WO2005044742A1 - Methode de traitement biologique de sels de soufre - Google Patents

Methode de traitement biologique de sels de soufre Download PDF

Info

Publication number
WO2005044742A1
WO2005044742A1 PCT/NL2004/000791 NL2004000791W WO2005044742A1 WO 2005044742 A1 WO2005044742 A1 WO 2005044742A1 NL 2004000791 W NL2004000791 W NL 2004000791W WO 2005044742 A1 WO2005044742 A1 WO 2005044742A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
sulphur
sulphide
bicarbonate
sodium
Prior art date
Application number
PCT/NL2004/000791
Other languages
English (en)
Inventor
Jacob Leendert Huisman
Cees Jan Nico Buisman
Original Assignee
Paques B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paques B.V. filed Critical Paques B.V.
Publication of WO2005044742A1 publication Critical patent/WO2005044742A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide

Definitions

  • the invention relates to the treatment of sulphur-containing salts using biological oxidation with the possibility of recovering dissolved salts.
  • Liquid and dissolved forms of sulphur salt are released in many different processes.
  • An example of a dissolved oxidised sulphur salt is sodium sulphate. This is commonly formed when sulphuric acid is neutralised with caustic soda. Under many circumstances, such highly concentrated salt streams cannot be released into the environment. Consequently, at the expense of huge energy consumption, water is evaporated to obtain a solid salt.
  • Another common way to treat such a stream is by adding a calcium salt, resulting in the formation of gypsum (CaSO 4 .2H 2 O).
  • An example of material that contains reduced sulphur is the slag that is formed by certain smelting processes. Such slag contains among others sodium sulphide. This slag is unstable against leaching when land filled. Another example of a stream with reduced sulphur is spent caustic (hydrogen sulphide dissolved in sodium hydroxide-solution).
  • a process for eliminating sulphur dioxide or hydrogen sulphide from gases through absorption of these sulphur compounds in an alkaline washing liquid containing (bicarbonate, optionally reducing sulphite and sulphate to sulphide and biologically oxidising the sulphide salts to elemental sulphur is described in WO 92/10270.
  • the resulting desulphurised liquid containing carbonate and bicarbonate is returned to the gas washing step.
  • WO 97/43033 discloses the use of particular alkaliphilic bacteria in oxidising sulphide to elemental sulphur at a pH of 9-11, using lye or soda where necessary for pH adjustment.
  • the invention pertains to a process of desalination and des ⁇ lphurisation and recovery of sodium (or other) salts and sulphur.
  • the process converts alkali metal salts of oxidised and reduced sulphur (e.g. sodium sulphate, sodium sulphite, sodium sulphide etc.) to elemental sulphur and dissolved carbonate, followed by the recovery of the carbonate as the solid alkali metal carbonate salt.
  • sodium (Na + ) can also be another alkali metal such as potassium or lithium, or alkaline earth metal, or a mixture of sodium with such other metal(s).
  • the conversion can be carried out at a total cation concentration up to 8 M, preferably in the range of 2 to 4 M. In case of sodium, a particularly useful concentration is between 2 and 6.4 M.
  • Metal cation concentrations can be measured by standard methods, including e.g. Inductive Coupled Plasma, after suitable dilution where necessary.
  • the conversion can be carried out in the range from pH 7 to pH 13, though the preferred pH is frompH 9 to pH 12, especially about 10.5.
  • the reaction is carried in a bioreactor, and, in principle, the reaction can occur between 0 and 100°C, though preferably at 25 - 35°C.
  • the pH can be adjusted using the redox potential of the medium as described in WO98/04503; thus the redox potential can be adjusted between -300 and -350 mV using a platinum-coated electrode and an Ag/AgCl reference electrode.
  • the bacteria required for the biological oxidation of sulphide should be resistant to and active under the alkaline pH and the high salt concentrations.
  • Suitable bacteria are halo- alkaliphilic sulphide-oxidising bacteria.
  • Several of such bacteria are known and have been obtained from soda lakes. They include the genera Thi(o)alkalivibrio, Thialkali- microbium, Thi(o)alkalispira and Thioalkalicoccus . Examples are Thialkalivibrio versutus (DSM 13738) (AL2), TV. nitratis (DSM 13741), Tv. denitrificans (DSM ⁇ 13742), TV. paradoxus (DSM 13531), Tv.
  • DSM 13532 TV. jannaschii (DSM 14478), Thialhalimicrobium aerophilum (DSM 13739) (AL3), Tm. sibiricum (DSM 13740), Tm. cyclicum (DSM 14477) and Thialkalispira micro aerophila (DSM 14786).
  • DSM 13532 TV. jannaschii (DSM 14478), Thialhalimicrobium aerophilum (DSM 13739) (AL3), Tm. sibiricum (DSM 13740), Tm. cyclicum (DSM 14477) and Thialkalispira micro aerophila (DSM 14786).
  • the alkalinity that is formed during this conversion can be neutralised by an acid, in particular carbon dioxide (CO 2 ), in order to keep the pH in the reactor constant.
  • CO 2 carbon dioxide
  • the overall conversion can be written as follows (neglecting the formation of biomass): Na + + HS- + l A O 2 + CO 2 ⁇ Na + + S° + HCO 3 ' (2)
  • the elemental sulphur (S°) is separated from the liquid as a solid. It may be disposed or used for the production of sulphuric acid.
  • the liquid resulting after separation of elemental sulphur is loaded with a bicarbonate/carbonate solution, and is then led to a device that recovers the bicarbonate/carbonate as a solid, especially as sodium carbonate and/or bicarbonate.
  • Several methods for recovering carbonate and bicarbonate salts are possible, including the following:
  • solubility of sodium bicarbonate certainly per sodium ion, is much lower than the solubility of sodium carbonate, it is possible in this way to supersaturate the solution with sodium bicarbonate, resulting in the crystallisation of this compound. This can be done by decreasing the pH to between 5.5 and 11, preferably to between 6 and 9, especially about pH 7.
  • the solid sodium bicarbonate can be separated from the liquid and dried. If required, the sodium bicarbonate can be converted to sodium carbonate by heating the solid until water vapour and carbon dioxide are released. These compounds can be recycled back to the process, as a liquid and/or as a gas.
  • the process can also be applied to other metals such as potassium; in this case, higher concentrations and or lower temperatures are applied in the salt recovery steps as described above, because of the higher solubility of potassium (bicarbonate; e.g. a factor of 1.5 or 2 on concentrations, or a temperature decrease of 10°C, or a pH adjustment.
  • a central step in the process of the invention is the provision of a solution containing sulphide ions, in particular a solution of sodium (hydrogen) sulphide. Depending on the origin of the sulphide, this sulphide-containing solution is produced by different pre- treatments.
  • the sulphide originates as a solution, no further pre-treatment will be necessary other than proper dilution or concentration or adjustment of pH or temperature. If the sulphide is produced as a sohd or semi-solid, the (semi)solids are mixed with the supernatant from the carbonate recovering step, make-up water and pH control agents, resulting in a sulphide-containing solution.
  • gaseous sulphide i.e. hydrogen sulphide and/or carbonyl sulphide
  • the gas is scrubbed with an aqueous liquid at the appropriate pH, for example as described in WO 92/10270, resulting in a sulphide solution.
  • the sulphur-containing salts are oxidised sulphur salts, especially sulphite or sulphate or thiosulphate, which, prior to the treatment as described above, are reduced to sulphide according to the following equation: 2Na + + SO 4 2_ + 8H 1" + 8 e ⁇ 2Na + + S 2" + 4 H 2 O
  • the eight electrons (e-) are supplied by hydrogen or another electron donor like ethanol. In the case of hydrogen, the electrons are formed as follows: 4 H 2 ⁇ 8 IT" + 8e
  • Both reactions are preferably carried out using bacteria.
  • the conversion can be carried out at a total cation concentration up to 8 M, preferably in the range of 2 to 4 M.
  • the conversion can be carried out in the range from pH 1 to pH 13, though the preferred pH is from 5 to 9, especially from 6 to 8.
  • the preferred temperature is in the range of 20 - 35°C.
  • the starting salts may be provided as a solution, only requiring adjustment of concentration, temperature and/or pH, or as solids, requiring appropriate mixing and dissolution, or as a gas, in particular sulphur dioxide, requiring scrubbing with an aqueous liquid e.g. as described in WO 92/10270.
  • Bacteria capable of reducing sulphate and other oxidised sulphur species to sulphide include Desulforomonas sp. (mesophilic), Desulfotomaculum KT7 (thermophilic), the species Desulforolobus ambivalens, Acidianus infernus, Acidianus brierley, Stygiolobus azoricus (mesophilic), Thermoproteus neutrophilus, Thermoproteus tenax, Thermo- discus maritimus (thermophilic), Pyrobaculum islandicum, Pyrodictium occultum, Pyrodictium brockii (hyperthermophilic), and other species of the genera Desulfovibrio, Desulfotomaculum, Desulfomonas, Desulfobulbus, Desulfobacter, Desulfococcus, Desulfonema, Desulfosarcina, Desulfobacterium and Desulforomas (mesophilic
  • the sulphate-reducing bacteria tolerating high salt concentrations include species of the genera Desulfovibrio, Desulfonatronovibrio and Desulfohalobium e.g. Desulfonatronovibrio hydrogenovorans (DSM 9292), Desulfovibrio halophilus (DSM 5663), Desulfovibrio salexigens (DSM 2638) en Desulfohalobium retbaense (DSM 5692).
  • Electron donors to be used in the biological sulphate reduction can be hydrogen, carbon monoxide, alcohols, fatty acids and other readily degradable organic matter, as known in the art.
  • the sulphate reduction prior to the sulphide oxidation can e.g. be applied in case of concentrated sodium sulphate solutions issuing from reversed osmosis plants used for desulphurising sulphate-containing water.
  • the reversed osmosis yields highly530ified water, but it also produces a concentrated sulphate effluent.
  • This effluent can be advantageously treated using the process of the invention, and is then be disposed of or returned to the reversed osmosis.
  • Figure 1 shows the flow sheet for the conversion of a dissolved alkali sulphide.
  • the stream originally containing sulphide passes through a sulphide-oxidising bioreactor for oxidising the sulphide to sulphur, a sulphur settler for separating off elemental sulphur, a bicarbonate crystalliser and a bicarbonate dryer.
  • the resulting carbonated water can be reused in the bioreactor.
  • Figure 2 shows a similar flow sheet for sohd material containing dissolvable sulphide salts. The installation of figure 1 is then preceded upstream by a solids dissolving unit and a separator for removing non-dissolved material.
  • FIG. 3 shows a flow sheet for the conversion of sulphate salts, comprising biological reduction as a prior step compared to the flow sheets of figures 1 and 2 carried out in an anaerobic sulphate-reducing bioreactor.
  • Soda slag from a company that recycles car batteries by pyrometallurgical means was dissolved in water.
  • the solution was clarified from particles by settling. It contained about 75 g/1 of sodium (3 M) and 45 g 1 of dissolved sulphide. It was fed together with a nutrient solution containing among other a nitrogen and a phosphorous source to a continuously operating 5 litre bioreactor at a temperature of 30°C containing Thi(o)- alkalivibrio strains comprising strain DSM 13738.
  • a gas recycle over the bioreactor ensured mixing.
  • Oxygen was added to the gas recycle in order to maintain the redox potential in solution to a value between -100 and -450 mV, preferably -360 to -430 mV measured with a platinum electrode against an Ag/AgCl reference electrode.
  • the pH was measured with a glass electrode. It was controlled at a value between 9 and 12, in particular at about 10.5 through the injection of CO 2 gas in the gas recycle.
  • Thi(o) alkali- vibrio bacteria converted the dissolved sulphide to elemental sulphur. Effluent from the bioreactor was led through a settler where the sulphur was separated from the liquid.
  • the effluent of the settler was treated batch-wise with CO 2 gas and the treated effluent was cooled to ambient temperature to precipitate the major part (>60%) of the original sodium as crystalline NaHCO 3 as described above leaving approx 1 M of sodium in solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

L'invention porte sur une méthode de traitement de sels contenant du soufre par conversion, par exemple, dans le cas du traitement du sulfate, du sel contenant le soufre en une solution de sel de sulfure, et par oxydation biologique du sel de sulfure en sulfure élémentaire et alcali à l'aide d'une concentration de cation métalliques alcalins comprise entre 2 et 8 M, et de préférence, à un pH compris entre 9 et 12. Le sulfure élémentaire est séparé et l'alcali est neutralisé par une forme acide d'un composé tampon, notamment le dioxyde de carbone, donnant ainsi un (bi)carbonate métallique alcalin solide pouvant être récupéré.
PCT/NL2004/000791 2003-11-11 2004-11-11 Methode de traitement biologique de sels de soufre WO2005044742A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03078551.3 2003-11-11
EP03078551 2003-11-11

Publications (1)

Publication Number Publication Date
WO2005044742A1 true WO2005044742A1 (fr) 2005-05-19

Family

ID=34560185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2004/000791 WO2005044742A1 (fr) 2003-11-11 2004-11-11 Methode de traitement biologique de sels de soufre

Country Status (1)

Country Link
WO (1) WO2005044742A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274399B2 (en) 2007-11-30 2012-09-25 Halliburton Energy Services Inc. Method and system for predicting performance of a drilling system having multiple cutting structures
WO2013092769A1 (fr) 2011-12-19 2013-06-27 Shell Internationale Research Maatschappij B.V. Procédé de traitement de flux de déchets aqueux provenant de la transformation d'une biomasse lignocellulosique
WO2016009346A1 (fr) * 2014-07-18 2016-01-21 Water Research Commission Procédé et installation pour le traitement d'eaux usées contenant du sulfate
CN108558120A (zh) * 2018-01-18 2018-09-21 沈阳建筑大学 一种油气化造气废水处理系统及方法
WO2020016241A1 (fr) 2018-07-19 2020-01-23 Stora Enso Oyj Procédé pour réguler l'équilibre sodium-soufre dans une usine de pâte
WO2020016238A1 (fr) 2018-07-19 2020-01-23 Stora Enso Oyj Traitement biologique de flux alcalins industriels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010270A1 (fr) * 1990-12-04 1992-06-25 Paques B.V. Procede d'elimination des composes de soufre des gaz
WO1994029227A1 (fr) * 1993-06-10 1994-12-22 Paques B.V. aROCEDE POUR PURIFIER DES EAUX USEES CONTENANT DU SULFURE
WO1996030110A1 (fr) * 1995-03-24 1996-10-03 Paques Bio Systems B.V. Procede pour le traitement de gaz
WO1997043033A1 (fr) * 1996-05-10 1997-11-20 Paques Bio Systems B.V. Procede de purification de gaz contenant de l'acide sulfhydrique
WO1999006328A1 (fr) * 1997-08-01 1999-02-11 Csir Procede de traitement d'eau contenant des sulfates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010270A1 (fr) * 1990-12-04 1992-06-25 Paques B.V. Procede d'elimination des composes de soufre des gaz
WO1994029227A1 (fr) * 1993-06-10 1994-12-22 Paques B.V. aROCEDE POUR PURIFIER DES EAUX USEES CONTENANT DU SULFURE
WO1996030110A1 (fr) * 1995-03-24 1996-10-03 Paques Bio Systems B.V. Procede pour le traitement de gaz
WO1997043033A1 (fr) * 1996-05-10 1997-11-20 Paques Bio Systems B.V. Procede de purification de gaz contenant de l'acide sulfhydrique
WO1999006328A1 (fr) * 1997-08-01 1999-02-11 Csir Procede de traitement d'eau contenant des sulfates

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274399B2 (en) 2007-11-30 2012-09-25 Halliburton Energy Services Inc. Method and system for predicting performance of a drilling system having multiple cutting structures
WO2013092769A1 (fr) 2011-12-19 2013-06-27 Shell Internationale Research Maatschappij B.V. Procédé de traitement de flux de déchets aqueux provenant de la transformation d'une biomasse lignocellulosique
WO2016009346A1 (fr) * 2014-07-18 2016-01-21 Water Research Commission Procédé et installation pour le traitement d'eaux usées contenant du sulfate
AU2015291232B2 (en) * 2014-07-18 2018-12-13 Water Research Commission Method and plant for the treatment of sulphate containing waste water
US10414680B2 (en) 2014-07-18 2019-09-17 Water Research Commission Method for the biological treatment of sulphate containing waste water, via reduction of sulphate to sulphide then its oxidation to elemental sulphur
CN108558120A (zh) * 2018-01-18 2018-09-21 沈阳建筑大学 一种油气化造气废水处理系统及方法
WO2020016241A1 (fr) 2018-07-19 2020-01-23 Stora Enso Oyj Procédé pour réguler l'équilibre sodium-soufre dans une usine de pâte
WO2020016238A1 (fr) 2018-07-19 2020-01-23 Stora Enso Oyj Traitement biologique de flux alcalins industriels
CN112534094A (zh) * 2018-07-19 2021-03-19 斯道拉恩索公司 用于控制纸浆厂中的钠和硫平衡的方法
EP4043408A1 (fr) 2018-07-19 2022-08-17 Stora Enso Oyj Traitement biologique de flux alcalins industriels
CN112534094B (zh) * 2018-07-19 2022-11-18 斯道拉恩索公司 用于控制纸浆厂中的钠和硫平衡的方法

Similar Documents

Publication Publication Date Title
Janssen et al. Industrial applications of new sulphur biotechnology
EP3478863B1 (fr) Récupération de métaux lourds par précipitation sélective
SK1999A3 (en) Sulphur reducing bacterium and its use in biological desulphurisation processes
US5474682A (en) Method for removing sulphur compounds from water
US5196176A (en) Process for the removal of sulfur dioxide from waste gas
Bounaga et al. Microbial transformations by sulfur bacteria can recover value from phosphogypsum: a global problem and a possible solution
US5518619A (en) Process for removing sulphur compounds from water
US6852305B2 (en) Process for the production of hydrogen sulphide from elemental sulphur and use thereof in heavy metal recovery
WO2005044742A1 (fr) Methode de traitement biologique de sels de soufre
KR100585249B1 (ko) 황원소에서 황화수소를 제조하는 방법 및 이것을 중금속회수에 사용하는 방법
US6387669B1 (en) Methods for producing hydrogen (BI) sulfide and/or removing metals
EP0642472B1 (fr) Procede permettant d'eliminer des composes soufres presents dans l'eau
CN114685000B (zh) 一种处理高硫酸盐有机废水的工艺方法
CA2506730A1 (fr) Processus d'oxydation anaerobie du methane
RU2235781C2 (ru) Способ получения сероводорода из элементарной серы и способ обработки тяжелых металлов на его основе
EP4341220A1 (fr) Procédé de purification de sulfate contenant des eaux usées et de récupération de soufre et d'hydrogène
Dhillon Sulfide and alkalinity production from activated sludge to treat acid mine drainage
Lens et al. Bioprocess engineering of sulfate reduction for environmental technology
Godfrey Focus on CSIR research in pollution waste: Technologies for waste and wastewater treatment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase