WO2005047196A1 - Production method for grin lens and grin lens - Google Patents

Production method for grin lens and grin lens Download PDF

Info

Publication number
WO2005047196A1
WO2005047196A1 PCT/JP2004/015251 JP2004015251W WO2005047196A1 WO 2005047196 A1 WO2005047196 A1 WO 2005047196A1 JP 2004015251 W JP2004015251 W JP 2004015251W WO 2005047196 A1 WO2005047196 A1 WO 2005047196A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical
grin lens
refractive index
gel
lens
Prior art date
Application number
PCT/JP2004/015251
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyoshi Matsumura
Taro Suzuki
Original Assignee
Toyo Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Glass Co., Ltd. filed Critical Toyo Glass Co., Ltd.
Publication of WO2005047196A1 publication Critical patent/WO2005047196A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Definitions

  • the present invention particularly relates to a gradient index optical element applicable to optical coupling parts for optical communication, optical elements such as cameras and endoscopes, and a method for producing the same by a sol-gel method.
  • a refractive index distribution type optical element is a lens having a small spherical aberration used when, for example, radiated light from a semiconductor laser is incident on an optical fiber with high efficiency. Since it can provide an arbitrary focal length by changing the length of the cylinder, it has been attracting attention as an image transmission lens such as a camera. In particular, because of its small cylindrical shape, it is expected to be a highly assemblable lens with easy alignment and holding of the optical system.
  • GRIN lens refractive index lens
  • n Refractive index of GRIN lens material
  • a lens that changes continuously with an approximately squared curve the lens action is performed by this refractive index distribution.
  • the radius of the GRIN lens is d and the refractive index at the radius d is n,
  • NA is the square root of the square difference of the refractive index between the center and the periphery of the GRIN lens, and is called the numerical aperture (hereinafter abbreviated as “NA”), which is an important parameter that indicates lens performance.
  • NA the numerical aperture
  • NA increases as the difference between the refractive index at the center and the refractive index at the outer periphery increases.
  • a lens with a large NA has a high light focusing ability That is, the lens has good lens characteristics.
  • NA 0.2 is practically used, and a GRIN lens with NA ⁇ 0.4 is strongly desired.
  • the GRIN lens made by the ion exchange method is a multi-component glass containing an alkali component, the NA cannot be large, and the glass material has a very large coefficient of thermal expansion, which is a problem due to the problem of heat resistance. He was poor in sex.
  • NA of 0.38 for example, literature; P.B.O 'Connor et al .:
  • Electron ⁇ ett., 13 (1977) 170-171) has been obtained at the laboratory level. In order to obtain more NA, is the amount of additive (GeO, Ge ⁇ , etc.) increased? Must be
  • the sol-gel method is a synthesis method at a low temperature, and is an effective method capable of precisely forming a desired concentration distribution.
  • an alcohol solution containing silicon alkoxide as a main component is added with an acid or a base as a solvent and hydrolyzed to form a sol.
  • the metal component is added, and the sol is further subjected to a polycondensation reaction, so that a cross-linking reaction proceeds to produce a wet gel.
  • the obtained wet gel is dried, and after removing the solvent in the gel, it is baked to produce a dense glass.
  • a GRIN lens is manufactured using a sol-gel method
  • a metal alkoxide or a metal salt as a raw material of the metal component
  • a molecular stuffing method are required to form a concentration distribution in the metal component.
  • a gel prepared by adding a metal alkoxide as an alcohol solution as a component for increasing the refractive index to a silicon alkoxide during the preparation of a sol is produced.
  • silicon and metal atoms form a bond.
  • a concentration at which the bond of silicon metal atoms can be cut and the metal component can be eluted is formed.
  • This method involves immersing the gel in a distribution-imparting solution, washing the eluate, fixing the concentration distribution, washing, drying, and baking.
  • the GRIN lens manufactured according to the above conventional method has a certain degree of decrease in the refractive index at the outer peripheral portion.
  • the concentration of the metal component contributing to the formation of the refractive index distribution does not decrease sufficiently, and the refractive index difference between the central part and the outer peripheral part cannot be so large. Was unable to secure a stable price.
  • a gel is prepared by adding the metal salt as an aqueous solution or an alcohol solution during the preparation of the sol.
  • a metal salt is dissolved in a solvent in a pore that also has a skeletal force of silicon and exists.
  • the obtained gel is immersed in a low-molecular-weight alcohol or water having a high solubility for a metal salt, or a mixed solution thereof to elute metal components contained in the gel and form a concentration distribution.
  • suitable salt of metal that greatly contributes to the refractive index such as Ti, Nb, Ta, and Zr, it is very difficult to apply it to GRIN lenses with high NA. .
  • Japanese Patent Publication No. 5-83332 discloses that a wet gel is dried and fired to produce a porous body, and is immersed in a Ti-containing solution or the like to add a metal component to the porous body.
  • a method of uniformly impregnating to obtain a glass containing metal such as SiO—TiO is disclosed.
  • the dry gel is heat-treated to a high temperature, so that the bonds of Si—O—Si are firmly bonded and the number of reactive Si—OH groups is reduced. Power of metal components It was difficult to stably produce high NA GRIN lenses that could not be bonded to Si—O—Si.
  • the concentration distribution is basically given by the diffusion of the metal component, so that the concentration distribution is precisely controlled. It was not possible to do so, and it was easy to increase the dispersion of the concentration distribution shape. Also, since the base gel is basically cylindrical, it was difficult to stabilize the quality immediately after trying to make a large-diameter gel, and the manufacturing cost was extremely high.
  • Patent Document 1 US Patent No. 3910677
  • Patent Document 2 US Patent No. 4701011
  • Patent Document 3 US Pat. No. 5,384,874
  • Patent Document 4 JP-A-8-292341 Disclosure of the invention
  • An object of the present invention is to manufacture a GRIN lens having a uniform distribution of concentration by precisely controlling the refractive index distribution.
  • a GRIN lens having a large numerical aperture NA can be manufactured at low cost. It is an object to manufacture.
  • the present invention provides a method for rotating a container having an inner peripheral surface that is cylindrical while rotating the container on the inner peripheral surface of the container.
  • the cylindrical glass body is heated sequentially from the end while rotating, and a cylindrical G having a closed inner diameter is formed.
  • Heating and stretching the GRIN lens body to a predetermined diameter Heating and stretching the GRIN lens body to a predetermined diameter.
  • the refractive index-imparting metal may be formed by laminating a plurality of layers (preferably eight or more layers) having different concentrations in a stepwise manner, or by laminating layers having different concentrations continuously.
  • the present invention also relates to the manufacturing method according to Structure 1, wherein the raw material power for preparing the cylindrical wet gel is an alcohol solution containing silicon alkycoside as a main component, and an acid or base as a solvent.
  • a GRIN lens comprising a refractive index-imparting metal and silicon powder.
  • the average particle size of the silicon powder is desirably ultra-fine particles of 50 nm or less.
  • the present invention is the method of manufacturing a GRIN lens according to the manufacturing method of the structure 1 or 2, wherein the refractive index imparting metal is Ti or Ta.
  • the present invention provides the method according to any one of Structures 1-3, wherein A method for producing a GRIN lens, wherein the rotation speed of the container in the step of forming a wet gel is 800 rotations Z or more.
  • the inside of the tube of the cylindrical glass body is depressurized while sequentially heating the cylindrical glass body from the end while rotating the glass body, the glass body collapses into an elliptical shape when it softens, and the inside of the GRIN lens body is reduced.
  • the refractive index distribution has an elliptical shape.
  • the shape of the laser beam is elliptical (the higher the power of the laser beam, the smaller the shape of the laser beam). Therefore, the efficiency can be further improved by matching the shape of the laser beam with the shape of the refractive index distribution of the GRIN lens. In fact, it can be a GRIN lens.
  • the refractive index distribution inside the GRIN lens becomes a crushed elliptical shape.
  • the degree of pressure reduction and how much the ellipse will be crushed depends on the outer diameter and inner diameter of the glass body, etc. Generally, when the amount of pressure reduction is less than 20 Pa, the refractive index distribution is close to a perfect circle and the effect is small. . If the rotation speed of the glass body is low, the outer shape of the GRIN lens body becomes elliptical, which is not preferable for connection with an optical fiber. By setting the rotation speed of the glass body to be equal to or more than 50 rotations Z, the outer shape of the GRIN lens body can be made substantially circular.
  • the present invention is a GRIN lens manufactured by the manufacturing method of Arrangement 16 and having a numerical aperture of 0.4 or more.
  • a large-sized (large-diameter) GRIN lens can be manufactured because a wet gel having a cylindrical shape is used instead of a cylindrical shape as in the related art, and a metal component is added. Expensive metal components disappear due to elution, etc. due to the lamination of different compositions It can be manufactured at a yield of 100% without the need for stacking, and since compositions with different amounts of metal components are laminated, precise control of the refractive index distribution is possible, and productivity is increased, resulting in extremely low cost.
  • FIG. 1 is an explanatory diagram of a GRIN lens.
  • FIG. 2 is an explanatory view of a process of forming a GRIN lens.
  • FIG. 3 is an explanatory view of a wet gel 22 and a GRIN lens matrix 24.
  • FIG. 4 is an explanatory diagram showing the relationship between the rotation speed of a container and the shape of a wet gel.
  • FIG. 5 is an explanatory diagram of the addition amount of a refractive index imparting metal and a change in the refractive index.
  • FIG. 6 is an explanatory diagram of the addition amount of a metal having a refractive index and a change in a coefficient of thermal expansion.
  • FIG. 7 is an explanatory view of a glass body and a GRIN lens body.
  • the present invention is a GRIN lens having a high numerical aperture whose refractive index distribution is precisely controlled, and a method for manufacturing the same, which is manufactured as follows.
  • a metal component titanium or tantalum
  • a refractive index prepared by a sol-gel method is placed in a cylindrical rotating container (eg, tetrafluoroethylene resin tube) 21 having an inner diameter of 50 mm, for example.
  • Sol in which the added amount is sequentially changed is successively injected and gelled, and wet gels 22 having different concentrations of metal components are sequentially laminated on the inner wall of the container in a cylindrical shape.
  • the wet gel 22 is dried under an atmosphere of 60 ° C.
  • FIG. 1 A transparent cylindrical glass body 23 as shown in FIG. Both ends of this cylindrical glass body 23 are fixed on a rotary lathe and heated sequentially from the end with an oxyhydrogen panner 25 at about 2000 ° C while rotating, and a cylindrical GRIN lens with a closed inner diameter is obtained.
  • Maternal 24 is obtained.
  • this fiber is inserted into an electric furnace with a carbon heater and spun at an appropriate speed, a GRIN lens-like optical fiber having a desired outer diameter of, for example, 150 m is obtained. When this is cut to an appropriate length, the desired GRIN lens can be obtained.
  • a large-sized GRIN lens can be manufactured by the conventional manufacturing method using a cylindrical wet gel instead of a columnar one, and a high cost because a composition having a different addition amount of the metal component is laminated. It can be manufactured at a yield of 100% without extinguishment of various metal components by elution, etc., and is extremely low-cost.In addition, it is possible to control the refractive index by stacking compositions with different amounts of added metal components, and it is possible to control the NA The advantage that can be secured can be exhibited.
  • the gel When the angle ⁇ is 90 degrees at all circumferential angles, the gel is completely cylindrical, but when the rotation speed is low, the inner surface of the gel is knotted. From this, it was a component that it was necessary to rotate more than 800 rotations per minute in order to increase the concentricity.
  • the composition containing Bi, In, Y, and La is a poorly soluble solid containing any alkoxide as an additive element, Can't make it.
  • the numerical aperture (NA) of less than 0.3 was obtained in the region where the amount of additive was small (addition amount to Si was less than 20 mol%).
  • the additive obtained with an NA of 0.5 that is, a refractive index of 1.54 compared to 1.4584 of quartz
  • the additive obtained with an NA of 0.5 that is, a refractive index of 1.54 compared to 1.4584 of quartz
  • Sn 15 mol%.
  • the metal component Nb As described above, the metal component Nb:
  • Nb-Sn added glass shows the presence of a crystalline substance and has a thermal expansion coefficient. However, it was not suitable as a GRIN lens.
  • SiO-SbO, SiOTaO, SiOTiO and SiO-ZrO-based quartz glass are:
  • Sb-added glass evaporates the additional element Sb during sintering of the gel.Zr-added glass undergoes a relatively rapid hydrolysis reaction in the process of gel preparation, although the amount is small in methanol, which is the solvent. When a precipitate is formed, it has process instability.
  • the sol of the first layer was placed in a cylindrical polypropylene container 21 having an inner diameter of 50 mm, and rotated at a speed of 1100 rpm for 30 minutes to produce a cylindrical wet gel on the inner wall of the container.
  • two to eight layers of sol liquids having different titanium components are sequentially put into the container 21, and concentrically formed on the inner wall of the container are formed eight layers of wet gel layers having different amounts of titanium added.
  • the produced cylindrical wet gel 22 was dried at 60 ° C. for 1 week while rotating to obtain a dry gel.
  • the dry gel was a cylinder with an inner diameter of 26 mm and an outer diameter of 13 mm and an ellipticity of 0.04% or less.
  • the temperature of the obtained dry gel is raised to 150 ° C / hr in an oxygen atmosphere up to 800 ° C and then to 50 ° C / hr in a helium atmosphere to 1250 ° C. I got 23.
  • Both ends of the cylindrical glass body 23 are fixed on a rotary lathe, and heated sequentially from the ends with an oxyhydrogen panner 25 at about 2000 ° C while rotating, whereby a cylindrical GRIN having a closed inner diameter is obtained.
  • a lens matrix 24 was obtained (Fig. 2 (c)). This GRIN lens matrix 24 was spun into a GRIN lens-like optical fiber having an outer diameter of 150 m while being inserted into an electric furnace of a carbon heater at 0.04 mm / s. .
  • the titanium component in the center part scatters slightly. Therefore, as shown in Table 1, the addition amount of titanium in the eight layers was increased to prevent a decrease in the refractive index.
  • the sol of the first layer was placed in a cylindrical polypropylene container 21 having an inner diameter of 50 mm and rotated at a speed of 1100 rpm for 30 minutes to produce a cylindrical gel on the inner wall of the container.
  • two to eight layers of sols having different titanium components were sequentially placed in the container, and eight layers of wet gels having different tantalum concentrations were concentrically laminated on the inner wall of the container.
  • the produced cylindrical wet gel 22 was dried at 60 ° C. for 1 week while rotating to obtain a dry gel.
  • the dry gel was a cylinder with an inner diameter of 25 mm and an outer diameter of 14 mm and an ellipticity of 0.04% or less.
  • the temperature of the obtained dry gel is increased from room temperature to 800 ° C in an oxygen atmosphere at 150 ° C Zhr, and then raised to 1250 ° C in a helium atmosphere at 50 ° C / hr.
  • Both ends of this cylindrical glass body 23 are fixed on a rotary lathe, and heated sequentially from the ends with an oxyhydrogen panner 25 at about 2000 ° C while rotating, whereby a cylindrical GRIN having a closed inner diameter is obtained.
  • a lens matrix 24 was obtained (Fig. 2 (c)).
  • This GRIN lens matrix 24 was spun into a GRIN lens-like optical fiber having an outer diameter of 150 ⁇ m while being inserted into an electric furnace of a carbon heater at 0.04 mm / s, thereby producing a GRIN lens-like optical fiber.
  • FIG. 7 shows a cross section of the cylindrical glass body 23 produced by the method of the second embodiment, and the lower part shows a cross section of the GRIN lens body 24 produced by the method of the present embodiment.
  • the glass body has an outer diameter of 13 mm and an inner diameter of 7.7 mm.
  • the difference between the amount of reduced pressure (difference from atmospheric pressure) and the maximum ellipticity of the isorefractive index curve was as follows.
  • the ellipticity is (a ⁇ b) Za, where the major axis of the ellipse is a and the minor axis is b, and the larger the ellipse, the more the ellipse becomes.
  • the iso-refractive index curve has an elliptical shape in which the central layer is most crushed, and an elliptic shape in which the outer layer is less crushed.
  • the GRIN lens of the present invention can be used as an optical fiber coupling component, a collimator, or the like by being welded to the tip of an optical fiber.

Abstract

To be able to produce at low costs a GRIN lens having a large numerical aperture without variations in refractive index distribution shape. With a container having a cylindrical inner peripheral surface rotated, cylindrical silicon wet gel, formed by laminating layers different in refractive index imparting metal concentration that gradually grows toward the center, is produced on the inner peripheral surface of the container, the wet gel is dried to cylindrical dry gel, which is then sintered to form a cylindrical glass element, the glass element is heated sequentially starting at one end while being rotated to produce a cylindrical GRIN lens parent body with a closed inner diameter, and the lens parent body is heated and elongated to a specified diameter. Accordingly, the lens can be produced with a 100% yield and therefore at very low costs because a desired refractive index distribution can be uniformly imparted and an expensive refractive index imparting metal component will not be lost by elution.

Description

明 細 書  Specification
GRINレンズの製造方法及び GRINレンズ 技術分野  GRIN lens manufacturing method and GRIN lens technical field
[0001] 本発明は特に光通信用光結合部品やカメラ、内視鏡等の光学素子に応用可能な 屈折率分布型光学素子とそのゾルゲル法による製造方法に関する。  The present invention particularly relates to a gradient index optical element applicable to optical coupling parts for optical communication, optical elements such as cameras and endoscopes, and a method for producing the same by a sol-gel method.
背景技術  Background art
[0002] 屈折率分布型の光学素子は、例えば半導体レーザからの放射光を高効率で光フ アイバに入射させる時に用いられる球面収差の小さなレンズとして、また、レンズの端 面が平坦で、かつ円柱の長さを変えることによって任意の焦点距離が付与できるた めに、カメラなどの画像伝送用のレンズとして注目されている。特に、形状が小型な 円柱状であるため光学系の軸合わせや保持が容易で組立て性の高いレンズとして 期待されている。  [0002] A refractive index distribution type optical element is a lens having a small spherical aberration used when, for example, radiated light from a semiconductor laser is incident on an optical fiber with high efficiency. Since it can provide an arbitrary focal length by changing the length of the cylinder, it has been attracting attention as an image transmission lens such as a camera. In particular, because of its small cylindrical shape, it is expected to be a highly assemblable lens with easy alignment and holding of the optical system.
[0003] この円柱状の屈折率分布型の光学素子 (Graded  [0003] The columnar refractive index distribution type optical element (Graded
Indexレンズ、以下、「GRINレンズ」と略す。)は、図 1に示すように、その断面方向 x、 yの屈折率 nが
Figure imgf000003_0001
Index lens, hereinafter abbreviated as "GRIN lens". ), As shown in Fig. 1, the refractive index n in the cross-sectional direction x, y
Figure imgf000003_0001
g : GRINレンズの集光能力を表わす定数  g: A constant that indicates the focusing power of the GRIN lens
n : GRINレンズの材料の屈折率  n: Refractive index of GRIN lens material
0  0
のように、ほぼ 2乗カーブで連続的に変化するレンズで、この屈折率分布によってレ ンズ作用が行われる。図 1に示すように、 GRINレンズの半径を d、半径 dでの屈折率を nとすれば、  As shown in the figure, a lens that changes continuously with an approximately squared curve, the lens action is performed by this refractive index distribution. As shown in Fig. 1, if the radius of the GRIN lens is d and the refractive index at the radius d is n,
d  d
g  g
=NA/dn 但し NA= ( n 2—n 2 ) 1/2 (2) = NA / dn where NA = (n 2 —n 2 ) 1/2 (2)
0 0 d  0 0 d
と表わされる。ここで NAは GRINレンズの中心と周辺での屈折率の 2乗差の平方根 で、開口数 Numerical Aperture (以下、「NA」と略す。)と称し、レンズ性能を表わす重 要なパラメータである。(2)式から明らかなように、中心部の屈折率と外周部の屈折率 の差が大きいほど開口数 NAが大きくなる。 NAの大きいレンズは光の集光能力が高い 、即ちレンズ特性の良いレンズである。現在、実用化されているものは NA= 0.2程度 であり、 NA≥0.4の GRINレンズが強く望まれている。 Is represented by Here, NA is the square root of the square difference of the refractive index between the center and the periphery of the GRIN lens, and is called the numerical aperture (hereinafter abbreviated as “NA”), which is an important parameter that indicates lens performance. As is clear from equation (2), the numerical aperture NA increases as the difference between the refractive index at the center and the refractive index at the outer periphery increases. A lens with a large NA has a high light focusing ability That is, the lens has good lens characteristics. At present, NA = 0.2 is practically used, and a GRIN lens with NA≥0.4 is strongly desired.
[0004] この GRINレンズの作製方法としては、イオン交換法や気相 CVD (Chemical Vapor Deposition)法、ゾルゲル法などが知られている。しかしながら、イオン交換法で作ら れる GRINレンズは、アルカリ成分を含む多成分ガラスのため、 NAが大きくとれず、し カゝもガラス材料の熱膨張係数が非常に大きくなつて耐熱性の問題で信頼性に乏しか つた。また、気相法では、 0.38の NA (例えば文献; P.B.O' Connorほか:  [0004] As a method of manufacturing the GRIN lens, an ion exchange method, a gas-phase CVD (Chemical Vapor Deposition) method, a sol-gel method, and the like are known. However, since the GRIN lens made by the ion exchange method is a multi-component glass containing an alkali component, the NA cannot be large, and the glass material has a very large coefficient of thermal expansion, which is a problem due to the problem of heat resistance. He was poor in sex. In the gas phase method, NA of 0.38 (for example, literature; P.B.O 'Connor et al .:
Electron丄 ett., 13(1977)170-171)が実験室レベルで得られている力 それ以上の NA を得るためには添加物(GeO ,Ρ Οなど)の添力卩量を増やしていかなければならず、  Electron 丄 ett., 13 (1977) 170-171) has been obtained at the laboratory level. In order to obtain more NA, is the amount of additive (GeO, Ge Ο, etc.) increased? Must be
2 2 5  2 2 5
そのためガラス材料の熱膨張係数が大きくなり母材が割れやすく実用化には不安定 であった。  As a result, the thermal expansion coefficient of the glass material increased, and the base material was easily cracked, making it unstable for practical use.
[0005] 一方、ゾルゲル法は、低温での合成法であり、所望の濃度分布を精密に形成する ことが可能で、有効な方法である。ゾルゲル法によるガラスの作製方法では、シリコン のアルコキシドを主成分とするアルコール溶液に、溶媒として酸または塩基を添カロし 加水分解することでゾルとし、多成分系のガラスを作製する場合にはさらに金属成分 を添加し、このゾルをさらに重縮合反応させることで、架橋反応を進行させウエットゲ ルを作製している。そして、得られたウエットゲルを乾燥し、ゲル中の溶媒を除去後、 焼成することで緻密なガラスを作製して 、る。  [0005] On the other hand, the sol-gel method is a synthesis method at a low temperature, and is an effective method capable of precisely forming a desired concentration distribution. In the method for producing glass by the sol-gel method, an alcohol solution containing silicon alkoxide as a main component is added with an acid or a base as a solvent and hydrolyzed to form a sol. The metal component is added, and the sol is further subjected to a polycondensation reaction, so that a cross-linking reaction proceeds to produce a wet gel. Then, the obtained wet gel is dried, and after removing the solvent in the gel, it is baked to produce a dense glass.
ゾルゲル法を用いて GRINレンズを作製する場合には、金属成分に濃度分布を形成 することが必要となる力 金属成分の原料として金属アルコキシド、金属塩を用いる方 法、更には分子スタッフイング法が知られている。  When a GRIN lens is manufactured using a sol-gel method, a method that uses a metal alkoxide or a metal salt as a raw material of the metal component, and a molecular stuffing method, are required to form a concentration distribution in the metal component. Are known.
[0006] 金属アルコキシドを用いる方法では、ゾルの調製時に、シリコンのアルコキシドに屈 折率を高める成分として金属アルコキシドをアルコール溶液として添カ卩したゲルを作 製する。金属アルコキシドを用いたゲルは、シリコンと金属原子が結合を形成してい るので、金属成分に濃度分布を形成するためには、シリコンの金属原子の結合を切 断し金属成分を溶出しうる濃度分布付与液中にゲルを浸漬し、溶出液の洗浄後、濃 度分布を固定し、洗浄 ·乾燥 ·焼成するという方法である。しかし、上記従来の方法に ぉ 、て作製される GRINレンズは、外周部での屈折率の低下はある程度見られるもの の、その屈折率分布の形成に寄与する金属成分の濃度が充分には低下せず、中心 部と外周部との屈折率差は、あまり大きな値のものが得られず、高い NAの GRINレン ズが安定に確保できな力つた。 [0006] In the method using a metal alkoxide, a gel prepared by adding a metal alkoxide as an alcohol solution as a component for increasing the refractive index to a silicon alkoxide during the preparation of a sol is produced. In a gel using a metal alkoxide, silicon and metal atoms form a bond.Therefore, in order to form a concentration distribution in the metal component, a concentration at which the bond of silicon metal atoms can be cut and the metal component can be eluted is formed. This method involves immersing the gel in a distribution-imparting solution, washing the eluate, fixing the concentration distribution, washing, drying, and baking. However, the GRIN lens manufactured according to the above conventional method has a certain degree of decrease in the refractive index at the outer peripheral portion. However, the concentration of the metal component contributing to the formation of the refractive index distribution does not decrease sufficiently, and the refractive index difference between the central part and the outer peripheral part cannot be so large. Was unable to secure a stable price.
[0007] 一方、金属塩を用いて屈折率分布形成のための金属成分を導入する方法では、ゾ ルの調製時に金属塩を水溶液あるいはアルコール溶液として添加したゲルを作製す る。このようなゲルはシリコンの骨格力もなる細孔中の溶媒に金属塩が溶解して存在 している。得られたゲルを金属塩に対する溶解度の高い低分子量のアルコール、水 、あるいはこれらの混合溶液等に浸漬することでゲル中に含有する金属成分を溶出 し、濃度分布を形成する。し力しながら、 Ti、 Nb、 Ta、 Zrなどの屈折率への寄与が大 きな金属の適当な塩が存在しな 、ために高 ヽ NAの GRINレンズには適用が非常に難 しかった。 [0007] On the other hand, in the method of introducing a metal component for forming a refractive index distribution using a metal salt, a gel is prepared by adding the metal salt as an aqueous solution or an alcohol solution during the preparation of the sol. In such a gel, a metal salt is dissolved in a solvent in a pore that also has a skeletal force of silicon and exists. The obtained gel is immersed in a low-molecular-weight alcohol or water having a high solubility for a metal salt, or a mixed solution thereof to elute metal components contained in the gel and form a concentration distribution. However, since there is no suitable salt of metal that greatly contributes to the refractive index such as Ti, Nb, Ta, and Zr, it is very difficult to apply it to GRIN lenses with high NA. .
[0008] 一方、分子スタッフイング法では、特公平 5—82332号公報に、ウエットゲルを乾燥 、焼成して多孔質体を作製し、 Ti含有溶液等に浸潰して多孔質体に金属成分を均 一に含浸させ、 SiO -TiO等の金属含有ガラスを得る方法が開示されている。とこ  [0008] On the other hand, in the molecular stuffing method, Japanese Patent Publication No. 5-83332 discloses that a wet gel is dried and fired to produce a porous body, and is immersed in a Ti-containing solution or the like to add a metal component to the porous body. A method of uniformly impregnating to obtain a glass containing metal such as SiO—TiO is disclosed. Toko
2 2  twenty two
ろ力 この方法では、ドライゲルを高温まで熱処理しているので、 Si— O— Siの結合手 が強固に結合しており、反応活性な Si— OH基が少なくなつているため、極くわずか の金属成分し力 Si— O— Siに結合することができにくく高い NAの GRINレンズを安定に 作ることが難し力つた。  Filtration In this method, the dry gel is heat-treated to a high temperature, so that the bonds of Si—O—Si are firmly bonded and the number of reactive Si—OH groups is reduced. Power of metal components It was difficult to stably produce high NA GRIN lenses that could not be bonded to Si—O—Si.
また、これら金属アルコキシドゃ金属塩を用いる方法、更には分子スタッフイング法を 適用した従来のゾルゲル法では、基本的に金属成分の拡散によって濃度分布が付 与されるため、濃度分布を精密にコントロールすることが出来ず、濃度分布形状のば らつきが大きくなりやす力つた。また、母体となるゲルは基本的に円柱形のため、大き な口径のゲルを作ろうとすると割れやすぐ品質を安定させることが困難で、製造コス トが非常に高くなりやす力つた。  In addition, in the methods using these metal alkoxides and metal salts, and the conventional sol-gel method to which the molecular stuffing method is applied, the concentration distribution is basically given by the diffusion of the metal component, so that the concentration distribution is precisely controlled. It was not possible to do so, and it was easy to increase the dispersion of the concentration distribution shape. Also, since the base gel is basically cylindrical, it was difficult to stabilize the quality immediately after trying to make a large-diameter gel, and the manufacturing cost was extremely high.
特許文献 1:米国特許第 3910677号公報  Patent Document 1: US Patent No. 3910677
特許文献 2:米国特許第 4701011号公報  Patent Document 2: US Patent No. 4701011
特許文献 3:米国特許第 5384874号公報  Patent Document 3: US Pat. No. 5,384,874
特許文献 4:特開平 8— 292341号公報 発明の開示 Patent Document 4: JP-A-8-292341 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、屈折率分布を精密に制御して、濃度分布形状のばらつきのない GRINレ ンズの製造を課題とするものであり、特に、開口数 NAの大きな GRINレンズを低コスト で製造することを課題とするものである。 An object of the present invention is to manufacture a GRIN lens having a uniform distribution of concentration by precisely controlling the refractive index distribution. In particular, a GRIN lens having a large numerical aperture NA can be manufactured at low cost. It is an object to manufacture.
課題を解決するための手段  Means for solving the problem
[0010] (構成 1)本発明は、 内周面が円筒形状の容器を回転させながら該容器の内周面に(Structure 1) The present invention provides a method for rotating a container having an inner peripheral surface that is cylindrical while rotating the container on the inner peripheral surface of the container.
、屈折率付与金属濃度が内側ほど順次高くなるように、屈折率付与金属濃度の異な る層を積層したシリコンの円筒状ウエットゲルを作成するステップと、 Forming a cylindrical wet gel of silicon in which layers having different refractive index-imparting metal concentrations are stacked so that the refractive index-imparting metal concentration is gradually increased toward the inside;
該円筒状ウエットゲルを乾燥して円筒状ドライゲルを作成するステップと、 該円筒状ドライゲルを焼結して円筒状ガラス体を作成するステップと、  Drying the cylindrical wet gel to form a cylindrical dry gel; andsintering the cylindrical dry gel to form a cylindrical glass body;
該円筒状ガラス体を回転させながら端部より順次加熱し、内径が閉じた円柱状の G The cylindrical glass body is heated sequentially from the end while rotating, and a cylindrical G having a closed inner diameter is formed.
RINレンズ母体を作成するステップと、 Creating a RIN lens matrix;
該 GRINレンズ母体を所定の径に加熱延伸するステップとを有することを特徴とす る GRINレンズの製造方法である。  Heating and stretching the GRIN lens body to a predetermined diameter.
[0011] 屈折率付与金属は、段階的に濃度の異なる層を複数層 (好ましくは 8層以上)積層 してもょ 、し、連続的に濃度が異なるように積層してもょ 、。 [0011] The refractive index-imparting metal may be formed by laminating a plurality of layers (preferably eight or more layers) having different concentrations in a stepwise manner, or by laminating layers having different concentrations continuously.
[0012] (構成 2)また本発明は、前記構成 1の製造方法において、前記円筒状ウエットゲルを 作成するための原料力 シリコンのアルキコシドを主成分とするアルコール溶液、溶 媒としての酸又は塩基、屈折率付与金属及びシリコン粉末を含むものであることを特 徴とする GRINレンズの製造方法である。 (Structure 2) The present invention also relates to the manufacturing method according to Structure 1, wherein the raw material power for preparing the cylindrical wet gel is an alcohol solution containing silicon alkycoside as a main component, and an acid or base as a solvent. A GRIN lens comprising a refractive index-imparting metal and silicon powder.
[0013] 円筒状ウエットゲルを作成するための原料にシリコン粉末を添加することで、容器の 回転による遠心力により、ゲルが高密度になりすぎるのを防止できる。シリコン粉末の 平均粒径は 50nm以下の超微粒であることが望ましぐ添力卩量はシリコン全量の 17—[0013] By adding silicon powder to the raw material for producing the cylindrical wet gel, it is possible to prevent the gel from becoming too dense due to the centrifugal force caused by the rotation of the container. The average particle size of the silicon powder is desirably ultra-fine particles of 50 nm or less.
25%程度が適当である。 About 25% is appropriate.
[0014] (構成 3)また本発明は、前記構成 1又は 2の製造方法において、前記屈折率付与金 属が Ti又は Taであることを特徴とする GRINレンズの製造方法である。 (Structure 3) The present invention is the method of manufacturing a GRIN lens according to the manufacturing method of the structure 1 or 2, wherein the refractive index imparting metal is Ti or Ta.
[0015] (構成 4)また本発明は前記構成 1一 3のいずれかの製造方法において、前記円筒状 ウエットゲルを作成するステップにおける前記容器の回転速度が 800回転 Z分以上 であることを特徴とする GRINレンズの製造方法である。 (Structure 4) Further, the present invention provides the method according to any one of Structures 1-3, wherein A method for producing a GRIN lens, wherein the rotation speed of the container in the step of forming a wet gel is 800 rotations Z or more.
[0016] (構成 5)また本発明は、前記構成 1一 4のいずれかの製造方法において、前記内径 が閉じた円柱状の GRINレンズ母体を作成するステップで、円筒状ガラス体を回転さ せながら端部より順次加熱する際に円筒状ガラス体の管内を減圧することを特徴とす る GRINレンズの製造方法である。  (Structure 5) In the manufacturing method according to any one of Structures 14 to 14, in the step of forming the cylindrical GRIN lens body having a closed inner diameter, the cylindrical glass body is rotated. This is a method of manufacturing a GRIN lens, characterized in that the inside of a tube of a cylindrical glass body is depressurized when heating is sequentially performed from an end.
[0017] 円筒状ガラス体を回転させながら端部より順次加熱する際に、円筒状ガラス体の管 内を減圧すると、ガラス体が軟ィヒしたときに楕円形状に潰れ、 GRINレンズ母体内の 屈折率分布が楕円形状となる。一般にレーザ光の形状は楕円形である(高出力のレ 一ザ光ほど潰れた楕円形である)ので、レーザ光の形状と GRINレンズの屈折率分 布の形状とを合わせることで、さらに効率のょ 、GRINレンズとすることができる。  [0017] When the inside of the tube of the cylindrical glass body is depressurized while sequentially heating the cylindrical glass body from the end while rotating the glass body, the glass body collapses into an elliptical shape when it softens, and the inside of the GRIN lens body is reduced. The refractive index distribution has an elliptical shape. In general, the shape of the laser beam is elliptical (the higher the power of the laser beam, the smaller the shape of the laser beam). Therefore, the efficiency can be further improved by matching the shape of the laser beam with the shape of the refractive index distribution of the GRIN lens. In fact, it can be a GRIN lens.
[0018] (構成 6)また本発明は、 前記構成 5の製造方法において、前記内径が閉じた円柱 状の GRINレンズ母体を作成するステップで、円筒状ガラス体の管内の圧力を大気 圧よりも 20Pa以上小さくし、円筒状ガラス体の回転速度を 50回転 Z分以上としたこと を特徴とする GRINレンズの製造方法である。  (Structure 6) Further, according to the manufacturing method of Structure 5, in the step of forming the cylindrical GRIN lens body having a closed inner diameter, the pressure in the tube of the cylindrical glass body is set to be lower than the atmospheric pressure. A method for manufacturing a GRIN lens, characterized in that the rotation speed of a cylindrical glass body is reduced by at least 50 rotations Z or more by 20 Pa or less.
[0019] ガラス体管内の減圧量 (大気圧との差)を大きくするほど GRINレンズ内部の屈折率 分布は潰れた楕円形となる。どの程度減圧すればどの程度潰れた楕円となるかは、 ガラス体の外径及び内径などにより異なる力、一般的に減圧量が 20Pa未満では屈 折率分布は真円に近くなり、効果が小さい。また、ガラス体の回転速度が小さいと、 G RINレンズ母体の外形も楕円形となり、光ファイバとの接続に好ましくない。ガラス体 の回転速度を 50回転 Z分以上とすることで、 GRINレンズ母体の外形をほぼ真円と することができる。  [0019] As the amount of pressure reduction (difference from atmospheric pressure) in the glass body tube is increased, the refractive index distribution inside the GRIN lens becomes a crushed elliptical shape. The degree of pressure reduction and how much the ellipse will be crushed depends on the outer diameter and inner diameter of the glass body, etc. Generally, when the amount of pressure reduction is less than 20 Pa, the refractive index distribution is close to a perfect circle and the effect is small. . If the rotation speed of the glass body is low, the outer shape of the GRIN lens body becomes elliptical, which is not preferable for connection with an optical fiber. By setting the rotation speed of the glass body to be equal to or more than 50 rotations Z, the outer shape of the GRIN lens body can be made substantially circular.
[0020] (構成 7)また本発明は、前記構成 1一 6の製造方法で製造され、開口数が 0. 4以上 であることを特徴とする GRINレンズである。  (Arrangement 7) The present invention is a GRIN lens manufactured by the manufacturing method of Arrangement 16 and having a numerical aperture of 0.4 or more.
発明の効果  The invention's effect
[0021] 本発明の GRINレンズの製造方法は、従来のように円柱状ではなく円筒状のウエット ゲルを用いる製造方法のため大型(大口径)の GRINレンズを作成できるとともに、金 属成分の添加量の違った組成を積層させるため高価な金属成分を溶出などで消滅 させることなく収率 100%で製造でき、金属成分の添加量の違った組成を積層させるた め屈折率分布の精密な制御が可能で生産性が上がり、極めて低コストとなる。 According to the method of manufacturing a GRIN lens of the present invention, a large-sized (large-diameter) GRIN lens can be manufactured because a wet gel having a cylindrical shape is used instead of a cylindrical shape as in the related art, and a metal component is added. Expensive metal components disappear due to elution, etc. due to the lamination of different compositions It can be manufactured at a yield of 100% without the need for stacking, and since compositions with different amounts of metal components are laminated, precise control of the refractive index distribution is possible, and productivity is increased, resulting in extremely low cost.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]GRINレンズの説明図である。  FIG. 1 is an explanatory diagram of a GRIN lens.
[図 2]GRINレンズの形成過程の説明図である。  FIG. 2 is an explanatory view of a process of forming a GRIN lens.
[図 3]ウエットゲル 22と GRINレンズ母体 24の説明図である。  FIG. 3 is an explanatory view of a wet gel 22 and a GRIN lens matrix 24.
[図 4]容器の回転数とウエットゲルの形状の関係の説明図である。  FIG. 4 is an explanatory diagram showing the relationship between the rotation speed of a container and the shape of a wet gel.
[図 5]屈折率付与金属の添加量と屈折率変化の説明図である。  FIG. 5 is an explanatory diagram of the addition amount of a refractive index imparting metal and a change in the refractive index.
[図 6]屈折率付与金属の添加量と熱膨張係数変化の説明図である。  FIG. 6 is an explanatory diagram of the addition amount of a metal having a refractive index and a change in a coefficient of thermal expansion.
[図 7]ガラス体と GRINレンズ母体の説明図である。  FIG. 7 is an explanatory view of a glass body and a GRIN lens body.
符号の説明  Explanation of symbols
[0023] 21 容器 [0023] 21 containers
22 ウエットゲル  22 wet gel
23 ガラス体  23 Glass body
24 GRINレンズ母体  24 GRIN lens body
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 本発明は、屈折率分布が精密に制御された開口数の高い GRINレンズとその製造 方法であり、以下のようにして製造される。まず、図 2(a)に示すように、例えば内径 50mmの円筒形の回転する容器(四弗化榭脂管など) 21に、ゾルゲル法によって作製 した屈折率を付与する金属成分 (チタンやタンタルなど)の添加量を順次変えたゾル を順次適量注入し夫々ゲル化させて、容器の内壁に金属成分の濃度が順次異なる ウエットゲル 22を円筒状に積層させる。このウエットゲル 22を、 60°Cの雰囲気のもとで 1週間乾燥させてドライゲルを得る。ドライゲルは、約 1/2収縮し、内径 26mm外形 13mmで、楕円率が 0.04%の円筒形である。得られたドライゲルを室温から 800°Cま では酸素雰囲気中で 150°CZhrで昇温し、その後 1250°Cまでヘリウム雰囲気中で 50°C/hrで昇温し焼成すると、図 2(b)に示すような透明な円筒形ガラス体 23が得られ る。この円筒状のガラス体 23の両端を回転旋盤に固定し、回転しながら約 2000°Cの 酸水素パーナ 25で端部より順次加熱していくと、内径が閉じた円柱状の GRINレンズ 母体 24が得られる。これをカーボンヒータの電気炉に挿入、適当なスピードで紡糸す ると、例えば外径 150 mという所望の外形を持つ GRINレンズ状光ファイバが得られ る。これを適当な長さにカ卩工切断すると、所望の GRINレンズが得られる。 The present invention is a GRIN lens having a high numerical aperture whose refractive index distribution is precisely controlled, and a method for manufacturing the same, which is manufactured as follows. First, as shown in FIG. 2 (a), a metal component (titanium or tantalum) imparted with a refractive index prepared by a sol-gel method is placed in a cylindrical rotating container (eg, tetrafluoroethylene resin tube) 21 having an inner diameter of 50 mm, for example. Sol) in which the added amount is sequentially changed is successively injected and gelled, and wet gels 22 having different concentrations of metal components are sequentially laminated on the inner wall of the container in a cylindrical shape. The wet gel 22 is dried under an atmosphere of 60 ° C. for one week to obtain a dry gel. The dry gel shrinks by about 1/2, is 26 mm in inner diameter and 13 mm in outer diameter, and has a cylindrical shape with an ellipticity of 0.04%. The temperature of the obtained dry gel was raised from room temperature to 800 ° C in an oxygen atmosphere at 150 ° C Zhr, and then heated to 1250 ° C in a helium atmosphere at 50 ° C / hr and calcined.Figure 2 (b) A transparent cylindrical glass body 23 as shown in FIG. Both ends of this cylindrical glass body 23 are fixed on a rotary lathe and heated sequentially from the end with an oxyhydrogen panner 25 at about 2000 ° C while rotating, and a cylindrical GRIN lens with a closed inner diameter is obtained. Maternal 24 is obtained. When this fiber is inserted into an electric furnace with a carbon heater and spun at an appropriate speed, a GRIN lens-like optical fiber having a desired outer diameter of, for example, 150 m is obtained. When this is cut to an appropriate length, the desired GRIN lens can be obtained.
[0025] このように従来のように円柱状ではなく円筒状のウエットゲルを用いた製造方法の ため大型の GRINレンズが作製出来るとともに、金属成分の添加量の違った組成を積 層させるため高価な金属成分を溶出などで消滅させることなく収率 100%で製造でき 極めて低コストであり、また、金属成分の添加量の違った組成を積層させるため屈折 率の制御が可能であると共に高い NAを確保できという優位性を発揮することが出来 る。 [0025] As described above, a large-sized GRIN lens can be manufactured by the conventional manufacturing method using a cylindrical wet gel instead of a columnar one, and a high cost because a composition having a different addition amount of the metal component is laminated. It can be manufactured at a yield of 100% without extinguishment of various metal components by elution, etc., and is extremely low-cost.In addition, it is possible to control the refractive index by stacking compositions with different amounts of added metal components, and it is possible to control the NA The advantage that can be secured can be exhibited.
[0026] (屈折率分布):円柱状の GRINレンズ母体 21の屈折率分布力 式(1)に示すような 2 乗カーブで減少するような屈折率分布にするためには、ウエットゲル 22の金属成分の 添加量は、図 3に示すようにウエットゲル 22の内径を a、内径方向の距離を Rとすると (Refractive index distribution): Power of refractive index distribution of cylindrical GRIN lens matrix 21 In order to obtain a refractive index distribution that decreases with a square curve as shown in equation (1), the wet gel 22 needs to be As shown in Fig. 3, the addition amount of the metal component is as follows, where a is the inner diameter of the wet gel 22, and R is the distance in the inner diameter direction.
{ (R/a) 2- 1 }1/2 (3) {(R / a) 2 - 1} 1/2 (3)
に従って添カ卩量が減少するように設定されればょ ヽ。  It should be set so that the amount of soybean curd decreases according to.
[0027] (円筒形状): GRINレンズ母体 21の屈折率分布力 ^乗カーブで同心円状に減少する 屈折率分布を持っためには、ウエットゲル 22がほぼ真円に近い同心円筒状に作製さ れなければならない。このウエットゲルの円心形状は、回転容器 21の回転数に大きく 依存する。図 4は内径 50mmの回転容器 22の中にゾルを注入しゲル化 21するときの液 体の面が遠心力方向となす角度 φを、容器の回転速度をパラメータとして、半円週 Θの回りで調べた結果を示したものである。総ての円周角で角度 φが 90度であれば 完全な円筒形状であるが、回転数が小さいとゲルの内面はお結び型になっているこ とが分かる。これより、円心率を高くするためには、回転数は一分間に 800回転以上 必要であることが分力つた。  (Cylindrical shape): The refractive index distribution power of the GRIN lens body 21 is reduced concentrically by the ^ <th> power curve. In order to have a refractive index distribution, the wet gel 22 is formed into a concentric cylindrical shape that is almost a perfect circle. Must be done. The circular shape of the wet gel greatly depends on the rotation speed of the rotary container 21. Figure 4 shows the angle φ between the surface of the liquid and the centrifugal force direction when the sol is injected into the rotating container 22 with an inner diameter of 50 mm and gels 21 around the semicircle week with the rotation speed of the container as a parameter. It shows the result of the examination in. When the angle φ is 90 degrees at all circumferential angles, the gel is completely cylindrical, but when the rotation speed is low, the inner surface of the gel is knotted. From this, it was a component that it was necessary to rotate more than 800 rotations per minute in order to increase the concentricity.
[0028] (高 NA金属添加成分):二元系シリカガラスの屈折率を良く知られた Lorentz-Lorenz の計算式を用いて予測したところ、 GRINレンズの金属添加物成分の候補として、 SiO  [0028] (High NA metal additive component): When the refractive index of the binary silica glass was predicted using the well-known Lorentz-Lorenz equation, SiO2 was found as a candidate for the metal additive component of the GRIN lens.
2 2
-Bi O -In O ,-Y O ,— La O ,— Ga O ,—Sb O , -Bi O -In O, -Y O, — La O, — Ga O, —Sb O,
2 3 2 3 2 3 2 3 3 2 3 2  2 3 2 3 2 3 2 3 3 2 3 2
— Gd O ,-Nb O ,-SnO ,一 Ta O ,-TiO 及び ZrOが挙げられた。この中で、  — GdO, -NbO, -SnO, TaO, -TiO and ZrO were mentioned. In this,
3 2 2 5 2 2 5 2 2  3 2 2 5 2 2 5 2 2
Bi,In,Y,Laを含む組成は、添加元素のアルコキシドがいずれもな難溶性固体で、ゲル が作製できないことが分力つた。また、 Gd,Gaを含む組成は、添加物が少ない領域 (Si に対する添加量が 20mol%以下)では 0.3以下の開口数 (NA)しか得られなかった。ま た、その他の糸且成については、例えば NAが 0.5 (即ち、屈折率が石英の 1.4584に対し て 1.54)となる添加材は添カ卩量の少ないものから、得られた結果を図 5に示すように、 Nb : 6mol%、 Ta: 10mol%、 Sb : 10mol%、 Ti : 12mol%、 Zr: 18mol%、 Sn: 15mol%の酸化物で あった。 The composition containing Bi, In, Y, and La is a poorly soluble solid containing any alkoxide as an additive element, Can't make it. In the composition containing Gd and Ga, the numerical aperture (NA) of less than 0.3 was obtained in the region where the amount of additive was small (addition amount to Si was less than 20 mol%). For other yarns, for example, the additive obtained with an NA of 0.5 (that is, a refractive index of 1.54 compared to 1.4584 of quartz) has a small amount of added kneaded material. As shown in Table 2, Nb: 6 mol%, Ta: 10 mol%, Sb: 10 mol%, Ti: 12 mol%, Zr: 18 mol%, and Sn: 15 mol%.
[0029] (ウエットゲルの乾燥時における割れ):本発明の GRINレンズの製造法は、屈折率を 付与する金属成分の添加量を順次変えたゾルを、円筒形の容器内に順次注入し、 回転させながら容器の内壁に金属成分の濃度分布が順次異なるゲルを積層させ、 乾燥'燒結させて円筒状のガラス管にすることを基本にしている。このため積層する ガラス層の熱膨張係数が著しくかけ離れていると、それらの熱膨張差によってゲル作 成時や乾燥、燒結時に境界面力 クラックを生じてしまう可能性が大きい。このため、 高い NAをもつ可能性の材料でも、熱膨張係数の小さなものを選ぶ必要がある。これ までの経験から、熱膨張による割れを防止するためには、 SiOガラスの熱膨張係数  [0029] (Cracking of wet gel during drying): In the method for producing a GRIN lens of the present invention, a sol in which the addition amount of a metal component imparting a refractive index is sequentially changed is sequentially injected into a cylindrical container. While rotating, gels with different concentration distributions of metal components are sequentially laminated on the inner wall of the container, and dried and sintered to form a cylindrical glass tube. For this reason, if the thermal expansion coefficients of the laminated glass layers are significantly different from each other, there is a high possibility that cracks at the boundary surface will occur during gel formation, drying, and sintering due to the difference in thermal expansion. For this reason, it is necessary to select a material with a small coefficient of thermal expansion even for a material that has a high NA. From our experience, to prevent cracking due to thermal expansion, the thermal expansion coefficient of SiO glass
2  2
5x10— 7K_1に対して 15x10— 7K_1以下であることが要求される。図 6に金属成分の添加量 を変えた時の熱膨張係数を実験的に求めた結果を示す。 It is required for 5x10- 7 K _1 15x10- 7 is K _1 less. Figure 6 shows the results of experimentally determining the coefficient of thermal expansion when the amount of metal component added was changed.
[0030] 前記したように、図 5より求められた高 ΝΑを創出する可能性のある金属成分、 Nb : [0030] As described above, the metal component Nb:
6mol%、 Ta: 10mol%、 Sb : 10mol%、 Ti: 12mol%、 Zr: 18mol%、 Sn: 15mol%のうち、 Nbゝ Sn添 加ガラスは結晶性物質の存在が認められるとともに、熱膨張係数が大きく GRINレンズ としては不適であった。  Among 6 mol%, Ta: 10 mol%, Sb: 10 mol%, Ti: 12 mol%, Zr: 18 mol%, and Sn: 15 mol%, Nb-Sn added glass shows the presence of a crystalline substance and has a thermal expansion coefficient. However, it was not suitable as a GRIN lens.
[0031] 以上より、 SiO -Sb O , SiO Ta O , SiO Ti O 及び SiO— ZrO系石英ガラスが、  [0031] From the above, SiO-SbO, SiOTaO, SiOTiO and SiO-ZrO-based quartz glass are:
2 2 3 2 2 5 2 2 3 2 2  2 2 3 2 2 5 2 2 3 2 2
NAが高ぐ且つ熱膨張係数が SiOガラスとほぼ同等であるということ、即ち円筒系  High NA and coefficient of thermal expansion almost equal to SiO glass, that is, cylindrical system
2  2
GRINレンズの製法に適用できることが判明した。但し、 Sb添加ガラスは、ゲルの燒結 時に添加元素の Sbが蒸発するという、また Zr添加ガラスは、加水分解反応は比較的 早ぐゲル作成の過程で、溶媒であるメタノール中で少量では有るが沈殿が形成され ると 、うプロセス上の不安定性を有して 、た。  It turned out that it can be applied to the GRIN lens manufacturing method. However, Sb-added glass evaporates the additional element Sb during sintering of the gel.Zr-added glass undergoes a relatively rapid hydrolysis reaction in the process of gel preparation, although the amount is small in methanol, which is the solvent. When a precipitate is formed, it has process instability.
[0032] 以上の検討結果から、 SiO Sb 0 , SiO Ta O , SiO Ti 0 及び SiO— ZrO系石  [0032] From the above examination results, it was found that SiO Sb 0, SiO Ta O, SiO Ti 0 and SiO—ZrO
2 2 3 2 2 5 2 2 3 2 2 英ガラス力 更に願わくば、プロセスの安定性を考慮し、 SiO Ta 0 , SiO -Ti 0系  2 2 3 2 2 5 2 2 3 2 2 British glass power Further, in consideration of process stability, SiO Ta 0, SiO -Ti 0 system
2 2 5 2 2 3 石英ガラスで、それぞれ Ta:10mol%、 Ti: 12mol%をゾルゲル法で添カ卩すれば、 NAが高 V、GRINレンズを作製できることが判明した。 2 2 5 2 2 3 It was found that a GRIN lens with a high NA could be produced by adding sol-gel method to Ta: 10 mol% and Ti: 12 mol%, respectively, using quartz glass.
実施例 1  Example 1
[0033] シリコンテトラメトキシド 76.6mlとイソプロパノール 184.3mlとの混合液に 2規定塩 酸 9.2mlを添加した後、平均粒径 30nmの超微粒子シリカ 50mlを混合し、 1時間攪 拌して部分加水分解を行った。この溶液を 8等分し、表 1に示す濃度のチタンテトラ n ブトキシドを添カ卩して、チタン成分の異なる 1層から 8層までの 8種のゾルを時間をお いて作製した。その後、夫々時間をおいて 0.01規定のアンモニア水を添カ卩し、ゾル を調製した。  [0033] 9.2 ml of 2N hydrochloric acid was added to a mixture of 76.6 ml of silicon tetramethoxide and 184.3 ml of isopropanol, and then 50 ml of ultrafine silica having an average particle diameter of 30 nm was mixed and stirred for 1 hour to partially hydrolyze. Decomposition was performed. This solution was divided into eight equal parts, and titanium tetra-n-butoxide having the concentration shown in Table 1 was added thereto to prepare eight types of sols having one to eight layers having different titanium components with time. Then, after a certain time, 0.01N aqueous ammonia was added to the mixture to prepare a sol.
[0034] まず、 1層目のゾルを内径 50mmの円筒形ポリプロピレン容器 21に入れ、 1100回転 /分の速度で 30分回転させ、容器の内壁に円筒状のウエットゲルを作製した。その後 、同様なプロセスで、 2層から 8層のチタン成分の異なるゾル液を順次該容器 21に入 れて、容器の内壁に同心円状に 8層のチタンの添カ卩量の異なるウエットゲル層を積 層した。作製した円筒状のウエットゲル 22を回転させながら、 60°Cで 1週間乾燥させ てドライゲルを得た。ドライゲルは、内径 26mm外形 13mmで、楕円率が 0.04%以下の 円筒であった。得られたドライゲルを室温力も 800°Cまでは酸素雰囲気中で 150°C /hrで昇温し、その後 1250°Cまでヘリウム雰囲気中で 50°C/hrで昇温 '焼成し透明 なガラス体 23を得た。  First, the sol of the first layer was placed in a cylindrical polypropylene container 21 having an inner diameter of 50 mm, and rotated at a speed of 1100 rpm for 30 minutes to produce a cylindrical wet gel on the inner wall of the container. Thereafter, in a similar process, two to eight layers of sol liquids having different titanium components are sequentially put into the container 21, and concentrically formed on the inner wall of the container are formed eight layers of wet gel layers having different amounts of titanium added. Were stacked. The produced cylindrical wet gel 22 was dried at 60 ° C. for 1 week while rotating to obtain a dry gel. The dry gel was a cylinder with an inner diameter of 26 mm and an outer diameter of 13 mm and an ellipticity of 0.04% or less. The temperature of the obtained dry gel is raised to 150 ° C / hr in an oxygen atmosphere up to 800 ° C and then to 50 ° C / hr in a helium atmosphere to 1250 ° C. I got 23.
[0035] [表 1] チタン添加量  [Table 1] Titanium addition amount
1層 0 ml  1 layer 0 ml
2層 1.1 ml  2 layers 1.1 ml
3層 1.6 ml  3 layers 1.6 ml
4層 2.1 ml  4 layers 2.1 ml
5層 2.6 ml  5 layers 2.6 ml
6層 3.0 ml  6 layers 3.0 ml
7層 3.5 ml  7 layers 3.5 ml
8層 4.3 ml [0036] この円筒状のガラス体 23の両端を回転旋盤に固定し、回転しながら約 2000°Cの酸 水素パーナ 25で端部より順次加熱していくと、内径が閉じた円柱状の GRINレンズ母 体 24が得られた(図 2 (c) )。この GRINレンズ母体 24をカーボンヒータの電気炉に 0.04mm/sで挿入しながら外径 150 mの GRINレンズ状光ファイバに紡糸した。。作 製した GRINレンズ状光ファイバの屈折率分布を測定した結果、中心から周辺に向か つてほぼ 2乗カーブで減少する屈折率分布を持ち、その開口数は NA=0.53であった 。ここで、 1900°C以上の紡糸の時に中心部のチタン成分が若干飛散するため、表 1 に示すように 8層のチタン添加量を多くし、屈折率の低下を防止した。 8 layers 4.3 ml [0036] Both ends of the cylindrical glass body 23 are fixed on a rotary lathe, and heated sequentially from the ends with an oxyhydrogen panner 25 at about 2000 ° C while rotating, whereby a cylindrical GRIN having a closed inner diameter is obtained. A lens matrix 24 was obtained (Fig. 2 (c)). This GRIN lens matrix 24 was spun into a GRIN lens-like optical fiber having an outer diameter of 150 m while being inserted into an electric furnace of a carbon heater at 0.04 mm / s. . As a result of measuring the refractive index distribution of the fabricated GRIN lens-shaped optical fiber, it has a refractive index distribution that decreases from the center to the periphery in a substantially square curve, and the numerical aperture is NA = 0.53. Here, at the time of spinning at 1900 ° C. or more, the titanium component in the center part scatters slightly. Therefore, as shown in Table 1, the addition amount of titanium in the eight layers was increased to prevent a decrease in the refractive index.
実施例 2  Example 2
[0037] シリコンテトラメトキシド l.lgと表 2に示す 8種の添カ卩量のタンタルエトキシドを添加混 合し、メタノール 1.3ccを添加混合して攪拌させた。その後平均粒径 30nmの超微粒 子シリカ 0.3gを混合し、 1時間攪拌した後、時間をおいて夫々メタノール 1.3ccと純水 0.3ccを混合して滴下し、ゾルを調製した。  [0037] Silicon tetramethoxide l.lg and tantalum ethoxide in the eight kinds of added kneads shown in Table 2 were added and mixed, and 1.3 cc of methanol was added and mixed, followed by stirring. Thereafter, 0.3 g of ultrafine particle silica having an average particle size of 30 nm was mixed, and the mixture was stirred for 1 hour, and after a while, 1.3 cc of methanol and 0.3 cc of pure water were mixed and dropped, respectively, to prepare a sol.
[0038] まず、 1層目のゾルを内径 50mmの円筒形ポリプロピレン容器 21に入れ、 1100回転 /分の速度で 30分回転させ、容器の内壁に円筒状のゲルを作製した。その後、同様 なプロセスで、 2層から 8層のチタン成分の異なるゾルを順次該容器に入れて、容器 の内壁に同心円状に 8層のタンタル濃度の異なるウエットゲルを積層した。作製した 円筒状のウエットゲル 22を回転させながら、 60°Cで 1週間乾燥させてドライゲルを得 た。ドライゲルは、内径 25mm外形 14mmで、楕円率が 0.04%以下の円筒であった。 得られたドライゲルを室温から 800°Cまでは酸素雰囲気中で 150°CZhrで昇温し、 その後 1250°Cまでヘリウム雰囲気中で 50°C/hrで昇温 '焼成して透明なガラス体 23 を得た。  First, the sol of the first layer was placed in a cylindrical polypropylene container 21 having an inner diameter of 50 mm and rotated at a speed of 1100 rpm for 30 minutes to produce a cylindrical gel on the inner wall of the container. Thereafter, in a similar process, two to eight layers of sols having different titanium components were sequentially placed in the container, and eight layers of wet gels having different tantalum concentrations were concentrically laminated on the inner wall of the container. The produced cylindrical wet gel 22 was dried at 60 ° C. for 1 week while rotating to obtain a dry gel. The dry gel was a cylinder with an inner diameter of 25 mm and an outer diameter of 14 mm and an ellipticity of 0.04% or less. The temperature of the obtained dry gel is increased from room temperature to 800 ° C in an oxygen atmosphere at 150 ° C Zhr, and then raised to 1250 ° C in a helium atmosphere at 50 ° C / hr. Got.
[0039] [表 2] タンタル添加量 [Table 2] Tantalum addition amount
0 g  0 g
1 m1 m
0. 6 g  0.6 g
3層 0. 9 g  3 layers 0.9 g
1. 2 g  1.2 g
1. 5 g  1.5 g
6層 1. 7 g  6 layers 1.7 g
7層 2. 0 g  7 layers 2.0 g
8層 2. 2 g  8 layers 2.2 g
[0040] この円筒状のガラス体 23の両端を回転旋盤に固定し、回転しながら約 2000°Cの酸 水素パーナ 25で端部より順次加熱していくと、内径が閉じた円柱状の GRINレンズ母 体 24が得られた(図 2 (c) )。この GRINレンズ母体 24をカーボンヒータの電気炉に 0.04mm/sで挿入しながら外径 150 μ mの GRINレンズ状光ファイバに紡糸して、 GRIN レンズ状光ファイバを作製した。作製した GRINレンズ状光ファイバの屈折率分布を測 定した結果、中心から周辺に向かってほぼ 2乗カーブで減少する屈折率分布を持ち 、その開口数は NA=0.52であった。タンタルの場合には、実施例 2で述べられている ような、タンタルの飛散は無かった。 [0040] Both ends of this cylindrical glass body 23 are fixed on a rotary lathe, and heated sequentially from the ends with an oxyhydrogen panner 25 at about 2000 ° C while rotating, whereby a cylindrical GRIN having a closed inner diameter is obtained. A lens matrix 24 was obtained (Fig. 2 (c)). This GRIN lens matrix 24 was spun into a GRIN lens-like optical fiber having an outer diameter of 150 μm while being inserted into an electric furnace of a carbon heater at 0.04 mm / s, thereby producing a GRIN lens-like optical fiber. As a result of measuring the refractive index distribution of the fabricated GRIN lens-shaped optical fiber, the GRIN lens-shaped optical fiber had a refractive index distribution that decreased from the center to the periphery with a substantially square curve, and the numerical aperture was NA = 0.52. In the case of tantalum, there was no scattering of tantalum as described in Example 2.
実施例 3  Example 3
[0041] 図 7の上段は前記実施例 2の方法で作成した円筒状ガラス体 23の断面、下段は本 実施例の方法で作成した GRINレンズ母体 24の断面を示して 、る。ガラス体は外径 13mm,内径 7. 7mmである。円筒状ガラス体を端部より順次加熱し GRINレンズ母 体を作成する際に、円筒状ガラス体の管内を減圧すると共に、ガラス体を 80回転 Z 分の速度で回転させた。 GRINレンズ母体の外形はほぼ真円となり、屈折率は楕円 形に分布した。減圧量 (大気圧との差)と等屈折率曲線の最大楕円率との差は以下 の通りであった。なお、楕円率は楕円の長径を a、短径を bとすると (a— b) Zaで、大き いほど潰れた楕円となる。  The upper part of FIG. 7 shows a cross section of the cylindrical glass body 23 produced by the method of the second embodiment, and the lower part shows a cross section of the GRIN lens body 24 produced by the method of the present embodiment. The glass body has an outer diameter of 13 mm and an inner diameter of 7.7 mm. When the cylindrical glass body was sequentially heated from the end to form a GRIN lens body, the inside of the tube of the cylindrical glass body was depressurized, and the glass body was rotated at a speed of 80 rotations Z minutes. The outline of the GRIN lens matrix was almost a perfect circle, and the refractive index was distributed in an elliptical shape. The difference between the amount of reduced pressure (difference from atmospheric pressure) and the maximum ellipticity of the isorefractive index curve was as follows. The ellipticity is (a−b) Za, where the major axis of the ellipse is a and the minor axis is b, and the larger the ellipse, the more the ellipse becomes.
減圧量 60Pa 最大楕円率 32%  Decompression amount 60Pa Maximum ellipticity 32%
減圧量 l lOPa 最大楕円率 45% 減圧量 200Pa 最大楕円率 68% Decompression amount l lOPa Maximum ellipticity 45% Decompression 200Pa Max ellipticity 68%
[0042] 図 7の下段に示すように、等屈折率曲線は、中心部の層が最も潰れた楕円形となり 、外側の層ほど潰れ方が少ない楕円となる。減圧量を調整することで、使用するレー ザ光に最適の屈折率分布を持った GRINレンズを製造することができる。  As shown in the lower part of FIG. 7, the iso-refractive index curve has an elliptical shape in which the central layer is most crushed, and an elliptic shape in which the outer layer is less crushed. By adjusting the amount of pressure reduction, a GRIN lens with the optimum refractive index distribution for the laser light used can be manufactured.
産業上の利用可能性  Industrial applicability
[0043] 本発明の GRINレンズは、光ファイバの先端に溶着して光ファイバ結合部品、コリメ ータなどとして利用することができる。 [0043] The GRIN lens of the present invention can be used as an optical fiber coupling component, a collimator, or the like by being welded to the tip of an optical fiber.

Claims

請求の範囲 The scope of the claims
[1] 内周面が円筒形状の容器を回転させながら該容器の内周面に、屈折率付与金属 濃度が内側ほど順次高くなるように、屈折率付与金属濃度の異なる層を積層したシリ コンの円筒状ウエットゲルを作成するステップと、  [1] While rotating a container having a cylindrical inner peripheral surface, a silicon layer having different refractive index-imparting metal concentrations is laminated on the inner peripheral surface of the container so that the refractive index-imparting metal concentration gradually increases toward the inside. Creating a cylindrical wet gel of
該円筒状ウエットゲルを乾燥して円筒状ドライゲルを作成するステップと、 該円筒状ドライゲルを焼結して円筒状ガラス体を作成するステップと、  Drying the cylindrical wet gel to form a cylindrical dry gel; andsintering the cylindrical dry gel to form a cylindrical glass body;
該円筒状ガラス体を回転させながら端部より順次加熱し、内径が閉じた円柱状の G The cylindrical glass body is heated sequentially from the end while rotating, and a cylindrical G having a closed inner diameter is formed.
RINレンズ母体を作成するステップと、 Creating a RIN lens matrix;
該 GRINレンズ母体を所定の径に加熱延伸するステップとを有することを特徴とす る GRINレンズの製造方法  Heating and stretching the GRIN lens body to a predetermined diameter.
[2] 請求項 1の製造方法において、前記円筒状ウエットゲルを作成するための原料が、 シリコンのアルキコシドを主成分とするアルコール溶液、溶媒としての酸又は塩基、屈 折率付与金属及びシリコン粉末を含むものであることを特徴とする GRINレンズの製 造方法 2. The production method according to claim 1, wherein the raw materials for forming the cylindrical wet gel are: an alcohol solution containing silicon alkycoside as a main component; an acid or base as a solvent; a refractive index imparting metal; and silicon powder. A method for producing a GRIN lens characterized by containing
[3] 請求項 1又は 2の製造方法において、前記屈折率付与金属が Ti又は Taであること を特徴とする GRINレンズの製造方法  [3] The method for producing a GRIN lens according to claim 1 or 2, wherein the refractive index imparting metal is Ti or Ta.
[4] 請求項 1一 3のいずれかの製造方法において、前記円筒状ウエットゲルを作成する ステップにおける前記容器の回転速度が 800回転 Z分以上であることを特徴とする[4] The production method according to any one of [13] to [13], wherein the rotational speed of the container in the step of forming the cylindrical wet gel is 800 rotations Z or more.
GRINレンズの製造方法 GRIN lens manufacturing method
[5] 請求項 1一 4のいずれかの製造方法において、前記内径が閉じた円柱状の GRIN レンズ母体を作成するステップで、円筒状ガラス体を回転させながら端部より順次カロ 熱する際に円筒状ガラス体の管内を減圧することを特徴とする GRINレンズの製造方 法 [5] In the manufacturing method according to any one of [1] to [4], in the step of forming the cylindrical GRIN lens body having a closed inner diameter, the cylindrical glass body is rotated while being sequentially heated from the end while rotating. A method for producing a GRIN lens, characterized by reducing the pressure inside a tube of a cylindrical glass body.
[6] 請求項 5の製造方法において、前記内径が閉じた円柱状の GRINレンズ母体を作 成するステップで、円筒状ガラス体の管内の圧力を大気圧よりも 20Pa以上小さくし、 円筒状ガラス体の回転速度を 50回転 Z分以上としたことを特徴とする GRINレンズ の製造方法  6. The manufacturing method according to claim 5, wherein, in the step of forming the cylindrical GRIN lens body having a closed inner diameter, the pressure in the tube of the cylindrical glass body is reduced by 20 Pa or more lower than the atmospheric pressure. A method for manufacturing a GRIN lens, wherein the rotation speed of the body is set to 50 rotations or more for Z minutes.
[7] 請求項 1一 6の製造方法で製造され、開口数が 0. 4以上であることを特徴とする G RINレンズ [7] G manufactured by the manufacturing method according to claim 11, wherein the numerical aperture is 0.4 or more. RIN lens
PCT/JP2004/015251 2003-11-14 2004-10-15 Production method for grin lens and grin lens WO2005047196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003385207A JP2005145751A (en) 2003-11-14 2003-11-14 Method for manufacturing grin lens, and grin lens
JP2003-385207 2003-11-14

Publications (1)

Publication Number Publication Date
WO2005047196A1 true WO2005047196A1 (en) 2005-05-26

Family

ID=34587354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015251 WO2005047196A1 (en) 2003-11-14 2004-10-15 Production method for grin lens and grin lens

Country Status (2)

Country Link
JP (1) JP2005145751A (en)
WO (1) WO2005047196A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123611A1 (en) * 2007-08-23 2009-11-25 Toyo Glass Co., Ltd. Method for manufacturing grin lens
EP2123610A1 (en) * 2007-11-29 2009-11-25 Toyo Glass Co., Ltd. Process for production of grin lenses and grin lenses
EP2305612A1 (en) * 2008-06-30 2011-04-06 Toyo Glass Co., Ltd. Method of producing grin lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191239A (en) * 1981-05-22 1982-11-25 Hitachi Ltd Manufacturing of optical fiber
JPS6451336A (en) * 1987-08-18 1989-02-27 Seiko Epson Corp Production of distributed index lens
JPH09263412A (en) * 1996-03-28 1997-10-07 Olympus Optical Co Ltd Production of distributed refractive index glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191239A (en) * 1981-05-22 1982-11-25 Hitachi Ltd Manufacturing of optical fiber
JPS6451336A (en) * 1987-08-18 1989-02-27 Seiko Epson Corp Production of distributed index lens
JPH09263412A (en) * 1996-03-28 1997-10-07 Olympus Optical Co Ltd Production of distributed refractive index glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123611A1 (en) * 2007-08-23 2009-11-25 Toyo Glass Co., Ltd. Method for manufacturing grin lens
EP2123611A4 (en) * 2007-08-23 2011-09-07 Toyo Glass Co Ltd Method for manufacturing grin lens
EP2123610A1 (en) * 2007-11-29 2009-11-25 Toyo Glass Co., Ltd. Process for production of grin lenses and grin lenses
EP2123610A4 (en) * 2007-11-29 2011-09-14 Toyo Glass Co Ltd Process for production of grin lenses and grin lenses
EP2305612A1 (en) * 2008-06-30 2011-04-06 Toyo Glass Co., Ltd. Method of producing grin lens
EP2305612A4 (en) * 2008-06-30 2012-07-25 Toyo Glass Co Ltd Method of producing grin lens
US8763430B2 (en) 2008-06-30 2014-07-01 Toyo Seikan Group Holdings, Ltd. Method for manufacturing grin lens

Also Published As

Publication number Publication date
JP2005145751A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP7418154B2 (en) Glass components with custom composition profiles and their preparation methods
WO2006082625A1 (en) Optical fiber coupling component and process for producing the same
US20200024465A1 (en) Engineered feedstocks for additive manufacture of glass
US5182236A (en) Gradient index glasses and sol-gel method for their preparation
JPH0733258B2 (en) Method for producing article containing high silica glass body
JP3708238B2 (en) Manufacturing method of gradient index optical element
US5912397A (en) High-purity silica glass fabricating method using sol-gel process
JP4855933B2 (en) GRIN lens manufacturing method and GRIN lens
WO2005047196A1 (en) Production method for grin lens and grin lens
WO2006075448A1 (en) Optical fiber base material and method for production thereof
JP2002274860A (en) Light scattering glass material and its manufacturing method
EP2305612B1 (en) Method of producing grin lens
CN1343184A (en) Sol-gel process for producing dried gel adhering to insert and products obtainable thereby
JP3923282B2 (en) Manufacturing method of optical fiber for mode field conversion
US20190256399A1 (en) Additive layer process for manufacturing glass articles from soot
JPH09202652A (en) Production of refractive distribution type optical element
JPH11100216A (en) Distributed refractive index type optical element and its production
JPH059036A (en) Production of quartz glass having refractive index distribution
JPH09227131A (en) Production of gel material
JPH05306126A (en) Distributed index optical element and its production
JPS60145917A (en) Production of optical element
JPWO2006040828A1 (en) GRIN lens manufacturing method and GRIN lens
JP3043781B2 (en) Method of manufacturing refractive index distribution type optical element
JPS62262734A (en) Production of ceramic microball
JP3477225B2 (en) Glass manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase