WO2005047356A1 - α-ALKOXYSILANE SOWIE IHRE ANWENDUNG IN ALKOXYSILANTERMINIERTEN PREPOLYMEREN - Google Patents

α-ALKOXYSILANE SOWIE IHRE ANWENDUNG IN ALKOXYSILANTERMINIERTEN PREPOLYMEREN Download PDF

Info

Publication number
WO2005047356A1
WO2005047356A1 PCT/EP2004/011215 EP2004011215W WO2005047356A1 WO 2005047356 A1 WO2005047356 A1 WO 2005047356A1 EP 2004011215 W EP2004011215 W EP 2004011215W WO 2005047356 A1 WO2005047356 A1 WO 2005047356A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepolymers
general formula
alkoxysilanes
prepolymer
groups
Prior art date
Application number
PCT/EP2004/011215
Other languages
English (en)
French (fr)
Inventor
Andreas Bockholt
Volker Stanjek
Richard Weidner
Original Assignee
Consortium für elektrochemische Industrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consortium für elektrochemische Industrie GmbH filed Critical Consortium für elektrochemische Industrie GmbH
Priority to EP04790177A priority Critical patent/EP1680457A1/de
Priority to US10/595,646 priority patent/US20090012322A1/en
Publication of WO2005047356A1 publication Critical patent/WO2005047356A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/289Compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203

Definitions

  • the invention relates to aminomethyl-functional alkoxysilanes, prepolymers prepared from these silanes and compositions containing these prepolymers.
  • Prepolymer systems which have reactive alkoxysilyl groups have been known for a long time and are widely used for the production of elastic sealants and adhesives in the industrial and construction sectors.
  • these alkoxysilane-terminated prepolymers are capable of condensing with one another at room temperature, with elimination of the alkoxy groups and formation of an Si-O-Si bond. This means that these prepolymers can be use as one-component systems, which have the advantage of simple handling, since no second component has to be metered in and mixed in.
  • alkoxysilane-terminated prepolymers Another advantage of alkoxysilane-terminated prepolymers is the fact that no acids, oximes or amines are released during curing. In contrast to isocyanate-based adhesives or sealants, there is also no CO2, which as a gaseous component can lead to the formation of bubbles. In contrast to isocyanate-based systems, alkoxysilane-terminated prepolymer mixtures are also toxicologically harmless in any case. Depending on the content of alkoxysilane groups and their structure, long-chain polymers (thermoplastics), relatively wide-meshed three-dimensional networks (elastomers) or highly cross-linked systems (thermosets) are formed when this prepolymer type is cured.
  • thermoplastics thermoplastics
  • elastomers relatively wide-meshed three-dimensional networks
  • thermalosets highly cross-linked systems
  • Alkoxysilane functional prepolymers can be made up of different building blocks. They usually have an organic backbone, ie they are made, for example, of polyurethanes, polyethers, polyesters, polyacrylates, polyvinyl esters, ethylene-olefin copolyers, styrene-butadiene copolymers or polyolefins constructed, described inter alia US 6,207,766 and US 3,971,751. In addition, systems are widely used, the backbone of which consists entirely or at least in part of organosiloxanes, described, inter alia, in US Pat.
  • the monomeric alkoxysilanes via which the prepolymer is provided with the required alkoxysilane functions, are of central importance in the preparation of prepolymers.
  • a wide variety of silanes and coupling reactions can be used, e.g. an addition of Si-H-functional alkoxysilanes to unsaturated prepolymers or a copolymerization of unsaturated organosilanes with other unsaturated monomers.
  • Another method involves terminating alkoxysilane
  • Prepolymers produced by conversion of OH-functional prepolymers with isocyanate-functional alkoxysilanes are described for example in US 5,068,304.
  • the resulting prepolymers are often characterized by particularly positive properties, e.g. due to the very good mechanics of the hardened masses.
  • the complex and costly preparation of the isocyanate-functional silanes and the fact that these silanes are extremely toxicologically disadvantageous are disadvantageous.
  • a production process for alkoxysilane-terminated prepolymers which is based on polyols, for example polyether or polyester polyols, is often more favorable here.
  • these react with an excess of a di- or polyisocyanate.
  • the isocyanate-terminated prepolymers obtained are then reacted with an amino-functional alkoxysilane to give the desired alkoxysilane-terminated prepolymer.
  • Such systems are described for example in EP 1 256 595, EP 1 245 601.
  • the advantages of this system are, on the one hand, the particularly positive properties of the resulting prepolymers, for example the very good tear resistance of the cured compositions.
  • the amino-functional silanes required as starting materials are through simple and inexpensive processes accessible and largely toxicologically harmless.
  • a disadvantage of most known and currently used systems is their only moderate reactivity to moisture, both in the form of atmospheric moisture and in the form of - optionally added - water.
  • the addition of a catalyst is therefore absolutely necessary. This is particularly problematic because the organotin compounds that are generally used as catalysts are toxicologically unsafe.
  • the tin catalysts often also contain traces of highly toxic tributyltin derivatives.
  • alkoxysilane-terminated prepolymer systems are particularly problematic when the methoxysilyl terminators are used instead of methoxysilyl terminators.
  • methoxysilyl terminators are used instead of methoxysilyl terminators.
  • ethoxysilyl-terminated prepolymers would be particularly advantageous in many cases because only ethanol is released as a cleavage product when they cure.
  • titanium-containing catalysts for example titanium tetraisopropoxylate or bis (acetylacetonato) diisobutytitanate, which are described, for example, in EP 0 885 933, are conceivable here.
  • these titanium catalysts have the disadvantage that they are not used together with numerous nitrogen-containing compounds can, since the latter act here as catalyst poisons.
  • nitrogen-containing compounds for example as an adhesion promoter, would be desirable in many cases.
  • nitrogen compounds for example aminosilanes, are used in many cases as starting materials in the production of the silane-terminated prepolymers.
  • Alkoxysilane-terminated prepolymer systems such as are described, for example, in DE 101 42 050 and DE 101 39 132 can therefore be of great advantage.
  • These prepolymers are distinguished by the fact that they contain alkoxysilyl groups which are separated from a nitrogen atom with a free electron pair only by a methyl spacer.
  • these prepolymers have an extremely high reactivity to (atmospheric) moisture, so that they can be processed into prepolymer blends that can do without metal-containing catalysts, and yet cure at room temperature with sometimes extremely short adhesive free periods or at very high speed. Since these prepolymers thus have a
  • Amine function in position to the silyl group they are also referred to as ⁇ -alkoxysilane-terminated prepolymers.
  • ⁇ -alkoxysilane-terminated prepolymers are typically made by a reaction of an ⁇ -aminosilane, i.e. an aminomethyl-functional alkoxysilane, with an isocyanate-functional prepolymer or an isocyanate-functional precursor of the prepolymer.
  • ⁇ -aminosilanes are N-cyclohexylaminomethyl-trimethoxysilane, N-ethylaminomethyl-trimethoxysilane, N-cyclohexylaminomethyl-ethyldimethoxysilane etc.
  • aminomethyl-trimethoxysilane is degraded quantitatively to tetramethoxysilane in the presence of methanol within a few hours. With water it reacts to tetra-hydroxysilane or to higher condensation products of this silane. Aminomethyl-methyldimethoxysilane reacts accordingly with methanol to methyltrimethoxysilane and with water to methyltrihydroxysilane or to higher condensation products of this silane.
  • N-substituted ⁇ -aminosilanes for example N-cyclohexylaminomethyl-methyldimethoxysilane, are somewhat more stable.
  • this silane is also broken down quantitatively to methyltrimethoxysilane and with water to methyltrihydroxysilane in the presence of methanol.
  • the other N-substituted ⁇ -aminosilanes with a secondary nitrogen atom according to the prior art also show the same degradation reactions.
  • the only moderate stability of the ⁇ -aminosilanes can have an adverse effect, since these also differ among the Can at least partially decompose reaction conditions of prepolymer synthesis. This can lead to a deterioration in the prepolymer properties.
  • the invention relates to aminomethyl-functional alkoxysilanes (Al) of the general formula [1]
  • R ⁇ - an optionally halogen-substituted hydrocarbon radical
  • R ⁇ an alkyl radical with 1-6 carbon atoms or an ⁇ -oxaalkyl-alkyl radical with a total of 2-10 carbon atoms
  • R 3 an optionally substituted hydrocarbon radical
  • R- is an optionally substituted hydrocarbon radical and a is 0, 1 or 2.
  • the invention is based on the discovery that the silanes (AI) are distinguished by a markedly increased stability, for example methanolic solutions of the silanes
  • the hydrocarbon radicals R 1 , R 3 , R 4 are preferably unsubstituted.
  • the hydrocarbon radicals R ⁇ , R 3 , R 4 are preferably alkyl, cycloalkyl, alkenyl or aryl radicals.
  • radicals R - * - methyl, ethyl or phenyl groups are preferred.
  • the radicals R 2 are preferably
  • the silanes (AI) are preferably prepared by the reaction of the suitable aminomethyl alkoxysilanes with maleic acid esters. This can take place both with and without a catalyst, but the reaction is preferably carried out without a catalyst. The reaction can be carried out either in bulk or in a solvent. However, the reaction is preferably carried out in bulk.
  • silanes (AI) Another possible way of producing the silanes (AI) is the reaction of D- or L-aspartic acid esters or their mixtures with chloromethylakoxysilanes.
  • the invention further relates to a process for the preparation of prepolymers (A) having end groups of the general formula [2],
  • R 1 , R 2 , R 3 , R 4 - and a have the meanings given in the general formula [1], in which alkoxysilanes (AI) of the general formula [1] a) are reacted with isocyanate-impregnated prepolymer (A2) are reacted, or b) with a precursor of the prepolymer (A) containing NCO groups to give precursors containing end groups of the general formula [2], the precursor containing end groups of the general formula [2] being used in further reaction steps to give the finished prepolymer (A) is implemented.
  • alkoxysilanes (AI) of the general formula [1] a) are reacted with isocyanate-impregnated prepolymer (A2) are reacted, or b) with a precursor of the prepolymer (A) containing NCO groups to give precursors containing end groups of the general formula [2], the precursor containing end groups of the general formula [2] being used in further reaction steps to
  • the proportions of the individual components are preferably selected so that all of them in the reaction mixture react existing isocyanate groups.
  • the resulting prepolymers (A) are therefore preferably free of isocyanate.
  • the invention also relates to the prepolymers (A).
  • silanes (AI) When the silanes (AI) are converted into silane-terminated prepolymers (A), they are preferably reacted with isocyanate-terminated prepolymers (A2).
  • the latter are accessible, for example, by reacting one or more polyols (A21) with an excess of di- or polyisocyanates (A22).
  • reaction steps can also be reversed, i.e. the silanes (AI) are reacted with an excess of one or more di- or polyisocyanates (A22) in a first reaction step and the polyol component (A21) is only added in the second reaction step.
  • silanes (AI) are reacted with an excess of one or more di- or polyisocyanates (A22) in a first reaction step and the polyol component (A21) is only added in the second reaction step.
  • Molecular weight Mn from 1000 to 25000 can be used. These can be, for example, hydroxyl-functional polyethers, polyesters, polyacrylates and methacrylates, polycarbonates, polystyrenes, polysiloxanes, polyamides, polyvinyl esters, polyvinyl hydroxides or polyolefins such as e.g. Trade polyethylene, polybutadiene, ethylene-olefin copolymers or styrene-butadiene copolymers.
  • Polyols (A21) with a molecular weight Mn of from 2000 to 25000, particularly preferably from 4000 to 20,000, are preferably used.
  • Particularly suitable polyols (A21) are aromatic and / or aliphatic polyester polyols and polyether polyols, as have been described many times in the literature.
  • the polyethers and / or polyesters used as polyols (A21) can be both linear and branched, but unbranched, linear polyols are preferred.
  • polyols (A21) can also have substituents such as halogen atoms.
  • Polypropylene glycols with masses Mn from 4000 to 20,000 are preferred, since these have comparatively low viscosities even with long chain lengths.
  • polysiloxanes are also suitable as polyols (A21) are hydroxyalkyl- or aminoalkyl-terminated polysiloxanes of the general formula [3]
  • R 5 is a hydrocarbon radical having 1 to 12 carbon atoms, preferably methyl radicals,
  • R ⁇ is a branched or unbranched hydrocarbon chain with 1-12 carbon atoms, preferably n-propyl, n is a number from 1 to 3000, preferably a number from 10 to 1000,
  • Z is an OH or NHR 7 group
  • R is hydrogen, an optionally halogen-substituted cyclic, linear or branched C ] _ to C ⁇ _ 8 alkyl or alkenyl radical or a C_ - to cis-aryl radical.
  • Polyol component (A21) also low molecular weight diols, e.g. Glycol containing various regioisomers of propanediol, butanediol, pentanediol or hexanediol in the polyol component (A21).
  • the use of these low molecular weight diols leads to an increase in the urethane group density in the
  • Prepolymer (A) and thus to improve the mechanical properties of the cured compositions (M) that can be produced from these prepolymers.
  • all customary isocyanates can be used as di- or polyisocyanates (A22) for the preparation of the prepolymers (A), as are often described in the literature.
  • Common diisocyanates are, for example, diisocyanatodiphenylmethane (MDI), both in the form of crude or technical MDI and in the form of pure 4.4 "or 2,4 'isomers or mixtures thereof, tolylene diisocyanate (TDI) in the form of its various Regioisomers, diisocyanatonaphthalene (NDI), isophorone diisocyanate (IPDI), perhydrogenated MDI (H-MDI) or also of hexamethylene diisocyanate (HDI).
  • MDI diisocyanatodiphenylmethane
  • TDI tolylene diisocyanate
  • NDI diisocyanatonaphthalene
  • IPDI isophorone diisocyanate
  • H-MDI perhydrogenated MDI
  • HDI hexamethylene diisocyanate
  • polyisocyanates (A22) are polymeric MDI (P-MDI), triphenylmethane triisocanate or isocyanurate or biuret-tri-isocyanates All di- and / or polyisocyanates (A22) can be used individually or in mixtures, but preferably only diisocyanates are used, if the UV stability of the prepolymers (A) or of the cured ones prepared from these prepolymers Materials (M) is important due to the particular application, aliphatic isocyanates are preferably used as component (A22).
  • P-MDI polymeric MDI
  • triphenylmethane triisocanate or isocyanurate or biuret-tri-isocyanates All di- and / or polyisocyanates (A22) can be used individually or in mixtures, but preferably only diisocyanates are used, if the UV stability of the prepolymers (A) or of the cured ones prepared from these prepolymers Materials (M) is important
  • the prepolymers (A) can be prepared as a one-top reaction by simply combining the components described, a catalyst optionally being added and / or working carried out at elevated temperature. Regarding the relatively high exothermic nature of these reactions, it may be advantageous to add the individual components successively in order to be able to better control the amount of heat released. Separate cleaning or other processing of the prepolymer (A) is generally not necessary.
  • the concentrations of all isocyanate groups and all isocyanate-reactive groups involved in all reaction steps and the reaction conditions are preferably chosen so that all isocyanate groups react in the course of prepolymer synthesis.
  • the finished prepolymer (A) is therefore free of isocyanate.
  • the concentration ratios and the reaction conditions are chosen so that almost all Chain ends (> 80% of the chain ends, particularly preferably> 90% of the chain ends) of the prepolymers (A) are terminated with alkoxysilyl groups of the general formula [2].
  • NCO-terminated prepolymers (A2) are reacted with an excess of the silanes (AI) according to the invention.
  • the excess is preferably 20-400%, particularly preferably 50-200%.
  • the excess silane can be added to the prepolymer at any time, but the excess silane is preferably added during the synthesis of the prepolymers (A).
  • the reactions between isocyanate groups and isocyanate-reactive groups which occur in the preparation of the prepolymers (A) can optionally be accelerated by a catalyst.
  • a catalyst is preferably used, which also below as
  • Hardening catalysts (C) are listed. It may even be possible for the preparation of the prepolymers (A) to be catalyzed by the same catalysts which later also serve as the curing catalyst (C) when the finished prepolymer mixtures are cured. This has the advantage that the curing catalyst (C) is already contained in the prepolymer (A) and no longer has to be added separately when compounding a finished prepolymer blend (M). Of course, combinations of several catalysts can also be used instead of one catalyst.
  • the prepolymers (A) are preferably compounded with further components to give mixtures (M).
  • a curing catalyst (C) can optionally be added.
  • the organic tin compounds commonly used for this purpose such as, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diacetylacetonate, dibutyltin diacetate or dibutyltin dioctoate etc., are suitable here.
  • Titanates for example titanium (IV) isopropylate, iron (III) compounds, for example iron (III) acetylacetonate, or also amines, for example triethylamine, tributylamine, 1, 4-diazabicyclo [2, 2, 2] octane, 1.8 - Diazabicyclo [5.4.0] undec-7-ene, 1, 5-diazabicyclo [4.3.0] non-5-ene, N, N-bis- (N, N-dimethyl-2-aminoethyl) -methylamine, N , N-
  • Dimethylcyclohexylamine, N, N-dimethylphenlyamine, N-ethylmorpholinin etc. can be used.
  • organic or inorganic Bronsted acids such as acetic acid, trifluoroacetic acid or benzoyl chloride, hydrochloric acid, phosphoric acid and their mono- and / or diesters, e.g. Butyl phosphate, (iso-)
  • Propyl phosphate, dibutyl phosphate etc. are suitable as catalysts [C].
  • numerous other organic and inorganic heavy metal compounds as well as organic and inorganic Lewis acids or bases can also be used here.
  • the crosslinking rate can also be increased further by the combination of different catalysts or of catalysts with different cocatalysts or can be tailored precisely to the respective need. Mixtures (M) which exclusively contain catalysts free of heavy metals (C) are preferred.
  • prepolymers (A) with silane termini of the general formula [2] also has the particular advantage that prepolymers (A) can also be prepared which contain only ethoxysilyl groups, ie silyl groups of the 'general formula [2], in the R 2 represents an ethyl radical.
  • Suitable water scavengers are therefore especially highly reactive alkoxysilanes (D) of the general formula [4]
  • B represents an OH, OR 7 , SH, SR 7 , NH 2 , NHR 7 , (R 7 ) _ group and R ⁇ , R 2 and a have the meanings given in the general formula [1] exhibit.
  • a particularly preferred water scavenger is carbamatosilane, in which B represents an R 4 O-CO-NH group, where R 4 and R 7 have the meanings given above.
  • the low molecular weight alkoxysilanes (D) can also serve as crosslinkers and / or reactive diluents.
  • all silanes which have reactive alkoxysilyl groups and via which they can be incorporated into the resulting three-dimensional network during the curing of the polymer mixture (M) are suitable for this purpose.
  • the alkoxysilanes (D) can increase the
  • Suitable alkoxysilanes (D) in this function are, for example, alkoxymethyltrialkoxysilanes and alkoxymethyldi alkoxyalkylsilanes. Methoxy and ethoxy groups are preferred as alkoxy groups.
  • the inexpensive alkyltri ethoxysilanes, such as methyltrimethoxysilane and vinyl or phenyltrimethoxysilane, and their partial hydrolyzates may also be suitable.
  • the low molecular weight alkoxysilanes (D) can also serve as adhesion promoters.
  • alkoxysilanes which have amino functions or epoxy functions can be used here. Examples include ⁇ -aminopropyltrialkoxysilanes, ⁇ - [N-aminoethylamino] propyltrialkoxysilanes, ⁇ -glycidoxypropyltrialkoxysilanes and all silanes of the general formula [4] in which B represents a nitrogen-containing group.
  • the low molecular weight alkoxysilanes (D) can even serve as curing catalysts or cocatalysts.
  • All basic aminosilanes are particularly suitable for this purpose, e.g. all aminopropylsilanes, N-aminoethyl inopropylsilanes and also all silanes of the general formula [4] insofar as B is a nitrogen-containing group.
  • the alkoxysilanes (D) can be added to the prepolymers (A) at any time. If they have no NCO-reactive groups, they can even be added during the synthesis of the prepolymers (A). Based on 100 parts by weight of prepolymer (A), up to 100 parts by weight, preferably 1 to 40 parts by weight, of a low molecular weight alkoxysilane (D) can be added.
  • fillers (E) Mixtures of the alkoxysilane-terminated prepolymers (A) are also usually added to fillers (E).
  • the fillers (E) lead to a considerable improvement in the properties of the resulting mixtures (M). Above all, the tensile strength as well as the elongation at break can be increased considerably by using suitable fillers.
  • Suitable fillers (E) are all materials, as are often described in the prior art. Examples of fillers are non-reinforcing fillers, i.e.
  • fillers with a BET surface area of up to 50 m 2 / g such as quartz, diatomaceous earth, calcium silicate, zirconium silicate, zeolites, calcium carbonate, metal oxide powders such as aluminum, titanium, iron or Zinc oxides or their mixed oxides, barium sulfate, calcium carbonate, gypsum, silicon nitride, silicon carbide, boron nitride, glass and plastic powder; reinforcing fillers, ie fillers with a BET surface area of at least 50 m 2 / g, such as pyrogenically prepared silica, precipitated silica, carbon black, such as furnace black and acetylene black and silicon-aluminum mixed oxides having a large BET surface area; fibrous fillers such as asbestos as well
  • the fillers mentioned can be hydrophobicized, for example by treatment with organosilanes or organosiloxanes or by etherification of hydroxyl groups to alkoxy groups. It can be a type of filler, a mixture of at least two fillers can also be used.
  • the fillers (E) are preferably used in a concentration of 0-90% by weight, based on the finished mixture (M), with concentrations of 30-70% by weight being particularly preferred.
  • filler combinations (E) which, in addition to calcium carbonate, also contain pyrogenic silica and / or carbon black.
  • the mixtures (M) containing the prepolymers (A) may also contain small amounts of an organic solvent (F).
  • This solvent serves to lower the viscosity of the uncrosslinked masses (M).
  • all solvents and solvent mixtures are suitable as solvents (F).
  • Compounds which have a dipole moment are preferably used as the solvent (F).
  • Particularly preferred solvents have a heteroatom with free electron pairs that can form hydrogen bonds.
  • preferred examples of such solvents are ethers such as t-butyl methyl ether, esters such as ethyl acetate or butyl acetate and alcohols such as methanol, ethanol, n- and t-butanol.
  • the solvents (F) are preferably in a concentration of 0-20 vol .-% based on the finished prepolymer mixture (M) incl. all fillers (E) are used, solvent concentrations of 0-5% by volume being particularly preferred.
  • the polymer mixtures (M) can contain, as further components, auxiliaries known per se, such as water scavengers and / or reactive thinners which differ from components (D), and also adhesion promoters, plasticizers, thixotropic agents, fungicides, flame retardants, pigments etc. Light stabilizers, antioxidants, radical scavengers and other stabilizers can also be added to the compositions (M). to
  • Such additives are preferred to generate the desired property profiles, both the uncrosslinked polymer mixtures (M) and the cured compositions (M).
  • polymer blends (M) in the field of adhesives, sealants and joint sealants, surface coatings and also in the manufacture of molded parts, ie polymer blends (M) can be used both in pure form and in the form of solutions or dispersions Come into play.
  • N-methyl (dimethoxymethylsilyl) aspartic acid diethyl ester 67.6 g (0.50 mol) of aminomethyldimethoxymethylsilane are placed in a 250 ml reaction vessel with the possibility of stirring and cooling. 86.1 g (0.50 mol) of diethyl maleate are added dropwise to the silane within 3.5 h. The reaction mixture is cooled to 30 ° C. When the addition is complete, the mixture is stirred at room temperature for a further 16 h and then the reaction mixture is subjected to fractional distillation. 125.6 g (0.41 mol) of N-methyl (dimethoxymethylsilyl) aspartic acid diethyl ester are obtained as a colorless liquid (bp 107 ° C / 0.25 mbar).
  • a prepolymer (A) 152 g (16 mmol) of a polypropylene glycol with an average molecular weight of 9500 g / mol ( Acclaim® 12200 from Bayer AG) are placed in a 250 ml reaction vessel with stirring, cooling and heating options and dewatered at 80 ° C. in vacuo for 30 minutes. The heating is then removed and 2.16 g (24 mmol) of 1,4-butanediol, 12.43 g (56 mmol) of isophorone diisocyanate and 80 mg of dibutyltin dilaurate (corresponding to a tin content of 100 ppm) are added under nitrogen. The mixture is stirred at 80 ° C. for 60 minutes. The NCO-terminated polyurethane prepolymer obtained is then cooled to 75 ° C and with 10.35 g (32 mmol) N ⁇
  • Methyl (trimethoxymethylsilyl) aspartic acid diethyl ester mixed and stirred at 80 ° C. for 60 min. In the resulting prepolymer mixture, isocyanate groups can no longer be detected by IR spectroscopy.
  • Polypropylene glycol with an average molecular weight of 9500 g / mol (Acclaim ® 12200 from Bayer AG) submitted and dewatered for 30 minutes at 80 ° C in a vacuum. The heating is then removed and 2.16 g (24 mmol) of 1,4-butanediol, 12.43 g (56 mmol) of isophorone diisocyanate and 80 mg of dibutyltin dilaurate (corresponding to a tin content of 100 ppm) are added under nitrogen. The mixture is stirred at 80 ° C. for 60 minutes. The NCO-terminated polyurethane prepolymer obtained is then cooled to 75 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Gegenstand der Erfindung sind aminomethylfunktionelle Alkoxysilane (A1) der allgemeinen Formel [1] wobei R1 einen gegebenenfalls halogensubstituierten Kohlenwasserstoffrest, R2 einen Alkylrest mit 1-6 Kohlenstoffatomen oder einen ω- Oxaalkyl-alkylrest mit insgesamt 2-10 Kohlenstoffatomen, R3 einen gegebenenfalls substituierten Kohlenwasserstoffrest, R4 einen gegebenenfalls substituierten Kohlenwasserstoffrest und a die Werte 0, 1 oder 2 bedeuten, aus diesen Silanen hergestellte Prepolymere sowie Massen enthaltend diese Prepolymere.

Description

α-Alkoxysilane sowie ihre Anwendung in alkoxysilanterminierten Prepolymeren
Die Erfindung betrifft aminomethylfunktionelle Alkoxysilane, aus diesen Silanen hergestellte Prepolymere sowie Massen enthaltend diese Prepolymere .
Prepolymersysteme, die über reaktive Alkoxysilylgruppen verfügen, sind seit langem bekannt und werden vielfach zur Her- Stellung von elastischen Dicht- und Klebstoffen im Industrie- und Baubereich verwendet. In Gegenwart von Luftfeuchtigkeit und geeigneten Katalysatoren sind diese alkoxysilanterminierten Prepolymere bereits bei Raumtemperatur in der Lage, unter Abspaltung der Alkoxygruppen und Ausbildung einer Si-O-Si- Bindung miteinander zu kondensieren. Somit lassen sich diese Prepolymere u.a. als einkomponentige Systeme verwenden, welche den Vorteil einer einfachen Handhabung besitzen, da keine zweite Komponente zudosiert und eingemischt werden muß.
Ein weiterer Vorteil von alkoxysilanterminierten Prepolymeren besteht in der Tatsache, daß bei der Härtung weder Säuren noch Oxime oder Amine freigesetzt werden. Anders als bei Kleb- oder Dichtstoffen auf Isocyanatbasis entsteht auch kein CO2 , das als gasförmige Komponente zu einer Blasenbildung führen kann. Anders als isocyanatbasierende Systeme sind alkoxysilanter- minierte Prepolymermischungen auch toxikologisch in jedem Falle unbedenklich. Je nach Gehalt an Alkoxysilangruppen und deren Aufbau bilden sich bei der Härtung dieses Prepolymertyps hauptsächlich langkettige Polymere (Thermoplaste) , relativ weitmaschige dreidimensionale Netzwerke (Elastomere) oder aber hochvernetzte Systeme (Duroplaste) .
Alkoxysilanfunktioneile Prepolymere können aus unterschiedlichen Bausteinen aufgebaut sein. Sie besitzen üblicherweise ein organisches Rückgrat, d.h. sie sind beispielsweise aus Polyurethanen, Polyethern, Polyestern, Polyacrylaten, Polyvinylestern, Ethylen-Olefincopoly eren, Styrol-Butadien- copolymeren oder Polyolefinen aufgebaut, beschrieben u.a. US 6,207,766 und US 3,971,751. Daneben sind aber auch Systeme weit verbreitet, deren Rückgrat ganz oder zumindest zum Teil aus Organosiloxanen besteht, beschrieben u.a. in US 5,254,657.
Von zentraler Bedeutung bei der Prepolymerhersteilung sind jedoch die monomeren Alkoxysilane, über die das Prepolymer mit den erforderlichen Alkoxysilanfunktionen ausgestattet wird. Dabei können prinzipiell die unterschiedlichsten Silane und Kupplungsreaktionen zum Einsatz kommen, z.B. eine Addition von Si-H-funktionellen Alkoxysilanen an ungesättigte Prepolymere oder eine Copoly erisation von ungesättigten Organosilanen mit anderen ungesättigten Monomeren.
Bei einem anderen Verfahren werden alkoxysilanterminierte
Prepolymere durch Umsatz von OH-funktionellen Prepolymeren mit isocyanatfunktionellen Alkoxysilanen hergestellt. Derartige Systeme sind beispielsweise in US 5,068,304 beschrieben. Die resultierenden Prepolymere zeichnen sich oftmals durch besonders positive Eigenscha ten aus, z.B. durch eine sehr gute Mechanik der ausgehärteten Massen. Nachteilig ist jedoch die aufwendige und kostenintensive Herstellung der isocyanatfunktionellen Silane sowie die Tatsache, daß diese Silane toxikologisch äußerst bedenklich sind.
Günstiger ist hier oftmals ein Herstellungsverf hren für alkoxysilanterminierte Prepolymere, bei dem von Polyolen, z.B. von Polyether- oder Polyesterpolyolen, ausgegangen wird. Diese reagieren in einem ersten Reaktionsschritt mit einem Überschuß eines Di- oder Polyisocyanates . Anschließend werden die dabei erhaltenen isocyanatterminierten Prepolymere mit einem amino- funktionellen Alkoxysilan zu dem gewünschten alkoxysilanterminierten Prepolymer umgesetzt. Derartige Systeme sind beispielsweise in EP 1 256 595, EP 1 245 601 beschrieben. Vorteile dieses Systems sind zum einen die besonders positiven Eigenschaften der resultierenden Prepolymere, z.B. die sehr gute Reißfestigkeit der ausgehärteten Massen. Zum anderen sind die als Edukte benötigten aminofunktionelle Silane durch einfache und preisgünstige Verfahren zugänglich und toxikologisch weitgehend unbedenklich.
Nachteilig an den meisten bekannten und derzeit verwendeten Systemen ist jedoch deren nur mäßige Reaktivität gegenüber Feuchtigkeit, sowohl in Form von Luftfeuchtigkeit als auch in Form von - gegebenenfalls zugesetztem - Wasser. Um auch bei Raumtemperatur eine hinreichende Härtungsgeschwindigkeit zu erreichen, ist daher der Zusatz eines Katalysators unbedingt erforderlich. Das ist vor allem deshalb problematisch, da die in der Regel als Katalysatoren eingesetzten zinnorganischen Verbindungen toxikologisch bedenklich sind. Zudem enthalten die Zinnkatalysatoren oftmals auch noch Spuren hochtoxischer Tributylzinnderivate .
Besonders problematisch ist die relativ geringe Reaktivität der alkoxysilanterminierten Prepolymersysteme, wenn keine Methoxysilylterminierungen sondern die nochmals unreaktiveren Ethoxysilylterminierungen verwendet werden. Gerade ethoxysilylterminierte Prepolymere wären jedoch in vielen Fällen besonders vorteilhaft, weil bei ihrer Aushärtung lediglich Ethanol als Spaltprodukt freigesetzt wird.
Um Probleme mit toxischen Zinnkatalysatoren zu vermeiden, wurde bereits nach zinnfreien Katalysatoren gesucht. Denkbar sind hier vor allem titan-haltige Katalysatoren, z.B. Titan- tetraisopropoxylat oder Bis- (acetylacetonato) -diisobutytitanat , die beispielsweise beschrieben sind in EP 0 885 933. Allerdings besitzen diese Titankatalysatoren den Nachteil, daß sie nicht gemeinsam mit zahlreichen stickstoffhaltigen Verbindungen eingesetzt werden können, da letztere hier als Katalysatorgifte wirken. Die Verwendung von stickstoffhaltigen Verbindungen, z.B. als Haftvermittler, wäre in vielen Fällen jedoch wünschenswert. Zudem dienen Stickstoffverbindungen, z.B. Aminosilane, in vielen Fällen als Edukte bei der Herstellung der silanterminierten Prepolymere. Einen großen Vorteil können daher alkoxysilanterminierte Prepolymersysteme darstellen, wie sie beispielsweise in DE 101 42 050, DE 101 39 132 beschrieben sind. Diese Prepolymere zeichnen sich dadurch aus, daß sie Alkoxysilylgruppen ent- halten, die nur durch einen Methylspacer von einem Stickstoffatom mit einem freien Elektronenpaar getrennt sind. Dadurch besitzen diese Prepolymere eine extrem hohe Reaktivität gegenüber (Luft-) Feuchtigkeit, so daß sie zu Prepolymerab- mischungen verarbeitet werden können, die ohne metallhaltige Katalysatoren auskommen können, und dennoch bei Raumtemperatur mit z.T. extrem kurzen Klebfreizeiten bzw. mit sehr hoher Geschwindigkeit aushärten. Da diese Prepolymere somit über eine
Aminfunktion in -Position zur Silylgruppe verfügen, werden sie auch als α-alkoxysilanterminierte Prepolymere bezeichnet.
Diese α-alkoxysilanterminierten Prepolymere werden typischerweise durch eine Reaktion eines α-Aminosilans , d.h. eines aminomethylfunktioneilen Alkoxysilans, mit einem isocyanatfunktionellen Prepolymer oder einer isocyanatfunktionellen Vorstufe des Prepolymers hergestellt. Gängige Beispiele für α- Aminosilane sind N-Cyclohexylaminomethyl-trimethoxysilan, N- Ethylaminomethyl -trimethoxysilan, N-Cyclohexylaminomethyl- ethyldimethoxysilan etc..
Ein entscheidender Nachteil dieser α-alkoxysilanfunktionellen Systeme ist die nur mäßige Stabilität der für ihre Synthese benötigten α-Aminosilane . Vergleichbar große Stabilitäts- probleme sind bei den herkömmlichen γ-Aminopropyl-alkoxysilanen unbekannt .
Deutlich wird diese Instabilität in Gegenwart von Alkohol oder Wasser. So wird beispielsweise Aminomethyl-trimethoxysilan in Gegenwart von Methanol innerhalb weniger Stunden quantitativ zu Tetramethoxysilan abgebaut. Mit Wasser reagiert es zu Tetra- hydroxysilan bzw. zu höheren Kondensationsprodukten dieses Silans. Entsprechend reagiert Aminomethyl-methyldimethoxysilan mit Methanol zu Methyltrimethoxysilan und mit Wasser zu Methyltrihydroxysilan bzw. zu höheren Kondensationsprodukten dieses Silans. Etwas stabiler sind N-substituierte α- Aminosilane, z.B. N-Cyclohexylaminomethyl-methyldimethoxysilan. Doch in Gegenwart von Spuren von Katalysatoren oder basischen Verunreinigung wird auch dieses Silan innerhalb weniger Stunden in Gegenwart von Methanol quantitativ zu Methyltrimethoxysilan und mit Wasser zu Methyltrihydroxysilan abgebaut. Auch die übrigen N-substituierte α-Aminosilane mit sekundärem Stickstoffatom entsprechend des Standes der Technik zeigen dieselben Abbaureaktionen.
Aber auch in Abwesenheit von Methanol oder Wasser sind diese α- Aminosilane nur mäßig stabil . So kann es vor allem bei erhöhten Temperaturen und in Anwesenheit von Katalysatoren oder katalytisch wirksamen Verunreinigungen ebenfalls zu einer
Zersetzung der α-Silane kommen.
Lediglich α'-Aminosilane mit tertiärem Stickstoffatom sind weitgehend stabil . Jedoch können diese ob der fehlenden NH-
Funktion nicht mehr mit isocyanatfunktionellen Vorstufen zu α- alkoxysilanfunktioneilen Prepolymeren verarbeitet werden. Ebenfalls vergleichsweise stabil sind die verschiedenen jeweils nur schwach basischen N-Phenylaminomethyl-Alkoxysilane . Doch auch diese sind für einen Einsatz in α-silanterminierten Prepolymeren in der Regel ungeeignet, da sie mit den isocyanatfunktionellen Vorstufen der Prepolymere zu aromatisch substituierten Harnstoffeinheiten reagieren. Letztere sind extrem labil gegenüber UV-Strahlung, da sie eine Photo-Frieß- Umlagerung eingehen können, wobei sich Anilinderivate bilden, die in Gegenwart von Sauerstoff sehr schnell oxidiert werden. Dies führt innerhalb kürzester Zeit zu starken Verfärbungen der entsprechenden Massen.
Die nur mäßige Stabilität der α-Aminosilane kann sich nachteilig auswirken, da diese sich auch unter den Reaktionsbedingungen der Prepolymersynthese zumindest teilweise zersetzen können. Dies kann zu einer Verschlechterung der Prepolymereigenschaften führen.
Es bestand somit die Aufgabe, aminomethylfunktionelle Alkoxysilane mit einem sekundären Stickstoffatom und einer verbesserten Stabilität und damit hergestellte Prepolymere hoher Qualität bereitzustellen.
Gegenstand der Erfindung sind aminomethylfunktionelle Alkoxysilane (AI) der allgemeinen Formel [1]
Figure imgf000007_0001
wobei
R^- einen gegebenenfalls halogensubstituierten Kohlenwasserstoffrest R^ einen Alkylrest mit 1-6 Kohlenstoffatomen oder einen ω- Oxaalkyl-alkylrest mit insgesamt 2-10 Kohlenstoffatomen, R3 einen gegebenenfalls substituierten Kohlenwasserstoffrest
R- einen gegebenenfalls substituierten Kohlenwasserstoffrest und a die Werte 0, 1 oder 2 bedeuten.
Der Erfindung liegt die Entdeckung zugrunde, daß sich die Silane (AI) durch eine deutlich erhöhte Stabilität auszeichnen, So zeigen beispielsweise methanolische Lösungen der Silane
(10 Gew.-%) eine gegenüber herkömmlichen α-Aminomethylsilanen wesentlich höhere Stabilitäten. D.h. die Silane zersetzen sich unter diesen Bedingungen deutlich langsamer, was sich u.a. in den wesentlich höheren Halbwertszeit dieser Silane zeigt. Der NMR-spektroskopisch detektierte Zerfall der α-Aminomethylsilane deutet auf eine Si-C-Spaltung hin.
Typische Halbwertszeiten für die Silane (AI) sind: N-Methyl (dimethoxy ethylsilyl) asparaginsäure-diethylester : t12 = 5 Wochen
Jf-Methyl (diethoxymethylsilyl) asparaginsäure-diethylester: t12 = 4 Wochen N-Methyl (trimethoxysilyl) asparaginsäure-diethylester: t1/2 = 4 Wochen
Herkömmliche aminomethylfunktionelle Alkoxysilane mit primärer oder sekundärer Aminfunktion haben sich unter denselben Bedingungen bereits nach kurzer Zeit weitgehend zersetzt. Im folgenden sind einige typische Halbwertszeiten herkömmlicher α-
Aminosilane aufgelistet:
Aminomethyl -methyldimethoxysilan: t1/2 = 6 h
Cyclohexylaminomethyl-methyldimethoxysilan: t1/2 = 1 Woche
Aminomethyl-trimethoxysilan: t1/2 = 19 h Cyclohexylaminomethyl-trimethoxysilan: t1/2 = 3 Tage i-Butylaminomethyl -trimethoxysilan: t1/2 = 1 Woche
Vorzugsweise weisen die Kohlenwasserstoffreste R^, R3 r R4 _ ]D S 20, insbesondere höchstens 10 Kohlenstoffatome auf. Vorzugsweise sind die Kohlenwasserstoffreste R1, R3, R4 unsubstituiert . Die Kohlenwasserstoffreste R^, R3, R4 sind vorzugsweise Alkyl-, Cycloalkyl-, Alkenyl- oder Arylreste.
Als Reste R-*- werden Methyl-, Ethyl- oder Phenylgruppen bevorzugt . Bei den Resten R2 handelt es sich bevorzugt um
Methyl- oder Ethylgruppen und als Reste R3 und R4 bevorzugt um
Alkylreste mit 1-20 besonders bevorzugt mit 1-5 Kohlenstoffatomen, insbesondere um Methyl-, Ethyl-, oder Propylgruppen . Die Silane (AI ) werden bevorzugt durch die Reaktion der geeigneten Aminomethyl alkoxysilane mit Maleinsäureestern hergestellt . Dies kann sowohl mit als auch ohne Katalysator erfolgen, bevorzugt wird die Reaktion aber ohne Katalysator durchgeführt . Die Reaktion kann sowohl in Substanz als auch in einem Lösungsmittel durchgeführt werden . Bevorzugt erfolgt die Reaktion edoch in Substanz .
Ein weiterer möglicher Herstellungsweg der Silane (AI ) ist die Umsetzung von D- oder L-Asparaginsäureestern oder deren Raσematen mit Chlormethylakoxysilanen .
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Prepolymeren (A) mit Endgruppen der allgemeinen Formel [2 ] ,
Figure imgf000009_0001
wobei R1 , R2 , R3 , R4- und a die bei der allgemeinen Formel [1] angegebenen Bedeutungen aufweisen, bei dem Alkoxysilane (AI) der allgemeinen Formel [1] a) mit isocyanatter iniertem Prepolymer (A2 ) umgeset zt werden, oder b) mit NCO-Gruppen enthaltendem Precursor des Prepolymers (A) zu Endgruppen der allgemeinen Formel [2] enthaltendem Precursor umgesetzt werden, wobei der Endgruppen der allgemeinen Formel [2] enthaltende Precursor in weiteren Reaktionsschritten zu dem fertigen Prepolymer (A) umgeset zt wird .
Bevorzugt werden dabei die Mengenverhältnisse der einzelnen Komponenten so gewählt , dass sämtliche in der Reaktionsmischung vorhandene Isocyanatgruppen abreagieren. Die resultierenden Prepolymere (A) sind somit bevorzugt isocyanatfrei .
Gegenstand der Erfindung sind auch die Prepolymere (A) .
Bei der Umsetzung der Silane (AI) zu silanterminierten Prepolymeren (A) werden diese bevorzugt mit isocyanattermi- nierten Prepolymeren (A2) umgesetzt. Letztere sind beispielsweise durch eine Reaktion eines oder mehrerer Polyole (A21) mit einem Überschuß an Di- oder Polyisocyanaten (A22) zugänglich.
Selbstverständlich kann die Reihenfolge der Reaktionsschritte dabei auch umgekehrt werden, d.h. die Silane (AI) werden in einem ersten Reaktionsschritt mit einem Überschuß eines oder mehrerer Di- oder Polyisocyanate (A22) umgesetzt und erst im zweiten Reaktionsschritt wird die Polyolkomponente (A21) zugegeben .
Als Polyole (A21) für die Herstellung der Prepolymere (A) können prinzipiell sämtliche Polyole mit einem mittleren
Molekulargewicht Mn von 1000 bis 25000 eingesetzt werden. Dabei kann es sich beispielsweise um hydroxylfunktioneile Polyether, Polyester, Polyacrylate und -methacrylate, Polycarbonate, Polystyrole, Polysiloxane, Polyamide, Polyvinylester, Polyvinylhydroxide oder Polyolefine wie z.B. Polyethylen, Polybutadien, Ethylen-Olefincopolymere oder Styrol- Butadiencopolymere handeln.
Bevorzugt werden Polyole (A21) mit einem Molekulargewicht Mn von 2000 bis 25000, besonders bevorzugt von 4000 bis 20000 eingesetzt. Besonders geeignete Polyole (A21) sind aromatische und/oder aliphatische Polyesterpolyole und Polyetherpolyole, wie sie in der Literatur vielfach beschrieben sind. Die als Polyole (A21) eingesetzten Polyether und/oder Polyester können dabei sowohl linear als auch verzweigt sein, wobei jedoch unverzweigte, lineare Polyole bevorzugt werden. Zudem können Polyole (A21) auch Substituenten wie z.B. Halogenatome besitzen. Als Polyole (A21) werden insbesondere Polypropylenglycole mit Massen Mn von 4000 bis 20000 bevorzugt, da diese auch bei hohen Kettenlängen vergleichsweise niedrige Viskositäten aufweisen.
Ebenso können als Polyole (A21) auch hydroxyalkyl- oder aminoalkylterminierte Polysiloxane der allgemeinen Formel [3]
Z-R6- [Si(R5)2~0-]n-Si(R5)2-R6-Z [3]
eingesetzt werden, in der
R5 einen Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen, bevorzugt Methylreste,
R^ eine verzweigte oder unverzweigte Kohlenwasserstoffkette mit 1-12 Kohlenstoffatomen, bevorzugt n-Propyl, n eine Zahl von 1 bis 3000, bevorzugt eine Zahl von 10 bis 1000,
Z eine OH- oder NHR7-Gruppe und
R Wasserstoff, einen gegebenenfalls halogensubstituierten cyclischen, linearen oder verzweigten C]_- bis Cι_8-Alkyl- oder -Alkenylrest oder einen C_ - bis Cis-Arylrest bedeuten.
Selbstverständlich ist auch der Einsatz beliebiger Mischungen der verschiedenen Polyoltypen möglich.
In einer bevorzugten Ausführung der Erfindung sind in der
Polyolkomponente (A21) auch niedermolekulare Diole, wie z.B. Glycol , die verschiedenen Regioisomere des Propandiols, Butan- diols, Pentandiols oder Hexandiols in der Polyolkomponente (A21) enthalten. Der Einsatz dieser niedermolekularen Diole führt dabei zu einer Steigerung der Urethangruppendichte im
Prepolymer (A) und somit zu einer Verbesserung von mechanischen Eigenschaften der aus diesen Prepolymeren herstellbaren ausgehärteten Massen (M) . Auch niedermolekulare Diaminover- bindungen oder Hydroxyalkylamine, z.B. 2- (Methylamino) -ethanol können in der Polyolkomponente enthalten sein. Als Di- oder Polyisocyanate (A22) für die Herstellung der Prepolymere (A) können prinzipiell sämtliche gebräuchliche Isocyanate eingesetzt werden, wie sie in der Literatur vielfach beschrieben sind. Gängige Diisocyanate (A22) sind beispiels- weise Diisocyanatodiphenylmethan (MDI) , sowohl in Form von rohem oder technischem MDI als auch in Form reiner 4,4" bzw. 2,4' Isomeren oder deren Mischungen, Tolylendiisocyanat (TDI) in Form seiner verschiedenen Regioisomere, Diisocyanatonaphtha- lin (NDI) , Isophorondiisocyanat (IPDI) , perhydriertes MDI (H- MDI) oder auch von Hexamethylendiisocyanat (HDI) . Beispiele für Polyisocyanate (A22) sind polymeres MDI (P-MDI) , Triphenyl- methantriisocanat oder Isocyanurat- oder Biuret-tri.isocyanate. Sämtliche Di- und/oder Polyisocyanate (A22) können einzeln oder auch in Mischungen eingesetzt werden. Bevorzugt werden jedoch ausschließlich Diisocyanate eingesetzt. Falls die UV-Stabilität der Prepolymere (A) oder der aus diesen Prepolymeren hergestellten ausgehärteten Materialien (M) auf Grund der jeweiligen Anwendung von Bedeutung ist, werden bevorzugt aliphatische Isocyanate als Komponente (A22) verwendet.
Die Herstellung der Prepolymere (A) kann als Eintop reaktion durch ein einfaches Zusammengeben der beschriebenen Komponenten erfolgen, wobei gegebenenfalls noch ein Katalysator zugegeben und/oder bei erhöhter Temperatur gearbeitet werden kann. Ob der relativ hohen Exothermie dieser Reaktionen kann es dabei vorteilhaft sein, die einzelnen Komponenten sukzessive zuzugeben, um die freiwerdende Wärmemenge besser kontrollieren zu können. Eine gesonderte Reinigung oder sonstige Aufarbeitung des Prepolymers (A) ist in der Regel nicht erforderlich.
Die Konzentrationen aller an sämtlichen Reaktionsschritten beteiligten Isocyanatgruppen und aller isocyanatreaktiven Gruppen sowie die Reaktionsbedingungen sind dabei bevorzugt so gewählt, daß im Laufe der Prepolymersynthese sämtliche Isocyanatgruppen abreagieren. Das fertige Prepolymer (A) ist somit isocyanatfrei . In einer bevorzugten Ausführungsform der Erfindung sind die Konzentrationsverhältnisse sowie die Reaktionsbedingungen so gewählt, daß nahezu sämtliche Kettenenden (> 80 % der Kettenenden, besonders bevorzugt > 90 % der Kettenenden) der Prepolymere (A) mit Alkoxysilylgruppen der allgemeinen Formel [2] terminiert sind.
In einer bevorzugten Ausführungsform der Erfindung werden NCO- terminierte Prepolymere (A2) mit einem Überschuß der erfindungsgemäßen Silane (AI) umgesetzt. Der Überschuß beträgt bevorzugt 20-400 %, besonders bevorzugt 50-200 %. Das überschüssige Silan kann dem Prepolymer zu jedem beliebigen Zeitpunkt zugesetzt werden, bevorzugt wird der Silanuberschuß jedoch bereits während der Synthese der Prepolymere (A) zugegeben .
Die bei der Herstellung der Prepolymere (A) auftretenden Reaktionen zwischen Isocyanatgruppen und isocyanatreaktiven Gruppen können gegebenenfalls durch einen Katalysator beschleunigt werden. Bevorzugt werden dabei dieselben Katalysatoren eingesetzt, die unten auch als
Härtungskatalysatoren (C) aufgeführt sind. Gegebenenfalls ist es sogar möglich, daß die Herstellung der Prepolymere (A) durch dieselben Katalysatoren katalysiert wird, die später bei der Aushärtung der fertigen Prepolymerabmischungen auch als Härtungskatalysator (C) dienen. Dies hat den Vorteil, daß der Härtungskatalysator (C) bereits in dem Prepolymer (A) enthalten ist und bei der Co poundierung einer fertigen Prepolymer- abmischung (M) nicht mehr gesondert zugegeben werden muß. Selbstverständlich können dabei anstelle eines Katalysators auch Kombinationen mehrerer Katalysatoren eingesetzt werden.
Die Prepolymere (A) werden bevorzugt mit weiteren Komponenten zu Mischungen (M) compoundiert . Um bei Raumtemperatur eine schnelle Aushärtung dieser Massen (M) zu erreichen, kann gegebenenfalls ein Härtungskatalysator (C) zugesetzt werden. Wie bereits erwähnt kommen hier u.a. die zu diesem Zwecke üblicherweise verwendeten organischen Zinnverbindungen, wie z.B. Dibutylzinndilaurat , Dioctylzinndilaurat , Dibutylzinndiacetylacetonat , Dibutylzinndiacetat oder Dibutylzinndioctoat etc., in Frage. Des weiteren können auch Titanate, z.B. Titan (IV) isopropylat, Eisen (III) -Verbindungen, z.B. Eisen (III) -acetylacetonat, oder auch Amine, z.B. Triethylamin, Tributylamin, 1 , 4-Diazabicyclo [2 , 2 , 2] octan, 1,8- Diazabicyclo [5.4.0] undec-7-en, 1, 5-Diazabicyclo [4.3.0] non-5-en, N,N-Bis- (N,N-dimethyl-2-aminoethyl) -methylamin, N,N-
Dimethylcyclohexylamin, N,N-Dimethylphenlyamin, N-Ethyl- morpholinin etc., eingesetzt werden. Auch organische oder anorganische Brδnstedsäuren wie Essigsäure, Trifluoressigsäure oder Benzoylchlorid, Salzsäure, Phoshorsäure deren Mono- und/oder Diester, wie z.B. Butylphosphat , (Iso-)
Propylphosphat , Dibutylphosphat etc., sind als Katalysatoren [C] geeignet . Daneben können hier aber auch zahlreiche weitere organische und anorganische Schwermetallverbindungen sowie organische und anorganische Lewissäuren oder -basen eingesetzt werden. Zudem kann die Vernetzungsgeschwindigkeit auch durch die Kombination verschiedener Katalysatoren bzw. von Katalysatoren mit verschiedenen Cokatalysatoren weiter gesteigert bzw. genau auf den jeweiligen Bedarf hin abgestimmt werden. Dabei werden Mischungen (M) bevorzugt, die ausschließlich schwermetallfreie Katalysatoren (C) enthalten.
Der Einsatz von Prepolymeren (A) mit Silantermini der allgemeinen Formel [2] hat zudem den besonderen Vorteil, dass sich so auch Prepolymere (A) herstellen lassen, welche aus- schließlich Ethoxysilylgruppen enthalten, d.h. Silylgruppen der' allgemeinen Formel [2], in der R2 einen Ethylrest bedeutet.
Diese Massen (M) sind gegenüber Feuchtigkeit so reaktiv, daß sie auch ohne Zinnkatalysatoren mit hinreichend hoher Geschwindigkeit aushärten, obgleich Ethoxysilylgruppen generell weniger reaktiv sind als die entsprechenden Methoxysilylgruppen. So sind auch mit ethoxysilanterminierten Polymeren (A) zinnfreie Systeme möglich. Derartige Polymerabmischungen (M) , die ausschließlich ethoxysilanterminierte Polymere (A) enthalten, besitzen den Vorteil, daß sie beim Härten lediglich Ethanol als Spaltprodukt freisetzen. Sie stellen eine bevorzugte Ausführungsform dieser Erfindung dar. Die Prepolymere (A) werden bevorzugt in Abmischungen (M) eingesetzt, die zudem noch niedermolekulare Alkoxysilane (D) enthalten. Diese Alkoxysilane (D) können dabei mehrere Funktionen übernehmen. So können sie beispielsweise als Wasserfänger dienen, d.h. sie sollen eventuell vorhandene Feuchtigkeitsspuren abfangen und so die Lagerstabilität der entsprechenden silanvernetzenden Massen (M) erhöhen. Selbstverständlich müssen diese zumindest eine vergleichbar hohe Reaktivität gegenüber Feuchtigkeitsspuren besitzen wie das Prepolymer (A) . Geeignet als Wasserfänger sind daher vor allen hochreaktive Alkoxysilane (D) der allgemeinen Formel [4]
B' SiR1 a(OR2)3. [4]
wobei
B eine OH-, OR7-, SH- , SR7-, NH2-, NHR7-, (R7) _ -Gruppe bedeutet und R^ ,R2 und a die bei der allgemeinen Formel [1] angegebenen Bedeutungen aufweisen. Ein besonders bevorzugter Wasserfänger ist dabei das Carbamatosilan, bei dem B eine R40-CO-NH-Gruppe darstellt, wobei R4 und R7 die vorstehenden Bedeutungen aufweisen.
Des weiteren können die niedermolekularen Alkoxysilane (D) auch als Vernetzer und/oder Reaktiwerdünner dienen. Zu diesem Zweck sind prinzipiell sämtliche Silane geeignet, die über reaktive AIkoxysilylgruppen verfügen, über die sie während der Aushärtung der Polymerabmischung (M) mit in das entstehende dreidimensionale Netzwerk eingebaut werden können. Die Alkoxysilane (D) können dabei zu einer Steigerung der
Netzwerkdichte und damit zur Verbesserung der mechanischen Eigenschaften, z.B. der Reißfestigkeit, der ausgehärteten Masse (M) beitragen. Zudem können sie auch die Viskosität der entsprechenden Prepolymerabmiserrungen (M) senken. Als Alkoxysilane (D) eignen sich in dieser Funktion beispielsweise Alkoxymethyltrialkoxysilane und Alkoxymethyldi- alkoxyalkylsilane. Als Alkoxygruppen werden dabei Methoxy- und Ethoxygruppen bevorzugt. Zudem können auch die preisgünstigen Alkyltri ethoxysilane, wie Methyltrimethoxysilan sowie Vinyl- oder Phenyltrimethoxysilan, sowie deren Teilhydrolysate geeignet sein.
Auch können die niedermolekularen Alkoxysilane (D) als Haftvermittler dienen. Hier können vor allem Alkoxysilane eingesetzt werden, die über Aminofunktionen oder Epoxyfunktionen verfügen. Als Beispiele seien γ- Aminopropyltrialkoxysilane, γ- [N-Aminoethylamino] - propyltrialkoxysilane, γ-Glycidoxy-propyltrialkoxysilane sowie sämtliche Silane der allgemeinen Formel [4] , bei denen B für eine stickstoffhaltige Gruppe steht, genannt.
Schließlich können die niedermolekularen Alkoxysilane (D) sogar als Härtungskatalysatoren oder -cokatalysatoren dienen. Zu diesem Zweck eignen sich vor allem sämtliche basischen Aminosilane, wie z.B. sämtliche Aminopropylsilane, N- Aminoethyla inopropylsilane sowie auch sämtliche Silane der allgemeinen Formel [4] soweit es sich bei B um eine stickstoffhaltige Gruppe handelt.
Die Alkoxysilane (D) können den Prepolymeren (A) zu jedem beliebigen Zeitpunkt zugegeben werden. Soweit sie über keine NCO-reaktiven Gruppen verfügen, können sie sogar bereits während der Synthese der Prepolymere (A) zugesetzt werden. Dabei können, bezogen auf 100 Gewichtsteile Prepolymer (A) , bis zu 100 Gewichtsteile, vorzugsweise 1 bis 40 Gewichtsteile, eines niedermolekularen Alkoxysilanes (D) zugesetzt werden.
Des weiteren werden Abmischungen aus den alkoxysilantermierten Prepolymeren (A) üblicherweise Füllstoffe (E) zugegeben. Die Füllstoffe (E) führen dabei zu einer erheblichen Eigenschafts- Verbesserung der resultierenden Abmischungen (M) . Vor allem die Reißfestigkeit wie auch die Bruchdehnung können durch den Einsatz von geeigneten Füllstoffen erheblich gesteigert werden. Als Füllstoffe (E) eignen sich dabei sämtliche Materialien, wie sie im Stand der Technik vielfach beschrieben sind. Beispiele für Füllstoffe sind nicht verstärkende Füllstoffe, also Füllstoffe mit einer BET-Oberflache von bis zu 50 m2/g, wie Quarz, Diatomeenerde, Calciumsilikat , Zirkoniumsilikat, Zeolithe, Calciumcarbonat , Metalloxidpulver, wie Aluminium-, Titan-, Eisen-, oder Zinkoxide bzw. deren Mischoxide, Bariumsulfat, Calciumcarbonat, Gips, Siliciumnitrid, Siliciumcarbid, Bornitrid, Glas- und Kunststoffpulver; verstärkende Füllstoffe, also Füllstoffe mit einer BET- Oberflache von mindestens 50 m2/g, wie pyrogen hergestellte Kieselsäure, gefällte Kieselsäure, Ruß, wie Furnace- und Acetylenruß und Silicium-Aluminium-Mischoxide großer BET- Oberfläche; faserförmige Füllstoffe, wie Asbest sowie
Kunststoffasern. Die genannten Füllstoffe können hydrophobiert sein, beispielsweise durch die Behandlung mit Organosilanen bzw. -siloxanen oder durch Verätherung von Hydroxylgruppen zu Alkoxygruppen. Es kann eine Art von Füllstoff, es kann auch ein Gemisch von mindestens zwei Füllstoffen eingesetzt werden.
Die Füllstoffe (E) werden bevorzugt in einer Konzentration von 0-90 Gew.-% bezogen auf die fertige Abmischung (M) eingesetzt, wobei Konzentrationen von 30-70 Gew.-% besonders bevorzugt sind. In einer bevorzugten Anwendung werden Füllstoff- kombinationen (E) eingesetzt, die neben Calciumcarbonat noch pyrogene Kieselsäure und/oder Ruß enthalten.
Die Abmischungen (M) enthaltend die Prepolymere (A) können zudem auch noch geringe Mengen eines organischen Lösungsmittels (F) enthalten. Dieses Lösungsmittel dient dabei der Erniedrigung der Viskosität der unvernetzten Massen (M) . Als Lösungsmittel (F) kommen prinzipiell sämtliche Lösungsmittel sowie Lösemittelmischungen in Betracht. Als Lösungsmittel (F) werden bevorzugt Verbindungen eingesetzt, die über ein Dipolmoment verfügen. Besonders bevorzugte Lösungsmittel verfügen über ein Heteroatom mit freien Elektronenpaaren, die Wassersto.ffbrückenbindungen eingehen können. Bevorzugte Beispiele für solche Lösungsmittel sind Ether wie z.B. t-Butyl- methylether, Ester, wie z.B. Ethylacetat oder Butylacetat sowie Alkohole, wie z.B. Methanol, Ethanol, n- und t-Butanol . Die Lösungsmittel (F) werden bevorzugt in einer Konzentrationen von 0-20 Vol.-% bezogen auf die fertige Prepolymermischung (M) incl . aller Füllstoffe (E) eingesetzt, wobei Lösungsmittel- konzentrationen von 0-5 Vol.-% besonders bevorzugt sind.
Die Polymerabmischungen (M) können als weitere Komponenten an sich bekannte Hilfsstoffe, wie von den Komponenten (D) abweichende Wasserfänger und/oder Reaktiwerdünner sowie Haftvermittler, Weichmacher, Thixotropiermittel , Fungizide, Flammschutzmittel, Pigmente etc. enthalten. Auch Lichtschutzmittel, Antioxidantien, Radikalfänger sowie weitere Stabilisatoren können den Massen (M) zugesetzt werden. Zur
Erzeugung der jeweils gewünschten Eigenschaftsprofile, sowohl der unvernetzten Polymerabmischungen (M) als auch der ausgehärteten Massen (M) , sind derartige Zusätze bevorzugt.
Für die Polymerabmischungen (M) existieren zahlreiche verschiedene Anwendungen im Bereich der Kleb-, Dicht- und Fugendichtstoffe, Oberflächenbeschichtungen sowie auch bei der Herstellung von Formteilen, ie Polymerabmischungen (M) können dabei sowohl in reiner Form als auch in Form von Lösungen oder Dispersionen zum Einsatz kommen.
Alle vorstehenden Symbole der vorstehenden Formeln weisen ihre Bedeutungen jeweils unabhängig voneinander auf. In allen Formeln ist das Siliciumatom vierwertig.
Soweit nicht anders angegeben sind alle Mengen- und Prozentangaben auf das Gewicht bezogen, alle Drücke 0,10 MPa (abs.) und alle Temperaturen 20 °C.
Beispiel 1:
Herstellung von N-Methyl (dimethoxymethylsilyl) asparaginsäure- diethylester : In einem 250 mL Reakionsgefäß mit Rühr- und Kühlmöglichkeit werden unter Stickstoff 67.6 g (0.50 mol) Aminomethyldi- methoxymethylsilan vorgelegt. Zu dem Silan werden innerhalb von 3.5 h 86.1 g (0.50 mol) Maleinsäurediethylester getropft. Die Reaktionsmischung wird dabei auf 30°C gekühlt. Nach beendeter Zugabe wird noch 16 h bei Raumtemperatur gerührt und anschließend das Reaktionsgemisch fraktioniert destilliert. Man erhält 125.6 g (0.41 mol) N-Methyl (dimethoxymethylsilyl) - asparaginsäurediethylester als farblose Flüssigkeit (Sdp. 107°C/0.25 mbar) .
Beispiel 2 :
Herstellung von JW-Methyl (diethoxymethylsilyl) asparaginsäure- diethylester : In einem 250 mL Reakionsgefäß mit Rühr- und Kühlmöglichkeit werden unter Stickstoff 81.6 g (0.50 mol) Aminomethyldi- ethoxymethylsilan vorgelegt. Zu dem Silan werden innerhalb von 3.5 h 86.1 g (0.50 mol) Maleinsäurediethylester getropft. Die Reaktionsmischung wird dabei auf 30°C gekühlt. Nach beendeter Zugabe wird noch 16 h bei Raumtemperatur gerührt und anschließend das Reakionsgemisch fraktioniert destilliert. Man erhält 140.5 g (0.42 mol) N-Methyl (diethoxymethylsilyl) - asparaginsäurediethylester als farblose Flüssigkeit (Sdp. 109 °C/0.28 mbar) .
Beispiel 3 :
Herstellung von N-Methyl (trimethoxysilyl) asparaginsäurediethylester :
In einem 250 mL Reakionsgefäß mit Rühr- und Kühlmöglichkeit werden unter Stickstoff 75.1 g (0.50 mol)
Aminomethyltrimethoxysilan vorgelegt . Zu dem Silan werden innerhalb von 3.5 h 86.1 g (0.50 mol) Maleinsäurediethylester getropft. Die Reaktionsmischung wird dabei auf 30°C gekühlt. Nach beendeter Zugabe wird noch 16 h bei Raumtemperatur gerührt und anschließend das Reakionsgemisch fraktioniert destilliert. Man erhält 145.5 g (0.45 mol) JV-Methyl (trimethoxysilyl) - asparaginsäurediethylester als farblose Flüssigkeit (Sdp. 134 °C/0.47 mbar) .
Beispiel 4 J
Bestimmung der Stabilität von -Aminosilanen in Gegenwart von Methanol .
Allgemeine Vorschrift: Das α-Aminosilan wird in Methanol-D4 gelöst (10 Gew.-%) . Die resultierende Lösung wird wiederholt ^Η- NMR-spektroskopisch vermessen. Zur Bestimmung der Halbwertszeit (t1/2) des α-Aminosilans werden die Integrale des Methylen-
Spacers -HN-CH2-Si (0) R3 im unzersetzten α-Aminosilan (δ ca. 2.2 ppm) sowie das Integral der als Zersetzungsprodukt (Spaltung der Si-C Bindung) erhaltenen Methylgruppe -NHCH2D (δ ca. 2.4 ppm) herangezogen.
Halbwertszeit von N-Methyl (dimethoxymethylsilyl) asparaginsäurediethylester (erfindungsgemäß) in Gegenwart von Methanol : tι2 = 4 Wochen
Halbwertszeit von N-Methyl (diethoxymethylsilyl) asparaginsäurediethylester (erfindungsgemäß) in Gegenwart von Methanol: t1/2 = 5 Wochen
Halbwertszeit von N-Methyl (trimethoxymethylsilyl ) asparaginsäure-diethylester (erfindungsgemäß) in Gegenwart von Methanol t1/2 = 5 Wochen
Halbwertszeit von Aminomethyl-methyldimethoxysilan (nicht erfindungsgemäß) in Gegenwart von Methanol : t1/2 = 6 h
Beispiel 5 :
Herstellung eines Prepolymers (A) In einem 250 ml Reaktionsgefäß mit Rühr-, Kühl und Heizmöglichkeiten werden 152 g (16 mmol) eines Polypropylenglykols mit einem mittleren Molekulargewicht von 9500 g/mol (Acclaim® 12200 der Bayer AG) vorgelegt und 30 Minuten bei 80 °C im Vakuum entwässert. Anschließend wird die Heizung entfernt und unter Stickstoff 2,16 g (24 mmol) 1,4- Butandiol, 12,43 g (56 mmol) Isophorondiisocyanat und 80 mg Dibutylzinndilaurat (entspricht einem Zinngehalt von lOOppm) zugegeben. Es wird für 60 Minuten bei 80 °C gerührt. Das erhaltene NCO-terminierte Polyurethanprepolymer wird danach auf 75 °C abgekühlt und mit 10,35 g (32 mmol) N~
Methyl (trimethoxymethylsilyl) asparaginsäure-diethylester: versetzt und 60 min bei 80 °C gerührt. In der resultierenden Prepolymermischung lassen sich IR-spektroskopisch keine Isocyanatgruppen mehr nachweisen.
Beispiel 6 :
Herstellung eines Prepolymers (A) :
In einem 250 ml Reaktionsgefäß mit Rühr-, Kühl und Heizmöglichkeiten werden 152 g (16 mmol) eines
Polypropylenglykols mit einem mittleren Molekulargewicht von 9500 g/mol (Acclaim® 12200 der Bayer AG) vorgelegt und 30 Minuten bei 80 °C im Vakuum entwässert. Anschließend wird die Heizung entfernt und unter Stickstoff 2,16 g (24 mmol) 1,4- Butandiol, 12,43 g (56 mmol) Isophorondiisocyanat und 80 mg Dibutylzinndilaurat (entspricht einem Zinngehalt von lOOppm) zugegeben. Es wird für 60 Minuten bei 80 °C gerührt. Das erhaltene NCO-terminierte Polyurethanprepolymer wird danach auf 75 °C abgekühlt und mit 20,7 g (64 mmol) N- Methyl (trimethoxymethylsilyl) asparaginsäure-diethylester: versetzt und 60 min bei 80 °C gerührt. In der resultierenden Prepolymermischung lassen sich IR-spektroskopisch keine Isocyanatgruppen mehr nachweisen.

Claims

Patentansprüche :
1. Aminomethylfunktionelle Alkoxysilane (AI) der allgemeinen Formel [1]
Figure imgf000022_0001
wobei R-l- einen gegebenenfalls halogensubstituierten Kohlenwasserstoffrest
R2 einen Alkylrest mit 1-6 Kohlenstoffatomen oder einen ω- Oxaalkyl-alkylrest mit insgesamt 2-10 Kohlenstoffatomen, R3 einen gegebenenfalls substituierten Kohlenwasserstoffrest
R4 einen gegebenenfalls substituierten Kohlenwasserstoffrest und a die Werte 0, 1 oder 2 bedeuten.
2. Verfahren zur Herstellung von Prepolymeren (A) mit Endgruppen der allgemeinen Formel [2] ,
Figure imgf000022_0002
wobei R1, R2 , R3 , R4 und a die bei der allgemeinen Formel [1] gemäss Anspruch 1 angegebenen Bedeutungen aufweisen, bei dem Alkoxysilane (AI) der allgemeinen Formel [1] a) mit isocyanatter iniertem Prepolymer (A2) umgesetzt werden, oder b) mit NCO-Gruppen enthaltendem Precursor des Prepolymers (A) zu Endgruppen der allgemeinen Formel [2] enthaltendem Precursor umgesetzt werden, wobei der Endgruppen der allgemeinen Formel [2] enthaltende Precursor in weiteren Reaktionsschritten zu dem fertigen Prepolymer (A) umgesetzt wird.
3. Prepolymere (A) mit Endgruppen der allgemeinen Formel [2],
Figure imgf000023_0001
wobei R-*-, R , R , R4 und a die bei der allgemeinen Formel [1] ge äss Anspruch 1 angegebenen Bedeutungen aufweisen.
4. Prepolymere (A) nach Anspruch 3, welche isocyanatfrei sind.
5. Alkoxysilane (AI) nach Anspruch 1 und Prepolymere (A) nach Anspruch 3 und 4, bei denen R2 eine Ethylgruppe bedeutet.
6. Alkoxysilane (AI) nach Anspruch 1 und 5 und Prepolymere (A) nach Anspruch 3 bis 5, bei denen R-*- Methyl-, Ethyl- oder Phenylgruppen sind.
7. Massen (M) enthaltend die Prepolymere (A) nach Anspruch 3 bis 6.
PCT/EP2004/011215 2003-11-06 2004-10-07 α-ALKOXYSILANE SOWIE IHRE ANWENDUNG IN ALKOXYSILANTERMINIERTEN PREPOLYMEREN WO2005047356A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04790177A EP1680457A1 (de) 2003-11-06 2004-10-07 a-ALKOXYSILANE SOWIE IHRE ANWENDUNG IN ALKOXYSILANTERMINIERTE N PREPOLYMEREN
US10/595,646 US20090012322A1 (en) 2003-11-06 2004-10-07 Alkoxysilanes and Use Thereof In Alkoxysilane Terminated Prepolymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10351802A DE10351802A1 (de) 2003-11-06 2003-11-06 alpha-Alkoxysilane sowie ihre Anwendung in alkoxysilanterminierten Prepolymeren
DE10351802.9 2003-11-06

Publications (1)

Publication Number Publication Date
WO2005047356A1 true WO2005047356A1 (de) 2005-05-26

Family

ID=34559387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/011215 WO2005047356A1 (de) 2003-11-06 2004-10-07 α-ALKOXYSILANE SOWIE IHRE ANWENDUNG IN ALKOXYSILANTERMINIERTEN PREPOLYMEREN

Country Status (4)

Country Link
US (1) US20090012322A1 (de)
EP (1) EP1680457A1 (de)
DE (1) DE10351802A1 (de)
WO (1) WO2005047356A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1717254A1 (de) * 2005-04-29 2006-11-02 Sika Technology AG Feuchtigkeitshärtende Zusammensetzung mit erhöhter Dehnbarkeit
DE102007037198A1 (de) * 2007-08-07 2009-02-12 Wacker Chemie Ag Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
DE102007037197A1 (de) * 2007-08-07 2009-02-12 Wacker Chemie Ag Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
DE102010000881A1 (de) * 2010-01-14 2011-07-21 Henkel AG & Co. KGaA, 40589 1K- Kaschierklebstoff mit Silanvernetzung
RU2456293C1 (ru) * 2010-12-29 2012-07-20 Государственное образовательное учреждение высшего профессионального образования "Московский государственный текстильный университет им. А.Н. Косыгина" Алкоксисиланы с гидрофильными n-(1,2-дигидроксипропил) аминоалкилсодержащими и n-триалкоксисилилалкилуретансодержащими группами и способ их получения

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596360A1 (de) * 1992-11-06 1994-05-11 Bayer Ag Alkoxysilian- und Aminogruppen aufweisende Verbindungen
WO2002066532A1 (de) * 2001-02-20 2002-08-29 Consortium für elektrochemische Industrie GmbH Isocyanatfrie schäumbare mischungen mit hoher härtungsgeschwindigkeit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971751A (en) * 1975-06-09 1976-07-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Vulcanizable silylether terminated polymer
US5068304A (en) * 1988-12-09 1991-11-26 Asahi Glass Company, Ltd. Moisture-curable resin composition
US5254657A (en) * 1991-05-30 1993-10-19 Shin-Etsu Chemical Co., Ltd. RTV silicone rubber compositions and cured products thereof
DE19619538A1 (de) * 1996-05-15 1997-11-20 Bayer Ag Alkoxysilan- und Hydantoingruppen aufweisende Polyurethanprepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Dichtstoffen
WO1998047939A1 (fr) * 1997-04-21 1998-10-29 Asahi Glass Company Ltd. Compositions durcissant a la temperature ambiante
US5932652A (en) * 1997-12-17 1999-08-03 Bayer Corporation Aqueous polyurethane/urea dispersions containing alkoxysilane groups
DE19849817A1 (de) * 1998-10-29 2000-05-04 Bayer Ag Alkoxysilan-Endgruppen aufweisende Polyurethanprepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Dichtstoffen
US6162938A (en) * 1998-11-19 2000-12-19 3M Innovative Properties Company Secondary amine-functional silanes, silane-functional polymers therefrom, and resulting cured polymers
US6111010A (en) * 1998-12-23 2000-08-29 Bayer Corporation Aqueous compounds containing alkoxysilane and/or silanol groups
EP1256595A1 (de) * 2001-05-10 2002-11-13 Sika AG, vorm. Kaspar Winkler & Co. Klebstoff, gefüllt mit oberflächenbehandelter Kreide und Russ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596360A1 (de) * 1992-11-06 1994-05-11 Bayer Ag Alkoxysilian- und Aminogruppen aufweisende Verbindungen
WO2002066532A1 (de) * 2001-02-20 2002-08-29 Consortium für elektrochemische Industrie GmbH Isocyanatfrie schäumbare mischungen mit hoher härtungsgeschwindigkeit

Also Published As

Publication number Publication date
DE10351802A1 (de) 2005-06-09
EP1680457A1 (de) 2006-07-19
US20090012322A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
EP1824904B1 (de) Alkoxysilanterminierte prepolymere
EP1641854B1 (de) Alkoxysilanterminierte prepolymere
WO2005000931A1 (de) Alkoxysilanterminierte prepolymere
EP1529071B1 (de) Polymermassen auf basis alkoxysilanterminierter polymere mit regulierbarer härtungsgeschwindigkeit
DE69920986T2 (de) Verfahren zur Herstellung von Präpolymeren, die zu verbesserten Dichtungsmassen aushärten und daraus hergestellte Produkte
EP1421129B1 (de) Einkomponentige alkoxysilanterminierte polymere enthaltende schnell härtende abmischungen
WO2007025668A1 (de) Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
DE602004012439T2 (de) Feuchtigkeitshärtbare polyetherurethane mit reaktiven silangruppen und ihre verwendung als dichtstoffe, klebstoffe und beschichtungen
WO2003014226A1 (de) Alkoxyvernetzende einkomponentige feuchtigkeitshärtende massen
WO2003059981A1 (de) Aloxysilanterminierte polymere enthaltende vernetzbare polymerabmischungen
WO2000026271A1 (de) Alkoxysilan-endgruppen aufweisende polyurethanprepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung zur herstellung von dichtstoffen
EP1196469A2 (de) Spezielle aminosilane enthaltende, kondensationsvernetzende polyurethanmassen, ein verfahren zu ihrer herstellung sowie ihre verwendung
WO2005047356A1 (de) α-ALKOXYSILANE SOWIE IHRE ANWENDUNG IN ALKOXYSILANTERMINIERTEN PREPOLYMEREN
CN108137772B (zh) 用于制备具有低色度和色度稳定性的甲硅烷基化的聚合物的工艺
CN108012542B (zh) 使用返混步骤制备甲硅烷基化的聚合物的工艺
DE10108038C1 (de) Isocyanatfreie schäumbare Mischungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004790177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10595646

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004790177

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004790177

Country of ref document: EP