WO2005045367A1 - Noise filter and sensor circuit - Google Patents

Noise filter and sensor circuit Download PDF

Info

Publication number
WO2005045367A1
WO2005045367A1 PCT/JP2004/014609 JP2004014609W WO2005045367A1 WO 2005045367 A1 WO2005045367 A1 WO 2005045367A1 JP 2004014609 W JP2004014609 W JP 2004014609W WO 2005045367 A1 WO2005045367 A1 WO 2005045367A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise filter
sensor
detection circuit
input terminal
circuit
Prior art date
Application number
PCT/JP2004/014609
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Matsubara
Toru Tominaga
Yukichi Sakurai
Takaaki Ooi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2005515242A priority Critical patent/JPWO2005045367A1/en
Priority to TW093131787A priority patent/TW200516845A/en
Publication of WO2005045367A1 publication Critical patent/WO2005045367A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters

Definitions

  • the present invention relates to a noise filter that is connected between a sensor such as a gyro sensor and a detection circuit, or connected to an operational amplifier that forms the detection circuit, and a sensor circuit including the noise filter.
  • the present invention relates to a noise filter capable of effectively removing noise in a desired frequency range and a sensor circuit including the noise filter.
  • the first inductance element 102 is connected between the hot-side output terminal of the temperature detection sensor 101 and the hot-side input terminal of the operational amplifier 105.
  • the second inductance element 103 is connected between the output terminal on the reference potential side of the temperature detection sensor 101 and the input terminal on the reference potential side of the operational amplifier 105.
  • a capacitance is connected between a connection point 106 between the temperature detection sensor 101 and the first inductance element 102 and a connection point 107 between the temperature detection sensor 102 and the second inductance element 103.
  • the element 104 is connected.
  • Patent Document 1 JP-A-2002-164509
  • an LC low-pass filter including the above-described inductance elements 102 and 103 and the capacitance element 104 is configured, and thereby it is described that the resistance to electromagnetic interference is increased.
  • the malfunction of the temperature detecting sensor 101 cannot be reliably prevented, the effect of resistance to electromagnetic interference is small, and there is a frequency range.
  • the effect of immunity to electromagnetic interference was not sufficient. This is because the input impedance of the detection circuit connected downstream of the noise filter is relatively high. In the high-frequency region, since the capacitance Ca exists at the input end of the detection circuit as schematically shown in FIG.
  • the input impedance is low in the high-frequency region, and the immunity to electromagnetic interference is low in the high-frequency region.
  • the parasitic inductance in the IC that composes the operational amplifier 105 due to the parasitic inductance in the IC that composes the operational amplifier 105, the difference in input capacitance, etc., even at high frequencies, it is possible to increase the resistance to electromagnetic interference. There is a possibility that the power may not be improved or the effect may not be produced.
  • An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide a noise filter connected to a detection circuit between a sensor and a detection circuit, or in a detection circuit, the electromagnetic filter having a specific frequency range.
  • An object of the present invention is to provide a noise filter and a sensor circuit including the noise filter, which can suppress a decrease in wave resistance and have improved resistance to electromagnetic interference waves over a wider frequency range.
  • a noise filter according to the present invention is a noise filter inserted into a path that electrically connects an output terminal of a sensor and a detection circuit that detects an output signal of the sensor, and is disposed on the sensor side. At least one impedance element, and at least one capacitance element connected between the impedance element and the detection circuit.
  • the output terminal of the sensor has a hot-side output terminal and a reference potential-side output terminal
  • the input terminal of the detection circuit has a hot-side input terminal.
  • a first inductance element inserted between a hot-side output terminal of the sensor and a hot-side input terminal of the detection circuit as the at least one impedance element.
  • a second inductance element connected between a reference potential side output terminal of the sensor and a reference potential side input terminal of the detection circuit;
  • the capacitance element comprises: a connection point between the first inductance element and a hot-side input terminal of the detection circuit; a second inductance element and a reference potential-side input terminal of the detection circuit. It is inserted so as to connect the connection point between.
  • the at least one impedance element and the at least one capacitance element are selected such that an insertion loss at a frequency of 800 MHz or more of a circuit constant power is 20 dB or more.
  • the senor is a gyro sensor, and a gyro sensor noise filter is configured.
  • a sensor circuit includes a sensor, a detection circuit for detecting an output signal of the sensor, and a noise filter connected between an output terminal of the sensor and the detection circuit.
  • Noise Filter Power A noise filter configured according to the present invention.
  • the senor is configured by a piezoelectric gyro sensor.
  • At least one impedance element is arranged on the sensor side between the hot output terminal of the sensor and the detection circuit, and between the impedance element and the detection circuit. Since at least one capacitance element is connected, even if high-frequency noise is superimposed on the path connecting the hot-side output terminal and the detection circuit, the noise is reliably prevented without being greatly affected by the input impedance of the detection circuit. Can be attenuated. Therefore, it is possible to enhance the resistance to electromagnetic interference over a wide frequency range.
  • At least one impedance element is provided at the hot side of the sensor.
  • a first inductance element inserted between the input terminal and the hot input terminal of the detection circuit, and a first inductance element connected between the reference potential output terminal of the sensor and the reference potential input terminal of the detection circuit.
  • a high-frequency Equipment used in equipment can also have the effect of improving resistance to electromagnetic interference.
  • the gyro sensor when the sensor is a gyro sensor, according to the present invention, sufficient immunity to electromagnetic interference is realized in a desired frequency range that is not significantly affected by the input impedance of the detection circuit.
  • a gyro sensor noise filter can be provided.
  • a sensor circuit according to the present invention includes a sensor, a detection circuit, and a noise filter configured according to the present invention. Therefore, it is possible to provide a sensor circuit in which the immunity to electromagnetic interference is effectively improved in a desired frequency range that is not significantly affected by the input impedance of the detection circuit.
  • a noise filter in a detection circuit having an operational amplifier, a noise filter connected to an input terminal of the operational amplifier, the first filter having first and second inductance elements and a capacitance element;
  • the capacitance element is a noise filter connected to the input terminal side of the operational amplifier rather than the first and second inductance elements, Since the capacitance element is connected to the input terminal side of the operational amplifier rather than the first and second inductance elements, the influence of the capacitance Ca generated between the pair of input terminals inside the operational amplifier in the low frequency region is reduced. Suffering,.
  • FIG. 1 is a circuit diagram of a sensor circuit including a noise filter according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the frequency of an applied electromagnetic wave, the strength of a malfunction electric field, and the horizontal polarized wave before and after the noise filter is connected to the camera shake correction sensor circuit of the digital video camera and after the noise filter is inserted.
  • FIG. 2 is a graph showing the frequency of an applied electromagnetic wave, the strength of a malfunction electric field, and the horizontal polarized wave before and after the noise filter is connected to the camera shake correction sensor circuit of the digital video camera and after the noise filter is inserted.
  • FIG. 9 is a diagram illustrating a relationship between an applied frequency and a malfunction electric field strength for horizontal polarization in the case where the above-described operation is performed.
  • FIG. 6 is a diagram showing Z frequency characteristics of insertion loss loss of a capacitance element used for a noise filter.
  • FIG. 8 is a circuit diagram of a camera shake correction sensor circuit of a digital video camera before connecting a noise filter and connecting a noise filter to the inductance element in the noise filter.
  • FIG. 5 is a diagram showing the relationship between the frequency of an applied electromagnetic wave and the strength of a malfunctioning electric field for vertically polarized waves when the inductance of FIG.
  • FIG. 9 is a diagram showing frequency dependence of insertion loss of an inductance element used as an impedance element used in a noise filter according to one embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a sensor circuit to which a conventional noise filter is connected.
  • FIG. 13 shows an initial state before connecting a noise filter in a camera shake correction sensor circuit of a digital video camera, a case where a noise filter is connected according to a conventional example shown in FIG.
  • FIG. 7 is a diagram illustrating a relationship between the frequency of an applied electromagnetic wave and the strength of a malfunction electric field for a horizontally polarized wave in a case where a noise filter is configured according to the embodiment illustrated in FIG.
  • FIG. 14 shows an initial state before a noise filter is connected in a camera shake correction sensor circuit of a digital video camera, a case where a noise filter is connected according to a conventional example shown in FIG. 10, and
  • FIG. FIG. 7 is a diagram showing a relationship between the frequency of an applied electromagnetic wave and the strength of a malfunction electric field for vertically polarized waves in a case where a noise filter is configured according to the embodiment shown in FIG.
  • FIGS. 15 (a) and (b) show the mounting structure near the noise filter when the noise filter is configured according to the conventional example shown in FIG. 10 and the embodiment shown in FIG. 1, respectively. It is a schematic plan view.
  • the noise filter 4 of the present embodiment is connected between the gyro sensor 2 and the detection circuit 3.
  • the gyro sensor 2 is a piezoelectric gyro sensor and has a hot side output terminal 2a and a reference potential side output terminal 2b.
  • the detection circuit 3 has an operational amplifier 5 for amplifying an output signal output from the gyro sensor 2, and the operational amplifier 5 has a hot side input terminal 5a and a reference potential side input terminal 5b. .
  • the noise filter 4 has first and second inductance elements 7 and 8 as impedance elements and a capacitance element 9.
  • the first inductance element 7 is connected between the hot-side output terminal 2a of the gyro sensor 2 and the hot-side input terminal 5a of the operational amplifier 5 constituting the detection circuit 5.
  • the second inductance element 8 is electrically connected to the reference potential side output terminal 2 b of the gyro sensor 2 and the reference potential side input terminal 5 b which is the other input terminal of the operational amplifier 5.
  • the capacitance element 9 is connected on the detection circuit 5 side of the first and second inductance elements 7 and 8. That is, one end of the capacitance element 5 is connected to the first
  • the connection point 10a is connected between the inductance element 7 and the hot-side input terminal 5a of the operational amplifier 5, and the other end of the capacitance element 9 is connected to the second inductance element 8 and the reference of the operational amplifier 5. It is connected to a connection point 10b between it and the potential side input terminal 5b.
  • the noise filter 4 of the present embodiment when used, it is possible to operate as a noise filter that is not significantly affected by the impedance on the input side of the detection circuit. Therefore, for example, even if a high frequency as an electromagnetic interference wave is superimposed on the path between the sensor 2 and the detection circuit 3, the high frequency noise is surely attenuated in the noise filter 4 and this attenuation operation is performed. Is not so affected by the magnitude of the input impedance of the detection circuit 3.
  • FIG. 2 shows a horizontal deviation when a gyro sensor 2 for digital camera shake correction is used as the gyro sensor 2 in FIG. 1, and a noise filter 4 and a detection circuit 3 are connected in the circuit configuration shown in FIG. It is a figure showing change of electromagnetic interference wave tolerance to a wave.
  • the horizontal axis indicates the frequency of the applied electromagnetic wave as the electromagnetic interference wave
  • the vertical axis indicates the malfunction electric field intensity.
  • the malfunction electric field strength means the lowest electric field strength at which a malfunction occurs when an electromagnetic wave having a frequency on the horizontal axis is applied.
  • FIG. 2 shows the force as a result of the horizontal polarization.
  • FIG. 3 shows the result as to the vertical polarization.
  • the seal indicates the result of the embodiment, and the triangle indicates the result of the comparative example in which the noise filter 4 is connected.
  • the noise filter 4 When the mobile phone is actually brought closer to the digital video camera, if the noise filter 4 is not connected, even if the distance between the mobile phone and the digital video camera is more than lm, the image is not affected. A malfunction occurred during the detection of blur. On the other hand, by inserting the noise filter 4, no malfunction occurred even if the distance between the two was set to 30 cm.
  • FIGS. 4 and 5 show the frequency of the applied electromagnetic wave for the horizontal polarization and the vertical polarization when the capacitance of the capacitance element 9 is changed to 330pF, 180pF, 33pF, 10pF and 2pF, and the malfunction electric field strength.
  • FIG. 6 shows the insertion loss frequency characteristics of the capacitance element.
  • FIG. 6 shows the insertion loss versus frequency characteristics of the five types of capacitance elements used in FIGS. 4 and 5.
  • FIGS. 7 and 8 are diagrams showing changes in the electromagnetic interference immunity of the digital camera when the circuit constants of the first and second inductance elements 7 and 8 are changed. 7 and 8, similarly to FIGS. 4 and 5, the relationship between the frequency of the applied electromagnetic wave and the malfunction electric field strength in horizontal polarization and vertical polarization is shown. Note that the inductance elements LI, L2, and L3 in FIGS. 7 and 8 have the impedance-frequency characteristics shown in FIG. 12, respectively, and the capacitance of the capacitance element is 10 pF.
  • the malfunction electric field intensity changes by changing the inductance of the first and second inductance elements 7 and 8 in both horizontal polarization and vertical polarization. You can see that. 7 and 8, it can be seen that the malfunction electric field strength is effectively increased in the high frequency range in the characteristics indicated by the one-dot chain line, the broken line Y and the two-dot chain line corresponding to the example.
  • FIG. 9 is a diagram showing the insertion loss Z frequency characteristics of the inductance elements L1 and L3. As is evident from FIG. 9, the frequency position at which the insertion loss of the inductance element becomes maximum changes depending on the inductance value. It can also be seen that the results in FIG. 9 correlate with the results shown in FIGS. 7 and 8. Therefore, it is understood that V, the magnitude of the insertion loss, and the inductance element should be set in the frequency range to be improved. As is apparent from the results shown in FIGS. 4 and 9, in the noise filter 4, by appropriately selecting the circuit constants of the inductance elements 7, 8 and the capacitance element 9, the electromagnetic interference wave in a desired frequency range is obtained. It is important to be able to increase resistance effectively.
  • FIG. 10 The sensor circuit of the conventional example shown in FIG. 10 is compared with the sensor circuit of the present embodiment shown in FIG.
  • FIGS. 13 and 14 show the initial state before connecting the noise filter in the camera shake correction sensor circuit of the digital video camera, the case where the noise filter is connected according to the conventional sensor circuit shown in FIG. 10, and
  • FIG. FIG. 14 is a diagram showing the relationship between the frequency of an applied electromagnetic wave and the intensity of a malfunctioning electric field for horizontal polarization when a noise filter is connected according to the embodiment shown in FIG. 1.
  • FIG. 14 shows a sensor circuit for camera shake correction of a digital video camera. In the initial state before connecting the noise filter, when the noise filter is connected according to the conventional sensor circuit shown in Fig. 10, and when the noise filter is connected according to the embodiment shown in Fig. 1.
  • FIG. 4 is a diagram showing the relationship between the frequency of an applied electromagnetic wave and the strength of a malfunction electric field in the case of FIG.
  • the malfunction electric field strength is about three times as large as that of the conventional example shown in FIG.
  • inductance elements 102 and 103 are arranged on the detection circuit side.
  • the inductance elements 102 and 103 are mounted on the lead terminals, There is a possibility of rattling between the wiring pattern of the board and the lead terminal, and the flow of noise current without passing through the inductance element. Therefore, it is difficult to bring the inductance element close to the IC.

Landscapes

  • Filters And Equalizers (AREA)
  • Gyroscopes (AREA)

Abstract

A noise filter capable of realizing an electromagnetic interference tolerance in a desired frequency range in a high frequency band. A noise filter (4) and a sensor circuit (1) using the noise filter. The noise filter (4) is inserted in a path electrically connecting output terminals (2a,2b) of a sensor (2) to a detector circuit (5) that detects an output signal of the sensor (2). The noise filter (4) comprises first and second inductance elements (7,8) located, as at least one impedance element, on the sensor side; and at least one capacitance element (9) connected between the impedance element and the detector circuit (5).

Description

明 細 書 技術分野  Description Technical field
[0001] 本発明は、ジャイロセンサなどのセンサと検出回路との間に接続されたり、検出回 路を構成している演算増幅器に接続されたりするノイズフィルタ及び該ノイズフィルタ を含むセンサ回路に関し、所望とする周波数域におけるノイズを効果的に除去するこ とを可能とするノイズフィルタ及び該ノイズフィルタを含むセンサ回路に関する。  The present invention relates to a noise filter that is connected between a sensor such as a gyro sensor and a detection circuit, or connected to an operational amplifier that forms the detection circuit, and a sensor circuit including the noise filter. The present invention relates to a noise filter capable of effectively removing noise in a desired frequency range and a sensor circuit including the noise filter.
背景技術  Background art
[0002] 従来、ジャイロセンサや温度検出用センサなどの様々なセンサを有するセンサ回路 において、電磁妨害波による誤動作や測定精度の低下を防止することが強く求めら れている。このようなセンサ回路の一例が、下記の特許文献 1に開示されている。  [0002] Conventionally, in a sensor circuit having various sensors such as a gyro sensor and a temperature detection sensor, it has been strongly required to prevent a malfunction and a decrease in measurement accuracy due to an electromagnetic interference wave. An example of such a sensor circuit is disclosed in Patent Document 1 below.
[0003] 図 10は、特許文献 1に記載のセンサ回路を示す回路図である。ここでは、温度検 出用センサ 101の出力端に、インダクタンス素子 102, 103とキャパシタンス素子 104 とカゝらなるノイズフィルタが接続されている。また、インダクタンス素子 102, 103の後 段に、検出回路を構成して 、る演算増幅器 105が接続されて 、る。  FIG. 10 is a circuit diagram showing a sensor circuit described in Patent Document 1. Here, a noise filter composed of inductance elements 102 and 103, a capacitance element 104, and a color filter is connected to an output terminal of the temperature detection sensor 101. Further, an operational amplifier 105 constituting a detection circuit is connected downstream of the inductance elements 102 and 103.
[0004] より具体的には、温度検出用センサ 101のホット側出力端子力 演算増幅器 105の ホット側入力端子との間に第 1のインダクタンス素子 102が接続されている。また、温 度検出用センサ 101基準電位側の出力端子と、演算増幅器 105の基準電位側の入 力端子側との間に第 2のインダクタンス素子 103が接続されている。そして、温度検 出用センサ 101と第 1のインダクタンス素子 102との間の接続点 106と、温度検出用 センサ 102と第 2のインダクタンス素子 103との間の接続点 107との間にキャパシタン ス素子 104が接続されて 、る。  [0004] More specifically, the first inductance element 102 is connected between the hot-side output terminal of the temperature detection sensor 101 and the hot-side input terminal of the operational amplifier 105. The second inductance element 103 is connected between the output terminal on the reference potential side of the temperature detection sensor 101 and the input terminal on the reference potential side of the operational amplifier 105. A capacitance is connected between a connection point 106 between the temperature detection sensor 101 and the first inductance element 102 and a connection point 107 between the temperature detection sensor 102 and the second inductance element 103. The element 104 is connected.
[0005] 図 10に示したセンサ回路では、上記第 1,第 2のインダクタンス素子 102, 103及び キャパシタンス素子 104からなるノイズフィルタの挿入により、電磁妨害波に対する耐 性が高められるとされている。  [0005] In the sensor circuit shown in FIG. 10, it is stated that the resistance to electromagnetic interference waves is improved by inserting a noise filter including the first and second inductance elements 102 and 103 and the capacitance element 104.
特許文献 1:特開 2002-164509号公報  Patent Document 1: JP-A-2002-164509
発明の開示 [0006] 図 10に示したセンサ回路では、上記インダクタンス素子 102, 103及びキャパシタ ンス素子 104からなる LCローパスフィルタが構成されており、それによつて電磁妨害 波耐性が高められるとされている。しかしながら、実際には、温度検出用センサ 101 の誤動作を確実に防止することができず、また電磁妨害波耐性効果が小さ 、周波数 域が存在するという問題があった。特に、低周波領域においては、電磁妨害波耐性 効果が十分ではな力つた。これは、ノイズフィルタの後段に接続される検出回路の入 力インピーダンスが比較的高いことによる。また、高周波領域においては、検出回路 の入力端に、図 11に略図的に示すように、静電容量 Caが存在するため、高周波領 域で入力インピーダンスが低くなり、電磁妨害波耐性は高周波領域では高められると 考えられるが、演算増幅器 105を構成している IC内の寄生インダクタンスゃ入力容 量の違 、などにより、高周波領域にぉ ヽても所定の周波数にお!、て電磁妨害波耐 性が改善しな力つたり、その効果が生じなくなったりするおそれがあった。 Disclosure of the invention [0006] In the sensor circuit shown in FIG. 10, an LC low-pass filter including the above-described inductance elements 102 and 103 and the capacitance element 104 is configured, and thereby it is described that the resistance to electromagnetic interference is increased. However, in practice, there has been a problem that the malfunction of the temperature detecting sensor 101 cannot be reliably prevented, the effect of resistance to electromagnetic interference is small, and there is a frequency range. In particular, in the low frequency region, the effect of immunity to electromagnetic interference was not sufficient. This is because the input impedance of the detection circuit connected downstream of the noise filter is relatively high. In the high-frequency region, since the capacitance Ca exists at the input end of the detection circuit as schematically shown in FIG. 11, the input impedance is low in the high-frequency region, and the immunity to electromagnetic interference is low in the high-frequency region. However, due to the parasitic inductance in the IC that composes the operational amplifier 105, the difference in input capacitance, etc., even at high frequencies, it is possible to increase the resistance to electromagnetic interference. There is a possibility that the power may not be improved or the effect may not be produced.
[0007] 本発明の目的は、上述した従来技術の欠点を解消し、センサと検出回路との間や 検出回路内において検出回路に接続されるノイズフィルタであって、特定の周波数 領域における電磁妨害波耐性の低下を抑制でき、より広い周波数範囲に渡り電磁妨 害波に対する耐性が高められたノイズフィルタ及び該ノイズフィルタを含むセンサ回 路を提供することにある。  [0007] An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide a noise filter connected to a detection circuit between a sensor and a detection circuit, or in a detection circuit, the electromagnetic filter having a specific frequency range. An object of the present invention is to provide a noise filter and a sensor circuit including the noise filter, which can suppress a decrease in wave resistance and have improved resistance to electromagnetic interference waves over a wider frequency range.
[0008] 本発明に係るノイズフィルタは、センサの出力端子と、センサの出力信号を検出す る検出回路を電気的に接続する経路に挿入されるノイズフィルタであって、前記セン サ側に配置された少なくとも 1つのインピーダンス素子と、前記インピーダンス素子と 前記検出回路との間に接続された少なくとも 1つのキャパシタンス素子とを備えること を特徴とする。  [0008] A noise filter according to the present invention is a noise filter inserted into a path that electrically connects an output terminal of a sensor and a detection circuit that detects an output signal of the sensor, and is disposed on the sensor side. At least one impedance element, and at least one capacitance element connected between the impedance element and the detection circuit.
本発明に係るノイズフィルタのある特定の局面では、前記センサの出力端子が、ホ ット側出力端子と、基準電位側出力端子とを有し、前記検出回路の入力端が、ホット 側入力端子と、基準電位側入力端子とを有し、前記少なくとも 1つのインピーダンス 素子として、前記センサのホット側出力端子と検出回路のホット側入力端子との間に 挿入された第 1のインダクタンス素子と、前記センサの基準電位側出力端子と、前記 検出回路の基準電位側入力端子との間に接続された第 2のインダクタンス素子とを 有し、前記キャパシタンス素子が、前記第 1のインダクタンス素子と前記検出回路のホ ット側入力端子との間の接続点と、前記第 2のインダクタンス素子と前記検出回路の 基準電位側入力端子との間の接続点とを結ぶように挿入されている。 In a specific aspect of the noise filter according to the present invention, the output terminal of the sensor has a hot-side output terminal and a reference potential-side output terminal, and the input terminal of the detection circuit has a hot-side input terminal. A first inductance element inserted between a hot-side output terminal of the sensor and a hot-side input terminal of the detection circuit as the at least one impedance element. A second inductance element connected between a reference potential side output terminal of the sensor and a reference potential side input terminal of the detection circuit; Wherein the capacitance element comprises: a connection point between the first inductance element and a hot-side input terminal of the detection circuit; a second inductance element and a reference potential-side input terminal of the detection circuit. It is inserted so as to connect the connection point between.
本発明に係るノイズフィルタの他の特定の局面では、前記少なくとも 1つのインピー ダンス素子及び少なくとも 1つのキャパシタンス素子の回路定数力 800MHz以上の 周波数における挿入損失が 20dB以上となるように選ばれて 、る。  In another specific aspect of the noise filter according to the present invention, the at least one impedance element and the at least one capacitance element are selected such that an insertion loss at a frequency of 800 MHz or more of a circuit constant power is 20 dB or more. .
[0009] 本発明に係るノイズフィルタのさらに特定の局面では、前記センサがジャイロセンサ であって、ジャイロセンサ用ノイズフィルタが構成される。  [0009] In a further specific aspect of the noise filter according to the present invention, the sensor is a gyro sensor, and a gyro sensor noise filter is configured.
[0010] 本発明に係るセンサ回路は、センサと、前記センサの出力信号を検出する検出回 路と、前記センサの出力端子と前記検出回路との間に接続されたノイズフィルタとを 備え、該ノイズフィルタ力 本発明に従って構成されたノイズフィルタであることを特徴 とする。  [0010] A sensor circuit according to the present invention includes a sensor, a detection circuit for detecting an output signal of the sensor, and a noise filter connected between an output terminal of the sensor and the detection circuit. Noise Filter Power A noise filter configured according to the present invention.
[0011] 本発明に係るセンサ回路のある特定の局面では、上記センサが圧電ジャイロセン サにより構成されている。  [0011] In a specific aspect of the sensor circuit according to the present invention, the sensor is configured by a piezoelectric gyro sensor.
本発明の他の広い局面によれば、一対の入力端子を有する演算増幅器を含む検 出回路において、前記演算増幅器の各入力端子に接続されるノイズフィルタであつ て、前記ノイズフィルタは、第 1及び第 2のインダクタンス素子と、キャパシタンス素子と を有し、前記キャパシタンス素子は、前記第 1及び第 2のインダクタンス素子よりも演 算増幅器の各入力端子側に接続されるものであることを特徴とするノイズフィルタが 提供される。  According to another broad aspect of the present invention, in a detection circuit including an operational amplifier having a pair of input terminals, a noise filter connected to each input terminal of the operational amplifier, wherein the noise filter is a first filter. And a second inductance element, and a capacitance element, wherein the capacitance element is connected to each input terminal side of the operational amplifier more than the first and second inductance elements. A noise filter is provided.
[0012] 本発明に係るノイズフィルタでは、センサのホット側出力端子と検出回路との間にお いてセンサ側に少なくとも 1つのインピーダンス素子が配置されおり、該インピーダン ス素子と検出回路との間に少なくとも 1つのキャパシタンス素子が接続されているため 、ホット側出力端子と検出回路とを接続している経路に高周波ノイズが重畳したとして も、検出回路の入力インピーダンスの影響を大きく受けることなく確実にノイズを減衰 させることができる。従って、広い周波数範囲に渡り、電磁妨害波耐性を高めることが 可能となる。  [0012] In the noise filter according to the present invention, at least one impedance element is arranged on the sensor side between the hot output terminal of the sensor and the detection circuit, and between the impedance element and the detection circuit. Since at least one capacitance element is connected, even if high-frequency noise is superimposed on the path connecting the hot-side output terminal and the detection circuit, the noise is reliably prevented without being greatly affected by the input impedance of the detection circuit. Can be attenuated. Therefore, it is possible to enhance the resistance to electromagnetic interference over a wide frequency range.
[0013] 本発明において、少なくとも一つのインピーダンス素子として、センサのホット側出 力端子と検出回路のホット側入力端子との間に挿入された第 1のインダクタンス素子 と、センサの基準電位側出力端子と、検出回路の基準電位側入力端子との間に接 続された第 2のインダクタンス素子とを有し、キャパシタンス素子が第 1のインダクタン ス素子と検出回路のホット側入力端子との間の接続点と、第 2のインダクタンス素子と 検出回路の基準電位側入力端子との間の接続点を結ぶように接続されている場合 には、キャパシタンス素子が第 1,第 2のインダクタンス素子よりも検出回路側に接続 されているため、検出回路の入力インピーダンスの影響をさほど受けることがない。従 つて、電磁妨害波耐性を高めることができる。 [0013] In the present invention, at least one impedance element is provided at the hot side of the sensor. A first inductance element inserted between the input terminal and the hot input terminal of the detection circuit, and a first inductance element connected between the reference potential output terminal of the sensor and the reference potential input terminal of the detection circuit. A first inductance element and a connection point between the hot side input terminal of the detection circuit, a second inductance element and a reference potential side input terminal of the detection circuit. When the connection is made so as to connect the connection points between the two, the capacitance element is connected to the detection circuit side more than the first and second inductance elements, and thus is greatly affected by the input impedance of the detection circuit. Nothing. Therefore, the resistance to electromagnetic interference can be increased.
[0014] 少なくとも 1つのインピーダンス素子及び少なくとも 1つのキャパシタンス素子の回路 定数が 800MHz以上の周波数における挿入損失が 20dB以上となるように選ばれて いる場合には、近年の携帯電話機器のように、高周波機器で使用される機器カも電 磁妨害波に対する耐性向上効果を得ることができる。  [0014] If the circuit constant of at least one impedance element and at least one capacitance element is selected so that the insertion loss at a frequency of 800 MHz or more is 20 dB or more, a high-frequency Equipment used in equipment can also have the effect of improving resistance to electromagnetic interference.
[0015] 本発明において、センサがジャイロセンサである場合には、本発明に従って、検出 回路の入力インピーダンスの影響をさほど受けることなぐ所望とする周波数域にお いて十分な電磁妨害波耐性を実現し得るジャイロセンサ用ノイズフィルタを提供する ことができる。  [0015] In the present invention, when the sensor is a gyro sensor, according to the present invention, sufficient immunity to electromagnetic interference is realized in a desired frequency range that is not significantly affected by the input impedance of the detection circuit. Thus, a gyro sensor noise filter can be provided.
[0016] 本発明に係るセンサ回路は、センサと、検出回路と、本発明に従って構成されたノ ィズフィルタとを備える。従って、検出回路の入力インピーダンスの大きさにさほど影 響を受けることなぐ所望とする周波数域において電磁妨害波耐性を効果的に高め られているセンサ回路を提供するとこができる。  [0016] A sensor circuit according to the present invention includes a sensor, a detection circuit, and a noise filter configured according to the present invention. Therefore, it is possible to provide a sensor circuit in which the immunity to electromagnetic interference is effectively improved in a desired frequency range that is not significantly affected by the input impedance of the detection circuit.
[0017] 本発明に係るセンサ回路において、センサがジャイロセンサである場合には、本発 明に従って、所望とする周波数域において、検出回路の入力インピーダンスの影響 をさほど受けることなく十分な電磁妨害波耐性を有するジャイロセンサ用センサ回路 を提供することができる。  [0017] In the sensor circuit according to the present invention, when the sensor is a gyro sensor, according to the present invention, in a desired frequency range, a sufficient electromagnetic interference wave without being significantly affected by the input impedance of the detection circuit. A sensor circuit for a gyro sensor having resistance can be provided.
本発明に係るノイズフィルタが、演算増幅器を有する検出回路において、該演算増 幅器の入力端子に接続されるノイズフィルタであって、第 1及び第 2のインダクタンス 素子とキャパシタンス素子とを有し、キャパシタンス素子が第 1及び第 2のインダクタン ス素子よりも演算増幅器の入力端子側に接続されるノイズフィルタである場合には、 キャパシタンス素子が第 1,第 2のインダクタンス素子よりも演算増幅器の入力端子側 に接続されているので、低周波領域では演算増幅器の内部において一対の入力端 子間で生じる静電容量 Caの影響を受け難 、。 A noise filter according to the present invention, in a detection circuit having an operational amplifier, a noise filter connected to an input terminal of the operational amplifier, the first filter having first and second inductance elements and a capacitance element; When the capacitance element is a noise filter connected to the input terminal side of the operational amplifier rather than the first and second inductance elements, Since the capacitance element is connected to the input terminal side of the operational amplifier rather than the first and second inductance elements, the influence of the capacitance Ca generated between the pair of input terminals inside the operational amplifier in the low frequency region is reduced. Suffering,.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の一実施形態におけるノイズフィルタを含むセンサ回路の回路 図である。 FIG. 1 is a circuit diagram of a sensor circuit including a noise filter according to an embodiment of the present invention.
[図 2]図 2は、デジタルビデオカメラの手ぶれ補正用センサ回路にぉ 、てノイズフィル タを接続する前及びノイズフィルタを挿入した後の水平偏波についての印加電磁波 の周波数と誤動作電界強度との関係を示す図である。  [FIG. 2] FIG. 2 is a graph showing the frequency of an applied electromagnetic wave, the strength of a malfunction electric field, and the horizontal polarized wave before and after the noise filter is connected to the camera shake correction sensor circuit of the digital video camera and after the noise filter is inserted. FIG.
[図 3]図 3は、デジタルビデオカメラの手ぶれ補正用センサ回路にぉ 、てノイズフィル タを接続する前及びノイズフィルタを挿入した後の垂直偏波についての印加電磁波 周波数と誤動作電界強度との関係を示す図である。  [FIG. 3] FIG. 3 is a graph showing a relationship between an applied electromagnetic wave frequency and a malfunction electric field strength of a vertically polarized wave before connecting a noise filter and after inserting a noise filter in a camera shake correction sensor circuit of a digital video camera. It is a figure showing a relation.
[図 4]図 4は、デジタルビデオカメラの手ぶれ補正用センサ回路において、ノイズフィ ルタを接続する前、及びノイズフィルタを接続した後であって、ノイズフィルタのキャパ シタンス素子の静電容量を種々変更させた場合の水平偏波についての印加周波数 と誤動作電界強度との関係を示す図である。  [Figure 4] Figure 4 shows various changes in the capacitance of the capacitance element of the noise filter before and after connecting the noise filter in the camera shake correction sensor circuit of the digital video camera. FIG. 9 is a diagram illustrating a relationship between an applied frequency and a malfunction electric field strength for horizontal polarization in the case where the above-described operation is performed.
[図 5]図 5は、デジタルビデオカメラの手ぶれ補正用センサ回路において、ノイズフィ ルタを接続する前、及びノイズフィルタを接続した後であって、ノイズフィルタのキャパ シタンス素子の静電容量を種々変更させた場合の水直偏波についての印加周波数 と誤動作電界強度との関係を示す図である。  [Fig. 5] Fig. 5 shows various changes in the capacitance of the capacitance element of the noise filter before and after the noise filter is connected in the camera shake correction sensor circuit of the digital video camera. FIG. 9 is a diagram showing a relationship between an applied frequency and a malfunction electric field strength for the water-polarized wave in the case of having been made to operate.
[図 6]図 6は、ノイズフィルタに用いられるキャパシタンス素子の挿入損失損失 Z周波 数特性を示す図である。  [FIG. 6] FIG. 6 is a diagram showing Z frequency characteristics of insertion loss loss of a capacitance element used for a noise filter.
[図 7]図 7は、デジタルビデオカメラの手ぶれ補正用センサ回路において、ノイズフィ ルタを接続する前及びノイズフィルタを接続し、ノイズフィルタ中のインダクタンス素子 のインダクタンスを変更した場合の水平偏波についての印加電磁波の周波数と誤動 作電界強度との関係を示す図である。  [Fig. 7] Fig. 7 shows the horizontal polarization when the noise filter is connected before the noise filter is connected and the inductance of the inductance element in the noise filter is changed in the camera shake correction sensor circuit of the digital video camera. FIG. 4 is a diagram illustrating a relationship between a frequency of an applied electromagnetic wave and a malfunction electric field intensity.
[図 8]図 8は、デジタルビデオカメラの手ぶれ補正用センサ回路において、ノイズフィ ルタを接続する前及びノイズフィルタを接続し、ノイズフィルタ中のインダクタンス素子 のインダクタンスを変更した場合の垂直偏波についての印加電磁波の周波数と誤動 作電界強度との関係を示す図である。 [FIG. 8] FIG. 8 is a circuit diagram of a camera shake correction sensor circuit of a digital video camera before connecting a noise filter and connecting a noise filter to the inductance element in the noise filter. FIG. 5 is a diagram showing the relationship between the frequency of an applied electromagnetic wave and the strength of a malfunctioning electric field for vertically polarized waves when the inductance of FIG.
[図 9]図 9は、本発明の一実施形態のノイズフィルタにおいて用いられるインピーダン ス素子としてのインダクタンス素子の挿入損失の周波数依存性を示す図である。  FIG. 9 is a diagram showing frequency dependence of insertion loss of an inductance element used as an impedance element used in a noise filter according to one embodiment of the present invention.
[図 10]図 10は、従来のノイズフィルタが接続されているセンサ回路を示す回路図であ る。 FIG. 10 is a circuit diagram showing a sensor circuit to which a conventional noise filter is connected.
[図 11]図 11は、図 10に示したセンサ回路における問題点を説明するための図である  FIG. 11 is a diagram for explaining a problem in the sensor circuit shown in FIG. 10
[図 12]図 12 (a)及び (b)は、図 7に示したインダクタンス素子 L1,及び L2及び L3の 各インピーダンス 周波数特性を示す図である。 12 (a) and (b) are diagrams showing impedance frequency characteristics of the inductance elements L1, L2 and L3 shown in FIG. 7;
[図 13]図 13は、デジタルビデオカメラの手ぶれ補正用センサ回路においてノイズフィ ルタを接続する前の初期状態、図 10に示した従来例に従ってノイズフィルタが接続さ れて 、る場合、及び図 1に示した実施形態に従ってノイズフィルタが構成されて 、る 場合の水平偏波についての印加電磁波の周波数と誤動作電界強度との関係を示す 図である。  [FIG. 13] FIG. 13 shows an initial state before connecting a noise filter in a camera shake correction sensor circuit of a digital video camera, a case where a noise filter is connected according to a conventional example shown in FIG. FIG. 7 is a diagram illustrating a relationship between the frequency of an applied electromagnetic wave and the strength of a malfunction electric field for a horizontally polarized wave in a case where a noise filter is configured according to the embodiment illustrated in FIG.
[図 14]図 14は、デジタルビデオカメラの手ぶれ補正用センサ回路においてノイズフィ ルタを接続する前の初期状態、図 10に示した従来例に従ってノイズフィルタが接続さ れて 、る場合、及び図 1に示した実施形態に従ってノイズフィルタが構成されて 、る 場合の垂直偏波についての印加電磁波の周波数と誤動作電界強度との関係を示す 図である。  FIG. 14 shows an initial state before a noise filter is connected in a camera shake correction sensor circuit of a digital video camera, a case where a noise filter is connected according to a conventional example shown in FIG. 10, and FIG. FIG. 7 is a diagram showing a relationship between the frequency of an applied electromagnetic wave and the strength of a malfunction electric field for vertically polarized waves in a case where a noise filter is configured according to the embodiment shown in FIG.
[図 15]図 15 (a)及び (b)は、それぞれ、図 10に示した従来例、及び図 1に示した実施 形態に従ってノイズフィルタが構成されている場合のノイズフィルタ近傍の実装構造 の模式的平面図である。  [FIG. 15] FIGS. 15 (a) and (b) show the mounting structure near the noise filter when the noise filter is configured according to the conventional example shown in FIG. 10 and the embodiment shown in FIG. 1, respectively. It is a schematic plan view.
符号の説明 Explanation of symbols
1…センサ回路  1… Sensor circuit
2· ··ジャイロセンサ  2Gyro sensor
2a…ホット側出力端子  2a… Hot side output terminal
2b…基準電位側出力端子 3…検出回路 2b… Reference potential side output terminal 3 ... Detection circuit
4· · ·ノイズフィルタ  4 Noise filter
5…演算増幅器  5… Operational amplifier
5a…ホット側入力端子  5a… Hot side input terminal
5b…グランド側入力端子  5b… Ground side input terminal
7…第 1のインダクタンス素子  7… First inductance element
8…第 2のインダクタンス素子  8… Second inductance element
9…キャパシタンス素子  9 ... Capacitance element
10a, 10b…接続点 10a, 10b… Connection point
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発 明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
[0021] 図 1は、本発明の一実施形態に係るノイズフィルタを含むセンサ回路の回路図であ る。  FIG. 1 is a circuit diagram of a sensor circuit including a noise filter according to one embodiment of the present invention.
[0022] センサ回路 1では、ジャイロセンサ 2と検出回路 3との間に本実施形態のノイズフィ ルタ 4が接続されている。ジャイロセンサ 2は、圧電ジャイロセンサであり、ホット側出 力端子 2aと、基準電位側出力端子 2bとを有する。  In the sensor circuit 1, the noise filter 4 of the present embodiment is connected between the gyro sensor 2 and the detection circuit 3. The gyro sensor 2 is a piezoelectric gyro sensor and has a hot side output terminal 2a and a reference potential side output terminal 2b.
[0023] 検出回路 3は、ジャイロセンサ 2から出力された出力信号を増幅する演算増幅器 5 を有し、該演算増幅器 5は、ホット側入力端子 5aと、基準電位側入力端子 5bとを有 する。 The detection circuit 3 has an operational amplifier 5 for amplifying an output signal output from the gyro sensor 2, and the operational amplifier 5 has a hot side input terminal 5a and a reference potential side input terminal 5b. .
[0024] ところで、ノイズフィルタ 4は、インピーダンス素子としての第 1,第 2のインダクタンス 素子 7, 8と、キャパシタンス素子 9とを有する。第 1のインダクタンス素子 7は、ジャイロ センサ 2のホット側出力端子 2aと、検出回路 5を構成している演算増幅器 5のホット側 入力端子 5aとの間に接続されている。他方、第 2のインダクタンス素子 8は、ジャイロ センサ 2の基準電位側出力端子 2bと、演算増幅器 5の他方入力端である基準電位 側入力端子 5bに電気的に接続されて!ヽる。  The noise filter 4 has first and second inductance elements 7 and 8 as impedance elements and a capacitance element 9. The first inductance element 7 is connected between the hot-side output terminal 2a of the gyro sensor 2 and the hot-side input terminal 5a of the operational amplifier 5 constituting the detection circuit 5. On the other hand, the second inductance element 8 is electrically connected to the reference potential side output terminal 2 b of the gyro sensor 2 and the reference potential side input terminal 5 b which is the other input terminal of the operational amplifier 5.
[0025] そして、キャパシタンス素子 9は、上記第 1,第 2のインダクタンス素子 7, 8よりも検出 回路 5側において接続されている。すなわち、キャパシタンス素子 5の一端は、第 1の インダクタンス素子 7と、演算増幅器 5のホット側入力端子 5aとの間の接続点 10a〖こ 接続されており、キャパシタンス素子 9の他端は第 2のインダクタンス素子 8と、演算増 幅器 5の基準電位側入力端子 5bとの間の接続点 10bに接続されている。 The capacitance element 9 is connected on the detection circuit 5 side of the first and second inductance elements 7 and 8. That is, one end of the capacitance element 5 is connected to the first The connection point 10a is connected between the inductance element 7 and the hot-side input terminal 5a of the operational amplifier 5, and the other end of the capacitance element 9 is connected to the second inductance element 8 and the reference of the operational amplifier 5. It is connected to a connection point 10b between it and the potential side input terminal 5b.
[0026] 従って、検出回路 3の入力インピーダンスが高い低周波領域において、また図 11 に示した検出回路の入力容量 Caの影響が表れ始める高周波領域において、キャパ シタンス素子 9が第 1,第 2のインダクタンス素子 7, 8よりも検出回路 3側に接続されて いることによって低周波領域ではノイズフィルタとして、高周波領域では容量 Caによ る影響を受けにく 、ノイズフィルタとして作用する。  Therefore, in the low-frequency region where the input impedance of the detection circuit 3 is high, and in the high-frequency region where the influence of the input capacitance Ca of the detection circuit shown in FIG. By being connected to the detection circuit 3 side rather than the inductance elements 7 and 8, it functions as a noise filter in a low frequency region and acts as a noise filter without being affected by the capacitance Ca in a high frequency region.
[0027] よって、本実施形態のノイズフィルタ 4を用いた場合、検出回路の入力側のインピー ダンスにさほど影響を受けることなぐノイズフィルタとして動作させることができる。従 つて、例えば、電磁妨害波としての高周波が、センサ 2と検出回路 3との間の経路に 重畳したとしても、該高周波ノイズがノイズフィルタ 4において確実に減衰されるととも に、この減衰動作は検出回路 3の入力インピーダンスの大きさにさほど影響を受ける ことがない。  Therefore, when the noise filter 4 of the present embodiment is used, it is possible to operate as a noise filter that is not significantly affected by the impedance on the input side of the detection circuit. Therefore, for example, even if a high frequency as an electromagnetic interference wave is superimposed on the path between the sensor 2 and the detection circuit 3, the high frequency noise is surely attenuated in the noise filter 4 and this attenuation operation is performed. Is not so affected by the magnitude of the input impedance of the detection circuit 3.
[0028] よって、上記ノイズフィルタ 4のインダクタンス素子 7, 8及びキャパシタンス素子 9の インダクタンスゃ静電容量などの回路定数を適宜設定することにより、所望とする周 波数域において、電磁妨害波耐性を確実かつ効果的に高めることが可能となる。  Therefore, by appropriately setting the circuit constants such as the inductance of the inductance elements 7 and 8 of the noise filter 4 and the inductance of the capacitance element 9 ゃ the capacitance, it is possible to ensure the immunity to electromagnetic interference in a desired frequency range. And it becomes possible to increase effectively.
[0029] これを、図 2—図 8を参照して説明する。  This will be described with reference to FIGS.
[0030] 図 2は、図 1のジャイロセンサ 2として、デジタルビデオカメラの手ぶれ補正用ジャィ 口センサを用い、図 1に示す回路構成でノイズフィルタ 4及び検出回路 3を接続した場 合の水平偏波に対する電磁妨害波耐性の変化を示す図である。  FIG. 2 shows a horizontal deviation when a gyro sensor 2 for digital camera shake correction is used as the gyro sensor 2 in FIG. 1, and a noise filter 4 and a detection circuit 3 are connected in the circuit configuration shown in FIG. It is a figure showing change of electromagnetic interference wave tolerance to a wave.
[0031] 図 2において、横軸は、電磁妨害波としての印加電磁波の周波数を示し,縦軸は誤 動作電界強度を示す。なお、誤動作電界強度とは、横軸の周波数の電磁波が印加 された際に、誤動作が生じる最低電界強度をいうものとする。  In FIG. 2, the horizontal axis indicates the frequency of the applied electromagnetic wave as the electromagnetic interference wave, and the vertical axis indicates the malfunction electric field intensity. The malfunction electric field strength means the lowest electric field strength at which a malfunction occurs when an electromagnetic wave having a frequency on the horizontal axis is applied.
[0032] 図 2の〇印で示す点を結んだ線力 ノイズフィルタ 4を接続して ヽな 、ことを除、て は、上記実施形態と同様に構成された比較例のセンサ回路における結果を示し、□ 印の点を結ぶ線がノイズフィルタ 4が接続された上記実施形態のセンサ回路の結果 を示す。 [0033] また、図 2は、水平偏波についての結果である力 図 3は、垂直偏波についての結 果を示す。図 3においても、口印が実施形態の結果を、〇印がノイズフィルタ 4が接続 されて 、な 、比較例の結果を示す。 [0032] Except that the linear force noise filter 4 connecting the points indicated by the triangles in Fig. 2 is connected, the results in the sensor circuit of the comparative example configured in the same manner as the above embodiment are obtained. , And the line connecting the points indicated by □ indicates the result of the sensor circuit of the above embodiment in which the noise filter 4 was connected. FIG. 2 shows the force as a result of the horizontal polarization. FIG. 3 shows the result as to the vertical polarization. In FIG. 3 as well, the seal indicates the result of the embodiment, and the triangle indicates the result of the comparative example in which the noise filter 4 is connected.
[0034] 図 2及び図 3から明らかなように、ノイズフィルタ 4が接続されていないセンサ回路に 比べて、ノイズフィルタ 4を接続することにより高周波領域、特に 800MHzの電磁波 が重畳したとしても、誤動作電界強度が効果的に高められ得ることが分かる。すなわ ち、ノイズフィルタ 4の挿入により電磁妨害波耐性が飛躍的に高められることが分かる  [0034] As is clear from Figs. 2 and 3, compared to a sensor circuit to which the noise filter 4 is not connected, a malfunction occurs even when an electromagnetic wave of a high frequency region, particularly 800 MHz, is superimposed by connecting the noise filter 4. It can be seen that the electric field strength can be effectively increased. In other words, it can be seen that the insertion of the noise filter 4 dramatically improves the immunity to electromagnetic interference.
[0035] 実際に、携帯電話をデジタルビデオカメラに近づけると、上記ノイズフィルタ 4が接 続されて ヽな ヽ場合には、携帯電話とデジタルビデオカメラとの距離を lm以上離し たとしても、画像ぶれの検出に際して誤動作が生じた。これに対して上記ノイズフィル タ 4を挿入することにより、両者の距離を 30cmとしたとしても誤動作は生じな力つた。 When the mobile phone is actually brought closer to the digital video camera, if the noise filter 4 is not connected, even if the distance between the mobile phone and the digital video camera is more than lm, the image is not affected. A malfunction occurred during the detection of blur. On the other hand, by inserting the noise filter 4, no malfunction occurred even if the distance between the two was set to 30 cm.
[0036] なお、上記実施形態のノイズフィルタ 4では、第 1,第 2のインダクタンス素子 7, 8及 びキャパシタンス素子 9の回路定数を種々変更することにより、様々な周波数領域に おける電磁妨害波耐性を高めることができる。これを図 4一図 8を参照して説明する。  [0036] In the noise filter 4 of the above embodiment, by changing the circuit constants of the first and second inductance elements 7, 8 and the capacitance element 9 in various ways, the resistance to electromagnetic interference in various frequency ranges is improved. Can be increased. This will be described with reference to FIGS.
[0037] 図 4及び図 5は、キャパシタンス素子 9の容量を 330pF、 180pF、 33pF、 10pF及 び 2pFと変化させた場合の水平偏波及び垂直偏波についての印加電磁波の周波数 と、誤動作電界強度との関係を示す図である。なお、図 4及び図 5では、キャパシタン ス素子 9の静電容量が変化されている力 第 1,第 2のインダクタンス素子 7, 8のイン ダクタンス L1は図 12に示すようなインピーダンス特性をもつフェライトビーズである。  [0037] Figs. 4 and 5 show the frequency of the applied electromagnetic wave for the horizontal polarization and the vertical polarization when the capacitance of the capacitance element 9 is changed to 330pF, 180pF, 33pF, 10pF and 2pF, and the malfunction electric field strength. FIG. In FIGS. 4 and 5, the inductance L1 of the first and second inductance elements 7, 8 has an impedance characteristic as shown in FIG. 12 in which the capacitance of the capacitance element 9 is changed. Ferrite beads.
[0038] 図 4及び図 5から明らかなように、キャパシタンス素子 9の静電容量を種々変更する ことにより、デジタルビデオカメラの電磁妨害波耐性が変化することが分かる。従って 、所望とする周波数域において十分な電磁妨害波耐性を実現するのにキャパシタン ス素子 9の静電容量を適宜選択すればょ 、ことが分力る。  As is clear from FIGS. 4 and 5, it is understood that the electromagnetic interference immunity of the digital video camera changes by variously changing the capacitance of the capacitance element 9. Therefore, it is important to appropriately select the capacitance of the capacitance element 9 in order to realize sufficient electromagnetic interference wave resistance in a desired frequency range.
[0039] 図 6は、キャパシタンス素子の挿入損失 周波数特性を示す。図 6では、図 4及び図 5で用いられた 5種類の静電容量のキャパシタンス素子についての挿入損失一周波 数特性が示されている。  FIG. 6 shows the insertion loss frequency characteristics of the capacitance element. FIG. 6 shows the insertion loss versus frequency characteristics of the five types of capacitance elements used in FIGS. 4 and 5.
[0040] 図 6を、図 4及び図 5と比較すれば明らかなように、図 4及び図 5における電磁妨害 波耐性が高められる周波数領域と、図 6における挿入損失が最大である周波数位置 との間に相関があることが分かる。すなわち、キャパシタンス素子の挿入損失が最大 である周波数域において、ノイズフィルタ 4における誤動作電界強度を効果的に高め 得ることが分かる。従って、改善したい周波数領域において挿入損失が大きいキャパ シタンス素子を選択すればょ 、。 [0040] As is apparent from a comparison of Fig. 6 with Figs. 4 and 5, the electromagnetic interference in Figs. It can be seen that there is a correlation between the frequency region where the wave resistance is enhanced and the frequency position where the insertion loss is maximum in FIG. That is, it can be seen that the malfunction electric field strength in the noise filter 4 can be effectively increased in the frequency range where the insertion loss of the capacitance element is the maximum. Therefore, a capacitance element having a large insertion loss in a frequency region to be improved should be selected.
[0041] なお、図 4及び図 5の結果と、図 6の結果とは、必ずしも一致していない。すなわち、 誤動作電界強度が最も大きくなる周波数と、挿入損失が最大である周波数とが完全 には一致しておらず若干のずれが存在する。これはセンサ回路の配線パターンや、 検出回路の入力インピーダンスなどにより若干の影響を受けているものと考えられる 。し力しながら、このような影響を考慮し、キャパシタンス素子の静電容量をわずかに 変更すれば、上記実施形態に従って、改善したい周波数領域における誤動作電界 強度を効果的に高めることができる。  Note that the results in FIGS. 4 and 5 do not always match the results in FIG. In other words, the frequency at which the malfunction electric field intensity is the highest and the frequency at which the insertion loss is the maximum do not completely match, and there is a slight shift. This is considered to be slightly affected by the wiring pattern of the sensor circuit and the input impedance of the detection circuit. However, if the capacitance of the capacitance element is slightly changed while taking such an effect into consideration, the strength of the malfunction electric field in the frequency region to be improved can be effectively increased according to the above embodiment.
[0042] 図 7及び図 8は、第 1,第 2インダクタンス素子 7, 8の回路定数を変化させた場合の 、デジタルカメラの電磁妨害波耐性の変化を示す図である。図 7及び図 8においては 、図 4及び図 5の場合と同様に、水平偏波及び垂直偏波における印加電磁波の周波 数と誤動作電界強度との関係が示されている。なお、図 7及び図 8のインダクタンス素 子 LI, L2, L3は図 12のインピーダンス 周波数特性をそれぞれ有しており、キャパ シタンス素子の静電容量は 10pFとした。  FIGS. 7 and 8 are diagrams showing changes in the electromagnetic interference immunity of the digital camera when the circuit constants of the first and second inductance elements 7 and 8 are changed. 7 and 8, similarly to FIGS. 4 and 5, the relationship between the frequency of the applied electromagnetic wave and the malfunction electric field strength in horizontal polarization and vertical polarization is shown. Note that the inductance elements LI, L2, and L3 in FIGS. 7 and 8 have the impedance-frequency characteristics shown in FIG. 12, respectively, and the capacitance of the capacitance element is 10 pF.
[0043] 図 7及び図 8から明らかなように、水平偏波及び垂直偏波のいずれにおいても第 1 ,第 2のインダクタンス素子 7, 8のインダクタンスを変化させることにより誤動作電界強 度が変化することが分かる。そして、図 7及び図 8の破線 Xに比べて、実施例に相当 する一点鎖線、破線 Y及び二点鎖線で示す特性では誤動作電界強度が高周波域 において効果的に高められていることが分かる。  As is clear from FIG. 7 and FIG. 8, the malfunction electric field intensity changes by changing the inductance of the first and second inductance elements 7 and 8 in both horizontal polarization and vertical polarization. You can see that. 7 and 8, it can be seen that the malfunction electric field strength is effectively increased in the high frequency range in the characteristics indicated by the one-dot chain line, the broken line Y and the two-dot chain line corresponding to the example.
[0044] また、図 9は、上記インダクタンス素子 L1一 L3の挿入損失 Z周波数特性を示す図 である。図 9から明らかなように、インダクタンスの値により、インダクタンス素子の挿入 損失の最大となる周波数位置が変化することが分かる。また、図 9の結果は、図 7及 び図 8に示した結果と相関していることが分かる。従って、改善したい周波数域にお V、て挿入損失の大き 、インダクタンス素子を設定すればょ 、ことが分かる。 [0045] 上記図 4一図 9の結果から明らかなようにノイズフィルタ 4において、インダクタンス 素子 7, 8及びキャパシタンス素子 9の回路定数を適宜選定することにより、所望とす る周波数域において電磁妨害波耐性を効果的に高め得ることが分力る。 FIG. 9 is a diagram showing the insertion loss Z frequency characteristics of the inductance elements L1 and L3. As is evident from FIG. 9, the frequency position at which the insertion loss of the inductance element becomes maximum changes depending on the inductance value. It can also be seen that the results in FIG. 9 correlate with the results shown in FIGS. 7 and 8. Therefore, it is understood that V, the magnitude of the insertion loss, and the inductance element should be set in the frequency range to be improved. As is apparent from the results shown in FIGS. 4 and 9, in the noise filter 4, by appropriately selecting the circuit constants of the inductance elements 7, 8 and the capacitance element 9, the electromagnetic interference wave in a desired frequency range is obtained. It is important to be able to increase resistance effectively.
[0046] 図 10に示す従来例のセンサ回路と図 1に示す本実施形態のセンサ回路とを比較 する。図 13及び図 14は、それぞれ、デジタルビデオカメラの手ぶれ補正用センサ回 路において、ノイズフィルタを接続する前の初期状態、図 10に示した従来のセンサ回 路に従ってノイズフィルタを接続した場合、及び図 1に示す実施形態に従ってノイズ フィルタを接続した場合の水平偏波についての印加電磁波の周波数と誤動作電界 強度との関係を示す図であり、図 14は、デジタルビデオカメラの手ぶれ補正用セン サ回路において、ノイズフィルタを接続する前の初期状態、図 10に示した従来のセン サ回路に従ってノイズフィルタを接続した場合、及び図 1に示す実施形態に従つてノ ィズフィルタを接続した場合の垂直偏波についての印加電磁波の周波数と誤動作電 界強度との関係を示す図である。図 13及び図 14から明らかなように、本実施形態に よれば図 10に示した従来例の場合に比べて誤動作電界強度が約 3倍になることが ゎカゝる。  The sensor circuit of the conventional example shown in FIG. 10 is compared with the sensor circuit of the present embodiment shown in FIG. FIGS. 13 and 14 show the initial state before connecting the noise filter in the camera shake correction sensor circuit of the digital video camera, the case where the noise filter is connected according to the conventional sensor circuit shown in FIG. 10, and FIG. FIG. 14 is a diagram showing the relationship between the frequency of an applied electromagnetic wave and the intensity of a malfunctioning electric field for horizontal polarization when a noise filter is connected according to the embodiment shown in FIG. 1. FIG. 14 shows a sensor circuit for camera shake correction of a digital video camera. In the initial state before connecting the noise filter, when the noise filter is connected according to the conventional sensor circuit shown in Fig. 10, and when the noise filter is connected according to the embodiment shown in Fig. 1. FIG. 4 is a diagram showing the relationship between the frequency of an applied electromagnetic wave and the strength of a malfunction electric field in the case of FIG. As is clear from FIGS. 13 and 14, according to the present embodiment, the malfunction electric field strength is about three times as large as that of the conventional example shown in FIG.
[0047] 図 10に示した従来例と図 1に示した実施形態のセンサ回路の実装構造を比較する 。図 15 (a)及び (b)は、それぞれ、図 10に示した従来例に従って構成されたノイズフ ィルタを有するセンサ回路及び図 1に示した実施形態に従ってノイズフィルタが構成 されたセンサ回路の実装構造の要部をそれぞれ模式的に示す平面図である。ノイズ フィルタは検出回路側に近接させることで、ノイズ除去効果をさらに向上させることが できる力 図 15 (b)に示すように、実施形態では、 ICである検出回路 3側にキャパシ タンス素子 9が配置されるため、ノイズフィルタを検出回路 3に近接して設けることがで きる。例えば、図に示すようにキャパシタンス素子 9は、検出回路 3の一対のリード端 子間に跨がるように直接接続され得る。従って、キャパシタンス素子 9がリード端子間 に跨がるため、安定に実装され得る。よって、ノイズフィルタの実装面積が小さくなると ともに、ノイズ除去効果をさらに向上させるというメリットがある。  The mounting structure of the sensor circuit of the conventional example shown in FIG. 10 and the mounting structure of the sensor circuit of the embodiment shown in FIG. 1 will be compared. FIGS. 15 (a) and (b) show a mounting structure of a sensor circuit having a noise filter configured according to the conventional example shown in FIG. 10 and a sensor circuit configured with a noise filter according to the embodiment shown in FIG. 1, respectively. 3 is a plan view schematically showing main parts of FIG. The noise filter can be further improved by bringing the noise filter close to the detection circuit side. As shown in FIG. The arrangement allows the noise filter to be provided close to the detection circuit 3. For example, as shown in the figure, the capacitance element 9 can be directly connected so as to straddle between a pair of lead terminals of the detection circuit 3. Therefore, since the capacitance element 9 straddles between the lead terminals, it can be mounted stably. Therefore, there is an advantage that the mounting area of the noise filter is reduced and the noise removing effect is further improved.
[0048] 一方、図 15 (a)に示すように、従来例では、検出回路側にインダクタンス素子 102, 103が配置される。インダクタンス素子 102, 103がリード端子上に搭載されると、基 板の配線パターンとリード端子との間でがたついたり、インダクタンス素子を経由しな いでノイズ電流が流れてしまう可能性がある。従って、インダクタンス素子は、 ICに近 接させることが困難である。 On the other hand, as shown in FIG. 15A, in the conventional example, inductance elements 102 and 103 are arranged on the detection circuit side. When the inductance elements 102 and 103 are mounted on the lead terminals, There is a possibility of rattling between the wiring pattern of the board and the lead terminal, and the flow of noise current without passing through the inductance element. Therefore, it is difficult to bring the inductance element close to the IC.

Claims

請求の範囲 The scope of the claims
[1] センサの出力端子と、センサの出力信号を検出する検出回路とを電気的に接続す る経路に挿入されるノイズフィルタであって、前記センサ側に配置された少なくとも 1 つのインピーダンス素子と、前記インピーダンス素子と前記検出回路との間に接続さ れた少なくとも 1つのキャパシタンス素子とを備えることを特徴とする、ノイズフィルタ。  [1] A noise filter inserted into a path for electrically connecting an output terminal of the sensor and a detection circuit for detecting an output signal of the sensor, wherein the noise filter includes at least one impedance element arranged on the sensor side. A noise filter, comprising: at least one capacitance element connected between the impedance element and the detection circuit.
[2] 前記センサの出力端子が、ホット側出力端子と、基準電位側出力端子とを有し、前 記検出回路の入力端が、ホット側入力端子と、基準電位側入力端子とを有し、 前記少なくとも 1つのインピーダンス素子として、前記センサのホット側出力端子と 検出回路のホット側入力端子との間に挿入された第 1のインダクタンス素子と、前記 センサの基準電位側出力端子と、前記検出回路の基準電位側入力端子との間に接 続された第 2のインダクタンス素子とを有し、 [2] The output terminal of the sensor has a hot side output terminal and a reference potential side output terminal, and the input terminal of the detection circuit has a hot side input terminal and a reference potential side input terminal. A first inductance element inserted between the hot output terminal of the sensor and the hot input terminal of the detection circuit as the at least one impedance element; a reference potential output terminal of the sensor; A second inductance element connected between the input terminal and the reference potential side input terminal of the circuit;
前記キャパシタンス素子が、前記第 1のインダクタンス素子と前記検出回路のホット 側入力端子との間の接続点と、前記第 2のインダクタンス素子と前記検出回路の基準 電位側入力端子との間の接続点とを結ぶように挿入されて ヽる、請求項 1に記載のノ ィズフイノレタ。  The capacitance element includes a connection point between the first inductance element and a hot-side input terminal of the detection circuit, and a connection point between the second inductance element and a reference potential-side input terminal of the detection circuit. The noise filter according to claim 1, wherein the noise filter is inserted so as to connect the same.
[3] 前記少なくとも 1つのインピーダンス素子及び少なくとも 1つのキャパシタンス素子の 回路定数が、 800MHz以上の周波数における挿入損失が 20dB以上となるように選 ばれて ヽることを特徴とする、請求項 1または 2に記載のノイズフィルタ。  [3] The circuit constant of the at least one impedance element and the at least one capacitance element is selected such that an insertion loss at a frequency of 800 MHz or more is 20 dB or more. The noise filter according to 1.
[4] 前記センサがジャイロセンサであって、ジャイロセンサ用ノイズフィルタであることを 特徴とする、請求項 1または 2に記載のノイズフィルタ。  [4] The noise filter according to claim 1 or 2, wherein the sensor is a gyro sensor, and is a gyro sensor noise filter.
[5] センサと、前記センサの出力信号を検出する検出回路と、前記センサの出力端子と 前記検出回路との間に接続されたノイズフィルタとを備え、該ノイズフィルタ力 請求 項 1または 2に記載のノイズフィルタであることを特徴とする、センサ回路。  [5] The sensor according to claim 1 or 2, comprising a sensor, a detection circuit for detecting an output signal of the sensor, and a noise filter connected between an output terminal of the sensor and the detection circuit. A sensor circuit, which is the noise filter according to any one of the preceding claims.
[6] 前記センサが、ジャイロセンサである、請求項 5に記載のセンサ回路。  6. The sensor circuit according to claim 5, wherein the sensor is a gyro sensor.
[7] 一対の入力端子を有する演算増幅器を含む検出回路において、前記演算増幅器 の各入力端子に接続されるノイズフィルタであって、前記ノイズフィルタは、第 1及び 第 2のインダクタンス素子と、キャパシタンス素子とを有し、前記キャパシタンス素子は 、前記第 1及び第 2のインダクタンス素子よりも演算増幅器の入力端子側に接続され るものであることを特徴とする、ノイズフィルタ。 [7] In a detection circuit including an operational amplifier having a pair of input terminals, a noise filter connected to each input terminal of the operational amplifier, wherein the noise filter includes first and second inductance elements and a capacitance And the capacitance element is connected to the input terminal side of the operational amplifier with respect to the first and second inductance elements. A noise filter, characterized in that:
PCT/JP2004/014609 2003-11-10 2004-10-04 Noise filter and sensor circuit WO2005045367A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005515242A JPWO2005045367A1 (en) 2003-11-10 2004-10-04 Noise filter and sensor circuit
TW093131787A TW200516845A (en) 2003-11-10 2004-10-20 Noise filter and sensor circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-379826 2003-11-10
JP2003379826 2003-11-10

Publications (1)

Publication Number Publication Date
WO2005045367A1 true WO2005045367A1 (en) 2005-05-19

Family

ID=34567217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014609 WO2005045367A1 (en) 2003-11-10 2004-10-04 Noise filter and sensor circuit

Country Status (3)

Country Link
JP (1) JPWO2005045367A1 (en)
TW (1) TW200516845A (en)
WO (1) WO2005045367A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080797A (en) * 2005-09-16 2007-03-29 Taiyo Yuden Co Ltd Lamp driving device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108601A (en) * 1974-12-11 1976-09-27 Texas Instruments Inc
JPS5476638U (en) * 1977-11-09 1979-05-31
JPH11307392A (en) * 1998-04-27 1999-11-05 Murata Mfg Co Ltd Stacked differential transmission line
JP2000151327A (en) * 1998-11-12 2000-05-30 Murata Mfg Co Ltd Laminate type noise filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108601A (en) * 1974-12-11 1976-09-27 Texas Instruments Inc
JPS5476638U (en) * 1977-11-09 1979-05-31
JPH11307392A (en) * 1998-04-27 1999-11-05 Murata Mfg Co Ltd Stacked differential transmission line
JP2000151327A (en) * 1998-11-12 2000-05-30 Murata Mfg Co Ltd Laminate type noise filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080797A (en) * 2005-09-16 2007-03-29 Taiyo Yuden Co Ltd Lamp driving device
JP4617231B2 (en) * 2005-09-16 2011-01-19 太陽誘電株式会社 Lamp drive device

Also Published As

Publication number Publication date
TW200516845A (en) 2005-05-16
JPWO2005045367A1 (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4524318B2 (en) Automotive noise filter
US6979226B2 (en) Connector
US8786379B2 (en) Common mode noise filter
US20120319797A1 (en) Directional coupler
US6020793A (en) Non-reciprocal circuit device
WO2015087821A1 (en) Filter component
US8581676B2 (en) Common-mode filter
WO2007086405A1 (en) Balun and electronic device using this
JP4803173B2 (en) Circuit board
WO2005045367A1 (en) Noise filter and sensor circuit
US4297660A (en) Electric circuit using surface acoustic wave device
JP5193104B2 (en) Printed circuit board module
JPH05136650A (en) Printed wiring board for mounting saw filter
JP5007499B2 (en) Noise filter array
JP2003229791A (en) Equalizer
JP7467254B2 (en) Communications system
JP7235169B2 (en) Inductor mounting structure
JP2012256654A (en) Circuit board and electronic apparatus
JP3096210B2 (en) High frequency variable equalizer
JP6551879B2 (en) Detection sensor
JPS583412B2 (en) acoustic surface wave device
JP2007194897A (en) Surface acoustic wave filter and electronic apparatus using same
JPH09283874A (en) Mounting structure of saw filter
JP4584233B2 (en) Reception device and reception noise reduction method thereof
JPS6216612A (en) Mounting printed circuit board for surface wave filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515242

Country of ref document: JP

122 Ep: pct application non-entry in european phase