WO2005044946A1 - Phosphorescence exhibiting phosphor and process for producing the same - Google Patents

Phosphorescence exhibiting phosphor and process for producing the same Download PDF

Info

Publication number
WO2005044946A1
WO2005044946A1 PCT/JP2004/016401 JP2004016401W WO2005044946A1 WO 2005044946 A1 WO2005044946 A1 WO 2005044946A1 JP 2004016401 W JP2004016401 W JP 2004016401W WO 2005044946 A1 WO2005044946 A1 WO 2005044946A1
Authority
WO
WIPO (PCT)
Prior art keywords
dysprosium
compound
ratio
amount
palladium
Prior art date
Application number
PCT/JP2004/016401
Other languages
French (fr)
Japanese (ja)
Inventor
Yoneichi Hirata
Tomoya Sakaguchi
Nobuyoshi Takeuchi
Original Assignee
Nemoto & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoto & Co., Ltd. filed Critical Nemoto & Co., Ltd.
Publication of WO2005044946A1 publication Critical patent/WO2005044946A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates

Definitions

  • the present invention relates to a phosphorescent phosphor, particularly to a phosphorescent phosphor having a long-term afterglow characteristic.
  • the afterglow time of a phosphor is extremely short, and the luminescence is rapidly attenuated when an external stimulus is stopped. Afterglows can be observed with the naked eye for several tens of minutes (even for several hours). These phosphorescent phosphors are distinguished from ordinary phosphors by phosphorescent phosphors.
  • Examples of the phosphorescent phosphors include phosphors such as CaS: Bi (purple blue light emission), CaSrS: Bi (blue light emission), ZnS: Cu (green light emission), and ZnCdS: Cu (yellow-orange light emission). Any of these sulfide phosphors are chemically unstable, have poor light resistance, and are not suitable for use in luminous watches. However, there were many practical problems, such as the afterglow time for which the time was recognizable to the naked eye was about 30 minutes to 2 hours.
  • the applicant of the present invention has a long-lasting property that is much longer than commercially available sulfide-based phosphors, is chemically stable, and has excellent light resistance over a long period of time.
  • Power group power A phosphorescent phosphor in which at least one or more selected metal element power compound is used as a mother crystal was invented and a patent was obtained (for example, Japanese Patent No. 2543825).
  • the phosphorescent phosphor has a much longer afterglow characteristic than the conventional phosphorescent phosphor, and furthermore is a phosphorescent phosphor-based phosphor. Therefore, it has become possible to provide a long afterglow phosphorescent phosphor that is chemically stable and has excellent light resistance and is applicable to various uses.
  • the present invention has been made in view of such circumstances, and after a long period of time after excitation, a luminous phosphor having excellent afterglow luminance characteristics compared to conventional strontium aluminate phosphorescent phosphors of the same type. It is intended to provide a body and a method for producing the same.
  • the present inventor has proposed that, in the strontium aluminate-based phosphorescent phosphor described in the above-mentioned Patent Publication, the activator Yuguchi Pium (Eu) and the coactivator Dysprosium (Dy) were used.
  • Eu activator Yuguchi Pium
  • Dysprosium Dy
  • Sr strontium
  • Ba barium
  • Ca calcium
  • A1 aluminum
  • the phosphorescent phosphor according to the first invention of the present invention is a compound represented by MAIO,
  • palladium (Eu) is added as an activator and dysprosium (Dy) is added as a coactivator.
  • the amount of spiked porridge (Eu) added is 0.5% or more and 2% or less in terms of mol%, based on the total number of moles of the metal element represented by M and the number of moles of euphyllium (Eu) and dysprosium (Dy).
  • the molar amount of dysperm shim (Dy) is 1 and Dy / Eu ⁇ 20 in molar ratio with respect to palladium (Eu), and the addition of pium (Eu) and dysprosium (Dy). total ⁇ is a mole 0/0 1. 5% or less than 42% relative to the total number of moles of metallic element and Yu port Piumu (Eu) and dysprosium (Dy) expressed by M, aluminum (A1) Of the metal element represented by M and the total number of moles of palladium (Eu) and dysprosium (Dy) 3.0 or less, and the ratio of barium to M is 0.015 ⁇ Ba / (Sr + Ba) ⁇ 0.35 in molar ratio.
  • Yu port Piumu as an activating agent (Eu)
  • Yu port Piumu as an activating agent (Eu)
  • Dyprosium Dye
  • M molecular weight
  • DyZEu molar 0/0 0
  • DyZEu molar ratio of 1
  • DyZEu the total amount of palladium (Eu) and dysprosium (Dy) in the mouth to the total number of moles of the metal element represented by M and the total number of moles of pium (Eu) and dysprosium (Dy) in the mouth.
  • the addition amount of the zipper opening seam that contributes to the afterglow luminance characteristic is increased compared to the addition amount of the europium pium that contributes to the fluorescent luminance characteristic, and optimization is difficult. Due to the force, even after a long time of about 10 to 12 hours after excitation, the phosphor has excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor.
  • the ratio of aluminum (A1) is 2.05 or more in terms of molar ratio to the total number of moles of the metal element represented by M, the pium (Eu), and the dies (Dy).
  • the ratio is set to 0 or less, the ratio of the aluminum is increased from 2.0, which is the stoichiometric ratio, to 2.05 or more, so that the crystal structure is distorted and traps are easily formed. Even after a long period of time, it has better afterglow luminance characteristics than conventional phosphorescent phosphors.
  • the phosphor has more excellent afterglow luminance characteristics than the conventional phosphorescent phosphor.
  • the added amount of dysprosium as a co-activator in the molar ratio of dysprosium as a coactivator with respect to the amount of palladium in Eu ie, in the case of DyZEu ⁇ l, the amount of added dysprosium contributing to the afterglow luminance characteristics Therefore, afterglow luminance characteristics cannot be obtained as desired.
  • the molar ratio of dysprosium added to the amount of added casket to palladium in the mouth exceeds 20, that is, in the case of DyZEu, the dysprosium ratio increases, the base color becomes white, the excitation efficiency decreases, and light emission occurs.
  • the amount of syrup added to palladium as an activator depends on the amount of metal element represented by M and the amount of pium
  • DyZEu ⁇ 20 and the total force of the added amounts of palladium (Eu) and dysprosium (Dy) in the mouth and the total number of moles of the metal element represented by M and pium (Eu) and dysprosium (Dy) in the mouth By being 1.5% or more and 42% or less in terms of mol%, the phosphorescent light has excellent afterglow brightness characteristics compared to conventional phosphorescent phosphors even after a long time of about 10 to 12 hours after excitation. A phosphor is obtained.
  • the ratio of aluminum (A1) is less than 2.05 in molar ratio with respect to the total number of moles of the metal element represented by M, the pium (Eu) and the shim (Dy), ie,
  • A1Z (M + Eu + Dy) ⁇ 2.05 this is almost equal to or less than the stoichiometric ratio of 2.0, so the afterglow luminance characteristic is the same as that of the conventional phosphorescent fluorescent light. Equal to or lower than the body.
  • the molar ratio exceeds 3.0, that is, 3.0 ⁇ A1Z (M + Eu + Dy)
  • the ratio of by-products increases and the luminance decreases, which is not preferable. .
  • the ratio of aluminum (A1) was set to a molar ratio of 2.05 or more to 3.0 or less with respect to the total number of moles of the metal element represented by M, the europium (Eu), and the dysprosium (Dy).
  • M the total number of moles of the metal element represented by M
  • Eu europium
  • Dy dysprosium
  • the ratio of barium to M in terms of molar ratio, 0.01 ⁇ Ba / (Sr + Ba) ⁇ 0.35, makes the conventional storage possible even after a long time of about 10 to 12 hours after excitation. A luminous phosphor having better afterglow luminance characteristics than the luminous phosphor can be obtained.
  • the amount of dysprosium that contributes to the afterglow luminance characteristics is increased compared to the amount of europium that contributes to the fluorescent luminance characteristics, and optimization is achieved.
  • the ratio of aluminum from the stoichiometric ratio of 2.0 to 2.05 or more, distortion occurs in the crystal structure, and furthermore, part of strontium is replaced by barium.
  • an appropriate strain is generated in the crystal, so that even after a long time of about 10 to 12 hours after excitation, excellent afterglow luminance characteristics can be obtained as compared with the conventional phosphorescent phosphor.
  • the phosphorescent phosphor according to the second invention of the present invention is a compound represented by MAIO,
  • the molar amount of dysprosium (Dy) added to palladium (Eu) is 1 and the molar ratio of DyZEu is less than 20, and the amount of added potassium sulphate of palladium (Eu) and dysprosium (Dy) is relatively small. total is less 42% 1.5% or more by mole 0/0 to the total mole number of the metal elements and Yu port Piumu (Eu) and dysprosium (Dy) expressed by M, the ratio of aluminum (A1) is The molar ratio of the metal element represented by M to the total number of moles of europium (Eu) and dysprosium (Dy) is 2.05 or more. 3. is 0 or less, the ratio of calcium to M is characterized in that a 0. 005 ⁇ Ca / (Sr + Ca) ⁇ 0. 15 in molar ratio.
  • Yu port Piumu as an activating agent (Eu), relative to the total mole number of the metal elements and Yu port Piumu (E u) and dysprosium (Dy) expressed by M, a molar 0/0 0
  • Dysprosium (Dy) as a co-activator in a molar ratio of 1 to Dyzeu (Eu) to DyZEu ⁇ 20 and add Dyzeu ⁇ 20 as a co-activator, and add Dyzeu ⁇ 20 to Dyprosium (Eu) and Dysprosium (Dy). Is added to the total number of moles of the metal element represented by M, the palladium (Eu) and dysprosium (Dy).
  • the amount of added disp-seam which contributes to the afterglow luminance characteristics, is increased compared to the amount of palladium-pium, which contributes to the fluorescent luminance characteristics. Due to the weakness, even after a long time of about 10 to 12 hours after the excitation, the phosphor has excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor.
  • the ratio of aluminum (A1) is 2.05 or more in terms of molar ratio to the total number of moles of the metal element represented by M, the pium (Eu), and the dies (Dy).
  • the ratio is set to 0 or less, the ratio of the aluminum is increased from 2.0, which is the stoichiometric ratio, to 2.05 or more, so that the crystal structure is distorted and traps are easily formed. Even after a long period of time, it has better afterglow luminance characteristics than conventional phosphorescent phosphors.
  • the phosphor has more excellent afterglow luminance characteristics than the conventional phosphorescent phosphor.
  • DyZEu ⁇ l the added amount of dysprosium as a coactivator in the molar ratio of the added amount of dysprosium to the palladium of Yuguchi, that is, in the case of DyZEu ⁇ l, Therefore, afterglow luminance characteristics cannot be obtained as desired.
  • the molar ratio of dysprosium added to the amount of added casket to palladium in the mouth exceeds 20, that is, in the case of DyZEu, the dysprosium ratio increases, the base color becomes white, the excitation efficiency decreases, and light emission occurs.
  • luminous dysprosium (DyAlO) or the like is produced as a by-product, the luminance is greatly reduced as a whole.
  • the amount of sulfur added to palladium as an activator is 0.5% or more and 2% or more in terms of mol% based on the total number of moles of the metal element represented by M and the number of mols of palladium (Eu) and dysprosium (Dy).
  • the amount of dysprosium added as a co-activator is as follows: the molar ratio of dysprosium to euphyllium is 1 and DyZEu ⁇ 20, and the amounts of euprosium (Eu) and dysprosium (Dy) added.
  • the total force of the metal element expressed by M and the molar percentage of the total number of moles of palladium (Eu) and dysprosium (Dy) in the mouth are 1.5% or more and 42% or less. Even after a long period of time, a phosphorescent phosphor having excellent afterglow luminance characteristics compared to conventional phosphorescent phosphors can be obtained.
  • the ratio of aluminum (A1) is less than 2.05 in molar ratio with respect to the total number of moles of the metal element represented by M, the pium (Eu), and the shim (Dy).
  • A1Z (M + Eu + Dy) ⁇ 2.05
  • this is almost equal to or less than the stoichiometric ratio of 2.0.
  • the molar ratio exceeds 3.0, that is, when 3.0 ⁇ A1Z (M + Eu + Dy)
  • the proportion of by-products increases and the luminance decreases, which is not preferable. .
  • the ratio of aluminum (A1) was set to a molar ratio of 2.05 or more to 3.0 or less with respect to the total number of moles of the metal element represented by M, the palladium (Eu) and the dysprosium (Dy).
  • M the metal element represented by M
  • Eu palladium
  • Dy dysprosium
  • the ratio of calcium is less than 0.005 in molar ratio to M, that is, CaZ (Sr
  • the amount of dysprosium that contributes to the afterglow luminance characteristics is increased compared to the amount of palladium that contributes to the fluorescent luminance characteristics, and optimization is achieved.
  • the ratio of aluminum from the stoichiometric ratio of 2.0 to 2.05 or more the crystal structure is distorted, and a part of strontium is replaced with calcium.
  • an appropriate strain is generated in the crystal, so that even after a long time of about 10 to 12 hours from the excitation, it is possible to obtain excellent afterglow luminance characteristics compared to the conventional phosphorescent phosphor.
  • the phosphorescent phosphor according to the third invention of the present invention is a compound represented by MAIO,
  • the amount of dysprosium (Dy) added is 1 ⁇ DyZEu ⁇ 20 in terms of molar ratio with respect to palladium (Eu) in the mouth, and pium (Eu) in the mouth and dysprosium (Dy) are used.
  • the ratio of A1 is expressed by the total number of moles of the metal element represented by M and the moles of palladium (Eu) and dysprosium (Dy).
  • the ratio of barium to M is 0.011 ⁇ Ba / (Sr + Ba + Ca) ⁇ 0.3 in molar ratio, and the ratio of calcium to M is The molar ratio is 0.005 ⁇ Ca / (Sr + Ba + Ca) ⁇ 0.1.
  • Yu port Piumu as an activating agent (Eu), relative to the total mole number of the metal elements and Yu port Piumu (E u) and dysprosium (Dy) expressed by M, a molar 0/0 0
  • Dysprosium (Dy) as a co-activator in a molar ratio of 1 to Dyzeu (Eu) to DyZEu ⁇ 20 and add Dyzeu ⁇ 20 as a co-activator, and add Dyzeu ⁇ 20 to Dyprosium (Eu) and Dysprosium (Dy). Is added to the total number of moles of the metal element represented by M, the palladium (Eu) and dysprosium (Dy).
  • the amount of added disp-seam which contributes to the afterglow luminance characteristics, is increased compared to the amount of palladium-pium, which contributes to the fluorescent luminance characteristics. Due to the weakness, even after a long time of about 10 to 12 hours after the excitation, the phosphor has excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor.
  • the ratio of aluminum (A1) is 2.05 or more in a molar ratio to the total number of moles of the metal element represented by M, the pium (Eu), and the shim (Dy).
  • the ratio is set to 0 or less, the ratio of the aluminum is increased from 2.0, which is the stoichiometric ratio, to 2.05 or more, so that the crystal structure is distorted and traps are easily formed. Even after a long period of time, it has better afterglow luminance characteristics than conventional phosphorescent phosphors.
  • the molar ratio of barium to M is 0.01 ⁇ Ba / (Sr + Ba + Ca) ⁇ 0.3, and the calcium ratio to M is 0.005 ⁇ Ca / (Sr + (Ba + Ca) ⁇ 0.1, by replacing a part of strontium with barium and calcium, an appropriate strain is generated in the crystal. It has better afterglow luminance characteristics than the luminescent phosphor.
  • DyZEu ⁇ l the added amount of dysprosium as a coactivator in the molar ratio of the added amount of dysprosium to the palladium of Yuguchi, that is, in the case of DyZEu ⁇ l, Therefore, afterglow luminance characteristics cannot be obtained as desired.
  • the molar ratio of dysprosium added to the amount of added casket to palladium in the mouth exceeds 20, that is, in the case of DyZEu, the dysprosium ratio increases, the base color becomes white, the excitation efficiency decreases, and light emission occurs.
  • luminous dysprosium (DyAlO) or the like is produced as a by-product, the luminance is greatly reduced as a whole.
  • the metal element expressed by the total force M of the added amount of the casket added to the palladium and dysprosium of Yu and the metal When the mole 0/0 1. less than 5% mouth Piumu and (Eu) to moles total of dysprosium (Dy), luminance characteristics for the amount of the activator and co-activator is too small is reduced and also 42% When it exceeds, the amount of strontium is relatively reduced, and the afterglow luminance characteristic is deteriorated.
  • the amount of sulfur added to palladium as an activator is 0.5% or more and 2% or more in terms of mol% based on the total number of moles of the metal element represented by M and the number of mols of palladium (Eu) and dysprosium (Dy).
  • the amount of dysprosium added as a co-activator is as follows: the molar ratio of dysprosium to euphyllium is 1 and DyZEu ⁇ 20, and the amounts of euprosium (Eu) and dysprosium (Dy) added.
  • the total force of the metal element expressed by M and the molar percentage of the total number of moles of palladium (Eu) and dysprosium (Dy) in the mouth are 1.5% or more and 42% or less. Even after a long period of time, a phosphorescent phosphor having excellent afterglow luminance characteristics compared to conventional phosphorescent phosphors can be obtained.
  • the ratio of aluminum (A1) is less than 2.05 in molar ratio with respect to the total number of moles of the metal element represented by M, the pium (Eu) and the shim (Dy).
  • A1Z (M + Eu + Dy) ⁇ 2.05
  • this is almost equal to or less than the stoichiometric ratio of 2.0, so the afterglow luminance characteristic is the same as that of the conventional phosphorescent fluorescent light.
  • the molar ratio exceeds 3.0, that is, 3.0 ⁇ A1Z (M + Eu + Dy)
  • the ratio of by-products increases and the luminance decreases, which is not preferable. .
  • the ratio of aluminum (A1) was set to a molar ratio of 2.05 or more to 3.0 or less with respect to the total number of moles of the metal element represented by M, the europium (Eu), and the dysprosium (Dy).
  • M the total number of moles of the metal element represented by M
  • Eu europium
  • Dy dysprosium
  • the ratio of barium is less than 0.01 in terms of a molar ratio to M, that is, BaZ (Sr + Ba + Ca) ⁇ 0.01, the ratio of norium is too small, so There is no effect due to little distortion.
  • the molar ratio to M exceeds 0.3, that is, when 0.3 ⁇ BaZ (Sr + Ba + Ca), the ratio of strontium is relatively reduced, and the overall luminance is reduced. It is not preferable because.
  • the molar ratio of calcium to M is less than 0.005, that is, when CaZ (Sr + Ba + Ca) ⁇ 0.005, the calcium ratio is too small, so Slight distortion is hard to occur and has no effect.
  • the molar ratio to M exceeds 0.1, that is, when it is 0.1 and CaZ (Sr + Ba + Ca) is used, calcium aluminate (CaAl 2 O 3) etc.
  • the ratio force of barium to M is 0.011 ⁇ Ba / (Sr + Ba + Ca) ⁇ 0.3 in molar ratio, and the ratio of calcium to M is 0.005 ⁇ Ca / Since (Sr + Ba + Ca) ⁇ 0.1, even after a long time of about 10-12 hours after excitation, the phosphorescent light has better afterglow luminance characteristics than the conventional phosphorescent phosphor. A luminescent phosphor is obtained.
  • the amount of dysprosium that contributes to the afterglow luminance characteristics is increased as compared with the amount of europium that contributes to the fluorescent luminance characteristics, and optimization is achieved.
  • the ratio of aluminum from 2.0, which is the stoichiometric ratio, to 2.05 or more, the crystal structure is distorted, and furthermore, a part of strontium is replaced by barium and calcium. Since an appropriate strain is generated in the crystal, even after a long time of about 10 to 12 hours after the excitation, excellent afterglow luminance characteristics can be obtained as compared with the conventional phosphorescent phosphor.
  • the method for producing the alkaline earth metal aluminate phosphorescent phosphor according to the fourth aspect of the present invention comprises an aluminum (A1) compound, a strontium (Sr) compound, a barium compound (Ba), It is characterized in that a pium (Eu) compound and a dysprosium (Dy) compound are mixed so that each element has the following molar ratio, fired in a reducing atmosphere, and then cooled and pulverized.
  • an alkaline earth metal aluminate phosphorescent phosphor having excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor can be manufactured.
  • the method for producing an alkaline earth metal aluminate phosphorescent phosphor according to the fifth invention of the present invention is a method for producing an aluminum (A1) compound, a strontium (Sr) compound, a calcium compound (Ca), It is characterized in that an orifice (Eu) compound and a dysprosium (Dy) compound are mixed so that each element has the following molar ratio, fired in a reducing atmosphere, and then cooled and pulverized.
  • the phosphorescent phosphor is superior to the conventional phosphorescent phosphor.
  • An alkaline earth metal aluminate phosphorescent phosphor having afterglow luminance characteristics can be manufactured.
  • the method for producing an alkaline earth metal aluminate phosphorescent phosphor comprises: an aluminum (A1) compound, a strontium (Sr) compound, and a barium (Ba) compound.
  • a calcium compound (Ca), a palladium (Eu) compound, and a dysprosium (Dy) compound were mixed at the following molar ratios, calcined in a reducing atmosphere, and then cooled and pulverized. It is characterized by:
  • the phosphorescent phosphor is superior to the conventional phosphorescent phosphor.
  • An alkaline earth metal aluminate phosphorescent phosphor having afterglow luminance characteristics can be manufactured.
  • the method for producing an alkaline earth metal aluminate luminous phosphor according to the seventh invention of the present invention includes the alkaline earth metal aluminate luminous phosphor according to the fourth, fifth, or sixth invention.
  • the method for producing a phosphor is characterized in that a boron compound is added as a flux to the raw material and the mixture is fired. Then, by adding a boron compound as a flux to the raw material and firing the mixture, an alkaline earth metal element aluminate phosphorescent phosphor excellent at a low firing temperature can be manufactured.
  • a boron compound for example, boric acid (HBO) is preferable.
  • the amount of the boron compound to be added is preferably about 0.01 to 10%, more preferably about 0.5 to 3%, based on the total mass of the raw materials.
  • the amount of the boron compound to be added exceeds 10% of the total mass of the raw material, the fired product is hard and sintered, so that pulverization becomes difficult, and the reduction in luminance due to the pulverization decreases. Get offended. Therefore, the amount of the boron compound to be added is preferably 0.01% to 10% based on the total mass of the raw materials.
  • the alkaline earth metal aluminate phosphorescent phosphor according to the fourth, fifth, or sixth invention is provided. According to the manufacturing method, an alkaline earth metal element aluminate phosphorescent phosphor which is excellent even at a low firing temperature can be manufactured.
  • FIG. 1 is a view showing a particle size distribution of sample 1 (3).
  • FIG. 2 is an X-ray powder diffraction pattern of Sample 2- (9).
  • FIG. 3 is an X-ray powder diffraction pattern of Sample 3- (6). BEST MODE FOR CARRYING OUT THE INVENTION
  • strontium (Sr), barium (Ba) and barium (Ca) as raw materials of metal elements represented by M, such as strontium carbonate (SrCO) and barium carbonate (Ba).
  • Dysprosium oxide (Dy 2 O 3) is added as a raw material. At this time, the added calorie of pium (Eu)
  • the amount is 2% 0.5% by molar 0/0 to moles total of metal elements and Yu port Piumu dysprosium expressed by M, ⁇ Ka ⁇ of dysprosium (Dy) are, Yu port Piumu (Eu) in a molar ratio of more than 1 to 20 or less, and the total amount of palladium (Eu) and dysprosium (Dy) added to the metal element represented by M, palladium (Eu) and dysprosium (Eu) mole 0/0 1. 5% or less than 42% relative to the total number of moles of dy).
  • a raw material of aluminum (A1) for example, alumina (Al 2 O 3) is converted to strontium, norium, calcium,
  • the molar ratio of aluminum to the sum of the number of moles of palladium and dysprosium is 2.05 or more and 2.7 or less.
  • boric acid HBO
  • HBO boric acid
  • the mixture is calcined in a reducing atmosphere, for example, a mixed gas stream of nitrogen and hydrogen at a calcining temperature of about 1300 ° C to 1500 ° C for about 1 hour to 6 hours, and then to room temperature for about 1 hour to 6 hours. Cool over time.
  • the obtained fired product is pulverized and sieved to obtain a phosphorescent phosphor having a predetermined particle size.
  • the added amount of palladium (Eu) as an activator to be added refers to the amount of each of the metal element M, the activator palladium (Eu) and the co-activator dysprosium (Dy). It is expressed in mol% based on the total number of moles of the element.
  • the metal element represented by M is strontium and norium
  • the molar ratio of barium to the total number of moles of strontium and barium is 0.1
  • Yu port Piumu 1 mole 0/0 added, to 2 mol 0/0 ⁇ Ka ⁇ dysprosium is strontium element is 0.873 mol
  • the compound of each element is blended so that the dysprosium element becomes 0.02 mol. This makes it possible to determine the amount of pium Stood 1% mole 0/0, the molar ratio of barium to the total mole number of strontium and barium will be 0.1.
  • the firing temperature using the boron compound as the flux is sufficiently higher than the temperature required for the reaction, for example, about 1450 ° C.
  • the obtained fired product is weakly agglomerated, and crushing is facilitated, so that a decrease in luminance due to crushing can be reduced.
  • the metal element represented by M in the present invention is substantially a strontium and barium, a strontium and calcium, or a strontium, barium and calcium and a trace amount of another element in addition to these elements as long as they are also composed of power. Is included in the scope of the present invention.
  • strontium carbonate (SrCO) 128.88 g (0.873) was used as a raw material for strontium (Sr).
  • DyO dysprosium oxide
  • This mixture is calcined in a reducing atmosphere in a gas stream of 97% nitrogen-3% hydrogen at a calcining temperature of 1350 ° C for 4 hours, and then cooled to room temperature in about 1 hour.
  • the obtained fired product was pulverized, sieved and passed through a # 250 mesh to obtain a phosphorescent phosphor sample 11 (3).
  • strontium was 0.783 mol
  • barium was 0.097 mol
  • the molar ratio of strontium to 0.97 mol of the total number of mols of strontium and barium was 0.9. The molar ratio is 0.1.
  • Patent Document 1 Sample 2- (1), the metal elements expressed by M and only strike strontium, 1 mol ⁇ Yu port Piumu 0/0 the dysprosium ⁇ 1 molar 0/0, Arumi - ⁇ beam molar ratio AlZ a (Sr + Eu + Dy), the stoichiometric ratio 2.0, other manufacturing conditions, process the sample 1
  • a sample identical to that of (3) was prepared in the same manner as Comparative Example 1.
  • the particle size distribution of Sample 11 (3) was measured by a laser diffraction type particle size distribution analyzer (SALD-2100, Shimadzu Corporation). This is shown in Figure 1.
  • the metal elements represented by M are strontium and barium, and aluminum Ratio is 2.3 and the molar ratio of dysprosium to europium is fixed at 2, the amount of europium added is 0.5 mol% or more and 2 mol% or less. It can be seen that excellent afterglow luminance characteristics are obtained.
  • Samples 11 (7) to 11 (16) are the same as Samples 11 (1) to 11 (6). It was excited under the same illuminance conditions (D65 standard light source Z4001xZ20 minutes) and the afterglow luminance characteristics were examined. The results are shown in Table 4 together with Comparative Example 1 and Sample 1- (3) as relative luminance when the afterglow luminance of Comparative Example 1 is 1.
  • the afterglow luminance is about 6.5 times or more as compared with the comparative example.
  • sample 1- (16) that is, when the molar ratio of dysprosium is 30 (that is, in this case, 30 mol% in the added amount of dysprosium), for example, by-products such as dysprosium aluminate (DvAlO)
  • DvAlO dysprosium aluminate
  • dysprosium-added kafun is not preferable in terms of economy because dysprosium itself is expensive, and if the added amount of dysprosium is too large, the brightness may be reduced due to concentration quenching.
  • the metal elements represented by M are strontium and barium
  • the ratio of aluminum is 2.3
  • the amount of pium added to the mouth is 1 mol%
  • dysprosium with respect to the mouth of pium is considered. It can be seen that a phosphorescent phosphor having excellent afterglow luminance characteristics as compared with the conventional example can be obtained in a molar ratio of more than 1 and not more than 20. It was also confirmed that the same results were obtained when the amount of pulping pulp of Yuguchi pium was 0.5% and 2%.
  • M is strontium (Sr) and barium (Ba)
  • DyO dysprosium oxide
  • Dy 2.1) and boric acid (HBO) as a boron (B) compound as a flux.
  • the molar ratio of aluminum that is, AlZ (Sr + Ba + Eu + Dy) was set to 2.0 as shown in Table 5 and to 2 .
  • 05 Ryara Phosphorescent phosphors varied in the range of 3.1 were prepared, and Sample 2— (1) to Sample 2— (3), Sample 2— (4) or Sample 2— (10) As obtained.
  • sample 2- (9) (the molar ratio of aluminum was 3.0), powder X-ray diffraction analysis was performed using a Cu bulb to obtain a diffraction pattern. This is shown in FIG.
  • Samples 2- (1) to 2- (10) were excited under the same illuminance conditions (D65 standard light source Z4001xZ20 minutes) as Sample 11 (1) of Experimental Example 1, and the afterglow luminance characteristics Investigated.
  • the results were compared with Sample 11 (3), which was the same conditions except that the molar ratio of aluminum was 2.3. Both are shown in Table 6 as relative luminance when the afterglow luminance of Comparative Example 1 was set to 1.
  • M is strontium (Sr) and barium
  • strontium carbonate (SrCO 2) (0.996) was used as a raw material of strontium (Sr).
  • Dy dysprosium oxide
  • This mixture is calcined in a reducing atmosphere in a gas stream of 97% nitrogen-3% hydrogen at a calcining temperature of 1350 ° C for 4 hours, and then cooled to room temperature in about 1 hour.
  • the obtained fired product was pulverized, sieved, and passed through # 250 mesh to obtain a phosphorescent phosphor sample 3- (2).
  • This sample 3- (2) has 0.9603 mol of strontium and 0.0097 mol of norium, and the molar ratio of strontium to 0.97 mol of the total number of mols of strontium and barium is 0.99.
  • the molar ratio of lithium is 0.01.
  • DyO dysprosium oxide
  • This mixture is calcined in a reducing atmosphere in a gas stream of 97% nitrogen-3% hydrogen at a calcining temperature of 1350 ° C for 4 hours, and then cooled to room temperature in about 1 hour.
  • the obtained fired product was pulverized, sieved, and passed through a # 250 mesh to obtain a phosphorescent phosphor sample 4 (3).
  • This sample 4 (3) had 0.9603 mol of strontium and 0.0097 mol of calcium, and the molar ratio of strontium to 0.97 mol of the total number of mols of strontium and calcium was 0.99, and the molar ratio of calcium was 0.999 mol It will be 0.01.
  • the amount of added syrup of eutronic pium is 1 mol% and the amount of added dysprosium is 2 mol% based on the total of strontium, calcium, euproium and dysprosium.
  • the ratio, DyZEu is 2.
  • the molar ratio of aluminum, that is, AlZ (Sr + Ca + Eu + Dy) is determined to be 2.3, which exceeds the stoichiometric ratio of 2.0.
  • Sample 4 (1) (having a calcium ratio of 0.002) had an afterglow luminance characteristic less than three times that of Comparative Example 1 after 10 hours, and Sample 4 (7) (having a calcium ratio of 10%).
  • the ratio of strontium may be relatively reduced, and the afterglow brightness is sharply reduced.
  • the metal element represented by M is strontium and calcium
  • the ratio of calcium to M that is, CaZ (Sr + Ca) is 0.005 or more and 0.15 or less
  • excellent afterglow luminance characteristics are obtained. It can be seen that the phosphor has a phosphorescent property.
  • strontium carbonate (SrCO 2) 127.45 g (0.863) was used as a raw material for strontium (Sr).
  • barium carbonate (BaCO 3) as a raw material for barium (Ba)
  • DyO dysprosium oxide
  • the added amount of caloric power of palladium based on the total amount of strontium, normium, calcium, palladium and dysprosium is Si mol%, and the added amount of dysprosium added with dysprosium is 2 mol%.
  • Ie, Dy / Eu is 2.
  • the molar ratio of aluminum, that is, AlZ (Sr + Ba + Ca + Eu + Dy) is 2.3, which exceeds the stoichiometric ratio of 2.0.
  • the metal element represented by M is strontium, norium and calcium
  • the ratio of barium to M that is, BaZ (Sr + Ba + Ca) is 0.01 or more.
  • the ratio of calcium to M that is, CaZ (Sr + Ba + Ca) is 0.01 or more and 0.1 or less, it is understood that the phosphorescent phosphor has excellent afterglow luminance characteristics.
  • the invention can be used, for example, for luminous watches.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

A phosphorescence exhibiting phosphor that upon the passage of a prolonged period of time after excitation, has an afterglow luminance property superior to that of conventional strontium aluminate base phosphorescence exhibiting phosphors of the same type, the phosphorescence exhibiting phosphor satisfying the relationships of proportion: 0.005≤Eu/(Sr+Ba+Eu+Dy)≤0.02, 1<Dy/Eu≤20, 0.015≤(Eu+Dy)/(Sr+Ba+Eu+Dy)≤0.42, 0.01≤Ba/(Sr+Ba)≤0.35, and 2.05≤Al/(Sr+Ba+Eu+Dy)≤3.0.

Description

明 細 書  Specification
蓄光性蛍光体及びその製造方法  Luminescent phosphor and method for producing the same
技術分野  Technical field
[0001] 本発明は蓄光性蛍光体、特に長時間の残光特性を有する蓄光性蛍光体に関する ものである。  The present invention relates to a phosphorescent phosphor, particularly to a phosphorescent phosphor having a long-term afterglow characteristic.
背景技術  Background art
[0002] 一般に蛍光体の残光時間は極めて短ぐ外部刺激を停止すると速やかにその発光 は減衰するが、まれに紫外線等で刺激した後その刺激を停止した後も力なりの長時 間 (数 10分力も数時間)に渡り残光が肉眼で認められるものがあり、これらを通常の 蛍光体とは区別して蓄光性蛍光体ある 、は燐光体と呼んで 、る。  [0002] In general, the afterglow time of a phosphor is extremely short, and the luminescence is rapidly attenuated when an external stimulus is stopped. Afterglows can be observed with the naked eye for several tens of minutes (even for several hours). These phosphorescent phosphors are distinguished from ordinary phosphors by phosphorescent phosphors.
この蓄光性蛍光体としては、 CaS: Bi (紫青色発光)、 CaSrS: Bi (青色発光)、 ZnS : Cu (緑色発光)、 ZnCdS: Cu (黄色一橙色発光)等の硫ィ匕物蛍光体が知られて ヽ る力 これらのいずれの硫化物蛍光体も、化学的に不安定であったり、耐光性に劣つ たり、またこの硫ィ匕亜鉛系蛍光体を夜光時計に用いる場合であっても、肉眼でその 時刻を認識可能な残光時間は約 30分から 2時間程度であるなど実用面での問題点 が多かった。  Examples of the phosphorescent phosphors include phosphors such as CaS: Bi (purple blue light emission), CaSrS: Bi (blue light emission), ZnS: Cu (green light emission), and ZnCdS: Cu (yellow-orange light emission). Any of these sulfide phosphors are chemically unstable, have poor light resistance, and are not suitable for use in luminous watches. However, there were many practical problems, such as the afterglow time for which the time was recognizable to the naked eye was about 30 minutes to 2 hours.
[0003] そこで、出願人は、市販の硫化物系蛍光体に比べて遥かに長時間の残光特性を 有し、更には化学的にも安定であり、かつ長期にわたり耐光性に優れる蓄光性蛍光 体として、 MAI Oで表わされる化合物で、 Mは、カルシウム、ストロンチウム、バリウム  [0003] Therefore, the applicant of the present invention has a long-lasting property that is much longer than commercially available sulfide-based phosphors, is chemically stable, and has excellent light resistance over a long period of time. A compound represented by MAIO as a phosphor, where M is calcium, strontium, barium
2 4  twenty four
力 なる群力 選ばれる少なくとも 1つ以上の金属元素力 なる化合物を母結晶にし た蓄光性蛍光体を発明し、特許を取得した (例えば特許第 2543825号公報など)。 この特許公報記載のアルミン酸塩系蓄光性蛍光体の発明により、従来の硫ィ匕物系 蛍光体に比べて遥かに長時間の残光特性を有し、さらには酸ィ匕物系であることから 化学的にも安定であり、かつ耐光性に優れる、様々な用途に適用可能な長残光の蓄 光性蛍光体を提供することが可能となった。  Power group power A phosphorescent phosphor in which at least one or more selected metal element power compound is used as a mother crystal was invented and a patent was obtained (for example, Japanese Patent No. 2543825). According to the invention of the aluminate-based phosphorescent phosphor described in this patent publication, the phosphorescent phosphor has a much longer afterglow characteristic than the conventional phosphorescent phosphor, and furthermore is a phosphorescent phosphor-based phosphor. Therefore, it has become possible to provide a long afterglow phosphorescent phosphor that is chemically stable and has excellent light resistance and is applicable to various uses.
発明の開示  Disclosure of the invention
[0004] し力しながら、さらなる市場ニーズにより、より高輝度であってより長時間の残光特性 を有する蓄光性蛍光体が要求されてきている。 ISO規格においても、長残光の蓄光 性蛍光体に対応した残光輝度の測定方法が起草されており、従来よりも長時間経過 した後の残光輝度を測定することが提案されて ヽる。 [0004] However, due to further market needs, higher brightness and longer persistence characteristics There is a demand for a phosphorescent phosphor having the following. In the ISO standard, a method for measuring the afterglow luminance corresponding to a long-afterglow phosphorescent phosphor has been drafted, and it has been proposed to measure the afterglow luminance after a longer time than before. .
本発明は、このような現状に鑑みなされたもので、励起後長時間経過後において、 従来の同種のアルミン酸ストロンチウム系蓄光性蛍光体に比べて優れた残光輝度特 性を有する蓄光性蛍光体およびその製造方法の提供を目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and after a long period of time after excitation, a luminous phosphor having excellent afterglow luminance characteristics compared to conventional strontium aluminate phosphorescent phosphors of the same type. It is intended to provide a body and a method for producing the same.
そこで、本発明者は、前述の現状に鑑み、前記特許公報記載のアルミン酸ストロン チウム系蓄光性蛍光体において、賦活剤であるユウ口ピウム (Eu)と共賦活剤である ジスプロシウム(Dy)の添カ卩量の最適化をはかり、さらに、母結晶の構成元素であるス トロンチウム(Sr)、バリウム(Ba)、カルシウム(Ca)、アルミニウム (A1)の構成比の最 適化をは力ることにより、従来のアルミン酸ストロンチウム系蓄光性蛍光体と比べて、 残光輝度特性に優れた蓄光性蛍光体を見出した。  In view of the above situation, the present inventor has proposed that, in the strontium aluminate-based phosphorescent phosphor described in the above-mentioned Patent Publication, the activator Yuguchi Pium (Eu) and the coactivator Dysprosium (Dy) were used. We will try to optimize the amount of soy sauce and further optimize the composition ratio of strontium (Sr), barium (Ba), calcium (Ca), and aluminum (A1), which are the constituent elements of the mother crystal. As a result, a phosphorescent phosphor having excellent afterglow luminance characteristics has been found as compared with the conventional strontium aluminate phosphorescent phosphor.
[0005] (1)第 1の発明 [0005] (1) First invention
本発明のうち第 1の発明に係る蓄光性蛍光体は、 MAI Oで表される化合物で、 M  The phosphorescent phosphor according to the first invention of the present invention is a compound represented by MAIO,
2 4  twenty four
は、ストロンチウム !:)とバリウム (Ba)力もなる化合物を母結晶にすると共に、賦活剤 としてユウ口ピウム (Eu)を添加し、共賦活剤としてジスプロシウム (Dy)を添加してお り、ユウ口ピウム(Eu)の添カ卩量は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロ シゥム(Dy)のモル数の合計に対して、モル%で 0. 5%以上 2%以下であり、ジスプ 口シゥム(Dy)の添力卩量はユウ口ピウム(Eu)に対するモル比で 1く Dy/Eu≤ 20で あり、かつユウ口ピウム(Eu)とジスプロシウム(Dy)の添カ卩量の合計は、 Mで表す金 属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル0 /0で 1. 5%以上 42%以下であり、アルミニウム (A1)の割合は、 Mで表す金属元素とユウ 口ピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3 . 0以下であり、 Mに対するバリウムの割合は、モル比で 0. 01≤Ba/ (Sr + Ba)≤0 . 35であることを特徴としている。 In addition to making strontium! :) and a compound that also has barium (Ba) power into the mother crystal, palladium (Eu) is added as an activator and dysprosium (Dy) is added as a coactivator. The amount of spiked porridge (Eu) added is 0.5% or more and 2% or less in terms of mol%, based on the total number of moles of the metal element represented by M and the number of moles of euphyllium (Eu) and dysprosium (Dy). And the molar amount of dysperm shim (Dy) is 1 and Dy / Eu ≤ 20 in molar ratio with respect to palladium (Eu), and the addition of pium (Eu) and dysprosium (Dy). total卩量is a mole 0/0 1. 5% or less than 42% relative to the total number of moles of metallic element and Yu port Piumu (Eu) and dysprosium (Dy) expressed by M, aluminum (A1) Of the metal element represented by M and the total number of moles of palladium (Eu) and dysprosium (Dy) 3.0 or less, and the ratio of barium to M is 0.015 ≦ Ba / (Sr + Ba) ≦ 0.35 in molar ratio.
[0006] そして、まず賦活剤としてユウ口ピウム (Eu)を、 Mで表す金属元素とユウ口ピウム (E u)とジスプロシウム(Dy)のモル数の合計に対して、モル0 /0で 0. 5%以上 2%以下添 加し、共賦活剤としてジスプロシウム(Dy)をユウ口ピウム (Eu)に対するモル比で 1く DyZEu≤ 20添加し、かつユウ口ピウム(Eu)とジスプロシウム (Dy)の添加量の合計 を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に 対するモル%で1. 5%以上 42%以下としたことで、残光輝度特性に寄与するジスプ 口シゥムの添加量が蛍光輝度特性に寄与するユウ口ピウムの添加量に比べ増大し、 最適化がは力もれることにより、励起後 10— 12時間程度の長時間経過後においても 、従来の蓄光性蛍光体に比べ優れた残光輝度特性を有する。 [0006] Then, first, Yu port Piumu as an activating agent (Eu), relative to the total mole number of the metal elements and Yu port Piumu (E u) and dysprosium (Dy) expressed by M, a molar 0/0 0 Add 5% or more and 2% or less, and add dysprosium (Dy) as a co-activator in a molar ratio of 1 Add DyZEu≤20 and add the total amount of palladium (Eu) and dysprosium (Dy) in the mouth to the total number of moles of the metal element represented by M and the total number of moles of pium (Eu) and dysprosium (Dy) in the mouth. By setting the percentage to 1.5% or more and 42% or less, the addition amount of the zipper opening seam that contributes to the afterglow luminance characteristic is increased compared to the addition amount of the europium pium that contributes to the fluorescent luminance characteristic, and optimization is difficult. Due to the force, even after a long time of about 10 to 12 hours after excitation, the phosphor has excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor.
[0007] さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下とすると、アル ミニゥムの割合をィ匕学量論比である 2. 0より増加させ 2. 05以上とすることにより、結 晶構造に歪みが生じトラップが形成されやすくなるため、励起後長時間経過後にお いても、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を有する。  [0007] Furthermore, the ratio of aluminum (A1) is 2.05 or more in terms of molar ratio to the total number of moles of the metal element represented by M, the pium (Eu), and the dies (Dy). When the ratio is set to 0 or less, the ratio of the aluminum is increased from 2.0, which is the stoichiometric ratio, to 2.05 or more, so that the crystal structure is distorted and traps are easily formed. Even after a long period of time, it has better afterglow luminance characteristics than conventional phosphorescent phosphors.
さらに、 Mに対するバリウムの割合を、モル比で 0. 01≤Ba/ (Sr+Ba)≤0. 35と するため、ストロンチウムの一部をバリウムで置換することで結晶中に適度な歪が生じ ることによって、励起後長時間経過後においても、従来の蓄光性蛍光体に比べさら に優れた残光輝度特性を有する。  Furthermore, since the molar ratio of barium to M is 0.01 ≤ Ba / (Sr + Ba) ≤ 0.35, moderate distortion occurs in the crystal by substituting barium for part of strontium. As a result, even after a long time has passed since the excitation, the phosphor has more excellent afterglow luminance characteristics than the conventional phosphorescent phosphor.
[0008] ここで、まず賦活剤としてのユウ口ピウムの添カ卩量力 Mで表す金属元素とユウロピ ゥム(Eu)とジスプロシウム(Dy)のモル数の合計に対するモル0 /0で 0. 5%未満の場 合では、賦活剤の量が少なすぎるため蓄光性蛍光体の輝度が全体的に低下し好ま しくなぐまた 2%を超える場合では、濃度消光等により残光輝度が低下するため、長 時間経過後の優れた残光輝度特性を得られない。よって、ユウ口ピウムの添加量は、 0. 5%以上 2%以下が最適である。 [0008] Here, 0. First, in mole 0/0 to the total mole number of the metal elements and Yuuropi © beam (Eu) and dysprosium (Dy) represented by添Ka卩量force M Yu port Piumu as an activator 5 When the content is less than 2%, the amount of the activator is too small, and the luminance of the phosphorescent phosphor is reduced as a whole, which is not preferable. When the content is more than 2%, the afterglow luminance is reduced due to concentration quenching and the like. Excellent afterglow luminance characteristics cannot be obtained after a long time. Therefore, it is optimal that the amount of palladium added is 0.5% or more and 2% or less.
そして、共賦活剤としてのジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比 で 1以下、すなわち DyZEu≤lの場合では、残光輝度特性に寄与するジスプロシゥ ムの添加量がユウ口ピウムの添加量に対して充分ではな 、ため、望ま 、残光輝度 特性が得られない。また、ジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比で 、 20を超える、すなわち 20く DyZEuの場合では、ジスプロシウムの割合が増加す るために母体色が白くなり励起効率が低下し、また発光に寄与しな 、アルミン酸ジス プロシゥム (DyAlO )等が副生するため全体的に大きく輝度が低下する。 [0009] さらに、ユウ口ピウムとジスプロシウムの添カ卩量の合計力 Mで表す金属元素とユウ 口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル0 /0で 1. 5%未満と なると、賦活剤および共賦活剤の量が少なすぎるため輝度特性が低下し、また 42% を超えると、相対的にストロンチウムの量が減少し残光輝度特性が低下する。 And, in the case of DyZEu≤l, the added amount of dysprosium as a co-activator in the molar ratio of dysprosium as a coactivator with respect to the amount of palladium in Eu, ie, in the case of DyZEu≤l, the amount of added dysprosium contributing to the afterglow luminance characteristics Therefore, afterglow luminance characteristics cannot be obtained as desired. In addition, in the case of DyZEu, the molar ratio of dysprosium added to the amount of added casket to palladium in the mouth exceeds 20, that is, in the case of DyZEu, the dysprosium ratio increases, the base color becomes white, the excitation efficiency decreases, and light emission occurs. However, since luminous dysprosium (DyAlO) or the like is produced as a by-product, the luminance is greatly reduced as a whole. [0009] Furthermore, a mole 0/0 to the total mole number of the metal elements and Yu port Piumu (Eu) and dysprosium (Dy) representing a total force M of添Ka卩量Yu port Piumu dysprosium 1.5% If the amount is less than the above, the amount of the activator and the co-activator is too small, so that the luminance characteristics decrease. If the amount exceeds 42%, the amount of the strontium relatively decreases and the afterglow luminance characteristics decrease.
そのため、賦活剤としてのユウ口ピウムの添カ卩量は、 Mで表す金属元素とユウ口ピウ ム  Therefore, the amount of syrup added to palladium as an activator depends on the amount of metal element represented by M and the amount of pium
(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル%で 0. 5%以上 2%以下 であり、さらに共賦活剤としてのジスプロシウムの添カ卩量は、ユウ口ピウムに対するモ ル比で 1く DyZEu≤ 20であり、かつユウ口ピウム(Eu)とジスプロシウム (Dy)の添 加量の合計力 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル 数の合計に対するモル%で 1. 5%以上 42%以下であることで、励起後 10— 12時間 程度の長時間経過後においても、従来の蓄光性蛍光体に比べ優れた残光輝度特 性を有する蓄光性蛍光体が得られる。  It is 0.5% or more and 2% or less in terms of mol% based on the total number of moles of (Eu) and dysprosium (Dy), and the amount of dysprosium added as a co-activator is determined by the molar ratio to palladium in the mouth. (1) DyZEu ≤ 20 and the total force of the added amounts of palladium (Eu) and dysprosium (Dy) in the mouth and the total number of moles of the metal element represented by M and pium (Eu) and dysprosium (Dy) in the mouth By being 1.5% or more and 42% or less in terms of mol%, the phosphorescent light has excellent afterglow brightness characteristics compared to conventional phosphorescent phosphors even after a long time of about 10 to 12 hours after excitation. A phosphor is obtained.
[0010] さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 05未満、すなわち A1Z (M + E u+Dy) < 2. 05とした場合〖こは、化学量論比である 2. 0とほぼ等しいかそれ以下で あるため、その残光輝度特性は従来の蓄光性蛍光体と同等か、または低下する。ま た、同じくモル比で 3. 0を超える、すなわち 3. 0<A1Z (M+Eu+Dy)とした場合に は、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない。 そのため、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジ スプロシゥム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下としたこと で、励起後 10— 12時間程度の長時間経過後においても、従来の蓄光性蛍光体に 比べ優れた残光輝度特性を有する蓄光性蛍光体が得られる。  [0010] Furthermore, the ratio of aluminum (A1) is less than 2.05 in molar ratio with respect to the total number of moles of the metal element represented by M, the pium (Eu) and the shim (Dy), ie, When A1Z (M + Eu + Dy) <2.05, this is almost equal to or less than the stoichiometric ratio of 2.0, so the afterglow luminance characteristic is the same as that of the conventional phosphorescent fluorescent light. Equal to or lower than the body. Similarly, when the molar ratio exceeds 3.0, that is, 3.0 <A1Z (M + Eu + Dy), the ratio of by-products increases and the luminance decreases, which is not preferable. . Therefore, the ratio of aluminum (A1) was set to a molar ratio of 2.05 or more to 3.0 or less with respect to the total number of moles of the metal element represented by M, the europium (Eu), and the dysprosium (Dy). As a result, a phosphorescent phosphor having excellent afterglow luminance characteristics compared to conventional phosphorescent phosphors can be obtained even after a long time of about 10 to 12 hours after excitation.
[0011] さらに、バリウムの割合を、 Mに対するモル比で 0. 01未満、すなわち BaZ (Sr+B a) < 0. 01とした場合は、ノリウムの割合が少なすぎるため結晶中に適度な歪がおき にくく効果がない。また、 Mに対するモル比で 0. 35を超える、すなわち 0. 35< Ba Z(Sr + Ba)とした場合では、相対的にストロンチウムの割合が減少し、全体的な輝 度の低下がおこるため好ましくな 、。 そのため、 Mに対するバリウムの割合力 モル比で 0. 01≤Ba/ (Sr + Ba)≤0. 3 5であることにより、励起後 10— 12時間程度の長時間経過後においても、従来の蓄 光性蛍光体に比べより優れた残光輝度特性を有する蓄光性蛍光体が得られる。 [0011] Furthermore, if the molar ratio of barium to M is less than 0.01, that is, if BaZ (Sr + Ba) <0.01, the ratio of norium is too small, so that a moderate strain is generated in the crystal. It is hard to occur and has no effect. In addition, when the molar ratio to M exceeds 0.35, that is, when 0.35 <BaZ (Sr + Ba), the ratio of strontium relatively decreases, and the overall brightness decreases. Preferred,. Therefore, the ratio of barium to M in terms of molar ratio, 0.01 ≤ Ba / (Sr + Ba) ≤ 0.35, makes the conventional storage possible even after a long time of about 10 to 12 hours after excitation. A luminous phosphor having better afterglow luminance characteristics than the luminous phosphor can be obtained.
[0012] この第 1の発明に係る蓄光性蛍光体によれば、残光輝度特性に寄与するジスプロ シゥムの添加量が蛍光輝度特性に寄与するユウ口ピウムの添加量に比べ増大し最適 化がはかられ、またアルミニウムの割合をィ匕学量論比である 2. 0より増加させ 2. 05 以上とすることにより、結晶構造に歪みが生じ、さらにストロンチウムの一部をバリウム で置換することで結晶中に適度な歪が生ずるため、励起後 10— 12時間程度の長時 間経過後においても、従来の蓄光性蛍光体に比べ優れた残光輝度特性を得ること ができる。 [0012] According to the phosphorescent phosphor of the first invention, the amount of dysprosium that contributes to the afterglow luminance characteristics is increased compared to the amount of europium that contributes to the fluorescent luminance characteristics, and optimization is achieved. By increasing the ratio of aluminum from the stoichiometric ratio of 2.0 to 2.05 or more, distortion occurs in the crystal structure, and furthermore, part of strontium is replaced by barium. As a result, an appropriate strain is generated in the crystal, so that even after a long time of about 10 to 12 hours after excitation, excellent afterglow luminance characteristics can be obtained as compared with the conventional phosphorescent phosphor.
(2)第 2の発明  (2) Second invention
本発明のうち第 2の発明に係る蓄光性蛍光体は、 MAI Oで表される化合物で、 M  The phosphorescent phosphor according to the second invention of the present invention is a compound represented by MAIO,
2 4  twenty four
は、ストロンチウム !:)とカルシウム (Ca)力 なる化合物を母結晶にすると共に、賦 活剤としてユウ口ピウム (Eu)を添加し、共賦活剤としてジスプロシウム (Dy)を添加し ており、ユウ口ピウム(Eu)の添カ卩量は、 Mで表す金属元素とユウ口ピウム(Eu)とジス プロシゥム(Dy)のモル数の合計に対して、モル%で 0. 5%以上 2%以下であり、ジ スプロシゥム(Dy)の添力卩量はユウ口ピウム(Eu)に対するモル比で 1く DyZEu≤ 20 であり、かつユウ口ピウム(Eu)とジスプロシウム(Dy)の添カ卩量の合計は、 Mで表す 金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル0 /0 で 1. 5%以上 42%以下であり、アルミニウム (A1)の割合は、 Mで表す金属元素とュ ゥロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で 2. 05以 上 3. 0以下であり、 Mに対するカルシウムの割合は、モル比で 0. 005≤Ca/ (Sr+ Ca)≤0. 15であることを特徴としている。 In addition to strontium! :) and calcium (Ca) compound as a mother crystal, Yu-Pt (Eu) is added as an activator, and Dysprosium (Dy) is added as a co-activator. The amount of spiked pork (Eu) added is 0.5% or more and 2% or less in terms of mol%, based on the total number of moles of the metal element represented by M, and the number of moles of yuu-piu (Eu) and dysprosium (Dy). The molar amount of dysprosium (Dy) added to palladium (Eu) is 1 and the molar ratio of DyZEu is less than 20, and the amount of added potassium sulphate of palladium (Eu) and dysprosium (Dy) is relatively small. total is less 42% 1.5% or more by mole 0/0 to the total mole number of the metal elements and Yu port Piumu (Eu) and dysprosium (Dy) expressed by M, the ratio of aluminum (A1) is The molar ratio of the metal element represented by M to the total number of moles of europium (Eu) and dysprosium (Dy) is 2.05 or more. 3. is 0 or less, the ratio of calcium to M is characterized in that a 0. 005≤Ca / (Sr + Ca) ≤0. 15 in molar ratio.
[0013] そして、まず賦活剤としてユウ口ピウム (Eu)を、 Mで表す金属元素とユウ口ピウム (E u)とジスプロシウム(Dy)のモル数の合計に対して、モル0 /0で 0. 5%以上 2%以下添 加し、共賦活剤としてジスプロシウム(Dy)をユウ口ピウム (Eu)に対するモル比で 1く DyZEu≤ 20添加し、かつユウ口ピウム(Eu)とジスプロシウム (Dy)の添加量の合計 を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に 対するモル%で1. 5%以上 42%以下としたことで、残光輝度特性に寄与するジスプ 口シゥムの添加量が蛍光輝度特性に寄与するユウ口ピウムの添加量に比べ増大し、 最適化がは力もれることにより、励起後 10— 12時間程度の長時間経過後においても 、従来の蓄光性蛍光体に比べ優れた残光輝度特性を有する。 [0013] Then, first, Yu port Piumu as an activating agent (Eu), relative to the total mole number of the metal elements and Yu port Piumu (E u) and dysprosium (Dy) expressed by M, a molar 0/0 0 Add dysprosium (Dy) as a co-activator in a molar ratio of 1 to Dyzeu (Eu) to DyZEu ≤ 20 and add Dyzeu ≤ 20 as a co-activator, and add Dyzeu ≤ 20 to Dyprosium (Eu) and Dysprosium (Dy). Is added to the total number of moles of the metal element represented by M, the palladium (Eu) and dysprosium (Dy). By adjusting the molar percentage to 1.5% or more and 42% or less, the amount of added disp-seam, which contributes to the afterglow luminance characteristics, is increased compared to the amount of palladium-pium, which contributes to the fluorescent luminance characteristics. Due to the weakness, even after a long time of about 10 to 12 hours after the excitation, the phosphor has excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor.
[0014] さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下とすると、アル ミニゥムの割合をィ匕学量論比である 2. 0より増加させ 2. 05以上とすることにより、結 晶構造に歪みが生じトラップが形成されやすくなるため、励起後長時間経過後にお いても、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を有する。  [0014] Furthermore, the ratio of aluminum (A1) is 2.05 or more in terms of molar ratio to the total number of moles of the metal element represented by M, the pium (Eu), and the dies (Dy). When the ratio is set to 0 or less, the ratio of the aluminum is increased from 2.0, which is the stoichiometric ratio, to 2.05 or more, so that the crystal structure is distorted and traps are easily formed. Even after a long period of time, it has better afterglow luminance characteristics than conventional phosphorescent phosphors.
さらに、 Mに対するカルシウムの割合を、モル比で 0. 005≤Ca/ (Sr+Ca)≤0. 15とするため、ストロンチウムの一部をカルシウムで置換することで結晶中に適度な 歪が生じることによって、励起後長時間経過後においても、従来の蓄光性蛍光体に 比べさらに優れた残光輝度特性を有する。  In addition, since the molar ratio of calcium to M is 0.005≤Ca / (Sr + Ca) ≤0.15, a certain amount of strain occurs in the crystal by substituting part of strontium with calcium. As a result, even after a long period of time after the excitation, the phosphor has more excellent afterglow luminance characteristics than the conventional phosphorescent phosphor.
[0015] ここで、まず賦活剤としてのユウ口ピウムの添カ卩量力 Mで表す金属元素とユウロピ ゥム(Eu)とジスプロシウム(Dy)のモル数の合計に対するモル0 /0で 0. 5%未満の場 合では、賦活剤の量が少なすぎるため蓄光性蛍光体の輝度が全体的に低下し好ま しくなぐまた 2%を超える場合では、濃度消光等により残光輝度が低下するため、長 時間経過後の優れた残光輝度特性を得られない。よって、ユウ口ピウムの添加量は、 0. 5%以上 2%以下が最適である。 [0015] Here, 0. First, in mole 0/0 to the total mole number of the metal elements and Yuuropi © beam (Eu) and dysprosium (Dy) represented by添Ka卩量force M Yu port Piumu as an activator 5 When the content is less than 2%, the amount of the activator is too small, and the luminance of the phosphorescent phosphor is reduced as a whole, which is not preferable. Excellent afterglow luminance characteristics cannot be obtained after a long time. Therefore, it is optimal that the amount of palladium added is 0.5% or more and 2% or less.
そして、共賦活剤としてのジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比 で 1以下、すなわち DyZEu≤lの場合では、残光輝度特性に寄与するジスプロシゥ ムの添加量がユウ口ピウムの添加量に対して充分ではな 、ため、望ま 、残光輝度 特性が得られない。また、ジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比で 、 20を超える、すなわち 20く DyZEuの場合では、ジスプロシウムの割合が増加す るために母体色が白くなり励起効率が低下し、また発光に寄与しな 、アルミン酸ジス プロシゥム (DyAlO )等が副生するため全体的に大きく輝度が低下する。  In addition, in the case of DyZEu≤l, the added amount of dysprosium as a coactivator in the molar ratio of the added amount of dysprosium to the palladium of Yuguchi, that is, in the case of DyZEu≤l, Therefore, afterglow luminance characteristics cannot be obtained as desired. In addition, in the case of DyZEu, the molar ratio of dysprosium added to the amount of added casket to palladium in the mouth exceeds 20, that is, in the case of DyZEu, the dysprosium ratio increases, the base color becomes white, the excitation efficiency decreases, and light emission occurs. However, since luminous dysprosium (DyAlO) or the like is produced as a by-product, the luminance is greatly reduced as a whole.
3  Three
[0016] さらに、ユウ口ピウムとジスプロシウムの添カ卩量の合計力 Mで表す金属元素とユウ 口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル0 /0で 1. 5%未満と なると、賦活剤および共賦活剤の量が少なすぎるため輝度特性が低下し、また 42% を超えると、相対的にストロンチウムの量が減少し残光輝度特性が低下する。 [0016] Furthermore, a mole 0/0 to the total mole number of the metal elements and Yu port Piumu (Eu) and dysprosium (Dy) representing a total force M of添Ka卩量Yu port Piumu dysprosium 1.5% Less than If so, the amount of the activator and co-activator is too small, so that the luminance characteristics are reduced. If it exceeds 42%, the amount of strontium is relatively reduced, and the afterglow luminance characteristics are reduced.
そのため、賦活剤としてのユウ口ピウムの添カ卩量は、 Mで表す金属元素とユウ口ピウ ム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル%で 0. 5%以上 2%以 下であり、さらに共賦活剤としてのジスプロシウムの添カ卩量は、ユウ口ピウムに対する モル比で 1く DyZEu≤ 20であり、かつユウ口ピウム(Eu)とジスプロシウム (Dy)の添 加量の合計力 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル 数の合計に対するモル%で 1. 5%以上 42%以下であることで、励起後 10— 12時間 程度の長時間経過後においても、従来の蓄光性蛍光体に比べ優れた残光輝度特 性を有する蓄光性蛍光体が得られる。  Therefore, the amount of sulfur added to palladium as an activator is 0.5% or more and 2% or more in terms of mol% based on the total number of moles of the metal element represented by M and the number of mols of palladium (Eu) and dysprosium (Dy). The amount of dysprosium added as a co-activator is as follows: the molar ratio of dysprosium to euphyllium is 1 and DyZEu ≤ 20, and the amounts of euprosium (Eu) and dysprosium (Dy) added. The total force of the metal element expressed by M and the molar percentage of the total number of moles of palladium (Eu) and dysprosium (Dy) in the mouth are 1.5% or more and 42% or less. Even after a long period of time, a phosphorescent phosphor having excellent afterglow luminance characteristics compared to conventional phosphorescent phosphors can be obtained.
[0017] さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 05未満、すなわち A1Z(M + E u+Dy) < 2. 05とした場合〖こは、化学量論比である 2. 0とほぼ等しいかそれ以下で あるため、その残光輝度特性は従来の蓄光性蛍光体と同等か、または低下する。ま た、同じくモル比で 3. 0を超える、すなわち 3. 0<A1Z(M+Eu+Dy)とした場合に は、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない。 そのため、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジ スプロシゥム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下としたこと で、励起後 10— 12時間程度の長時間経過後においても、従来の蓄光性蛍光体に 比べ優れた残光輝度特性を有する蓄光性蛍光体が得られる。  [0017] Furthermore, the ratio of aluminum (A1) is less than 2.05 in molar ratio with respect to the total number of moles of the metal element represented by M, the pium (Eu), and the shim (Dy). When A1Z (M + Eu + Dy) <2.05, this is almost equal to or less than the stoichiometric ratio of 2.0. Equal to or lower than the body. Similarly, when the molar ratio exceeds 3.0, that is, when 3.0 <A1Z (M + Eu + Dy), the proportion of by-products increases and the luminance decreases, which is not preferable. . Therefore, the ratio of aluminum (A1) was set to a molar ratio of 2.05 or more to 3.0 or less with respect to the total number of moles of the metal element represented by M, the palladium (Eu) and the dysprosium (Dy). As a result, a phosphorescent phosphor having excellent afterglow luminance characteristics compared to conventional phosphorescent phosphors can be obtained even after a long time of about 10 to 12 hours after excitation.
[0018] さらに、カルシウムの割合を、 Mに対するモル比で 0. 005未満、すなわち CaZ (Sr  Further, the ratio of calcium is less than 0.005 in molar ratio to M, that is, CaZ (Sr
+ Ca) < 0. 005とした場合は、カルシウムが少なすぎるため結晶中に適度な歪がお きに《効果がない。また、 Mに対するモル比で 0. 15を超える、すなわち 0. 15< Ca Z (Sr+Ca)とした場合では、アルミン酸カルシウム (CaAl 04)等が副生し、また相  In the case of + Ca) <0.005, calcium is too small, and there is no effect due to moderate distortion in the crystal. When the molar ratio to M exceeds 0.15, that is, when 0.15 <Ca Z (Sr + Ca), calcium aluminate (CaAl 04) and the like are produced as by-products and
2  2
対的にストロンチウムの割合が減少し、全体的な輝度の低下がおこるため好ましくな い。  On the contrary, the ratio of strontium is decreased, and the overall luminance is undesirably decreased.
そのため、 Mに対するカルシウムの割合力 モル比で 0. 005≤Ca/ (Sr+Ca)≤ 0. 15であることにより、励起後 10— 12時間程度の長時間経過後においても、従来 の蓄光性蛍光体に比べより優れた残光輝度特性を有する蓄光性蛍光体が得られる Therefore, since the ratio of the molar ratio of calcium to M is 0.005≤Ca / (Sr + Ca) ≤0.15, even after a long time of about 10-12 hours after excitation, Phosphorescent phosphor with better afterglow luminance characteristics than phosphorescent phosphor
[0019] この第 2の発明に係る蓄光性蛍光体によれば、残光輝度特性に寄与するジスプロ シゥムの添加量が蛍光輝度特性に寄与するユウ口ピウムの添加量に比べ増大し最適 化がはかられ、またアルミニウムの割合をィ匕学量論比である 2. 0より増加させ 2. 05 以上とすることにより、結晶構造に歪みが生じ、さらにストロンチウムの一部をカルシゥ ムで置換することで結晶中に適度な歪が生ずるため、励起後 10— 12時間程度の長 時間経過後にお!、ても、従来の蓄光性蛍光体に比べ優れた残光輝度特性を得るこ とがでさる。 According to the phosphorescent phosphor according to the second aspect of the invention, the amount of dysprosium that contributes to the afterglow luminance characteristics is increased compared to the amount of palladium that contributes to the fluorescent luminance characteristics, and optimization is achieved. By increasing the ratio of aluminum from the stoichiometric ratio of 2.0 to 2.05 or more, the crystal structure is distorted, and a part of strontium is replaced with calcium. As a result, an appropriate strain is generated in the crystal, so that even after a long time of about 10 to 12 hours from the excitation, it is possible to obtain excellent afterglow luminance characteristics compared to the conventional phosphorescent phosphor. Monkey
(3)第 3の発明  (3) Third invention
本発明のうち第 3の発明に係る蓄光性蛍光体は、 MAI Oで表される化合物で、 M  The phosphorescent phosphor according to the third invention of the present invention is a compound represented by MAIO,
2 4  twenty four
は、ストロンチウム(Sr)とバリウム (Ba)とカルシウム (Ca)とからなる化合物を母結晶に すると共に、賦活剤としてユウ口ピウム (Eu)を添加し、共賦活剤としてジスプロシウム (Dy)を添カ卩しており、ユウ口ピウム (Eu)の添カ卩量は、 Mで表す金属元素とユウロピ ゥム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル0 /0で 0. 5%以上 2% 以下であり、ジスプロシウム(Dy)の添力卩量はユウ口ピウム(Eu)に対するモル比で 1 < DyZEu≤ 20であり、かつユウ口ピウム(Eu)とジスプロシウム (Dy)の添カ卩量の合 計は、 Mで表す金属元素とユウ口ピウム (Eu)とジスプロシウム (Dy)のモル数の合計 に対するモル%で 1. 5%以上 42%以下であり、アルミニウム (A1)の割合は、 Mで表 す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対して、モ ル比で 2. 05以上 3. 0以下であり、 Mに対するバリウムの割合は、モル比で 0. 01≤ Ba/ (Sr + Ba + Ca)≤0. 3であり、 Mに対するカルシウムの割合は、モル比で 0. 0 05≤Ca/ (Sr+Ba + Ca)≤0. 1であることを特徴としている。 Is to make a compound consisting of strontium (Sr), barium (Ba), and calcium (Ca) into a mother crystal, add palladium (Eu) as an activator, and add dysprosium (Dy) as a coactivator. has mosquito卩,添Ka卩量Yu port Piumu (Eu), relative to the total mole number of the metal elements and Yuuropi © beam (Eu) and dysprosium (Dy) expressed by M, a molar 0/0 0.5% or more and 2% or less, the amount of dysprosium (Dy) added is 1 <DyZEu≤20 in terms of molar ratio with respect to palladium (Eu) in the mouth, and pium (Eu) in the mouth and dysprosium (Dy) are used. ) Is 1.5% or more and 42% or less in terms of mol% based on the total number of moles of the metal element represented by M and the number of moles of palladium (Eu) and dysprosium (Dy). The ratio of A1) is expressed by the total number of moles of the metal element represented by M and the moles of palladium (Eu) and dysprosium (Dy). The ratio of barium to M is 0.011 ≤ Ba / (Sr + Ba + Ca) ≤ 0.3 in molar ratio, and the ratio of calcium to M is The molar ratio is 0.005≤Ca / (Sr + Ba + Ca) ≤0.1.
[0020] そして、まず賦活剤としてユウ口ピウム (Eu)を、 Mで表す金属元素とユウ口ピウム (E u)とジスプロシウム(Dy)のモル数の合計に対して、モル0 /0で 0. 5%以上 2%以下添 加し、共賦活剤としてジスプロシウム(Dy)をユウ口ピウム (Eu)に対するモル比で 1く DyZEu≤ 20添加し、かつユウ口ピウム(Eu)とジスプロシウム (Dy)の添加量の合計 を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に 対するモル%で1. 5%以上 42%以下としたことで、残光輝度特性に寄与するジスプ 口シゥムの添加量が蛍光輝度特性に寄与するユウ口ピウムの添加量に比べ増大し、 最適化がは力もれることにより、励起後 10— 12時間程度の長時間経過後においても 、従来の蓄光性蛍光体に比べ優れた残光輝度特性を有する。 [0020] Then, first, Yu port Piumu as an activating agent (Eu), relative to the total mole number of the metal elements and Yu port Piumu (E u) and dysprosium (Dy) expressed by M, a molar 0/0 0 Add dysprosium (Dy) as a co-activator in a molar ratio of 1 to Dyzeu (Eu) to DyZEu ≤ 20 and add Dyzeu ≤ 20 as a co-activator, and add Dyzeu ≤ 20 to Dyprosium (Eu) and Dysprosium (Dy). Is added to the total number of moles of the metal element represented by M, the palladium (Eu) and dysprosium (Dy). By adjusting the molar percentage to 1.5% or more and 42% or less, the amount of added disp-seam, which contributes to the afterglow luminance characteristics, is increased compared to the amount of palladium-pium, which contributes to the fluorescent luminance characteristics. Due to the weakness, even after a long time of about 10 to 12 hours after the excitation, the phosphor has excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor.
[0021] さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下とすると、アル ミニゥムの割合をィ匕学量論比である 2. 0より増加させ 2. 05以上とすることにより、結 晶構造に歪みが生じトラップが形成されやすくなるため、励起後長時間経過後にお いても、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を有する。  [0021] Furthermore, the ratio of aluminum (A1) is 2.05 or more in a molar ratio to the total number of moles of the metal element represented by M, the pium (Eu), and the shim (Dy). When the ratio is set to 0 or less, the ratio of the aluminum is increased from 2.0, which is the stoichiometric ratio, to 2.05 or more, so that the crystal structure is distorted and traps are easily formed. Even after a long period of time, it has better afterglow luminance characteristics than conventional phosphorescent phosphors.
さらに、 Mに対するバリウムの割合を、モル比で 0. 01≤Ba/ (Sr+Ba + Ca)≤0. 3とし、 Mに対するカルシウムの割合を、モル比で 0. 005≤Ca/ (Sr + Ba + Ca)≤0 . 1とするため、ストロンチウムの一部をバリウムおよびカルシウムで置換することで結 晶中に適度な歪が生じることによって、励起後長時間経過後においても、従来の蓄 光性蛍光体に比べさらに優れた残光輝度特性を有する。  Furthermore, the molar ratio of barium to M is 0.01 ≤Ba / (Sr + Ba + Ca) ≤0.3, and the calcium ratio to M is 0.005≤Ca / (Sr + (Ba + Ca) ≤ 0.1, by replacing a part of strontium with barium and calcium, an appropriate strain is generated in the crystal. It has better afterglow luminance characteristics than the luminescent phosphor.
[0022] ここで、まず賦活剤としてのユウ口ピウムの添カ卩量力 Mで表す金属元素とユウロピ ゥム(Eu)とジスプロシウム(Dy)のモル数の合計に対するモル0 /0で 0. 5%未満の場 合では、賦活剤の量が少なすぎるため蓄光性蛍光体の輝度が全体的に低下し好ま しくなぐまた 2%を超える場合では、濃度消光等により残光輝度が低下するため、長 時間経過後の優れた残光輝度特性を得られない。よって、ユウ口ピウムの添加量は、 0. 5%以上 2%以下が最適である。 [0022] Here, 0. First, in mole 0/0 to the total mole number of the metal elements and Yuuropi © beam (Eu) and dysprosium (Dy) represented by添Ka卩量force M Yu port Piumu as an activator 5 When the content is less than 2%, the amount of the activator is too small, and the luminance of the phosphorescent phosphor is reduced as a whole, which is not preferable. When the content is more than 2%, the afterglow luminance is reduced due to concentration quenching and the like. Excellent afterglow luminance characteristics cannot be obtained after a long time. Therefore, it is optimal that the amount of palladium added is 0.5% or more and 2% or less.
そして、共賦活剤としてのジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比 で 1以下、すなわち DyZEu≤lの場合では、残光輝度特性に寄与するジスプロシゥ ムの添加量がユウ口ピウムの添加量に対して充分ではな 、ため、望ま 、残光輝度 特性が得られない。また、ジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比で 、 20を超える、すなわち 20く DyZEuの場合では、ジスプロシウムの割合が増加す るために母体色が白くなり励起効率が低下し、また発光に寄与しな 、アルミン酸ジス プロシゥム (DyAlO )等が副生するため全体的に大きく輝度が低下する。  In addition, in the case of DyZEu≤l, the added amount of dysprosium as a coactivator in the molar ratio of the added amount of dysprosium to the palladium of Yuguchi, that is, in the case of DyZEu≤l, Therefore, afterglow luminance characteristics cannot be obtained as desired. In addition, in the case of DyZEu, the molar ratio of dysprosium added to the amount of added casket to palladium in the mouth exceeds 20, that is, in the case of DyZEu, the dysprosium ratio increases, the base color becomes white, the excitation efficiency decreases, and light emission occurs. However, since luminous dysprosium (DyAlO) or the like is produced as a by-product, the luminance is greatly reduced as a whole.
3  Three
[0023] さらに、ユウ口ピウムとジスプロシウムの添カ卩量の合計力 Mで表す金属元素とユウ 口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル0 /0で 1. 5%未満と なると、賦活剤および共賦活剤の量が少なすぎるため輝度特性が低下し、また 42% を超えると、相対的にストロンチウムの量が減少し残光輝度特性が低下する。 [0023] Furthermore, the metal element expressed by the total force M of the added amount of the casket added to the palladium and dysprosium of Yu and the metal When the mole 0/0 1. less than 5% mouth Piumu and (Eu) to moles total of dysprosium (Dy), luminance characteristics for the amount of the activator and co-activator is too small is reduced and also 42% When it exceeds, the amount of strontium is relatively reduced, and the afterglow luminance characteristic is deteriorated.
そのため、賦活剤としてのユウ口ピウムの添カ卩量は、 Mで表す金属元素とユウ口ピウ ム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル%で 0. 5%以上 2%以 下であり、さらに共賦活剤としてのジスプロシウムの添カ卩量は、ユウ口ピウムに対する モル比で 1く DyZEu≤ 20であり、かつユウ口ピウム(Eu)とジスプロシウム (Dy)の添 加量の合計力 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル 数の合計に対するモル%で 1. 5%以上 42%以下であることで、励起後 10— 12時間 程度の長時間経過後においても、従来の蓄光性蛍光体に比べ優れた残光輝度特 性を有する蓄光性蛍光体が得られる。  Therefore, the amount of sulfur added to palladium as an activator is 0.5% or more and 2% or more in terms of mol% based on the total number of moles of the metal element represented by M and the number of mols of palladium (Eu) and dysprosium (Dy). The amount of dysprosium added as a co-activator is as follows: the molar ratio of dysprosium to euphyllium is 1 and DyZEu ≤ 20, and the amounts of euprosium (Eu) and dysprosium (Dy) added. The total force of the metal element expressed by M and the molar percentage of the total number of moles of palladium (Eu) and dysprosium (Dy) in the mouth are 1.5% or more and 42% or less. Even after a long period of time, a phosphorescent phosphor having excellent afterglow luminance characteristics compared to conventional phosphorescent phosphors can be obtained.
[0024] さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 05未満、すなわち A1Z (M + E u+Dy) < 2. 05とした場合〖こは、化学量論比である 2. 0とほぼ等しいかそれ以下で あるため、その残光輝度特性は従来の蓄光性蛍光体と同等か、または低下する。ま た、同じくモル比で 3. 0を超える、すなわち 3. 0<A1Z (M+Eu+Dy)とした場合に は、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない。 そのため、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジ スプロシゥム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下としたこと で、励起後 10— 12時間程度の長時間経過後においても、従来の蓄光性蛍光体に 比べ優れた残光輝度特性を有する蓄光性蛍光体が得られる。 [0024] Furthermore, the ratio of aluminum (A1) is less than 2.05 in molar ratio with respect to the total number of moles of the metal element represented by M, the pium (Eu) and the shim (Dy). When A1Z (M + Eu + Dy) <2.05, this is almost equal to or less than the stoichiometric ratio of 2.0, so the afterglow luminance characteristic is the same as that of the conventional phosphorescent fluorescent light. Equal to or lower than the body. Similarly, when the molar ratio exceeds 3.0, that is, 3.0 <A1Z (M + Eu + Dy), the ratio of by-products increases and the luminance decreases, which is not preferable. . Therefore, the ratio of aluminum (A1) was set to a molar ratio of 2.05 or more to 3.0 or less with respect to the total number of moles of the metal element represented by M, the europium (Eu), and the dysprosium (Dy). As a result, a phosphorescent phosphor having excellent afterglow luminance characteristics compared to conventional phosphorescent phosphors can be obtained even after a long time of about 10 to 12 hours after excitation.
[0025] さらに、バリウムの割合を、 Mに対するモル比で 0. 01未満、すなわち BaZ (Sr+B a + Ca) < 0. 01とした場合は、ノリウムの割合が少なすぎるため結晶中に適度な歪 がおきにくく効果がない。また、 Mに対するモル比で 0. 3を超える、すなわち 0. 3< B aZ (Sr + Ba + Ca)とした場合では、相対的にストロンチウムの割合が減少し、全体 的な輝度の低下がおこるため好ましくな 、。 Further, when the ratio of barium is less than 0.01 in terms of a molar ratio to M, that is, BaZ (Sr + Ba + Ca) <0.01, the ratio of norium is too small, so There is no effect due to little distortion. When the molar ratio to M exceeds 0.3, that is, when 0.3 <BaZ (Sr + Ba + Ca), the ratio of strontium is relatively reduced, and the overall luminance is reduced. It is not preferable because.
一方、カルシウムの割合を、 Mに対するモル比で 0. 005未満、すなわち CaZ (Sr + Ba + Ca) < 0. 005とした場合は、カルシウムの割合が少なすぎるため結晶中に適 度な歪がおきにくく効果がない。また、 Mに対するモル比で 0. 1を超える、すなわち 0 . 1く CaZ (Sr+Ba + Ca)とした場合では、アルミン酸カルシウム(CaAl O )等が副 On the other hand, when the molar ratio of calcium to M is less than 0.005, that is, when CaZ (Sr + Ba + Ca) <0.005, the calcium ratio is too small, so Slight distortion is hard to occur and has no effect. In addition, when the molar ratio to M exceeds 0.1, that is, when it is 0.1 and CaZ (Sr + Ba + Ca) is used, calcium aluminate (CaAl 2 O 3) etc.
2 4 生し、また相対的にストロンチウムの割合が減少し、全体的な輝度の低下がおこるた め好ましくない。  2 4, and the ratio of strontium is relatively reduced, and the overall luminance is undesirably reduced.
[0026] そのため、 Mに対するバリウムの割合力 モル比で 0. 01≤Ba/ (Sr + Ba + Ca)≤ 0. 3であり、 Mに対するカルシウムの割合が、モル比で 0. 005≤Ca/ (Sr+Ba+C a)≤0. 1であることによって、励起後 10— 12時間程度の長時間経過後においても、 従来の蓄光性蛍光体に比べより優れた残光輝度特性を有する蓄光性蛍光体が得ら れる。  [0026] Therefore, the ratio force of barium to M is 0.011≤Ba / (Sr + Ba + Ca) ≤0.3 in molar ratio, and the ratio of calcium to M is 0.005≤Ca / Since (Sr + Ba + Ca) ≤0.1, even after a long time of about 10-12 hours after excitation, the phosphorescent light has better afterglow luminance characteristics than the conventional phosphorescent phosphor. A luminescent phosphor is obtained.
この第 3の発明に係る蓄光性蛍光体によれば、残光輝度特性に寄与するジスプロ シゥムの添加量が蛍光輝度特性に寄与するユウ口ピウムの添加量に比べ増大し最適 化がはかられ、またアルミニウムの割合をィ匕学量論比である 2. 0より増加させ 2. 05 以上とすることにより、結晶構造に歪みが生じ、さらにストロンチウムの一部をバリウム およびカルシウムで置換することで結晶中に適度な歪が生ずるため、励起後 10— 12 時間程度の長時間経過後においても、従来の蓄光性蛍光体に比べ優れた残光輝 度特性を得ることができる。  According to the phosphorescent phosphor according to the third aspect of the invention, the amount of dysprosium that contributes to the afterglow luminance characteristics is increased as compared with the amount of europium that contributes to the fluorescent luminance characteristics, and optimization is achieved. By increasing the ratio of aluminum from 2.0, which is the stoichiometric ratio, to 2.05 or more, the crystal structure is distorted, and furthermore, a part of strontium is replaced by barium and calcium. Since an appropriate strain is generated in the crystal, even after a long time of about 10 to 12 hours after the excitation, excellent afterglow luminance characteristics can be obtained as compared with the conventional phosphorescent phosphor.
[0027] (4)第 4の発明 (4) Fourth Invention
本発明のうち第 4の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製 造方法は、アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、バリウム化合物 (Ba)と、ユウ口ピウム (Eu)化合物と、ジスプロシウム (Dy)化合物とを各元素が下記 のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したこと を特徴としている。  The method for producing the alkaline earth metal aluminate phosphorescent phosphor according to the fourth aspect of the present invention comprises an aluminum (A1) compound, a strontium (Sr) compound, a barium compound (Ba), It is characterized in that a pium (Eu) compound and a dysprosium (Dy) compound are mixed so that each element has the following molar ratio, fired in a reducing atmosphere, and then cooled and pulverized.
0. 005≤Eu/ (Sr + Ba + Eu + Dy)≤0. 02、  0.005≤Eu / (Sr + Ba + Eu + Dy) ≤0.02,
l < Dy/Eu≤20、  l <Dy / Eu≤20,
0. 015≤ (Eu + Dy) / (Sr+Ba + Eu+Dy)≤0. 42、  0.0015≤ (Eu + Dy) / (Sr + Ba + Eu + Dy) ≤0.42,
0. 01≤Ba/ (Sr+Ba)≤0. 35、  0.01≤Ba / (Sr + Ba) ≤0.35,
2. 05≤Al/ (Sr+Ba+Eu+Dy)≤3. 0  2.05≤Al / (Sr + Ba + Eu + Dy) ≤3.0
この第 4の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法に よれば、励起後 10— 12時間程度の長時間経過後においても、従来の蓄光性蛍光 体に比べ優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光 体を製造できる。 In the method for producing an alkaline earth metal aluminate phosphorescent phosphor according to the fourth invention, According to this, even after a long time of about 10 to 12 hours after the excitation, an alkaline earth metal aluminate phosphorescent phosphor having excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor can be manufactured.
[0028] (5)第 5の発明 (5) Fifth Invention
本発明のうち第 5の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製 造方法は、アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、カルシウム化合 物(Ca)と、ユウ口ピウム (Eu)化合物と、ジスプロシウム (Dy)化合物とを各元素が下 記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したこ とを特徴としている。  The method for producing an alkaline earth metal aluminate phosphorescent phosphor according to the fifth invention of the present invention is a method for producing an aluminum (A1) compound, a strontium (Sr) compound, a calcium compound (Ca), It is characterized in that an orifice (Eu) compound and a dysprosium (Dy) compound are mixed so that each element has the following molar ratio, fired in a reducing atmosphere, and then cooled and pulverized.
0. 005≤Eu/ (Sr+Ca+Eu+Dy)≤0. 02、  0.005≤Eu / (Sr + Ca + Eu + Dy) ≤0.02,
l < Dy/Eu≤20、  l <Dy / Eu≤20,
0. 015≤ (Eu + Dy) / (Sr+Ca + Eu + Dy)≤0. 42、  0.0015≤ (Eu + Dy) / (Sr + Ca + Eu + Dy) ≤0.42,
0. 005≤Ca/ (Sr+Ca)≤0. 15、  0.005≤Ca / (Sr + Ca) ≤0.15,
2. 05≤Al/ (Sr+Ca+Eu+Dy)≤3. 0  2.05≤Al / (Sr + Ca + Eu + Dy) ≤3.0
この第 5の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法に よれば、励起後 10— 12時間程度の長時間経過後においても、従来の蓄光性蛍光 体に比べ優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光 体を製造できる。  According to the method for producing an alkaline earth metal aluminate phosphorescent phosphor according to the fifth invention, even after a long time of about 10 to 12 hours after excitation, the phosphorescent phosphor is superior to the conventional phosphorescent phosphor. An alkaline earth metal aluminate phosphorescent phosphor having afterglow luminance characteristics can be manufactured.
[0029] (6)第 6の発明 (6) Sixth Invention
本発明のうち第 6の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製 造方法は、アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、バリウム (Ba)化 合物と、カルシウム化合物(Ca)と、ユウ口ピウム(Eu)化合物と、ジスプロシウム(Dy) 化合物とを各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、 その後冷却、粉砕したことを特徴としている。  The method for producing an alkaline earth metal aluminate phosphorescent phosphor according to the sixth aspect of the present invention comprises: an aluminum (A1) compound, a strontium (Sr) compound, and a barium (Ba) compound. A calcium compound (Ca), a palladium (Eu) compound, and a dysprosium (Dy) compound were mixed at the following molar ratios, calcined in a reducing atmosphere, and then cooled and pulverized. It is characterized by:
0. 005≤Eu/ (Sr + Ba + Ca + Eu+Dy)≤0. 02、  0.005≤Eu / (Sr + Ba + Ca + Eu + Dy) ≤0.02,
l < Dy/Eu≤20、  l <Dy / Eu≤20,
0. 015≤ (Eu + Dy) / (Sr+Ba + Ca + Eu + Dy)≤0. 42、  0.0015≤ (Eu + Dy) / (Sr + Ba + Ca + Eu + Dy) ≤0.42,
0. 01≤Ba/ (Sr+Ba + Ca)≤0. 3、 0. 005≤Ca/ (Sr + Ba + Ca)≤0. 1、 0.01 ≤Ba / (Sr + Ba + Ca) ≤0.3, 0.005≤Ca / (Sr + Ba + Ca) ≤0.1,
2. 05≤Al/ (Sr+Ba+Ca+Eu+Dy)≤3. 0  2.05≤Al / (Sr + Ba + Ca + Eu + Dy) ≤3.0
この第 6の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法に よれば、励起後 10— 12時間程度の長時間経過後においても、従来の蓄光性蛍光 体に比べ優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光 体を製造できる。  According to the method for producing an alkaline earth metal aluminate phosphorescent phosphor according to the sixth aspect of the present invention, even after a long time of about 10 to 12 hours after excitation, the phosphorescent phosphor is superior to the conventional phosphorescent phosphor. An alkaline earth metal aluminate phosphorescent phosphor having afterglow luminance characteristics can be manufactured.
[0030] (7)第 7の発明 (7) Seventh Invention
本発明のうち第 7の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製 造方法は、前記第 4、第 5または第 6の発明に係るアルカリ土類金属アルミン酸塩蓄 光性蛍光体の製造方法において、原料中に、フラックスとしてホウ素化合物を添加し 焼成したことを特徴としている。そして、原料中に、フラックスとしてホウ素化合物を添 加し焼成したことで、低 、焼成温度でも優れたアルカリ土類金属元素アルミン酸塩蓄 光性蛍光体を製造できる。なお、ホウ素化合物としては例えばホウ酸 (H BO )が好  The method for producing an alkaline earth metal aluminate luminous phosphor according to the seventh invention of the present invention includes the alkaline earth metal aluminate luminous phosphor according to the fourth, fifth, or sixth invention. The method for producing a phosphor is characterized in that a boron compound is added as a flux to the raw material and the mixture is fired. Then, by adding a boron compound as a flux to the raw material and firing the mixture, an alkaline earth metal element aluminate phosphorescent phosphor excellent at a low firing temperature can be manufactured. As the boron compound, for example, boric acid (HBO) is preferable.
3 3 適に用いられるが、ホウ酸に限らずホウ素化合物であれば同様の効果が得られる。ま た、添加するホウ素化合物の量としては、原料の総質量に対して 0. 01— 10%程度 添加するのが良ぐより好ましくは、 0. 5— 3%程度である。  3 3 It is suitably used, but the same effect can be obtained not only with boric acid but also with boron compounds. The amount of the boron compound to be added is preferably about 0.01 to 10%, more preferably about 0.5 to 3%, based on the total mass of the raw materials.
[0031] ここで、添加するホウ素化合物の量力 原料の総質量に対して 10%を超える場合 では、焼成物が硬く焼結してしまうため、粉砕が困難となり、また粉砕による輝度の低 下がおこってしまう。このため、添加するホウ素化合物の量は原料の総質量に対して 0. 01— 10%が好ましい。 [0031] Here, when the amount of the boron compound to be added exceeds 10% of the total mass of the raw material, the fired product is hard and sintered, so that pulverization becomes difficult, and the reduction in luminance due to the pulverization decreases. Get offended. Therefore, the amount of the boron compound to be added is preferably 0.01% to 10% based on the total mass of the raw materials.
この第 7の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法に よれば、前記第 4、第 5または第 6の発明に係るアルカリ土類金属アルミン酸塩蓄光 性蛍光体の製造方法にお!、て、低 、焼成温度でも優れたアルカリ土類金属元素ァ ルミン酸塩蓄光性蛍光体を製造できる。  According to the method for producing an alkaline earth metal aluminate phosphorescent phosphor according to the seventh invention, the alkaline earth metal aluminate phosphorescent phosphor according to the fourth, fifth, or sixth invention is provided. According to the manufacturing method, an alkaline earth metal element aluminate phosphorescent phosphor which is excellent even at a low firing temperature can be manufactured.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]試料 1 (3)の粒度分布を示した図である。 FIG. 1 is a view showing a particle size distribution of sample 1 (3).
[図 2]試料 2—(9)の粉末 X線回折図形である。  FIG. 2 is an X-ray powder diffraction pattern of Sample 2- (9).
[図 3]試料 3- (6)の粉末 X線回折図形である。 発明を実施するための最良の形態 FIG. 3 is an X-ray powder diffraction pattern of Sample 3- (6). BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下、本発明の一実施の形態における蓄光性蛍光体を製造する工程を説明する。  Hereinafter, the steps of manufacturing the phosphorescent phosphor according to one embodiment of the present invention will be described.
まず、 Mで表す金属元素としてのストロンチウム(Sr)、バリウム(Ba)およびカルシゥ ム(Ca)の原料として例えばそれぞれ炭酸ストロンチウム(SrCO )、炭酸バリウム (Ba  First, strontium (Sr), barium (Ba) and barium (Ca) as raw materials of metal elements represented by M, such as strontium carbonate (SrCO) and barium carbonate (Ba
3  Three
CO )および炭酸カルシウム(CaCO )に、賦活剤としてのユウ口ピウム (Eu)の原料と CO 2) and calcium carbonate (CaCO 3) as raw materials for palladium (Eu) as an activator
3 3 3 3
して酸ィ匕ユウ口ピウム (Eu O )を添カロし、共賦活剤としてのジスプロシウム(Dy)の原  And add porcelain (Eu 2 O 3) to the source of dysprosium (Dy) as a co-activator.
2 3  twenty three
料として酸化ジスプロシウム(Dy O )を添カ卩する。このときのユウ口ピウム(Eu)の添カロ  Dysprosium oxide (Dy 2 O 3) is added as a raw material. At this time, the added calorie of pium (Eu)
2 3  twenty three
量は、 Mで表す金属元素とユウ口ピウムとジスプロシウムのモル数の合計に対するモ ル0 /0で 0. 5%から 2%であり、ジスプロシウム(Dy)の添カ卩量は、ユウ口ピウム(Eu)に 対するモル比で 1を超え 20以下であり、かつユウ口ピウム(Eu)とジスプロシウム(Dy) の添加量の合計は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)の モル数の合計に対するモル0 /0で 1. 5%以上 42%以下である。さらに、アルミニウム( A1)の原料として例えばアルミナ(Al O )をストロンチウム、ノ リウム、カルシウム、ユウ The amount is 2% 0.5% by molar 0/0 to moles total of metal elements and Yu port Piumu dysprosium expressed by M,添Ka卩量of dysprosium (Dy) are, Yu port Piumu (Eu) in a molar ratio of more than 1 to 20 or less, and the total amount of palladium (Eu) and dysprosium (Dy) added to the metal element represented by M, palladium (Eu) and dysprosium (Eu) mole 0/0 1. 5% or less than 42% relative to the total number of moles of dy). Furthermore, as a raw material of aluminum (A1), for example, alumina (Al 2 O 3) is converted to strontium, norium, calcium,
2 3  twenty three
口ピウムおよびジスプロシウムのモル数の和に対して、アルミニウムのモル比で 2. 05 以上 2. 7以下になるように加え、フラックスとしてのホウ素化合物として例えばホウ酸( H BO )を原料の総重量に対して 1一 10%程度添加し、ボールミル等を用いて充分 The molar ratio of aluminum to the sum of the number of moles of palladium and dysprosium is 2.05 or more and 2.7 or less. For example, boric acid (HBO) is used as a boron compound as a flux. About 11% to 10%, and use a ball mill etc.
3 3 3 3
に混合する。この混合物を還元雰囲気中例えば窒素一水素混合ガス気流中で、約 1 300°Cから 1500°Cの焼成温度で、約 1時間から 6時間の間焼成を行い、その後室温 まで約 1時間から 6時間かけて冷却する。得られた焼成物を粉砕し篩分して、所定の 粒径の蓄光性蛍光体を得る。  Mix. The mixture is calcined in a reducing atmosphere, for example, a mixed gas stream of nitrogen and hydrogen at a calcining temperature of about 1300 ° C to 1500 ° C for about 1 hour to 6 hours, and then to room temperature for about 1 hour to 6 hours. Cool over time. The obtained fired product is pulverized and sieved to obtain a phosphorescent phosphor having a predetermined particle size.
[0034] なおこのとき、添加する賦活剤としてのユウ口ピウム (Eu)の添カ卩量とは、金属元素 Mと賦活剤ユウ口ピウム(Eu)と共賦活剤ジスプロシウム(Dy)の各々の元素のモル数 の合計に対するモル%で表され、例えば、 Mで表す金属元素がストロンチウムおよび ノ リウムの場合であって、ストロンチウムとバリウムのモル数の合計に対するバリウムの モル比を 0. 1とし、ユウ口ピウムを 1モル0 /0添加、ジスプロシウムを 2モル0 /0添カ卩する 場合は、ストロンチウム元素が 0. 873モル、バリウム元素が 0. 097モル、ユウ口ピウム 元素が 0. 01モル、ジスプロシウム元素が 0. 02モルとなるように、各々の元素の化合 物を配合する。これにより、各々の元素のモル数の合計 1に対して、ユウ口ピウムの量 はモル0 /0で 1%となり、またストロンチウムとバリウムのモル数の合計に対するバリウム のモル比は 0. 1となる。 [0034] At this time, the added amount of palladium (Eu) as an activator to be added refers to the amount of each of the metal element M, the activator palladium (Eu) and the co-activator dysprosium (Dy). It is expressed in mol% based on the total number of moles of the element. For example, when the metal element represented by M is strontium and norium, the molar ratio of barium to the total number of moles of strontium and barium is 0.1, Yu port Piumu 1 mole 0/0 added, to 2 mol 0/0 添Ka卩dysprosium is strontium element is 0.873 mol, barium element 0.097 mol, Yu port Piumu element 0.01 mol The compound of each element is blended so that the dysprosium element becomes 0.02 mol. This makes it possible to determine the amount of pium Stood 1% mole 0/0, the molar ratio of barium to the total mole number of strontium and barium will be 0.1.
[0035] また、上記実施の形態では、フラックスとしてホウ素化合物を用いて焼成した力 焼 成温度が反応に要する温度に対して充分に高温であれば、例えば 1450°C程度であ れば、フラックスを用いずに焼成してもよぐこの場合得られた焼成物の凝集は弱ぐ 粉砕が容易となるため、粉砕による輝度低下を低減できる。  In the above embodiment, if the firing temperature using the boron compound as the flux is sufficiently higher than the temperature required for the reaction, for example, about 1450 ° C. In this case, the obtained fired product is weakly agglomerated, and crushing is facilitated, so that a decrease in luminance due to crushing can be reduced.
なお、本願発明における Mで表す金属元素は、実質的にストロンチウムとバリウム、 ストロンチウムとカルシウム、またはストロンチウムとバリウムとカルシウムと力も構成さ れていればよぐこれらの元素の他に微量の別の元素が含まれていたとしても、本願 発明の範囲に含まれる。  The metal element represented by M in the present invention is substantially a strontium and barium, a strontium and calcium, or a strontium, barium and calcium and a trace amount of another element in addition to these elements as long as they are also composed of power. Is included in the scope of the present invention.
[0036] 次に、上記一実施の形態の実施例を説明する。  Next, an example of the above embodiment will be described.
(1)実験例 1  (1) Experimental example 1
まず始めに、ユウ口ピウム (Eu)およびジスプロシウム(Dy)の添カ卩量と、励起後長時 間経過後における残光輝度特性との関係を説明する。  First, the relationship between the added amount of palladium (Eu) and dysprosium (Dy) and the afterglow luminance characteristics after a long time after the excitation will be described.
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 128.88g (0. 873  First, strontium carbonate (SrCO) 128.88 g (0.873) was used as a raw material for strontium (Sr).
3  Three
モル)に、ノ リウム(Ba)の原料として炭酸バリウム(BaCO )を 19.14g (0. 097モル)  Mol), and 19.14 g (0.097 mol) of barium carbonate (BaCO) as a raw material for norium (Ba).
3  Three
加え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )を  In addition, as a raw material of the palladium of Euguchi as an activator,
2 3 twenty three
1.76g (Euとして 0. 01モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料と して酸化ジスプロシウム(Dy O )を 3.73g (Dyとして 0. 02モル)添加し、さらにアルミ 1.76 g (0.01 mol as Eu) was added, and 3.73 g (0.02 mol as Dy) of dysprosium oxide (DyO) was added as a raw material of dysprosium (Dy) as a co-activator.
2 3  twenty three
-ゥム原料としてのアルミナ(Al O )を 117.26g (Alとして 2. 3モル、すなわち AlZ (S  117.26 g of alumina (Al 2 O 3) (2.3 moles as Al, ie AlZ (S
2 3  twenty three
r + Ba + Eu + Dy) = 2. 3)加え、さらにフラックスとしてのホウ素(B)化合物としてホ ゥ酸 (H BO )を 3. 2g (すなわち原料に対して 1. 2質量%)添加し、ボールミルを用 r + Ba + Eu + Dy) = 2.3) and 3.2 g of boric acid (HBO) as a boron (B) compound as flux (that is, 1.2% by mass based on the raw material). For ball mill
3 3 3 3
いて充分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混合ガ ス気流中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時間か けて冷却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過したものを蓄光 性蛍光体の試料 1一(3)とした。この試料 1— (3)は、ストロンチウムが 0. 873モル、バ リウムが 0. 097モルで、ストロンチウムとバリウムのモル数の合計 0. 97モルに対する ストロンチウムのモル比は 0. 9、 ノ リウムのモル比は 0. 1となる。さらに、ストロンチウム 、 ノ リウム、ユウ口ピウム、ジスプロシウムの合計に対するユウ口ピウムの添カ卩量が 1モ ル0 /0、同じくジスプロシウムの添カ卩量が 2モル%であり、ユウ口ピウムに対するジスプロ シゥムのモル比、すなわち DyZEuは 2である。また、アルミニウムのモル比、すなわ ち AlZ (Sr+Ba+Eu+Dy)は、化学量論比 2. 0を超えた 2. 3である。 And mix well. This mixture is calcined in a reducing atmosphere in a gas stream of 97% nitrogen-3% hydrogen at a calcining temperature of 1350 ° C for 4 hours, and then cooled to room temperature in about 1 hour. The obtained fired product was pulverized, sieved and passed through a # 250 mesh to obtain a phosphorescent phosphor sample 11 (3). In this sample 1- (3), strontium was 0.783 mol, barium was 0.097 mol, and the molar ratio of strontium to 0.97 mol of the total number of mols of strontium and barium was 0.9. The molar ratio is 0.1. In addition, strontium Roh potassium, Yu port Piumu, Yu port Piumu of添Ka卩量1 molar 0/0 to the sum of dysprosium is similarly添Ka卩量2 mol% of dysprosium, moles of Jisupuro Shiumu against Yu port Piumu The ratio, DyZEu, is 2. The molar ratio of aluminum, that is, AlZ (Sr + Ba + Eu + Dy) is 2.3, which exceeds the stoichiometric ratio of 2.0.
[0037] 同様にして、ユウ口ピウム(Eu)に対するジスプロシウム(Dy)のモル比、すなわち D yZEuを 2に固定し、ストロンチウム(Sr)とバリウム(Ba)とユウ口ピウム(Eu)とジスプ 口シゥム(Dy)のモル数の合計に対するユウ口ピウム(Eu)の添力卩量を表 1に示すよう に 0. 1モル%から 5モル%まで変化させた蓄光性蛍光体を作成し、それぞれ試料 1— (1)、試料 1- (2)、試料 1- (4)ないし試料 1- (6)として得た。さらに、比較例として、 特許文献 1の試料 2—(1)として記載されている配合比から、 Mで表す金属元素をスト ロンチウムのみとし、ユウ口ピウムの添力卩量を 1モル0 /0、ジスプロシウムの添力卩量を 1モ ル0 /0、ァルミ-ゥムのモル比AlZ (Sr+Eu+Dy)を、化学量論比 2. 0とし、その他の 製造条件、工程は試料 1ー(3)と同一とした試料を同様に作成し、これを比較例 1とし た。なお、試料 1一(3)についてレーザ回折式粒度分布測定装置(SALD-2100 株式会社島津製作所)で粒度分布を測定した。これを図 1に示す。 [0037] Similarly, the molar ratio of dysprosium (Dy) to europium (Eu), ie, DyZEu, is fixed at 2, and strontium (Sr), barium (Ba), europium (Eu), and dysporium (Eu). As shown in Table 1, phosphorescent phosphors were prepared in which the amount of addition of palladium (Eu) to the total number of moles of shim (Dy) was varied from 0.1 mol% to 5 mol% as shown in Table 1. Sample 1- (1), sample 1- (2), sample 1- (4) to sample 1- (6) were obtained. Further, as a comparative example, the compounding ratio listed as Patent Document 1 Sample 2- (1), the metal elements expressed by M and only strike strontium, 1 mol添力卩量Yu port Piumu 0/0 the dysprosium添力卩量1 molar 0/0, Arumi - © beam molar ratio AlZ a (Sr + Eu + Dy), the stoichiometric ratio 2.0, other manufacturing conditions, process the sample 1 A sample identical to that of (3) was prepared in the same manner as Comparative Example 1. The particle size distribution of Sample 11 (3) was measured by a laser diffraction type particle size distribution analyzer (SALD-2100, Shimadzu Corporation). This is shown in Figure 1.
[0038] [表 1]  [0038] [Table 1]
Figure imgf000017_0001
次に、これら試料 1-(1)ないし試料 l-(6)および比較例 1の残光輝度特性を調 た。各試料をアルミニウム製試料容器に充填し、あらカゝじめ暗所にて 120°Cで約 2時 間加熱することで残光を消去した後、 D65標準光源により 4001xの明るさで 20分間 励起し、その後の残光を輝度計 (色度輝度計 BM - 5A トプコン株式会社)を用いて 計測した。その結果を、比較例 1の残光輝度を 1とした場合の相対輝度として表 2〖こ 示す。
Figure imgf000017_0001
Next, the afterglow luminance characteristics of Samples 1- (1) to 1- (6) and Comparative Example 1 were examined. It was. After filling each sample in an aluminum sample container and heating in a dark place at 120 ° C for about 2 hours to eliminate the afterglow, use a D65 standard light source at 4001x brightness for 20 minutes. After excitation, the afterglow was measured using a luminance meter (Chromaticity Luminometer BM-5A Topcon Corporation). The results are shown in Table 2 as relative luminance when the afterglow luminance of Comparative Example 1 is set to 1.
[0039] [表 2] [Table 2]
Figure imgf000018_0001
Figure imgf000018_0001
この表 2に示す結果より、まず試料 1 (5)すなわちユウ口ピウムの添カ卩量が 2%に おいて、特に 10時間後の長時間経過後における残光輝度特性力 比較例 1に比べ て 2. 5倍以上と優れていることがわかる。さらに、試料 1 (2)ないし試料 1 (4)すな わちユウ口ピウムの添カ卩量が 0. 5%以上 1. 5%以下において、特に 10時間後の長 時間経過後における残光輝度特性力 比較例 1に比べていずれも 3倍以上と優れて おり、し力も試料 1一(3)すなわちユウ口ピウムの添カ卩量が 1モル0 /0である場合におい ては、比較例の 6. 69倍と 6倍以上の残光輝度となり、より優れた好ましい結果となつ ている。し力し、試料 1—(1)すなわちユウ口ピウムの添カ卩量が 0. 1モル0 /0では、ユウ 口ピウムの添加量が少なすぎるため残光輝度の低下がみられ、試料 1 (6)すなわち ユウ口ピウムの添加量が 5モル%では、濃度消光の影響もあり全体的に残光輝度が 低下している。 Based on the results shown in Table 2, firstly, in Sample 1 (5), i.e., when the amount of casket added to palladium in the mouth was 2%, the afterglow luminance characteristic power after a long period of time, particularly after 10 hours, was compared to Comparative Example 1. It can be seen that 2.5 times or more is excellent. In addition, Sample 1 (2) to Sample 1 (4), that is, afterglow after 0.5 hours or more and 1.5% or less, especially after a long time after 10 hours. excellent with both 3 times more than the luminance characteristics force Comparative example 1, the teeth force also Te odor when the sample 1 one (3) i.e. Yu port Piumu添Ka卩量is 1 mole 0/0, comparison The afterglow luminance was 6.69 times and 6 times or more that of the example, and more excellent and favorable results were obtained. And to force, in Sample 1- (1) i.e.添Ka卩量Yu port Piumu is 0.1 mole 0/0, a decrease in afterglow luminance for amount of Yu port Piumu is too small is observed, the sample 1 (6) In other words, when the amount of added palladium in the mouth is 5 mol%, the afterglow luminance is reduced overall due to the effect of concentration quenching.
[0040] このことより、 Mで表す金属元素がストロンチウムおよびバリウムであり、アルミニウム の割合が 2. 3であって、ユウ口ピウムに対するジスプロシウムのモル比を 2に固定した 場合、ユウ口ピウムの添加量が 0. 5モル%以上 2モル%以下の範囲において、従来 例に比べ優れた残光輝度特性となることがわかる。 [0040] From this, the metal elements represented by M are strontium and barium, and aluminum Ratio is 2.3 and the molar ratio of dysprosium to europium is fixed at 2, the amount of europium added is 0.5 mol% or more and 2 mol% or less. It can be seen that excellent afterglow luminance characteristics are obtained.
次に、ジスプロシウムとユウ口ピウムの添カ卩量の比(DyZEu)を変化させた場合の、 励起後長時間経過後における残光輝度特性の変化を説明する。  Next, the change of the afterglow luminance characteristic after a long time after the excitation when the ratio of the added amount of dysprosium and the amount of added syrup (DyZEu) of the palladium of Yuguchi is changed will be described.
表 2に示す結果より好適であった試料 1 (3)の条件、すなわちストロンチウムとバリ ゥムとユウ口ピウムとジスプロシウムの合計に対するユウ口ピウムの添カ卩量が 1モル%、 ジスプロシウムの添カ卩量が 2モル%、ジスプロシウムとユウ口ピウムの添カ卩量の比(Dy /Eu)が 2である条件を中心に、表 3に示すようにユウ口ピウムの添力卩量を 1モル0 /0に 固定し、ジスプロシウムとユウ口ピウムの添カ卩量の比(DyZEu)を 1. 25力 30の範 囲で変化させて、それぞれ試料 1 (3)と同様に蓄光性蛍光体を作成し、試料 1 (7) ないし試料 1ー(16)として得た。 From the results shown in Table 2, the conditions of sample 1 (3), which were more favorable, that is, the amount of sulfuric acid added to the total amount of strontium, barium, europium, and dysprosium was 1 mol%, and the amount of dysprosium added was 1 mol%. Mainly on the condition that the amount of syrup is 2 mol% and the ratio (Dy / Eu) of the syrup content of dysprosium and euphyllium pium is 2, as shown in Table 3, 0/0 to fixed ratio of添Ka卩量dysprosium and Yu port Piumu the (DyZEu) 1. varied in the range of 25 force 30, respectively samples 1 (3) Like the phosphorescent phosphor It was prepared and obtained as Sample 1 (7) to Sample 1- (16).
[表 3] [Table 3]
Figure imgf000019_0001
Figure imgf000019_0001
二れら試料 1一(7)ないし試料 1一(16)について、試料 1一(1)ないし試料 1一(6)と同 様の照度条件 (D65標準光源 Z4001xZ20分間)で励起し残光輝度特性を調べた。 その結果を、比較例 1、試料 1ー(3)とともに、比較例 1の残光輝度を 1とした場合の相 対輝度として表 4に示す。 Samples 11 (7) to 11 (16) are the same as Samples 11 (1) to 11 (6). It was excited under the same illuminance conditions (D65 standard light source Z4001xZ20 minutes) and the afterglow luminance characteristics were examined. The results are shown in Table 4 together with Comparative Example 1 and Sample 1- (3) as relative luminance when the afterglow luminance of Comparative Example 1 is 1.
[表 4] [Table 4]
Figure imgf000020_0001
Figure imgf000020_0001
この表 4に示す結果より、ユウ口ピウムに対するジスプロシウムのモル比が 1を超えて V、る試料 1 (7)な 、し試料 1— ( 15)の 、ずれにぉ 、ても、比較例に比べて残光輝度 特性が優れ、特に 10時間後の長時間経過後における残光輝度特性力 比較例 1に 比べていずれも 3倍以上と優れていることがわかる。さらに、試料 1 (9)ないし試料 1 -(14)すなわちユウ口ピウムに対するジスプロシウムのモル比が 1. 75以上 15以下 である場合にぉ 、て、 10時間後の残光輝度が比較例と比べて 5倍以上となっており 、より好ましい。さらに好ましくは、試料 1— (3)、試料 1— (10)ないし試料 1— (11)すな わちユウ口ピウムに対するジスプロシウムのモル比が 2以上 4以下の条件であり、 10 時間後の残光輝度が比較例と比べて約 6. 5倍以上となっている。しかし、試料 1— (1 6)すなわちジスプロシウムのモル比が 30 (すなわちこの場合、ジスプロシウムの添カロ 量では 30モル%)では、例えばアルミン酸ジスプロシウム(DvAlO )等の副生成物の 生成量が増加するためなどもあって、母体色が白っぽくなり、また残光輝度の低下が みられる。 From the results shown in Table 4, it can be seen that the molar ratio of dysprosium to Eu pium exceeds 1 and that V is less than that of Sample 1 (7), and that of Sample 1— (15). It can be seen that the afterglow luminance characteristics are excellent, and the afterglow luminance characteristic power after a long time elapses after 10 hours is 3 times or more as compared with Comparative Example 1. Furthermore, when Sample 1 (9) to Sample 1- (14), that is, when the molar ratio of dysprosium to Eu-mouthed pium is 1.75 or more and 15 or less, the afterglow luminance after 10 hours is lower than that of the comparative example. More than 5 times, which is more preferable. More preferably, sample 1- (3), sample 1- (10) to sample 1- (11), that is, the condition that the molar ratio of dysprosium to europium pium is 2 or more and 4 or less, and after 10 hours The afterglow luminance is about 6.5 times or more as compared with the comparative example. However, in sample 1- (16), that is, when the molar ratio of dysprosium is 30 (that is, in this case, 30 mol% in the added amount of dysprosium), for example, by-products such as dysprosium aluminate (DvAlO) The mother color becomes whitish and the afterglow luminance decreases, partly due to the increased amount of generation.
[0043] このことに加え、ジスプロシウムの多量添カ卩はジスプロシウム自体が高価なため経 済性からも好ましくなぐまたジスプロシウムの添加量が増加しすぎると濃度消光によ る輝度低下もあるため、これらを考慮すると、 Mで表す金属元素がストロンチウムおよ びバリウムであり、アルミニウムの割合が 2. 3であって、ユウ口ピウムの添力卩量を 1モル %にした場合、ユウ口ピウムに対するジスプロシウムのモル比が 1を超え 20以下の範 囲において、従来例に比べ優れた残光輝度特性をもつ蓄光性蛍光体となることがわ かる。また、ユウ口ピウムの添力卩量を 0. 5%および 2%とした場合でも同様の結果が得 られることを確認した。  [0043] In addition to this, dysprosium-added kafun is not preferable in terms of economy because dysprosium itself is expensive, and if the added amount of dysprosium is too large, the brightness may be reduced due to concentration quenching. In consideration of the above, when the metal elements represented by M are strontium and barium, the ratio of aluminum is 2.3, and the amount of pium added to the mouth is 1 mol%, dysprosium with respect to the mouth of pium is considered. It can be seen that a phosphorescent phosphor having excellent afterglow luminance characteristics as compared with the conventional example can be obtained in a molar ratio of more than 1 and not more than 20. It was also confirmed that the same results were obtained when the amount of pulping pulp of Yuguchi pium was 0.5% and 2%.
[0044] (2)実験例 2  (2) Experimental Example 2
次に、 MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)およびバリウム(Ba)  Next, in the compound represented by MAI O, M is strontium (Sr) and barium (Ba)
2 4  twenty four
力もなる化合物を母結晶にする場合における、 Mで表す金属元素とユウ口ピウム (Eu )とジスプロシウム (Dy)とのモル数の合計に対するアルミニウム(A1)のモル比と、残 光輝度特性について説明する。  Explains the molar ratio of aluminum (A1) to the total number of moles of the metal element represented by M, the europium (Eu) and the dysprosium (Dy), and the afterglow luminance characteristics when a compound that is also powerful is used as the mother crystal. I do.
ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 128.88g (0. 873モル)  Strontium carbonate (SrCO) 128.88 g (0.873 mol) as a raw material for strontium (Sr)
3  Three
に、ノ リウム(Ba)の原料として炭酸バリウム(BaCO )を 19.14g (0. 097モル)カロえ、さ  In addition, 19.14 g (0.097 mol) of barium carbonate (BaCO) as a raw material of norium (Ba)
3  Three
らに賦活剤としてのユウ口ピウムの原料として酸化ユウ口ピウム(Eu O )を 1.76g (Euと  In addition, 1.76 g of Eu oxide (Eu 2 O) was used as a raw material for the activator.
2 3  twenty three
して 0. 01モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料として酸化ジス プロシゥム(Dy O )を 3.73g (Dyとして 0. 02モル)添加し、さらにアルミニウム原料とし  0.013 mol), and 3.73 g (0.02 mol as Dy) of dysprosium oxide (DyO) as a raw material of dysprosium (Dy) as a co-activator, and further as an aluminum raw material.
2 3  twenty three
てのアルミナ(Al O )を 107.06g (Alとして 2. 1モル、すなわち AlZ(Sr+Ba+Eu+  107.06 g of all the alumina (Al 2 O 3) (2.1 moles as Al, ie, AlZ (Sr + Ba + Eu +
2 3  twenty three
Dy) = 2. 1)加え、さらにフラックスとしてのホウ素(B)化合物としてホウ酸 (H BO )を  Dy) = 2.1) and boric acid (HBO) as a boron (B) compound as a flux.
3 3 3 3
3. lg (すなわち原料に対して 1. 2質量%)添加し、ボールミルを用いて充分に混合 する。この混合物を還元雰囲気中として窒素 97%—水素 3%混合ガス気流中で、 13 50°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時間かけて冷却する。得 られた焼成物を粉砕し篩分し # 250メッシュを通過したものを蓄光性蛍光体の試料 2 — (3)とした。この試料 2— (3)は、ストロンチウムが 0. 873モル、ノ リウムが 0. 097モ ルで、ストロンチウムとバリウムのモル数の合計 0. 97モルに対するストロンチウムのモ ル比は 0. 9、ノ リウムのモル比は 0. 1となる。さらに、ストロンチウム、ノ リウム、ユウ口 ピウム、ジスプロシウムの合計に対するユウ口ピウムの添カ卩量が 1モル0 /0、同じぐジス プロシゥムの添カ卩量が 2モル%であり、ユウ口ピウムに対するジスプロシウムのモル比 、すなわち DyZEuは 2である。また、アルミニウムのモル比、すなわち AlZ (Sr + Ba + Eu + Dy)は、化学量論比 2. 0を超えた 2. 1である。 3. Add lg (that is, 1.2% by mass based on the raw material) and mix well using a ball mill. This mixture is fired at a firing temperature of 1350 ° C for 4 hours in a mixed gas stream of 97% nitrogen and 3% hydrogen in a reducing atmosphere, and then cooled to room temperature over about 1 hour. The obtained fired product was pulverized, sieved, and passed through # 250 mesh to obtain a phosphorescent phosphor sample 2 — (3). This sample 2- (3) has a strontium concentration of 0.787 mol and a norium concentration of 0.097 mol, and the strontium and strontium moles are 0.997 mol in total. The molar ratio is 0.9 and the molar ratio of norium is 0.1. Furthermore, strontium, Bruno potassium, Yu port Piumu,添Ka卩量1 mole of Yu port Piumu to the total dysprosium 0/0, 添Ka卩量the same ingredients Soo Puroshiumu is 2 mol%, relative to Yu port Piumu The molar ratio of dysprosium, ie DyZEu, is 2. Further, the molar ratio of aluminum, that is, AlZ (Sr + Ba + Eu + Dy) is 2.1, which exceeds the stoichiometric ratio of 2.0.
[0045] 同様にして、アルミニウムのモル比、すなゎちAlZ (Sr+Ba+Eu+Dy)を表5に示 すように化学量論比 2. 0およびこの 2. 0を超えた 2. 05力ら 3. 1の範囲で変化させ た蓄光性蛍光体を作成し、それぞれ試料 2— (1)ないし試料 2— (3)、試料 2— (4)ない し試料 2—(10)として得た。なお、試料 2—(9) (アルミニウムのモル比が 3. 0)につい て Cu管球を用いた粉末 X線回折分析を行い、回折図形を得た。これを図 2に示す。  Similarly, as shown in Table 5, the molar ratio of aluminum, that is, AlZ (Sr + Ba + Eu + Dy) was set to 2.0 as shown in Table 5 and to 2 . 05 Ryara Phosphorescent phosphors varied in the range of 3.1 were prepared, and Sample 2— (1) to Sample 2— (3), Sample 2— (4) or Sample 2— (10) As obtained. For sample 2- (9) (the molar ratio of aluminum was 3.0), powder X-ray diffraction analysis was performed using a Cu bulb to obtain a diffraction pattern. This is shown in FIG.
[0046] [表 5]  [0046] [Table 5]
Figure imgf000022_0001
次に、これら試料 2—(1)ないし試料 2—(10)について、実験例 1の試料 1一(1)と同 様の照度条件 (D65標準光源 Z4001xZ20分間)で励起し、残光輝度特性を調べた 。その結果を、アルミニウムのモル比が 2. 3である他は同一条件である試料 1一(3)と ともに、前記比較例 1の残光輝度を 1とした場合の相対輝度として表 6に示す。
Figure imgf000022_0001
Next, Samples 2- (1) to 2- (10) were excited under the same illuminance conditions (D65 standard light source Z4001xZ20 minutes) as Sample 11 (1) of Experimental Example 1, and the afterglow luminance characteristics Investigated. The results were compared with Sample 11 (3), which was the same conditions except that the molar ratio of aluminum was 2.3. Both are shown in Table 6 as relative luminance when the afterglow luminance of Comparative Example 1 was set to 1.
[表 6] [Table 6]
Figure imgf000023_0001
Figure imgf000023_0001
この表 6に示す結果より、試料 2— (2)な 、し試料 2— (9)すなわちアルミニウムのモ ル比が 2. 05ないし 3. 0において、特に 10時間後の長時間経過後における残光輝 度特性が、比較例 1に比べていずれも 3倍以上と優れていることがわかる。さらに、試 料 2—(4)ないし試料 2—(6) (アルミニウムのモル比が 2. 2ないし 2. 5)においては、 1 0時間後の残光輝度が比較例 1の 6倍以上となっており、よりに好ましい優れた残光 輝度特性を有していることがわかる。これらは、アルミニウムのモル比が 2. 0を超える ことで、結晶中に歪みが生じることによるものと考えられる。しかし、試料 2—(1) (アル ミニゥムのモル比が 2. 0)では、 10時間後の残光輝度が比較例 1の 3倍未満となって おり、また試料 2—(10) (アルミニウムのモル比が 3. 1)では、残光輝度の低下がおき ている。これは、アルミニウムのモル比が増加することによって、副生成物として例え ば !:, Ba)A1 0以外のアルミン酸塩などの生成が増加してくるためであると考えら  From the results shown in Table 6, it can be seen that, when Sample 2- (2) and Sample 2- (9), that is, when the aluminum mole ratio is 2.05 to 3.0, especially after a long time elapses after 10 hours, It can be seen that the brightness characteristics are all three times or more superior to Comparative Example 1. Furthermore, in Samples 2- (4) to 2- (6) (the molar ratio of aluminum was 2.2 to 2.5), the afterglow luminance after 10 hours was more than 6 times that of Comparative Example 1. It can be seen that it has a more preferable and excellent afterglow luminance characteristic. These are considered to be due to the fact that a strain occurs in the crystal when the molar ratio of aluminum exceeds 2.0. However, in Sample 2— (1) (the molar ratio of aluminum was 2.0), the afterglow luminance after 10 hours was less than three times that of Comparative Example 1, and in Sample 2— (10) (aluminum At a molar ratio of 3.1), the afterglow luminance is reduced. This is thought to be because the increase in the molar ratio of aluminum increases the production of aluminates other than by-products such as!:, Ba) A10.
2 4  twenty four
れる。 [0048] このことより、 MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)およびバリウム It is. [0048] Thus, in the compound represented by MAI O, M is strontium (Sr) and barium
2 4  twenty four
(Ba)力もなる化合物を母結晶にする場合、ストロンチウムとバリウムとユウ口ピウムとジ スプロシゥムとのモル数の合計に対するアルミニウムのモル比、すなわち AlZ (Sr+ Ba + Eu+Dy)が 2. 05以上 3. 0以下のとき、優れた残光輝度特性をもつ蓄光性蛍 光体となることがわかる。  (Ba) When a compound having a strong force is used as a mother crystal, the molar ratio of aluminum to the total number of moles of strontium, barium, europium, and dysprosium, that is, AlZ (Sr + Ba + Eu + Dy) is equal to or more than 2.05. It can be seen that when the value is 3.0 or less, the phosphor becomes a phosphorescent phosphor having excellent afterglow luminance characteristics.
(3)実験例 3  (3) Experimental example 3
次に、 Mで表す金属元素がストロンチウム(Sr)およびバリウム(Ba)である場合につ いて、バリウムの割合と、励起後長時間経過後の残光輝度特性について説明する。  Next, when the metal element represented by M is strontium (Sr) and barium (Ba), the ratio of barium and the afterglow luminance characteristics after a long time after excitation will be described.
[0049] まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 141.77g (0. 960  First, 141.77 g of strontium carbonate (SrCO 2) (0.996) was used as a raw material of strontium (Sr).
3  Three
3モル)に、バリウム(Ba)の原料として炭酸バリウム(BaCO )を 1.91g (0. 0097モル)  1.91 g (0.0097 mol) of barium carbonate (BaCO 3) as a raw material of barium (Ba)
3  Three
加え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )を  In addition, as a raw material of the palladium of Euguchi as an activator,
2 3 twenty three
1.76g (Euとして 0. 01モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料と して酸化ジスプロシウム(Dv O )を 3.73g (Dyとして 0. 02モル)添加し、さらにアルミ 1.76 g (0.01 mol as Eu) was added, and 3.73 g (0.02 mol as Dy) of dysprosium oxide (DvO) was added as a raw material of dysprosium (Dy) as a co-activator.
2 3  twenty three
-ゥム原料としてのアルミナ(Al O )を 117.26g (Alとして 2. 3モル、すなわち AlZ (S  117.26 g of alumina (Al 2 O 3) (2.3 moles as Al, ie AlZ (S
2 3  twenty three
r + Ba + Eu + Dy) = 2. 3)加え、さらにフラックスとしてのホウ素(B)化合物としてホ ゥ酸 (H BO )を 3. 2g (すなわち原料に対して 1. 2質量%)添加し、ボールミルを用 r + Ba + Eu + Dy) = 2.3) and 3.2 g of boric acid (HBO) as a boron (B) compound as flux (that is, 1.2% by mass based on the raw material). For ball mill
3 3 3 3
いて充分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混合ガ ス気流中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時間か けて冷却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過したものを蓄光 性蛍光体の試料 3—(2)とした。この試料 3—(2)は、ストロンチウムが 0. 9603モル、 ノ リウムが 0. 0097モルで、ストロンチウムとバリウムのモル数の合計 0. 97モルに対 するストロンチウムのモル比は 0. 99、 ノ リウムのモル比は 0. 01となる。さらに、スト口 ンチウム、ノ リウム、ユウ口ピウム、ジスプロシウムの合計に対するユウ口ピウムの添カロ 量が 1モル0 /0、同じくジスプロシウムの添カ卩量が 2モル%であり、ユウ口ピウムに対する ジスプロシウムのモル比、すなわち DyZEuは 2である。また、アルミニウムのモル比、 すなわち AlZ (Sr+Ba+Eu+Dy)は、化学量論比 2. 0を超える 2. 3である。 And mix well. This mixture is calcined in a reducing atmosphere in a gas stream of 97% nitrogen-3% hydrogen at a calcining temperature of 1350 ° C for 4 hours, and then cooled to room temperature in about 1 hour. The obtained fired product was pulverized, sieved, and passed through # 250 mesh to obtain a phosphorescent phosphor sample 3- (2). This sample 3- (2) has 0.9603 mol of strontium and 0.0097 mol of norium, and the molar ratio of strontium to 0.97 mol of the total number of mols of strontium and barium is 0.99. The molar ratio of lithium is 0.01. Further, strike opening Nchiumu, Bruno potassium, Yu port Piumu, added Caro of Yu port Piumu to the sum of dysprosium 1 mole 0/0, a likewise添Ka卩量2 mol% of dysprosium, dysprosium against Yu port Piumu The molar ratio of DyZEu is 2. Further, the molar ratio of aluminum, that is, AlZ (Sr + Ba + Eu + Dy) is 2.3 exceeding the stoichiometric ratio of 2.0.
[0050] 同様にして、ストロンチウムとバリウムの配合比を表 7に示すように、 Sr: Ba=0. 99 5 : 0. 005— 0. 6 : 0. 4の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料 3 — (1)、試料 3— (3)ないし試料 3— (8)として得た。なお、試料 3— (6)について Cu管 球を用いた粉末 X線回折分析を行い、回折図形を得た。これを図 3に示す。 [0050] Similarly, as shown in Table 7, the mixing ratio of strontium and barium was changed in the range of Sr: Ba = 0.995: 0.005-0.6: 0.4. Create a body, each sample 3 — (1), sample 3— (3) to sample 3— (8). In addition, powder X-ray diffraction analysis was performed on Sample 3- (6) using a Cu tube to obtain a diffraction pattern. This is shown in FIG.
[0051] [表 7] [Table 7]
Figure imgf000025_0001
次に、これら試料 3—(1)ないし試料 3— (8)について、実験例 1の試料 1一(1)と同様 の照度条件 (D65標準光源 Z4001xZ20分間)で励起し、残光輝度特性を調べた。 その結果を、ストロンチウムとバリウムの配合比が 0. 9 : 0. 1である他は同一条件であ る試料 1-(3)とともに、前記比較例 1の残光輝度を 1とした場合の相対輝度として表 8 に示す。
Figure imgf000025_0001
Next, these Samples 3- (1) to 3- (8) were excited under the same illuminance conditions (D65 standard light source Z4001xZ20 minutes) as Sample 11 (1) of Experimental Example 1, and the afterglow luminance characteristics were measured. Examined. The results were compared with Sample 1- (3) under the same conditions except that the mixing ratio of strontium and barium was 0.9: 0.1, and the relative value when the afterglow luminance of Comparative Example 1 was 1 was set. Table 8 shows the luminance.
[0052] [表 8] [Table 8]
励起条件 標準光源、 400〖 x、 20分問 料 残光輝度特性 (相対値、 比蛟例 1 =L0として) Excitation conditions Standard light source, 400 〖x, 20 minutes Afterglow luminance characteristics (relative value, relative example 1 = L0)
10分後 20分後 60分後 5時間後 10時間後 比較例 1 1. 00 1. 00 1. 00 1. 00 1. 00 試料3 -(1) 1. 6 5 1. 7 2 1. 9 3 2. 38 2. 9 1 試料 3 (2) 1. 7 7 1. 8 6 2. 00 2. 8 3 4. 1 3 試料 3 - (3) 1. 7 3 1. 8 6 2. 08 3. 1 8 4. 6 9 試料 1 (3) 2. 0 2 2. 0 6 2. 4 1 4. 04 6. 6 9 試料 3- (4) 1. 5 9 1. 76 2. 1 2 3. 78 6. 3 9 試料 3- (5) 1. 3 7 1 , 5 3 1. 86 3. 38 5. 84 試料 3- (6) 1. 1 9 1. 34 1. 66 3. 0 3 5. 1 1 試料 3_ (7) 0. S 1 1. 04 1. 42 2. 46 4. 26 試料 3 (8) 0. 3 2 0. 6 2 1. 03 1. 58 2. 74 この表 8に示す結果より、試料 3— (2)な 、し試料 3— (7)すなわちバリウムの割合が 0.01ないし 0.35において、特に 10時間後の長時間経過後における残光輝度特性 力 比較例 1に比べていずれも 3倍をこえ 4倍以上と優れていることがわかる。さらに、 試料 1一(3)および試料 3— (4) (バリウムの割合が 0.1および 0.2)において、 10時 間後の残光輝度が比較例 1の 6倍以上と、より好ましい優れた残光輝度特性を有して いることがわ力る。しかし、試料 3—(1) (バリウムの割合が 0.005)では、ノリウムの割 合が少なすぎるため、例えば 10時間後の残光輝度特性が比較例 1の 3倍未満となり 、また試料 3— (7) (バリウムの割合が 0.4)では、相対的にストロンチウムの割合が減 少してしまうこともあり、残光輝度が低下し、例えば 10時間後の残光輝度が比較例 1 の 3倍未満となり、さらに 10分後、 20分後の残光輝度において比較例 1と比べて下 回っている。 After 10 minutes After 20 minutes After 60 minutes After 5 hours After 10 hours Comparative Example 1 1.00 1.00 1.00 1.00 1.00 Sample 3- (1) 1.65.1.721.9 3 2.38 2.91 1 Sample 3 (2) 1.7 7 1.86 6 2.00 2.83 3 4.13 Sample 3-(3) 1.7 3 1.8 6 2.08 3 1 8 4.69 Sample 1 (3) 2.0 2 2.0 6 2.4 1 4.04 6.69 Sample 3-(4) 1.59 1.76 2.12 3. 78 6.39 Sample 3- (5) 1.37 1, 5 3 1.86 3.38 5.84 Sample 3- (6) 1.19 1.34 1.66 3.03 5. 1 1 Sample 3_ (7) 0.S 1 1.04 1.42 2.46 4.26 Sample 3 (8) 0.3 2 0.0.6 2 1.03 1.58 2.74 From the results, it can be seen that Sample 3-(2), Sample 3-(7), that is, when the barium ratio was 0.01 to 0.35, the afterglow luminance characteristic after a long period of time, especially after 10 hours, was lower than that of Comparative Example 1. It is also clear that the value is more than 3 times and more than 4 times. Furthermore, in Sample 11 (3) and Sample 3- (4) (barium ratios of 0.1 and 0.2), the afterglow luminance after 10 hours was more than 6 times that of Comparative Example 1, indicating a more preferable and excellent afterglow. It is clear that it has brightness characteristics. However, in Sample 3— (1) (the ratio of barium was 0.005), the percentage of norium was too small, so that, for example, the afterglow luminance characteristic after 10 hours was less than three times that of Comparative Example 1. 7) When the ratio of barium is 0.4, the ratio of strontium may decrease relatively, and the afterglow brightness decreases.For example, the afterglow brightness after 10 hours is less than three times that of Comparative Example 1. Further, the afterglow luminance after 10 minutes and 20 minutes was lower than that of Comparative Example 1.
このことより、 Mで表す金属元素がストロンチウムおよびバリウム力 なる場合、 Mに 対するバリウムの割合、すなわち BaZ(Sr+Ba)が 0.01以上 0.35以下のとき、優 れた残光輝度特性をもつ蓄光性蛍光体となることがわかる。  From this fact, when the metal element represented by M is strontium and barium force, when the ratio of barium to M, that is, when BaZ (Sr + Ba) is 0.01 or more and 0.35 or less, the luminous properties with excellent afterglow luminance characteristics It turns out that it becomes a phosphor.
(4)実験例 4  (4) Experimental example 4
次に、 Mで表す金属元素がストロンチウム(Sr)およびカルシウム(Ca)である場合 について説明する。 Next, when the metal elements represented by M are strontium (Sr) and calcium (Ca) Will be described.
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 141.77g (0. 960  First, 141.77 g (0.960) of strontium carbonate (SrCO) as a raw material for strontium (Sr)
3  Three
3モル)に、カルシウム(Ca)の原料として炭酸カルシウム(CaCO )を 0.97g (0. 0097  0.97 g (0.0000 g) of calcium carbonate (CaCO 3) as a raw material of calcium (Ca).
3  Three
モル)加え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )  Mol), and as a raw material of palladium (Eu 2 O 3) as an activator
2 3 を 1.76g (Euとして 0. 01モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料 として酸化ジスプロシウム(Dy O )を 3.73g (Dyとして 0. 02モル)添加し、さらにアル  1.76 g (0.01 mol as Eu) of 23 was added, and 3.73 g (0.02 mol as Dy) of dysprosium oxide (DyO) as a raw material of dysprosium (Dy) as a co-activator was added.
2 3  twenty three
ミニゥム原料としてのアルミナ(Al O )を 117.26g (Alとして 2. 3モル、すなわち AlZ (  117.26 g of alumina (Al 2 O 3) as a raw material for minium (2.3 moles as Al, that is, AlZ (
2 3  twenty three
Sr + Ca + Eu + Dy) = 2. 3)加え、さらにフラックスとしてのホウ素(B)化合物としてホ ゥ酸 (H BO )を 3. 2g (すなわち原料に対して 1. 2質量%)添加し、ボールミルを用 (Sr + Ca + Eu + Dy) = 2.3), and 3.2 g of boric acid (HBO) as a boron (B) compound as a flux (that is, 1.2 mass% based on the raw material). For ball mill
3 3 3 3
いて充分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混合ガ ス気流中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時間か けて冷却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過したものを蓄光 性蛍光体の試料 4 (3)とした。この試料 4 (3)は、ストロンチウムが 0. 9603モル、 カルシウムが 0. 0097モルで、ストロンチウムとカルシウムのモル数の合計 0. 97モル に対するストロンチウムのモル比は 0. 99、カルシウムのモル比は 0. 01となる。さらに 、ストロンチウム、カルシウム、ユウ口ピウム、ジスプロシウムの合計に対するユウ口ピウ ムの添カ卩量が 1モル%、同じくジスプロシウムの添カ卩量が 2モル%であり、ユウ口ピウ ムに対するジスプロシウムのモル比、すなわち DyZEuは 2である。また、アルミニウム のモル比、すなわち AlZ (Sr+Ca+Eu+Dy)は、化学量論比 2. 0を超える 2. 3で める。  And mix well. This mixture is calcined in a reducing atmosphere in a gas stream of 97% nitrogen-3% hydrogen at a calcining temperature of 1350 ° C for 4 hours, and then cooled to room temperature in about 1 hour. The obtained fired product was pulverized, sieved, and passed through a # 250 mesh to obtain a phosphorescent phosphor sample 4 (3). This sample 4 (3) had 0.9603 mol of strontium and 0.0097 mol of calcium, and the molar ratio of strontium to 0.97 mol of the total number of mols of strontium and calcium was 0.99, and the molar ratio of calcium was 0.999 mol It will be 0.01. Further, the amount of added syrup of eutronic pium is 1 mol% and the amount of added dysprosium is 2 mol% based on the total of strontium, calcium, euproium and dysprosium. The ratio, DyZEu, is 2. Further, the molar ratio of aluminum, that is, AlZ (Sr + Ca + Eu + Dy) is determined to be 2.3, which exceeds the stoichiometric ratio of 2.0.
[0054] 同様にして、ストロンチウムとカルシウムの配合比を表 9に示すように、 Sr: Ca=0. 9 98 : 0. 002— 0. 8 : 0. 2の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料 4一( 1)、試料 4 (2)、試料 4 (4)な 、し試料 4 (7)として得た。  Similarly, as shown in Table 9, the luminous fluorescence in which the mixing ratio of strontium and calcium was changed in the range of Sr: Ca = 0.998: 0.002—0.8: 0.2. The bodies were prepared and obtained as Sample 41 (1), Sample 4 (2), Sample 4 (4), and Sample 4 (7), respectively.
[0055] [表 9] M= S r +C a [Table 9] M = S r + C a
E u = 1モル%、 D y = 2モル% (対 M+Eu+Dy) A 1/(M+Eu+Dy): 2. 3 ^- ¾ 0. 998 0. 002  E u = 1 mol%, D y = 2 mol% (vs. M + Eu + Dy) A 1 / (M + Eu + Dy): 2.3 ^-¾ 0.998 0.002
\ ! 0. 995 0. 005  \! 0.995 95.005
試料 4— (3) 0. 99 0. 01  Sample 4— (3) 0.99 0.01
試料 4- (4) 0. 95 0. 05  Sample 4- (4) 0.95 0.05
試料 4 - (5) 0. 9 0. 1  Sample 4-(5) 0.9 9 0.1
試料 4- (6) 0. 85 0. 15  Sample 4- (6) 0.85 0.15
試料 4 - (7) 0. 8 0. 2 次に、これら試料 4一(1)ないし試料 4 (7)について、実験例 1の試料 1一(1)と同様 の照度条件 (D65標準光源 Z4001xZ20分間)で励起し、残光輝度特性を調べた。 その結果を、前記比較例 1の残光輝度を 1とした場合の相対輝度として表 10に示す [表 10]  Sample 4-(7) 0.8 0.2 Next, for these Samples 4-1 (1) to 4 (7), the same illumination conditions (D65 standard light source Z4001xZ20 Min), and the afterglow luminance characteristics were examined. The results are shown in Table 10 as relative luminance when the afterglow luminance of Comparative Example 1 was set to 1 [Table 10].
Figure imgf000028_0001
この表 10に示す結果より、試料 4 (2)ないし試料 4 (6)すなわちカルシウムの割 合が 0.005ないし 0.15において、比較例 1に比べ残光輝度特性が優れていること がわかり、特に 10時間後の長時間経過後における残光輝度特性が、比較例 1に比 ベていずれも 3倍以上と優れていることがわかる。さら〖こ、試料 4 (4)および試料 4一( 5) (カルシウムの割合が 0. 05および 0. 1)において、 10時間後の残光輝度が比較 例 1の 4倍以上と、より好ましい優れた残光輝度特性を有していることがわかる。しか し、試料 4一(1) (カルシウムの割合が 0. 002)では、 10時間後の残光輝度特性が比 較例 1の 3倍未満となり、また試料 4 (7) (カルシウムの割合が 0. 2)では、相対的に ストロンチウムの割合が減少してしまうこともあり、残光輝度が急激に低下している。 このことより、 Mで表す金属元素がストロンチウムおよびカルシウム力 なる場合、 M に対するカルシウムの割合、すなわち CaZ(Sr+Ca)が 0. 005以上 0. 15以下のと き、優れた残光輝度特性をもつ蓄光性蛍光体となることがわかる。
Figure imgf000028_0001
From the results shown in Table 10, it can be seen that Sample 4 (2) to Sample 4 (6), that is, the percentage of calcium was 0.005 to 0.15, and the afterglow luminance characteristics were superior to Comparative Example 1. It can be seen that, in particular, the afterglow luminance characteristics after a long period of time after 10 hours are all three times or more superior to Comparative Example 1. Further, in Sample 4 (4) and Sample 4 (5) (calcium proportions of 0.05 and 0.1), the afterglow luminance after 10 hours is more preferably 4 times or more that of Comparative Example 1. It can be seen that the device has excellent afterglow luminance characteristics. However, Sample 4 (1) (having a calcium ratio of 0.002) had an afterglow luminance characteristic less than three times that of Comparative Example 1 after 10 hours, and Sample 4 (7) (having a calcium ratio of 10%). In 0.2), the ratio of strontium may be relatively reduced, and the afterglow brightness is sharply reduced. Thus, when the metal element represented by M is strontium and calcium, when the ratio of calcium to M, that is, CaZ (Sr + Ca) is 0.005 or more and 0.15 or less, excellent afterglow luminance characteristics are obtained. It can be seen that the phosphor has a phosphorescent property.
(5)実験例 5  (5) Experimental example 5
次に、 Mで表す金属元素がストロンチウム、ノ リウムおよびカルシウムである場合に ついて説明する。  Next, the case where the metal element represented by M is strontium, norium and calcium will be described.
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 127.45g (0. 863  First, strontium carbonate (SrCO 2) 127.45 g (0.863) was used as a raw material for strontium (Sr).
3  Three
3モル)に、バリウム(Ba)の原料として炭酸バリウム(BaCO )を 19.14g (0. 097モル)  314 moles) and 19.14 g (0.097 moles) of barium carbonate (BaCO 3) as a raw material for barium (Ba)
3  Three
加え、カルシウム(Ca)の原料として炭酸カルシウム(CaCO )を 0.97g (O. 0097モル In addition, 0.97 g of calcium carbonate (CaCO 3) (0.0000 mol
3  Three
)加え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )を  ) In addition, as a raw material of palladium of Euguchi as an activator,
2 3 twenty three
1.76g (Euとして 0. 01モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料と して酸化ジスプロシウム(Dy O )を 3.73g (Dyとして 0. 02モル)添加し、さらにアルミ 1.76 g (0.01 mol as Eu) was added, and 3.73 g (0.02 mol as Dy) of dysprosium oxide (DyO) was added as a raw material of dysprosium (Dy) as a co-activator.
2 3  twenty three
-ゥム原料としてのアルミナ(Al O )を 117.26g (Alとして 2. 3モル、すなわち AlZ (S  117.26 g of alumina (Al 2 O 3) (2.3 moles as Al, ie AlZ (S
2 3  twenty three
r + Ba + Ca + Eu + Dy) = 2. 3)加え、さらにフラックスとしてのホウ素(B)化合物とし てホウ酸 (H BO )を 3. 2g (すなわち原料に対して 1. 2質量%)添カ卩し、ボールミル r + Ba + Ca + Eu + Dy) = 2.3) In addition, 3.2 g of boric acid (HBO) as a boron (B) compound as flux (that is, 1.2 mass% based on the raw material) Sashimi and ball mill
3 3  3 3
を用いて充分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混 合ガス気流中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時 間かけて冷却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過したものを 蓄光性蛍光体の試料 5—(3)とした。この試料 5—(3)は、ストロンチウムが 0. 8633モ ノレ、ノ リウムカ S0. 097モノレ、カノレシゥムカ ^0. 0097であり、ス卜ロンチウムとノ リウムと カルシウムのモル数の合計 0. 97モルに対するストロンチウムのモル比は 0. 89、バリ ゥムのモル比は 0. 01、カルシウムのモル比は 0. 01となる。さらにストロンチウム、ノ リ ゥム、カルシウム、ユウ口ピウム、ジスプロシウムの合計に対するユウ口ピウムの添カロ量 力 Siモル%、同じくジスプロシウムの添カ卩量が 2モル%であり、ユウ口ピウムに対するジ スプロシゥムのモル比、すなわち Dy/Euは 2である。また、アルミニウムのモル比、す なわち AlZ(Sr+Ba + Ca + Eu + Dy)は、化学量論比 2. 0を超える 2. 3である。 Mix well using. The mixture is fired at a firing temperature of 1350 ° C for 4 hours in a mixed gas stream of 97% nitrogen and 3% hydrogen in a reducing atmosphere, and then cooled to room temperature over about 1 hour. The obtained fired product was pulverized, sieved, and passed through # 250 mesh to obtain a phosphorescent phosphor sample 5- (3). In this sample 5- (3), strontium was 0.8633 monol, norrium mosquito S0.097 monol, and kanoreshimuka ^ 0.0097, and it was based on 0.97 mol of the total number of moles of strontium, norium and calcium. The molar ratio of strontium is 0.89, burr The molar ratio of pum is 0.01 and the molar ratio of calcium is 0.01. Further, the added amount of caloric power of palladium based on the total amount of strontium, normium, calcium, palladium and dysprosium is Si mol%, and the added amount of dysprosium added with dysprosium is 2 mol%. , Ie, Dy / Eu is 2. The molar ratio of aluminum, that is, AlZ (Sr + Ba + Ca + Eu + Dy) is 2.3, which exceeds the stoichiometric ratio of 2.0.
[0058] 同様にして、バリウムを実験例 3で好適であった Mに対するモル比で 0. 1に固定し 、ストロンチウムとカルシウムの配合比を表 11に示すように、 Ca : 0. 002—0. 2の範 囲で変化させた蓄光性蛍光体を作成し、それぞれ試料 5— (1)、試料 5— (2)、試料 5 - (4)な 、し試料 5— (7)として得た。  Similarly, barium was fixed at 0.1 in terms of molar ratio to M, which was suitable in Experimental Example 3, and the mixing ratio of strontium to calcium was as shown in Table 11, where Ca: 0.0002-0 The phosphorescent phosphors varied in the range of 2 were prepared and obtained as Sample 5— (1), Sample 5— (2), Sample 5— (4), and Sample 5— (7), respectively. .
[0059] [表 11]  [Table 11]
Figure imgf000030_0001
次に、これら試料 5—(1)ないし試料 5— (7)について、実験例 1の試料 1一(1)と同様 の照度条件 (D65標準光源 Z4001xZ20分間)で励起し、残光輝度特性を調べた。 その結果を、前記比較例 1の残光輝度を 1とした場合の相対輝度として表 12に示す
Figure imgf000030_0001
Next, these samples 5- (1) to 5- (7) were excited under the same illuminance conditions (D65 standard light source Z4001xZ20 minutes) as Sample 11 (1) of Experimental Example 1 and the afterglow luminance characteristics were measured. Examined. The results are shown in Table 12 as relative luminance when the afterglow luminance of Comparative Example 1 was set to 1.
[0060] [表 12] 励起条件 D65標準光源、 400 l x、 20分間 [0060] [Table 12] Excitation conditions D 65 standard light source, 400 lx, 20 minutes
試料 残光輝度特性 (相対値、 比較例 1 =1.0として)  Sample Afterglow luminance characteristics (relative value, Comparative Example 1 = 1.0)
10分後 20分後 60分後 5時間後 10時間後 比較例 1 1. 00 1. 00 1. 00 1. 00 1. 00 試料 5 (1) 1. 82 1. 82 2. 01 2. 81 2. 92 試料 5- (2) 1. 80 1. 83 2. 02 3. 01 4. 01 試料 5- (3) 1. 72 1. 83 2. 02 2. 99 3. 97 試料 5- (4) 1. 67 1. 81 2. 02 3. 30 4. 67 試料 5- (5) 1. 35 1. 46 1. 67 2. 73 3. 74 試料 5 - (6) 0. 80 0. 85 0. 90 1. 46 1. 87 試料 5_(7) 0. 61 0. 65 0. 71 1. 20 1. 50 この表 12に示す結果より、試料 5— (2)ないし試料 5— (5)すなわちバリウムの割合 が 0.1、カルシウムの割合が 0.005ないし 0.1において、比較例 1に比べ残光輝度 特性が優れていることがわかり、特に 10時間後の長時間経過後における残光輝度 特性が、比較例 1に比べいずれも 3倍以上と優れていることがわかる。さらに、試料 5 一(2)ないし試料 5— (4) (バリウムの割合が 0.1、 Mに対するカルシウムの割合が 0. 005ないし 0.05)において、 10時間後の残光輝度が比較例 1のほぼ 4倍以上と、よ り好ましい優れた残光輝度特性を有していることがわかる。しかし、試料 5—(1) (バリ ゥムの割合は 0.1、カルシウムの割合が 0.002)では、 10時間後の残光輝度が比較 例 1の 3倍未満となり、また試料 5— (5)ないし試料 5— (6) (バリウムの割合は 0.1、力 ルシゥムの割合が 0.15ないし 0.2)では、相対的にストロンチウムの割合が減少して しまうこともあり、残光輝度が全体的に低下し、特に 10分後、 20分後、 60分後の残光 輝度において比較例 1を下回っている。  After 10 minutes After 20 minutes After 60 minutes After 5 hours After 10 hours Comparative Example 1 1.00 1.00 1.00 1.00 1.00 Sample 5 (1) 1.82 1.82 2.01 2.81 2.92 sample 5- (2) 1.80 1.83 2.02 3.01 4.01 sample 5- (3) 1.72 1.83 2.02 2.99 3.97 sample 5- (4 ) 1.67 1.81 2.02 3.30 4.67 Sample 5- (5) 1.35 1.46 1.67 2.73 3.74 Sample 5-(6) 0.80 0.80 90 1.46 1.87 Sample 5_ (7) 0.61 0.65 0.71 1.20 1.50 From the results shown in Table 12, Samples 5— (2) to 5— (5) When the barium ratio was 0.1 and the calcium ratio was 0.005 to 0.1, the afterglow luminance characteristics were superior to Comparative Example 1. It can be seen that each of them is 3 times or more superior to 1. Further, in Sample 5 (2) to Sample 5— (4) (the ratio of barium was 0.1 and the ratio of calcium to M was 0.005 to 0.05), the afterglow luminance after 10 hours was almost 4 times that of Comparative Example 1. It can be seen that the excellent afterglow luminance characteristic is more preferable when the ratio is twice or more. However, in Sample 5— (1) (the percentage of balm was 0.1 and the percentage of calcium was 0.002), the afterglow luminance after 10 hours was less than three times that of Comparative Example 1, and Samples 5— (5) and Sample 5- (6) (barium ratio of 0.1 and power ratio of 0.15 to 0.2) may cause a relative decrease in the strontium ratio. Afterglow luminance after 10 minutes, 20 minutes, and 60 minutes was lower than that of Comparative Example 1.
これら試料 5—(1)ないし試料 5—(7)のほかにも、バリウムおよびカルシウムの配合 比を変化させて実験を行ったところ、いずれにおいても、ノリウムの好適な範囲は、 0 .01を超え以上 0.3以下であり、カルシウムの好適な範囲は 0.005を超え 0.1以下 であることが確認された。  In addition to these Samples 5- (1) to 5- (7), experiments were conducted by changing the mixing ratio of barium and calcium. In each case, the preferred range of norium was 0.01. It was confirmed that the range was more than 0.3 and less than 0.3, and the suitable range of calcium was more than 0.005 and 0.1 or less.
このことより、 Mで表す金属元素がストロンチウム、ノリウムおよびカルシウムからな る場合、 Mに対するバリウムの割合、すなわち BaZ(Sr + Ba + Ca)が 0.01以上 0. 3以下であり、 Mに対するカルシウムの割合、すなわち CaZ (Sr + Ba + Ca)が 0. 01 以上 0. 1以下のとき、優れた残光輝度特性をもつ蓄光性蛍光体となることがわかる。 産業上の利用可能性 From this, when the metal element represented by M is strontium, norium and calcium, the ratio of barium to M, that is, BaZ (Sr + Ba + Ca) is 0.01 or more. When the ratio of calcium to M, that is, CaZ (Sr + Ba + Ca) is 0.01 or more and 0.1 or less, it is understood that the phosphorescent phosphor has excellent afterglow luminance characteristics. Industrial applicability
本発明は、たとえば、夜光時計用に使用することができる。  The invention can be used, for example, for luminous watches.

Claims

請求の範囲 The scope of the claims
[1] MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)およびバリウム(Ba)力もな  [1] A compound represented by MAI O, where M also has strontium (Sr) and barium (Ba) forces.
2 4  twenty four
る化合物を母結晶にすると共に、  Compound into a mother crystal,
賦活剤としてユウ口ピウム (Eu)を添加し、  Add palladium (Eu) as an activator,
共賦活剤としてジスプロシウム (Dy)を添加する蓄光性蛍光体であって、 ユウ口ピウム(Eu)の添加量は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシ ゥム(Dy)のモル数の合計に対するモル%で 0. 5%以上 2%以下であり、  A phosphorescent phosphor to which dysprosium (Dy) is added as a co-activator, and the amount of palladium (Eu) added to the metal element represented by M, the amount of palladium (Eu) and dysprosium (Dy) 0.5% or more and 2% or less in mol% based on the total number of moles,
ジスプロシウム (Dy)の添加量は、ユウ口ピウム(Eu)に対するモル比で 1く DyZEu The amount of dysprosium (Dy) to be added is 1 in molar ratio
≤ 20であり、 ≤ 20;
かつユウ口ピウム(Eu)とジスプロシウム(Dy)の添加量の合計が、 Mで表す金属元 素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル0 /0で 1. 5 %以上 42%以下であり、 And amount total of Yu port Piumu (Eu) and dysprosium (Dy) is 1 mol 0/0 to the total mole number of the metal elemental and Yu port Piumu (Eu) and dysprosium (Dy) expressed by M. 5% or more and 42% or less,
アルミニウム (A1)の割合は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシゥ ム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下であり、  The ratio of aluminum (A1) is 2.05 or more and 3.0 or less with respect to the total number of moles of the metal element represented by M, the number of moles of palladium (Eu) and dysprosium (Dy).
Mに対するバリウム(Ba)の割合力 0. 01≤Ba/ (Sr+Ba)≤0. 35であることを 特徴とした蓄光性蛍光体。  Luminescent phosphor characterized by the ratio of barium (Ba) to M: 0.01 ≤ Ba / (Sr + Ba) ≤ 0.35.
[2] MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)およびカルシウム(Ca)から [2] A compound represented by MAI O, where M is derived from strontium (Sr) and calcium (Ca).
2 4  twenty four
なる化合物を母結晶にすると共に、  Compound as a mother crystal,
賦活剤としてユウ口ピウム (Eu)を添加し、  Add palladium (Eu) as an activator,
共賦活剤としてジスプロシウム (Dy)を添加する蓄光性蛍光体であって、 ユウ口ピウム(Eu)の添加量は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシ ゥム(Dy)のモル数の合計に対するモル%で 0. 5%以上 2%以下であり、  A phosphorescent phosphor to which dysprosium (Dy) is added as a co-activator, and the amount of palladium (Eu) added to the metal element represented by M, the amount of palladium (Eu) and dysprosium (Dy) 0.5% or more and 2% or less in mol% based on the total number of moles,
ジスプロシウム (Dy)の添加量は、ユウ口ピウム(Eu)に対するモル比で 1く DyZEu The amount of dysprosium (Dy) to be added is 1 in molar ratio
≤ 20であり、 ≤ 20;
かつユウ口ピウム(Eu)とジスプロシウム(Dy)の添加量の合計が、 Mで表す金属元 素とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル0 /0で 1. 5 %以上 42%以下であり、 And amount total of Yu port Piumu (Eu) and dysprosium (Dy) is 1 mol 0/0 to the total mole number of the metal elemental and Yu port Piumu (Eu) and dysprosium (Dy) expressed by M. 5% or more and 42% or less,
アルミニウム (A1)の割合は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシゥ ム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下であり、The ratio of aluminum (A1) is determined by the metal element represented by M, the palladium (Eu), and dysprosium. The molar ratio is 2.05 or more and 3.0 or less with respect to the total number of moles of the
Mに対するカルシウム(Ca)の割合は、 0. 005≤Ca/ (Sr+Ca)≤0. 15であるこ とを特徴とした蓄光性蛍光体。 A phosphorescent phosphor characterized in that the ratio of calcium (Ca) to M is 0.005≤Ca / (Sr + Ca) ≤0.15.
[3] MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)、バリウム(Ba)およびカル [3] A compound represented by MAI O, where M is strontium (Sr), barium (Ba) and
2 4  twenty four
シゥム (Ca)力 なる化合物を母結晶にすると共に、  In addition to turning a compound (Ca) into a mother crystal,
賦活剤としてユウ口ピウム (Eu)を添加し、  Add palladium (Eu) as an activator,
共賦活剤としてジスプロシウム (Dy)を添加する蓄光性蛍光体であって、 ユウ口ピウム(Eu)の添加量は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシ ゥム(Dy)のモル数の合計に対するモル%で 0. 5%以上 2%以下であり、  A phosphorescent phosphor to which dysprosium (Dy) is added as a co-activator, and the amount of palladium (Eu) added to the metal element represented by M, the amount of palladium (Eu) and dysprosium (Dy) 0.5% or more and 2% or less in mol% based on the total number of moles,
ジスプロシウム (Dy)の添加量は、ユウ口ピウム(Eu)に対するモル比で 1く DyZEu The amount of dysprosium (Dy) to be added is 1 in molar ratio
≤ 20であり、 ≤ 20;
かつユウ口ピウム(Eu)とジスプロシウム(Dy)の添加量の合計が、 Mで表す金属元 素)とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル0 /0で 1. 5%以上 42%以下であり、 And amount total of Yu port Piumu (Eu) and dysprosium (Dy) is in molar 0/0 to moles total of metal elemental) and Yu port Piumu (Eu) and dysprosium (Dy) expressed by M 1 Between 5% and 42%,
アルミニウム (A1)の割合は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシゥ ム(Dy)のモル数の合計に対して、モル比で 2. 05以上 3. 0以下であり、  The ratio of aluminum (A1) is 2.05 or more and 3.0 or less with respect to the total number of moles of the metal element represented by M, the number of moles of palladium (Eu) and dysprosium (Dy).
Mに対するバリウム(Ba)の割合は、 0. 01≤Ba/ (Sr + Ba + Ca)≤0. 3であり、 Mに対するカルシウム(Ca)の割合は、 0. 005≤Ca/ (Sr + Ba + Ca)≤0. 1である ことを特徴とした蓄光性蛍光体。  The ratio of barium (Ba) to M is 0.01 ≤Ba / (Sr + Ba + Ca) ≤0.3, and the ratio of calcium (Ca) to M is 0.005≤Ca / (Sr + Ba + Ca) ≤0.1. Luminescent phosphor, characterized in that:
[4] アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、バリウム化合物(Ba)と、 ユウ口ピウム (Eu)化合物と、ジスプロシウム (Dy)化合物とを各元素が下記のモル比 になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したことを特徴とす るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法。 [4] An aluminum (A1) compound, a strontium (Sr) compound, a barium compound (Ba), an europium pium (Eu) compound, and a dysprosium (Dy) compound such that each element has the following molar ratio. And calcination in a reducing atmosphere, followed by cooling and pulverization, and a method for producing an alkaline earth metal aluminate phosphorescent phosphor.
0. 005≤Eu/ (Sr + Ba + Eu + Dy)≤0. 02、  0.005≤Eu / (Sr + Ba + Eu + Dy) ≤0.02,
l < Dy/Eu≤20、  l <Dy / Eu≤20,
0. 015≤ (Eu + Dy) / (Sr+Ba + Eu+Dy)≤0. 42、  0.0015≤ (Eu + Dy) / (Sr + Ba + Eu + Dy) ≤0.42,
0. 01≤Ba/ (Sr+Ba)≤0. 35、  0.01≤Ba / (Sr + Ba) ≤0.35,
2. 05≤Al/ (Sr+Ba+Eu+Dy)≤3. 0 2.05≤Al / (Sr + Ba + Eu + Dy) ≤3.0
[5] アルミニウム (Al)化合物と、ストロンチウム(Sr)化合物と、カルシウム化合物(Ca)と 、ユウ口ピウム(Eu)化合物と、ジスプロシウム(Dy)化合物とを各元素が下記のモル 比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したことを特徴と するアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法。 [5] An aluminum (Al) compound, a strontium (Sr) compound, a calcium compound (Ca), a europium (Pu) (Eu) compound, and a dysprosium (Dy) compound such that each element has the following molar ratio: And calcination in a reducing atmosphere, followed by cooling and pulverization, thereby producing a phosphorescent phosphor of an alkaline earth metal aluminate.
0. 005≤Eu/ (Sr+Ca+Eu+Dy)≤0. 02、  0.005≤Eu / (Sr + Ca + Eu + Dy) ≤0.02,
l < Dy/Eu≤20、  l <Dy / Eu≤20,
0. 015≤ (Eu + Dy) / (Sr+Ca + Eu + Dy)≤0. 42、  0.0015≤ (Eu + Dy) / (Sr + Ca + Eu + Dy) ≤0.42,
0. 005≤Ca/ (Sr+Ca)≤0. 15、  0.005≤Ca / (Sr + Ca) ≤0.15,
2. 05≤Al/ (Sr+Ca+Eu+Dy)≤3. 0  2.05≤Al / (Sr + Ca + Eu + Dy) ≤3.0
[6] アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、バリウム (Ba)化合物と、 カルシウム(Ca)化合物と、ユウ口ピウム(Eu)化合物と、ジスプロシウム(Dy)化合物と を各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷 却、粉砕したことを特徴とするアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方 法。 [6] Each element is composed of an aluminum (A1) compound, a strontium (Sr) compound, a barium (Ba) compound, a calcium (Ca) compound, a palladium (Eu) compound, and a dysprosium (Dy) compound. A method for producing an alkaline earth metal aluminate phosphorescent phosphor, comprising mixing in the following molar ratio, firing in a reducing atmosphere, and then cooling and pulverizing.
0. 005≤Eu/ (Sr + Ba + Ca + Eu+Dy)≤0. 02、  0.005≤Eu / (Sr + Ba + Ca + Eu + Dy) ≤0.02,
l < Dy/Eu≤20、  l <Dy / Eu≤20,
0. 015≤ (Eu + Dy) / (Sr+Ba + Ca + Eu + Dy)≤0. 42、  0.0015≤ (Eu + Dy) / (Sr + Ba + Ca + Eu + Dy) ≤0.42,
0. 01≤Ba/ (Sr+Ba + Ca)≤0. 3、  0.01 ≤Ba / (Sr + Ba + Ca) ≤0.3,
0. 005≤Ca/ (Sr + Ba + Ca)≤0. 1、  0.005≤Ca / (Sr + Ba + Ca) ≤0.1,
2. 05≤Al/ (Sr+Ba+Ca+Eu+Dy)≤3. 0  2.05≤Al / (Sr + Ba + Ca + Eu + Dy) ≤3.0
[7] 原料中に、フラックスとしてホウ素化合物を添加し焼成したことを特徴とする請求の 範囲第 4項、第 5項または第 6項記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体 の製造方法。 [7] The production of the alkaline earth metal aluminate phosphorescent phosphor according to claim 4, wherein a boron compound is added as a flux to the raw material and calcined. Method.
PCT/JP2004/016401 2003-11-06 2004-11-05 Phosphorescence exhibiting phosphor and process for producing the same WO2005044946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003377415 2003-11-06
JP2003-377415 2003-11-06

Publications (1)

Publication Number Publication Date
WO2005044946A1 true WO2005044946A1 (en) 2005-05-19

Family

ID=34567145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016401 WO2005044946A1 (en) 2003-11-06 2004-11-05 Phosphorescence exhibiting phosphor and process for producing the same

Country Status (1)

Country Link
WO (1) WO2005044946A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033576A1 (en) * 2005-09-23 2007-03-29 Dalian Luminglight Science And Technology Co., Ltd. Long-afterglow luminescent material and its preparation method
US8404153B2 (en) 2010-12-17 2013-03-26 General Electric Company White persistent phosphor blend or layered structure
US8506843B2 (en) 2010-12-17 2013-08-13 General Electric Company White emitting persistent phosphor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1190520A (en) * 1967-11-22 1970-05-06 Philips Electronic Associated Luminescent Materials
JPH0711250A (en) * 1993-04-28 1995-01-13 Nemoto Tokushu Kagaku Kk Light-storing fluorescent material
JPH08127772A (en) * 1994-11-01 1996-05-21 Nemoto Tokushu Kagaku Kk Photostimulable phosphor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1190520A (en) * 1967-11-22 1970-05-06 Philips Electronic Associated Luminescent Materials
JPH0711250A (en) * 1993-04-28 1995-01-13 Nemoto Tokushu Kagaku Kk Light-storing fluorescent material
JPH08127772A (en) * 1994-11-01 1996-05-21 Nemoto Tokushu Kagaku Kk Photostimulable phosphor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033576A1 (en) * 2005-09-23 2007-03-29 Dalian Luminglight Science And Technology Co., Ltd. Long-afterglow luminescent material and its preparation method
US7686979B2 (en) 2005-09-23 2010-03-30 Dalian Luminglight Science And Technology Co., Ltd. Long afterglow luminescent material and its manufacturing method
US8404153B2 (en) 2010-12-17 2013-03-26 General Electric Company White persistent phosphor blend or layered structure
US8506843B2 (en) 2010-12-17 2013-08-13 General Electric Company White emitting persistent phosphor

Similar Documents

Publication Publication Date Title
TWI384292B (en) Light emitting device
US7755276B2 (en) Aluminate-based green phosphors
JP4975269B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
TWI351426B (en) Phosphor, method for production thereof, and light
JP4415547B2 (en) Oxynitride phosphor and method for producing the same
JP2010043242A (en) METHOD FOR PRODUCING beta-SIALON PHOSPHOR
CN102333842B (en) Long-afterglow fluorescent ceramic and process for producing same
JP4597865B2 (en) Luminescent phosphor and method for producing the same
JP3232548B2 (en) Afterglow phosphor
WO2018056447A1 (en) Phosphor, light-emitting device, illumination device, and image display device
JP4628957B2 (en) Luminescent phosphor and method for producing the same
JP4466447B2 (en) Oxynitride phosphor
WO2016199406A1 (en) Phosphor and method for producing same, and led lamp
US20080191230A1 (en) Red Phosphor and Luminous Element Using the Same
JP2000026854A (en) Liminous oxide having stuffed tridymite type or kaliphilite type structure and oxide luminophor
WO2005044946A1 (en) Phosphorescence exhibiting phosphor and process for producing the same
CN102399554B (en) Nitride red luminescence material, and luminescent part and luminescent device containing the same
JP3268761B2 (en) High brightness and long afterglow aluminate phosphor with excellent heat and weather resistance
JP2000034480A (en) Phosphorescent phosphor
JP2017190434A (en) Fluophor, light-emitting device, luminaire and image display device
JP2005232414A (en) Strontium aluminate-based luminous powder and its production method
CN112852415B (en) High-color-purity and high-stability light-emitting green fluorescent powder and preparation method thereof
JP2011202002A (en) Phosphor
CN101717638A (en) Fluorescent powder for field emission and method for preparing same
JPS62187785A (en) Highly color-rendering fluorescent lamp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase