be generated during filling by successively opening separate intake orifices for the recirculated burnt gases and for the fresh air. The passage from one orifice to the other nevertheless involves a mixing phase where one valve closes while the other opens. In order not to interrupt the filling and to take advantage of the entire intake section, it is more advantageous to prepare the stratified charge outside the cylinder and to introduce it without discontinuity through the same orifice which will pass successively gases recycled then fresh air for example. To achieve this aim, the invention advantageously provides for an individual stratification chamber in the intake duct of each cylinder. Although a 2-stroke engine of axisymmetric architecture would allow optimal application of the method, the invention will be described on a 4-stroke engine of conventional architecture to facilitate the presentation. Reference is now made to the following description, given by way of nonlimiting example and referring to the appended drawing, in which: FIGS. 1 and 2 represent a 4-stroke engine implemented in the invention, FIGS. 3 to 9 schematically represent the aerodynamics in meridian section of a cylinder during operation, FIGS. 10 and 11 schematically represent the diffusions for two forms of combustion chambers, FIG. 12 represents an engine in a simplified mode of implementation. Referring now to Figure 1 which shows a 4-stroke engine, 4 cylinders and 4 valves per cylinder actuated by two camshafts. The diametrically opposite intake valves A1, A2 are associated with a directional channel to create air jets tangent to the cylinder and very flat on the cylinder head plane in order to generate a helical flow of revolution which invades the cylinder from the cylinder head, for example, in accordance with French patent application No. 03 03728. A first camshaft AàC1 actuates an exhaust valve And which supplies the turbine and an intake valve A1. The other camshaft A to C2, preferably phase-shiftable with respect to the first, actuates an exhaust valve Er which feeds the recycling circuit and the other intake valve A2. The stratification chamber 1 of volume close to the unit displacement 2 preferably has an oblong shape to limit the contact surface 3 between the gases and the fresh air. The chamber 1 is placed between the intake orifices 4 of the cylinder and the manifold 5 for the arrival of cooled air from the compressor 6. During each cycle, the chamber 1 undergoes a filling phase and an emptying phase in the cylinder with which it is associated. It is filled with fresh air by its junction 7 with the intake manifold 5 and cooled burnt gases from the same cylinder by its 5 junction 8 with the intake ports 4. Its supply of burnt gases must be repetitive of cycle with cycle and identical for all the cylinders. We have previously seen the advantage of emptying the cylinder in two stages fixed by the offset opening of two exhaust orifices
L0 alimentant respectivement la turbine et le circuit de recyclage. Le déphasage entre les soupapes peut être réglé en fonctionnement par un déphaseur d'arbre à came pour doser la masse de gaz à recycler. Pour conserver ce dosage jusqu'au cylindre récepteur, il est avantageux de prévoir un circuit de recyclage individuel comportant un L5 réfrigérant 9 par cylindre. Une vanne de réglage 10 située à la sortie de l'orifice de recyclage peut remplacer ou compléter le calage variable avec l'avantage de permettre de supprimer totalement le recyclage pendant les accélérations. Un bypass réglable 11 du réfrigérant 9 permet de régler la température 20 des gaz recyclés indépendamment de leur débit. Un organe unique peut assurer ces deux fonctions. Par exemple un boisseau cylindrique percé de lumières communiquant avec l'entrée et la sortie du réfrigérant peut être commandé en translation pour régler le débit et en rotation pour régler la température. 25 Les vannes et les bypass de tous les cylindres sont réglés simultanément par un dispositif de commande commun. On se réfère maintenant à la figure 2 qui décrit les mouvements de gaz recyclés dans les conduits. Le cylindre C1 se trouve au point mort haut croisement au début de sa 0 course de remplissage.
La charge de gaz refroidis est en attente dans la chambre de stratification 1. Les gaz chauds à refroidir émis pendant la course d'échappement précédente occupent tout le volume compris entre la soupape Er et la soupape d'admission A2. Le cylindre C2 se trouve au point mort bas admission où toutes les soupapes sont fermées. Pendant la course d'admission les soupapes d'échappement Et et Er étant fermées, le cylindre a aspiré via les soupapes d'admission la charge de gaz brûlés refroidis en attente dans la chambre de stratification 1 suivie par la charge d'air frais contigu. Les gaz présents dans le réfrigérant sont en cours de refroidissement. Le cylindre C3 se trouve au point mort haut compression. Les gaz présents dans le réfrigérant 9 poursuivent leur refroidissement en se contractant. La frontière avec l'air frais se déplace vers le réfrigérant. Le cylindre C4 se trouve au point mort bas détente. Les gaz présents dans le réfrigérant 9 terminent leur refroidissement en amenant l'air frais à la limite de ce dernier.La course d'échappement qui va suivre repoussera la frontière 3 jusqu'à sa position au cylindre 1. Les figures 3 à 9 décrivent schématiquement l'aérodynamique interne au cylindre pendant les phases compression combustion et détente dans une coupe méridienne. Si les orifices d'admission sont orientés tangentiellement au cylindre avec une faible inclinaison sur le plan de la culasse, la charge gazeuse en rotation s'approche d'une stratification de révolution autour de l'axe du cylindre comme le montre la fig. 3 La charge de gaz brûlés G1 occupe la partie centrale inférieure du cylindre. L'air frais G2 occupe la partie périphérique supérieure du cylindre. La figure 4 montre l'irrigation en carburant de gaz recyclés pendant la compression avec sa zone riche en carburant Z1 et sa zone pauvre Z2.
La figure 5 montre la situation au début la combustion où les gaz carbures Z occupent la totalité du bol de combustion 12 situé dans le piston .C'est à ce moment que l'autoallumage du mélange carburé peut éventuellement se produire. La figure 6 montre la combustion par diffusion au voisinage du point mort haut consécutive au transfert de la charge carburante composée essentiellement d'air frais G2, localisée dans l'espace annulaire entre le piston et la culasse dans la chambre de combustion pleine de gaz brûlés carbures Z. La figure 7 montre la situation en fin de détente où la zone Z1 transformée après combustion et détente peut contenir des imbrûlés et les gaz refroidis par les parois alors que la zone transformée Z2 qui contient un excès d'oxygène est la plus chaude. La zone transformée Z2 sera évacuée la première pendant la détente des gaz vers la turbine via la soupape Et. La figure 8 montre la course d'échappement où la zone transformée Z1 est refoulée par le piston via la soupape Er vers le circuit de recyclage en déplaçant les gaz refroidis présents dans le réfrigérant vers la chambre de stratification 1 pour prendre leur place jusqu'au cycle suivant. La figure 9 montre une coupe perpendiculaire à l'axe du cylindre de la zone réactionnelle de la figure 6 où les produits de combustion sont évacués vers le centre par la centrifugation des gaz carbures plus lourds. Une méthode plus simple consiste à alimenter en gaz la chambre de stratification par des orifices d'admission ouverts pendant la vidange du cylindre. Ceci implique de placer le réfrigérant dans la chambre de stratification. La charge de gaz effectue un aller-retour dans le réfrigérant pendant les transferts. L'inconvénient de la méthode est le faible temps de séjour des gaz dans le réfrigérant (pendant la phase fermée du cycle le réfrigérant est plein
d'air) ainsi que le refroidissement hétérogène de la charge (les gaz voisins de l'arrivée d'air sont beaucoup plus refroidis que les gaz voisins des soupapes. L'avantage de la méthode est un dosage précis de la masse recyclée. Dans un cycle à 4 temps la séquence de transvasement est la suivante : Pendant la vidange du cylindre, les gaz brûlés sont évacués partiellement vers la turbine via les orifices d'échappement et partiellement vers le réfrigérant rempli d'air frais via les orifices d'admission. Après l'évacuation des gaz, le cylindre réaspire successivement, via les orifices d'admission, les gaz brûlés du cycle précédent stockés et refroidis dans le réfrigérant d'admission et la charge fraîche qui remplace les gaz aiguillés vers la turbine. Les orifices d'admission et d'échappement sont ouverts pendant la course de refoulement. Pendant la course d'aspiration les orifices d'admission sont ouverts et les orifices d'échappement sont fermés. Si les soupapes d'admission n'interfèrent pas avec le piston, il n'est pas nécessaire de les fermer au point mort haut croisement. Le pourcentage de gaz recyclés peut être réglé par le déphasage entre l'ouverture des orifices d'admission et celle des orifices d'échappement en fin de détente au moyen d'un déphaseur angulaire d'arbre à cames. Dans un cycle à 2 temps la séquence de transvasement est la suivante : Les gaz brûlés refroidis recyclés doivent précéder l'air frais pour balayer les gaz brûlés destinés à la turbine.La séquence de transvasement comporte alors les phases successives suivantes : • Transfert de la fraction à recycler des gaz brûlés vers le réfrigérant de gaz via les orifices d'admission. • Retour dans le cylindre, via les orifices d'admission, des gaz précédents refroidis par le réfrigérant pour balayer une partie des gaz
chauds vers la turbine via les orifices d'échappement. • Introduction stratifiée de la charge fraîche via le réfrigérant et les orifices d'admission pour terminer le balayage des gaz chauds vers la turbine via les orifices d'échappement. Pour accomplir cette séquence complexe dans la courte période allouée au balayage, (120 degrés vilebrequin environ pour un moteur à trois cylindres) l'invention prévoit d'utiliser l'énergie potentielle disponible dans les gaz brûlés en fin de détente qui est généralement perdue dans la bouffée d'échappement. Pour ce faire la chambre de stratification comporte le réfrigérant et communique avec le collecteur d'alimentation en air via un clapet anti retour. Pour décrire les séquences de transvasement nous supposons que : la pression d'air de balayage délivré par le compresseur est 3 bars la pression des gaz à l'entrée turbine est 2,5 bars la pression des gaz brûlés en fin de détente est 10 bars En fin de détente, les orifices d'admission sont ouverts pour faire communiquer le cylindre rempli de gaz chauds à 10 bars et la chambre de stratification remplie d'air frais à 3 bars isolée du conduit d'arrivée d'air par son clapet anti retour. Les gaz à 10 bars qui se détendent et se refroidissent compriment cet air jusqu'à 5 bars environ pour occuper la cavité fermée de volume égal à la somme du cylindre et de la chambre de stratification. Le volume du réfrigérant est fixé par ces conditions de pression et la température des gaz refroidis au moment de l'ouverture des orifices d'échappement. Les orifices d'échappement sont ensuite ouverts pour faire communiquer le volume global à 5 bars avec la turbine à 2,5 bars. Les gaz refroidis à 5 bars balayent les gaz chauds présents dans le cylindre jusqu'à 3 bars où le clapet anti-retour s'ouvre pour laisser passer une nouvelle charge
fraîche qui propulse dans le cylindre la charge fraîche stockée dans la cavité pour terminer le balayage des gaz chauds jusqu'à 2,5 bars. Si le réfrigérant est du type tubulaire il est possible de profiter de la dépression consécutive à la mise en vitesse des gaz pour aspirer la charge fraîche via le clapet anti retour quand la turbocompression n'est pas amorcée. Les écoulements sont très rapides compte tenu des fortes chutes de pression entre cavités. Le réfrigérant est parcouru de façon alternée par l'air frais et les gaz ' recyclés animés par les fortes turbulences associés aux écoulements rapides qui accélèrent les transferts thermiques. La vitesse tangentielle induite dans le cylindre pendant le balayage sera utilisée en phase fermée pour homogénéiser la charge carburée après l'injection et accélérer la diffusion pendant la combustion. Pendant la phase fermée du cycle un va et vient acoustique peut être entretenu dans le réfrigérant pour accélérer le refroidissement de la charge fraîche en attente. Génération du mélange entre les gaz recyclé et la vapeur du carburant. Pour laisser le maximum de temps à la formation du mélange, le carburant sera distribué dans la charge de gaz brûlés le plus tôt possible, de préférence après la fermeture des orifices d'échappement. Pour les carburants liquides, la température d'ébullition détermine le moment et la méthode optimaux pour obtenir un mélange aussi homogène que possible en fin de compression. Le pulvérisateur assurera une distribution du brouillard aussi homogène que possible dans la charge recyclée. La turbulence des gaz recyclés achèvera la répartition de la vapeur de carburant au cours de la course de compression et tout particulièrement pendant leur transfert centripète dans le bol de combustion dont le diamètre est, par exemple, de l'ordre de 50 à 60% de celui du cylindre et où les frottements internes sont très intenses.
On évitera les impacts de carburant liquide sur les parois de la chambre de travail. L'essence,très volatile, ou les combustibles gazeux pourront être injectés dans les orifices d'admission simultanément à l'introduction des gaz recyclés dont la température dépasse toujours 450°K. Le gazole, plus difficile à vaporiser sera pulvérisé plus ou moins tard pendant la course de compression selon la température des gaz recyclés. Au delà de la température des gaz recyclés génératrice d'un autoallumage précoce de la charge carburée, l'injection interviendra immédiatement avant le transfert de l'air frais dans le bol de combustion et la qualité du mélange carburé reposera largement sur l'injecteur. Diffusion de la charge comburante dans la charge carburée au voisinage du point mort haut. La vitesse de combustion est fonction de l'intensité de la diffusion entre les produits qui pénètrent dans la zone réactionnelle, elle-même fonction du niveau de turbulence. Le mécanisme le plus efficace est de communiquer aux gaz recyclés et à l'air frais un moment cinétique de rotation autour de l'axe du cylindre qui génère une forte turbulence dans leur transfert centripète vers le bol de combustion. II est aussi très important d'évacuer rapidement les produits en cours de combustion en dehors de la zone réactionnelle. Ceci se fait naturellement quand cette dernière est localisée à la périphérie du bol de combustion. En effet les gaz brûlés chauds sont chassés vers l'axe du bol alors que les produits frais plus denses sont centrifugés vers la périphérie comme le montrent les figures 6 et 9. Une configuration optimale est possible en stratification radiale avec un demi bol de combustion dans le piston et un demi bol de combustion dans la culasse. Le disque d'air frais pénétrant dans le plan équatorial de la zone réactionnelle développe deux zones de mélange avec la charge carburée
situées dans les hémisphères supérieur et inférieur de la chambre de combustion. Les figures 10 et 11 montrent deux régimes aérodynamiques possibles selon les vitesses tangentielles respectives de l'air frais et des gaz brûlés et les géométries des chambres. La géométrie préférée pour conserver la stratification dans le cylindre et l'énergie cinétique de la charge comporte une symétrie de révolution autour de l'axe du cylindre pour recevoir des écoulements rotatifs de révolution autour de cet axe. Dans un cycle à 4 temps, l'architecture classique d'une culasse plane à 4 soupapes associée à un bol de combustion situé au centre du piston permet d'approcher une aérodynamique interne à symétrie de révolution entre la fin du remplissage et la fin de l'évacuation du cylindre. Les conduits d'admission doivent générer des jets tangentiels au cylindre très couchés sur le plan de la culasse afin de former une stratification axiale de la masse gazeuse en rotation. A la fin du remplissage, les gaz recyclés sont concentrés contre le piston et l'air frais contre la culasse. Dans un cycle à 2 temps une architecture à soupapes coaxiales au cylindre est la mieux adaptée au présent procédé. Elle permet de localiser la chambre de combustion pour moitié dans le piston et pour moitié dans la culasse. La chambre de travail est alimentée et vidée par une soupape d'admission et une soupape d'échappement concentriques au cylindre et situées dans la culasse ; Les ouvertures et fermetures peuvent avantageusement être déphasées par rapport à l'arbre moteur pendant le fonctionnement afin de moduler la durée angulaire de balayage en fonction des paramètres de fonctionnement.Une fois fermée, la chambre de travail présente une symétrie de révolution autour de l'axe du cylindre.
L'orifice d'échappement étant situé au centre.la masse évacuée vers la turbine occupe la partie centrale et chaude du cylindre, alors que la masse recyclée occupe la zone pariétale refroidie du cylindre. Dans certains cas, il peut être avantageux de prévoir une proéminence circulaire au centre de la culasse ou du piston qui pénètre dans la chambre de combustion située dans le vis à vis pour accroître et contrôler la vitesse de chasse générée par le mouvement du piston pendant le transfert de la dernière charge. Pour limiter la formation du mélange, l'air frais est introduit dans le cylindre après les gaz brûlés recyclés sous forme d'une nappe tangentielle au cylindre pour former un tore oxygéné en rotation contre la paroi du cylindre. La partie centrale du cylindre fermée par le piston dont une cavité centrale constitue une demi chambre de combustion est occupée par des gaz brûlés sensiblement peu oxygénés. Pendant la compression la charge inerte occupe la partie centrale du cylindre alors que la charge fraîche se maintient contre sa paroi. Dès que la compression a suffisamment chauffé les gaz brûlés, le carburant est pulvérisé dans ces derniers pour former un mélange de vapeur de carburant et de gaz brûlés qui s'homogénéise en pénétrant dans les demi bols de combustion. Vers la fin de la compression, les gaz brûlés carbures occupent tout le bol de combustion et l'air frais occupe l'espace annulaire limité par le cylindre, par la face du piston, par le ciel de culasse et par la surface extérieure de la proéminence de la culasse. A la fin de sa course de compression le piston transfère la charge oxygénée dans le bol plein de gaz carburé pour déclencher l'autoallumage par diffusion totale des deux charges. La combustion se poursuit pendant le transfert inverse des gaz brûlés du bol vers le cylindre au début de la course de détente en utilisant au
passage l'oxygène restant dans le jeu entre la face annulaire du piston et le ciel de culasse. Pour une mise en œuvre de l'invention sur un moteur à circuit de recyclage commun à tous les cylindres on se réfère à la figure 12, où le dosage des gaz recyclés est assuré par des ajutages 2 identiques pour tous les cylindres. Cette méthode ne permet cependant pas une stratification totale car, en fin de remplissage, la charge fraîche est introduite avec le débit de gaz de l'ajutage du cylindre concerné. Ceci correspond à une perte de l'ordre de 25% de la masse de gaz brûlés qui sera carburée.
L0 respectively supplying the turbine and the recycling circuit. The phase shift between the valves can be adjusted in operation by a camshaft phase shifter to dose the mass of gas to be recycled. To keep this dosage up to the receiving cylinder, it is advantageous to provide an individual recycling circuit comprising a refrigerant L5 9 per cylinder. An adjustment valve 10 located at the outlet of the recycling orifice can replace or supplement the variable setting with the advantage of making it possible to completely eliminate recycling during accelerations. An adjustable bypass 11 of the refrigerant 9 makes it possible to adjust the temperature 20 of the recycled gases independently of their flow rate. A single body can perform these two functions. For example, a cylindrical bushel pierced with lights communicating with the inlet and the outlet of the refrigerant can be controlled in translation to adjust the flow rate and in rotation to adjust the temperature. 25 The valves and bypass of all cylinders are regulated simultaneously by a common control device. We now refer to FIG. 2 which describes the movements of recycled gas in the conduits. Cylinder C1 is in top crossing neutral position at the start of its 0 filling stroke. The charge of cooled gases is on standby in the stratification chamber 1. The hot gases to be cooled emitted during the preceding exhaust stroke occupy the entire volume comprised between the valve Er and the intake valve A2. The cylinder C2 is at the bottom intake neutral point where all the valves are closed. During the intake stroke, the exhaust valves Et and Er being closed, the cylinder sucked in via the intake valves the charge of cooled burnt gases waiting in the stratification chamber 1 followed by the charge of contiguous fresh air . The gases present in the refrigerant are being cooled. Cylinder C3 is in neutral high compression. The gases present in the refrigerant 9 continue to cool while contracting. The border with fresh air moves to the refrigerant. The cylinder C4 is in neutral, low trigger. The gases present in the refrigerant 9 finish their cooling by bringing the fresh air to the limit of the latter. The exhaust stroke which will follow will push the border 3 back to its position at the cylinder 1. FIGS. 3 to 9 describe schematically the internal aerodynamics of the cylinder during the compression combustion and expansion phases in a meridian section. If the intake ports are oriented tangentially to the cylinder with a slight inclination in the plane of the cylinder head, the rotating gas charge approaches a stratification of revolution around the axis of the cylinder as shown in fig. 3 The charge of burnt gases G1 occupies the lower central part of the cylinder. The fresh air G2 occupies the upper peripheral part of the cylinder. Figure 4 shows the fuel irrigation of recycled gases during compression with its fuel-rich zone Z1 and its lean zone Z2. FIG. 5 shows the situation at the start of combustion where the carbide gases Z occupy the entire combustion bowl 12 located in the piston. It is at this point that the self-ignition of the fuel mixture may possibly occur. Figure 6 shows combustion by diffusion in the vicinity of top dead center following the transfer of the fuel charge composed essentially of fresh air G2, located in the annular space between the piston and the cylinder head in the combustion chamber full of burnt gases carbides Z. FIG. 7 shows the situation at the end of expansion where the zone Z1 transformed after combustion and expansion may contain unburnt materials and the gases cooled by the walls whereas the transformed zone Z2 which contains an excess of oxygen is the hottest . The transformed zone Z2 will be evacuated first during the expansion of the gases towards the turbine via the valve E. And FIG. 8 shows the exhaust stroke where the transformed zone Z1 is discharged by the piston via the valve Er towards the recycling circuit in moving the cooled gases present in the refrigerant to the stratification chamber 1 to take their place until the next cycle. FIG. 9 shows a section perpendicular to the axis of the cylinder of the reaction zone of FIG. 6 where the products of combustion are evacuated towards the center by the centrifugation of the heavier carbide gases. A simpler method consists in supplying gas to the stratification chamber by open intake openings during the emptying of the cylinder. This involves placing the refrigerant in the stratification chamber. The gas charge goes back and forth in the refrigerant during transfers. The disadvantage of the method is the short residence time of the gases in the refrigerant (during the closed phase of the cycle the refrigerant is full air) as well as the heterogeneous cooling of the load (the gases close to the air intake are much more cooled than the gases close to the valves. The advantage of the method is a precise dosage of the recycled mass. a 4-stroke cycle the transfer sequence is as follows: During the emptying of the cylinder, the burnt gases are partially evacuated to the turbine via the exhaust ports and partially to the refrigerant filled with fresh air via the intake ports After the gases have been evacuated, the cylinder successively sucks back, via the intake ports, the burnt gases from the previous cycle stored and cooled in the intake coolant and the fresh charge which replaces the gases directed to the turbine. The intake and exhaust ports are open during the discharge stroke. During the suction stroke, the intake ports are open and the exhaust ports are closed. admission weights do not interfere with the piston, it is not necessary to close them in top crossing neutral position. The percentage of recycled gas can be adjusted by the phase difference between the opening of the intake ports and that of the exhaust ports at the end of expansion by means of an angular camshaft phase shifter. In a 2-stroke cycle, the transfer sequence is as follows: The recycled cooled burnt gases must precede the fresh air to sweep the burnt gases intended for the turbine. The transfer sequence then comprises the following successive phases: • Transfer of the fraction to recycle burnt gases to the gas cooler via the intake ports. • Return to the cylinder, via the intake ports, of the previous gases cooled by the refrigerant to sweep away some of the gases hot to the turbine via the exhaust ports. • Stratified introduction of the fresh charge via the refrigerant and the intake ports to complete the sweeping of hot gases to the turbine via the exhaust ports. To accomplish this complex sequence in the short period allocated to the sweep, (120 degrees crankshaft approximately for a three-cylinder engine) the invention provides for using the potential energy available in the burnt gases at the end of expansion which is generally lost in the exhaust puff. To do this, the stratification chamber contains the refrigerant and communicates with the air supply manifold via a non-return valve. To describe the transfer sequences we assume that: the purge air pressure delivered by the compressor is 3 bars the gas pressure at the turbine inlet is 2.5 bars the pressure of the burnt gases at the end of expansion is 10 bars At the end of expansion, the intake openings are open to communicate the cylinder filled with hot gases at 10 bars and the stratification chamber filled with fresh air at 3 bars isolated from the air intake duct by its check valve. return. The gases at 10 bars which expand and cool compress this air up to approximately 5 bars to occupy the closed cavity of volume equal to the sum of the cylinder and the stratification chamber. The volume of the refrigerant is fixed by these pressure conditions and the temperature of the gases cooled when the exhaust orifices are opened. The exhaust ports are then opened to communicate the overall volume at 5 bars with the turbine at 2.5 bars. The gases cooled to 5 bars sweep the hot gases present in the cylinder up to 3 bars where the non-return valve opens to let a new charge pass cool which propels the fresh charge stored in the cavity into the cylinder to complete the scanning of hot gases up to 2.5 bar. If the refrigerant is of the tubular type, it is possible to take advantage of the vacuum resulting from the speeding up of the gases to suck in the fresh charge via the non-return valve when the turbocharging is not initiated. The flows are very rapid taking into account the strong pressure drops between cavities. The refrigerant is driven alternately by the fresh air and gases Hentai recycled by turbulence associated with rapid flows that accelerate heat transfer. The tangential speed induced in the cylinder during sweeping will be used in the closed phase to homogenize the carburetted charge after injection and accelerate the diffusion during combustion. During the closed phase of the cycle, an acoustic back and forth can be maintained in the refrigerant to accelerate the cooling of the fresh charge pending. Generation of the mixture between the recycled gases and the fuel vapor. To allow maximum time for the formation of the mixture, the fuel will be distributed in the charge of burnt gases as soon as possible, preferably after closing the exhaust ports. For liquid fuels, the boiling temperature determines the optimal time and method to obtain a mixture as homogeneous as possible at the end of compression. The sprayer will ensure that the mist is distributed as evenly as possible in the recycled load. The turbulence of the recycled gases will complete the distribution of the fuel vapor during the compression stroke and especially during their centripetal transfer in the combustion bowl whose diameter is, for example, of the order of 50 to 60% of that of the cylinder and where the internal friction is very intense. Avoid the impact of liquid fuel on the walls of the working chamber. Petrol, very volatile, or gaseous fuels can be injected into the intake ports simultaneously with the introduction of recycled gases whose temperature always exceeds 450 ° K. Diesel, which is more difficult to vaporize, will be sprayed more or less later during the compression stroke depending on the temperature of the recycled gases. Beyond the temperature of the recycled gases generating an early self-ignition of the fuel charge, the injection will take place immediately before the transfer of fresh air into the combustion bowl and the quality of the fuel mixture will largely depend on the injector. Diffusion of the oxidizing charge in the carburetted charge near the top dead center. The combustion rate is a function of the intensity of the diffusion between the products which enter the reaction zone, itself a function of the level of turbulence. The most efficient mechanism is to communicate to the recycled gases and to the fresh air a kinetic moment of rotation around the cylinder axis which generates a strong turbulence in their centripetal transfer to the combustion bowl. It is also very important to quickly evacuate the products during combustion outside the reaction zone. This is done naturally when the latter is located at the periphery of the combustion bowl. In fact, the hot burnt gases are expelled towards the axis of the bowl while the denser fresh products are centrifuged towards the periphery as shown in FIGS. 6 and 9. An optimal configuration is possible in radial stratification with a half combustion bowl in the piston and half a combustion bowl in the cylinder head. The fresh air disk entering the equatorial plane of the reaction zone develops two zones of mixing with the carburetted charge located in the upper and lower hemispheres of the combustion chamber. Figures 10 and 11 show two possible aerodynamic regimes depending on the respective tangential speeds of fresh air and burnt gases and the geometries of the chambers. The preferred geometry for preserving the stratification in the cylinder and the kinetic energy of the load comprises a symmetry of revolution around the axis of the cylinder to receive rotary flows of revolution around this axis. In a 4-stroke cycle, the classic architecture of a flat cylinder head with 4 valves associated with a combustion bowl located in the center of the piston makes it possible to approach an internal aerodynamics with symmetry of revolution between the end of filling and the end of the evacuation of the cylinder. The intake ducts must generate jets tangential to the cylinder very flat on the plane of the cylinder head in order to form an axial stratification of the rotating gaseous mass. At the end of filling, the recycled gases are concentrated against the piston and fresh air against the cylinder head. In a 2-stroke cycle, an architecture with coaxial valves to the cylinder is best suited to the present process. It makes it possible to locate the combustion chamber for half in the piston and for half in the cylinder head. The working chamber is supplied and emptied by an intake valve and an exhaust valve concentric with the cylinder and located in the cylinder head; The openings and closings can advantageously be out of phase with respect to the motor shaft during operation in order to modulate the angular duration of scanning as a function of the operating parameters. Once closed, the working chamber has a symmetry of revolution around the cylinder axis. The exhaust port being located in the center. The mass evacuated to the turbine occupies the central and hot part of the cylinder, while the recycled mass occupies the cooled parietal zone of the cylinder. In some cases, it may be advantageous to provide a circular prominence in the center of the cylinder head or of the piston which penetrates into the combustion chamber located in the opposite to increase and control the hunting speed generated by the movement of the piston during the transfer of the last charge. To limit the formation of the mixture, fresh air is introduced into the cylinder after the burnt gases recycled in the form of a sheet tangential to the cylinder to form an oxygenated torus in rotation against the wall of the cylinder. The central part of the cylinder closed by the piston, a central cavity of which constitutes a half combustion chamber, is occupied by burnt gases which are substantially not very oxygenated. During compression the inert load occupies the central part of the cylinder while the fresh load remains against its wall. As soon as the compression has sufficiently heated the burnt gases, the fuel is sprayed into the latter to form a mixture of fuel vapor and burnt gases which is homogenized by entering the combustion half bowls. Towards the end of the compression, the burnt carbide gases occupy the entire combustion bowl and the fresh air occupies the annular space limited by the cylinder, by the face of the piston, by the cylinder head and by the external surface of the prominence of the breech. At the end of its compression stroke, the piston transfers the oxygenated charge into the bowl full of carburetted gas to trigger self-ignition by total diffusion of the two charges. Combustion continues during the reverse transfer of the burnt gases from the bowl to the cylinder at the start of the expansion stroke using at passage of the oxygen remaining in the clearance between the annular face of the piston and the headspace. For an implementation of the invention on an engine with a recycling circuit common to all the cylinders, reference is made to FIG. 12, where the metering of the recycled gases is ensured by identical nozzles 2 for all the cylinders. This method does not however allow a total stratification because, at the end of filling, the fresh charge is introduced with the gas flow rate from the nozzle of the cylinder concerned. This corresponds to a loss of around 25% of the mass of burnt gas which will be fueled.