WO2005042154A1 - Method of preparing modified catalyst for bisphenol a production - Google Patents

Method of preparing modified catalyst for bisphenol a production Download PDF

Info

Publication number
WO2005042154A1
WO2005042154A1 PCT/JP2004/015700 JP2004015700W WO2005042154A1 WO 2005042154 A1 WO2005042154 A1 WO 2005042154A1 JP 2004015700 W JP2004015700 W JP 2004015700W WO 2005042154 A1 WO2005042154 A1 WO 2005042154A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
exchange resin
ion exchange
aqueous solution
strongly acidic
Prior art date
Application number
PCT/JP2004/015700
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Iwahara
Jun Mase
Shuichi Masuda
Hideki Sato
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2005042154A1 publication Critical patent/WO2005042154A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • B01J2231/3471,2-additions, e.g. aldol or Knoevenagel condensations via cationic intermediates, e.g. bisphenol A type processes

Definitions

  • the present invention relates to a method for preparing a catalyst used for producing bisphenol A [2,2-bis (4-hydroxyphenyl) propane]. More specifically, the present invention relates to a diamine compound containing a strongly acidic ion exchange resin.
  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate and polyarylate, and epoxy resin, and the demand for it is increasing in recent years. Tend to.
  • a strongly acidic ion-exchange resin partially modified with a diamine-containing conjugate is used as a catalyst, and such a catalyst is prepared in a fixed-bed reactor in a fixed-bed reactor.
  • a method is used in which a sulfonic acid-type ion exchange resin is denatured by batch addition of a diamine-containing conjugate.
  • the sulfonic acid-type ion-exchange resin is modified all at once by adding the diamine-containing conjugate to the sulfonic acid-type ion-exchange resin. Transfers sulfonic acid groups (adsorption to sulfonic acid groups, desorption and transfer from sulfonic acid groups). At this time, the sulfonic acid-type ion-exchange resin is not uniformly denatured by a single transfer of the iodiamine-containing compound from the inlet to the outlet of the fixed-bed reactor by a single force.
  • the concentration of the diamine-containing compound during the transfer of the diamine-containing compound is high at the outlet of the fixed-bed reactor (denaturation rate is about 30 to 80%, high denaturation rate). Is low (denaturation rate is as low as about 5-30%), so that the sulfonic acid type ion exchange resin cannot be uniformly denatured by only one transfer.
  • the cation-exchange resin fixed bed neutralized with the diamine-containing conjugate has been prepared by various methods.
  • a method for preparing a fixed bed (for example, see Patent Documents 1 to 14) is disclosed.
  • a method for example, see Patent Document 5
  • the equipment may be corroded.
  • a method for preparing a catalyst for producing bisphenols a method of injecting a dilute solution of a diamine-containing conjugate while stirring an ion exchange resin in a reaction vessel (for example, see Patent Document 6), The acidic cation exchange resin is filled with the acidic cation exchange resin, and while the aqueous solution of the diamine-containing conjugate is being charged or after being charged, the lower portion of the reactor is circulated to uniformly distribute the acid cation exchange resin.
  • a method of summing is disclosed (for example, see Patent Document 7).
  • a large-scale dilute solution storage facility is required, and the batch-type production using impeller agitation causes damage to the ion-exchange resin.
  • the denaturation catalyst It is important for the denaturation catalyst that the ion exchange resin is uniformly denatured. If the denaturation is not uniform, sufficient catalytic activity cannot be obtained and the catalyst life will be shortened. In the method, particularly in a fixed-bed reactor, it is not possible to stir the strongly acidic ion-exchange resin by publishing an inert gas from the lower part of the fixed-bed reactor during catalyst preparation in order to perform uniform denaturation. We didn't.
  • Patent Document 1 JP-A-6-296871
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-286770
  • Patent Document 3 JP-A-8-40961
  • Patent Document 4 JP 2001-288132 A
  • Patent Document 5 JP-A-53-14680
  • Patent Document 6 JP-A-9-24279
  • Patent Document 7 JP-A-2000-254523
  • the present invention has been made in view of the above circumstances, and a bisphenol A in which a strongly acidic ion exchange resin is uniformly modified and which has excellent catalytic performance without breaking of the strongly acidic ion exchange resin. It is an object of the present invention to provide a method for preparing a modified catalyst for production.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, filled a fixed-bed reactor with a strongly acidic ion-exchange resin, and injected and circulated an aqueous solution containing an acid and an iodiamine-containing compound.
  • the inert gas is bubbled from the lower part of the fixed bed reactor. It has been found that the above object can be achieved by stirring the above strongly acidic ion exchange resin. That is, by stirring the strongly acidic ion-exchange resin in this manner, the concentration of the diamine-containing conjugate is averaged. It has been found that a strongly acidic ion exchange resin is uniformly denatured in a short time.
  • the present invention has been completed based on strong knowledge.
  • the present invention relates to a method for preparing a modified catalyst for the production of bisphenol A, which is obtained by partially modifying a strongly acidic ion exchange resin with a diamine conjugate containing a strongly acidic ion exchange resin. After filling the exchange resin and injecting and circulating an aqueous solution containing an acid and an iodamine compound therein, when denaturing the strongly acidic ion exchange resin, after injecting or circulating the above aqueous solution or temporarily.
  • a modified catalyst for the production of bisphenol A characterized in that the inert gas is bubbled from the lower part of the fixed bed reactor while the circulation is stopped and the strongly acidic ion exchange resin is stirred. It provides a method of preparation.
  • a modified catalyst for producing bisphenol A in a short time, in which a strongly acidic ion exchange resin that does not break the strongly acidic ion exchange resin is uniformly modified and has excellent catalytic performance. it can.
  • the strongly acidic ion-exchange resin used in the present invention includes sulfonates such as a snorephonated styrenedivinylbenzene copolymer, a sulfonated crosslinked styrene polymer, phenolformaldehyde hydrosulfonic acid resin, and benzeneformaldehyde-sulfonic acid resin. Acid form Ion-exchange resins and the like. Strongly acidic ion exchange resin is charged into a fixed bed reactor. Since the fixed bed is directly filled with ion exchange resin, the ion exchange resin will not be damaged in the denaturation process of the ion exchange resin, and there will be no transfer of batch reactors or modified catalyst preparation tanks. It is economically advantageous.
  • examples of the iodamine-containing compound used for modifying the strongly acidic ion exchange resin include mercaptopyridines such as 3 mercaptopyridine, 2 mercaptoalkylamines such as mercaptoethylamine, and 2,2-dimethylthiazolidine. Thiazolidine, etc .; aminothiofolones, such as 4-aminothiol, and pyridinalkanethiols, such as 4 pyridineethanethiol. Of these, 4 pyridineethanethiol, 2,2-dimethylthiazolidine and 2-mercaptoethylamine are preferred. These can be used alone or in combination of two or more.
  • the rate of modification of the strongly acidic ion exchange resin with the diamine-containing conjugate is usually about 5 to 45%, preferably 8 to 35%, more preferably 10 to 30%.
  • the “denaturation rate” of the strongly acidic ion exchange resin means the molar modification rate of the strongly acidic ion exchange resin by the iodiamine compound containing the strongly acidic ion exchange group.
  • an organic acid or an inorganic acid can be used.
  • the organic acid include aromatic sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid and xylenesulfonic acid, alkylsulfonic acids such as methanesulfonic acid and ethanesulfonic acid, acetic acid and formic acid.
  • aromatic sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid and xylenesulfonic acid
  • alkylsulfonic acids such as methanesulfonic acid and ethanesulfonic acid
  • an acidic aqueous solution obtained by washing the sulfonic acid type ion exchange resin with water is also suitable.
  • the inorganic acid include phosphoric
  • the acid concentration of the aqueous solution is usually about 0.01 to 5% by mass, preferably 0.03 to 2% by mass.
  • a weak acid such as acetic acid, formic acid or phosphoric acid
  • it is usually about 0.01 to 8% by mass, preferably 0.05-3% by mass.
  • the water contained in the fixed bed (strongly acidic ion exchange resin) of the fixed bed reactor may be replaced with an aqueous solution containing the above acid.
  • the water-swelling type of the gel-type ion exchange resin usually used as a strongly acidic ion exchange resin contains about 50% by mass of water.
  • the temperature for preparing the catalyst is usually about 0 to 120 ° C, preferably 20 to 100 ° C.
  • the ion exchange resin does not decompose
  • the lower limit is set at about 0 ° C.
  • the circulation amount of the aqueous solution containing an acid and an iodamine compound is usually about 0.1 to 20 h- 1 in LHSV (liquid hourly space velocity), preferably 0.2 to 10 h_1, more preferably 0. 4-5h 1.
  • the linear velocity of the aqueous solution is usually about 0.01 to 100 mZh, preferably 0.05 to 50 m / h, and more preferably 0.1 to 20 m / h.
  • the time required for preparing the catalyst is determined by the concentration of the acid and the type of the acid contained in the aqueous solution, the concentration of the diamine-containing compound, the modification rate of the strongly acidic ion-exchange resin with the diamine-containing conjugate, LHSV, and the like. .
  • the amount of the diamine-containing conjugate to be consumed in the preparation of the catalyst is determined by the conversion.
  • a solution obtained by dissolving the diamine-containing conjugate in an aqueous solution containing an acid is injected from the inlet of the fixed bed reactor, and then an aqueous solution containing an acid is injected.
  • the aqueous solution containing the acid and the iodamine compound is also discharged at the outlet of the fixed bed reactor.
  • an inert gas is bubbled from the lower part of the fixed bed reactor, The above strongly acidic ion exchange resin is stirred.
  • the stirring time is usually about 11 to 120 minutes, preferably 5 to 60 minutes.
  • the timing of stirring depends on the time required for catalyst preparation, but is usually performed after the time required for catalyst preparation has passed about 1Z10-3Z4.
  • publishing of the inert gas may be performed twice or more.
  • the inert gas include helium, argon, and nitrogen, among which nitrogen is preferred.
  • the flow rate of the inert gas is usually 2 to 50 times (volume) Zh, preferably 5 to 50 times the internal volume of the reactor or the amount of catalyst, depending on the diameter of the reactor and the gas injection mode. 30 times (volume) Zh.
  • a gas flow rate of 700 m 3 / h is preferable for a catalyst of 50 m 3 (reactor diameter 4 m). After publishing, it is preferable to stir the mixture so that the ion exchange resin is completely mixed.
  • the flow of the aqueous solution containing the acid and the diamine-containing conjugate in the fixed-bed reactor may be either a downflow or an upflow.
  • a downflow In the case of an upflow, a large flow of the aqueous solution increases the development (floating, flowing, etc.) of the ion exchange resin. Therefore, a downflow is preferred in the present invention.
  • the modified catalyst prepared as described above bisphenol A is produced using phenol and acetone as raw materials.
  • the addition of the modified catalyst to the raw material in the fixed-bed reactor can be performed under almost the same conditions as when preparing the catalyst (LHSV and linear velocity).
  • the proportion of phenol and acetone used is not particularly limited, but it is desirable that the amount of unreacted acetone be as small as possible in view of the ease of purification of bisphenol A and the economical efficiency. It is advantageous to use phenol in excess of the stoichiometric amount. Usually, about 3 to 30 mol, preferably 5 to 15 mol of phenol is used per 1 mol of acetone.
  • the reaction temperature is usually in the range of about 40 to 150 ° C, preferably 60 to 110 ° C.
  • the condensation reaction between phenol and acetone may be carried out in batch or continuous manner.
  • the reaction may be carried out by continuously supplying phenol and acetone to a reaction tower filled with a denaturation catalyst.
  • the fixed bed continuous reaction method is preferred.
  • the reactor has an inner diameter of 50 mm, a length of 250 mm, and the outlet side and the inlet side are connected by an external pipe so that the discharged liquid from the reactor is circulated to the inlet side, and nitrogen publishing is performed from the lower part of the reactor.
  • the reactor used was able to carry out the reaction. This reactor was charged with 200 ml of a water-swelled sulfonic acid type cation exchange resin (trade name: Diaion SK 104, manufactured by Mitsubishi Idani Gakusha), and washed with 1000 ml of distilled water by down flow. did . Next, water in the reactor and the piping was replaced with a 1.0% by mass aqueous solution of paratoluenesulfonic acid.
  • the denaturing catalyst was divided into five parts, extracted, and the aqueous solution of paratoluenesulfonic acid was removed with distilled water.
  • the modified catalyst was the first catalyst on the inlet side of the reactor, and hereinafter the second, third, fourth and fifth catalysts.
  • the modified catalyst was dried, the acid equivalent was measured by titration using an aqueous sodium hydroxide solution, the neutralization rate was calculated based on the following equation, and the neutralization rate was defined as the modification rate. The results are shown in Table 1.
  • Neutralization rate (%) 100 X ⁇ 1— [acid equivalent of modified resin (me q ./g) Z acid equivalent of unmodified resin (meq./g)] ⁇
  • the modification rate of the ion exchange resin when the circulation of the acid aqueous solution was temporarily stopped was determined in the same manner as described above (Reference Example 1). Furthermore, the above catalyst preparation The denaturation of the modified catalyst obtained by circulating a 1.0% by mass aqueous solution of p-toluenesulfonic acid at the same flow rate as described above and for the same time as that required for the preparation of the catalyst, without publishing with nitrogen gas. The ratio was determined in the same manner as above (Comparative Example 1). Table 1 shows these results.
  • the circulated acid aqueous solution can be reused after preparing the catalyst.
  • 2,2-dimethylthiazolidine is hydrolyzed to produce acetone as a by-product
  • acetone is contained in the circulated acid aqueous solution. Practically, when this acid aqueous solution is discarded, it is general that the acetone is removed by steam stripping and then treated in a wastewater treatment facility.
  • Example 2 Reference Example 2, and Comparative Example 2
  • Example 1 a 0.1% by mass aqueous solution of paratoluenesulfonic acid was used instead of the 1.0% by mass aqueous solution of paratoluenesulfonic acid, and the circulation was temporarily stopped 20 hours after the circulation of the acid solution was started. Then, a modified catalyst was obtained in the same manner as in Example 1 except that nitrogen gas was bubbled, and then a 0.1% by mass aqueous solution of paratoluenesulfonic acid was further circulated for 24 hours. The same evaluation as in Example 1 was performed for the obtained modified catalyst.
  • the modification rate of the ion exchange resin when the circulation of the acid aqueous solution was temporarily stopped was determined in the same manner as described above (Reference Example 2). Further, in the preparation of the above catalyst, a modification obtained by circulating a 0.1% by mass aqueous solution of phosphoric acid at the same flow rate as described above without publishing with nitrogen gas and at the same time as that required for the preparation of the above catalyst was carried out. The modification rate of the catalyst was determined in the same manner as above (Comparative Example 2). Table 2 shows the results.
  • Example 1 instead of circulating a 1.0% by mass aqueous solution of paratoluenesulfonic acid at 400 mL Zh, a 1.0% by mass aqueous solution of phosphoric acid was used, and seven hours have elapsed since the circulation of the aqueous solution of phosphoric acid was started. After that, the circulation was stopped, nitrogen gas was bubbled, and then a 1.0% by mass aqueous phosphoric acid solution was further circulated at 400 ml Zh for 3 hours. Obtained. The same evaluation as in Example 1 was performed on the resulting modified catalyst.
  • the modification ratio of the exchange resin was determined in the same manner as described above (Reference Example 3). Further, in the preparation of the above catalyst, a modification obtained by circulating a 1.0% by mass aqueous solution of phosphoric acid at the same flow rate as described above and at the same time as that required for the preparation of the above catalyst, without publishing with nitrogen gas, was carried out. The modification rate of the catalyst was determined in the same manner as above (Comparative Example 3). Table 3 shows the results.
  • Example 1 the operation after replacing the water in the reactor and the pipe with a 1.0% by mass aqueous solution of paratoluenesulfonic acid was changed as follows to obtain a modified catalyst. That is,
  • the modification rate of the ion exchange resin after the injection of the acid aqueous solution was determined in the same manner as described above (Reference Example 4). Further, in the preparation of the above catalyst, a cycling of a 1.0% by mass aqueous solution of paratoluenesulfonic acid was carried out at the same flow rate as above, without publishing with nitrogen gas, for the same time as that required for the preparation of the catalyst. The modification ratio of the modified catalyst thus obtained was determined in the same manner as above (Comparative Example 4). Table 4 shows the results.
  • the reaction performance of the modified catalyst obtained as described above was evaluated. Evaluation of the reaction performance was performed by synthesizing bisphenol A in a flask using phenol and acetone as raw materials. The reaction temperature was 75 ° C., the phenol Z acetone (molar ratio) was 10Z1, the amount of the modified catalyst used was 5% by mass relative to the raw materials, and the reaction was carried out for 2 hours. Table 5 shows the results. [Table 5]
  • Catalyst 1 Reference Example 1, a mixture of catalysts from the reactor inlet to the first to fifth catalysts
  • Catalyst 2 Example 1
  • Catalyst 3 Reference Example 1: 5 from the inlet to the reactors Th catalyst
  • Catalyst 4 Reference Example 2
  • a mixture of catalysts 1 to 5 from the reactor inlet Catalyst 5 Example 2
  • Catalyst 6 Reference Example 3
  • Catalyst 7 Example 3
  • Catalyst 8 Reference Example 4, first catalyst from reactor inlet
  • Catalyst 9 Example 4, a mixture of catalysts 1 to 5 from the reactor inlet Catalyst 10: Comparative Example 1, a mixture of catalysts 1 to 5 from the reactor inlet Catalyst 11: Comparative Example 2, 1 from the reactor inlet Mixture of the 1st and 5th catalysts Catalyst 12: Comparative Example 3, a mixture of 1 to 5 catalysts from the reactor inlet Catalyst 13: Comparative Example 4, mixture of the 1st to 5th catalysts from the reactor inlet Industrial applicability
  • a modified catalyst for producing bisphenol A having excellent catalytic performance can be provided.

Abstract

A method of preparing a modified catalyst for bisphenol A production that is free from damaging of strongly acidic ion exchange resin, realizes uniform modification of strongly acidic ion exchange resin and excels in catalytic performance. There is provided a method of preparing a modified catalyst for bisphenol A production resulting from partial modification of a strongly acidic ion exchange resin with a sulfurated amine compound, comprising charging a fixed bed reactor with a strongly acidic ion exchange resin and effecting injection of an aqueous solution containing an acid and a sulfurated amine compound therein and circulation therethrough so as to modify the strongly acidic ion exchange resin, wherein after the injection of the aqueous solution or while circulating the same or while temporarily stopping the circulation, an inert gas is bubbled from an underpart of the fixed bed reactor to thereby agitate the strongly acidic ion exchange resin.

Description

明 細 書  Specification
ビスフ ノール A製造用変性触媒の調製方法  Preparation of modified catalyst for bisphenol A production
技術分野  Technical field
[0001] 本発明は、ビスフエノール A〔2, 2—ビス(4ーヒドロキシフエ-ル)プロパン〕の製造に 用いる触媒の調製方法に関し、詳しくは、強酸性イオン交換榭脂を含ィォゥアミンィ匕 合物で部分的に変性してなるビスフ ノール A製造用変性触媒の調製方法に関する 背景技術  The present invention relates to a method for preparing a catalyst used for producing bisphenol A [2,2-bis (4-hydroxyphenyl) propane]. More specifically, the present invention relates to a diamine compound containing a strongly acidic ion exchange resin. Background Art on Preparation Method of Partially Modified Modified Catalyst for Production of Bisphenol A
[0002] ビスフエノーノレ Aはポリカーボネート榭月旨やポリアリレート榭月旨などのエンジニアリン グプラスチック、あるいはエポキシ榭脂などの原料として重要な化合物であることが知 られており、近年その需要はますます増大する傾向にある。  [0002] Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate and polyarylate, and epoxy resin, and the demand for it is increasing in recent years. Tend to.
このビスフエノール Aの製造には、含ィォゥアミンィ匕合物で部分的に変性された強 酸性イオン交換樹脂が触媒として用いられており、このような触媒の調製方法として は、固定床反応器中で、含ィォゥアミンィ匕合物を一括添加し、スルホン酸型イオン交 換榭脂を変性する方法が採用されている。  In the production of this bisphenol A, a strongly acidic ion-exchange resin partially modified with a diamine-containing conjugate is used as a catalyst, and such a catalyst is prepared in a fixed-bed reactor in a fixed-bed reactor. In addition, a method is used in which a sulfonic acid-type ion exchange resin is denatured by batch addition of a diamine-containing conjugate.
通常、固定床反応器中で、含ィォゥアミンィ匕合物を一括添加し、スルホン酸型ィォ ン交換榭脂を変性するとき、含ィォゥアミンィ匕合物は、酸により固定床である榭脂中 のスルホン酸基を移動 (スルホン酸基への吸着、スルホン酸基からの脱離及び移動) する。このとき、含ィォゥァミン化合物は、固定床反応器の入口から出口へと移動す る力 1回の移動だけではスルホン酸型イオン交換樹脂が均一に変性されない。すな わち、含ィォゥァミン化合物の移動に際し、含ィォゥアミンィ匕合物の濃度は、固定床 反応器の出口が高濃度 (変性率が 30— 80%程度の高変性率)となり、固定床反応 器の入口が低濃度 (変性率が 5— 30%程度の低変性率)となるため、 1回の移動だ けではスルホン酸型イオン交換樹脂が均一に変性されな 、と 、う問題がある。  Usually, in a fixed-bed reactor, the sulfonic acid-type ion-exchange resin is modified all at once by adding the diamine-containing conjugate to the sulfonic acid-type ion-exchange resin. Transfers sulfonic acid groups (adsorption to sulfonic acid groups, desorption and transfer from sulfonic acid groups). At this time, the sulfonic acid-type ion-exchange resin is not uniformly denatured by a single transfer of the iodiamine-containing compound from the inlet to the outlet of the fixed-bed reactor by a single force. In other words, the concentration of the diamine-containing compound during the transfer of the diamine-containing compound is high at the outlet of the fixed-bed reactor (denaturation rate is about 30 to 80%, high denaturation rate). Is low (denaturation rate is as low as about 5-30%), so that the sulfonic acid type ion exchange resin cannot be uniformly denatured by only one transfer.
含ィォゥアミンィ匕合物で中和された陽イオン交換榭脂固定床は種々の方法で調製 されており、例えば酸性陽イオン交換樹脂が含ィォゥアミンィ匕合物で中和された酸性 陽イオン交換榭脂固定床の調製方法 (例えば、特許文献 1一 4参照)が開示されてい る。また、榭脂固定床中に塩酸を添加した含ィォゥァミン化合物水溶液を循環させる 方法 (例えば、特許文献 5参照)が開示されているが、多量の塩酸を使用すると、設 備が腐食するおそれがある。 The cation-exchange resin fixed bed neutralized with the diamine-containing conjugate has been prepared by various methods. A method for preparing a fixed bed (for example, see Patent Documents 1 to 14) is disclosed. Also, circulate an aqueous solution of iodamine compound containing hydrochloric acid in the resin fixed bed. Although a method (for example, see Patent Document 5) is disclosed, if a large amount of hydrochloric acid is used, the equipment may be corroded.
また、ビスフエノール類製造用触媒の調製方法として、反応容器中のイオン交換榭 脂を攪拌しながら、含ィォゥアミンィ匕合物の希薄溶液を注入する方法 (例えば、特許 文献 6参照)、反応器に酸性陽イオン交換榭脂を充填し、含ィォゥアミンィ匕合物の水 溶液を装入しながら又は装入した後、反応器下部力 気泡を流通させて酸性陽ィォ ン交換榭脂を均一に中和する方法 (例えば、特許文献 7参照)が開示されている。し 力 ながら、前者の場合、大規模の希薄溶液貯蔵設備が必要であり、また、インペラ 攪拌によるバッチ式製造であるため、イオン交換樹脂の破損が生じる上、固定床形 成のためイオン交換樹脂の再充填を必要とする。後者の場合、調製は pH6以上で行 つているため、含ィォゥアミンィ匕合物の均一化が困難であり、このため不均一な変性 触媒となるため、触媒性能が低下するという問題がある。  Further, as a method for preparing a catalyst for producing bisphenols, a method of injecting a dilute solution of a diamine-containing conjugate while stirring an ion exchange resin in a reaction vessel (for example, see Patent Document 6), The acidic cation exchange resin is filled with the acidic cation exchange resin, and while the aqueous solution of the diamine-containing conjugate is being charged or after being charged, the lower portion of the reactor is circulated to uniformly distribute the acid cation exchange resin. A method of summing is disclosed (for example, see Patent Document 7). However, in the former case, a large-scale dilute solution storage facility is required, and the batch-type production using impeller agitation causes damage to the ion-exchange resin. Need to be refilled. In the latter case, since the preparation is carried out at a pH of 6 or more, it is difficult to homogenize the diamine-containing conjugate, which results in a non-uniform modified catalyst, and thus has a problem that the catalytic performance is reduced.
変性触媒においては、イオン交換樹脂が均一に変性されていることが重要であり、 変性が均一でないと、充分な触媒活性が得られず、また、触媒寿命も短くなるが、こ れらの調製方法では、特に固定床反応器において、均一な変性を行うために、触媒 調製中に固定床反応器の下部から不活性ガスをパブリングさせることにより、強酸性 イオン交換榭脂を攪拌することは行われて 、なかった。  It is important for the denaturation catalyst that the ion exchange resin is uniformly denatured. If the denaturation is not uniform, sufficient catalytic activity cannot be obtained and the catalyst life will be shortened. In the method, particularly in a fixed-bed reactor, it is not possible to stir the strongly acidic ion-exchange resin by publishing an inert gas from the lower part of the fixed-bed reactor during catalyst preparation in order to perform uniform denaturation. We didn't.
[0003] 特許文献 1 :特開平 6— 296871号公報 [0003] Patent Document 1: JP-A-6-296871
特許文献 2:特開 2001— 286770号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2001-286770
特許文献 3:特開平 8 - 40961号公報  Patent Document 3: JP-A-8-40961
特許文献 4:特開 2001— 288132号公報  Patent Document 4: JP 2001-288132 A
特許文献 5:特開昭 53-14680号公報  Patent Document 5: JP-A-53-14680
特許文献 6:特開平 9— 24279号公報  Patent Document 6: JP-A-9-24279
特許文献 7:特開 2000 - 254523号公報  Patent Document 7: JP-A-2000-254523
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、上記事情に鑑みなされたもので、強酸性イオン交換樹脂の破損がなぐ 強酸性イオン交換樹脂が均一に変性され、かつ触媒性能に優れたビスフエノール A 製造用変性触媒の調製方法を提供することを目的とするものである。 [0004] The present invention has been made in view of the above circumstances, and a bisphenol A in which a strongly acidic ion exchange resin is uniformly modified and which has excellent catalytic performance without breaking of the strongly acidic ion exchange resin. It is an object of the present invention to provide a method for preparing a modified catalyst for production.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、固定床反応器 に強酸性イオン交換榭脂を充填し、酸と含ィォゥァミン化合物を含む水溶液を注入' 循環させて、強酸性イオン交換榭脂を均一に変性するに際し、上記水溶液を循環さ せながら、あるいは一時的に循環を停止した状態で、上記固定床反応器の下部から 不活性ガスをパブリングさせて、上記強酸性イオン交換榭脂を攪拌することにより、上 記目的が達成されることを見出した。すなわち、このようにして強酸性イオン交換榭脂 を攪拌することによって、含ィォゥアミンィ匕合物の濃度が平均化されるので、固定床 反応器の縦軸方向の変性率のムラが解消され、上記強酸性イオン交換樹脂が短時 間で均一に変性されることを見出した。本発明は力かる知見に基づいて完成したもの である。  [0005] The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, filled a fixed-bed reactor with a strongly acidic ion-exchange resin, and injected and circulated an aqueous solution containing an acid and an iodiamine-containing compound. In order to uniformly denature the strongly acidic ion exchange resin, while circulating the aqueous solution or temporarily suspending the circulation, the inert gas is bubbled from the lower part of the fixed bed reactor. It has been found that the above object can be achieved by stirring the above strongly acidic ion exchange resin. That is, by stirring the strongly acidic ion-exchange resin in this manner, the concentration of the diamine-containing conjugate is averaged. It has been found that a strongly acidic ion exchange resin is uniformly denatured in a short time. The present invention has been completed based on strong knowledge.
すなわち、本発明は、強酸性イオン交換榭脂を含ィォゥアミンィ匕合物で部分的に変 性してなるビスフエノール A製造用の変性触媒を調製する方法において、固定床反 応器に強酸性イオン交換榭脂を充填し、これに酸と含ィォゥァミン化合物を含む水溶 液を注入'循環させて、強酸性イオン交換榭脂を変性するに際し、上記水溶液を注 入した後又は循環させながら、あるいは一時的に循環を停止した状態で、上記固定 床反応器の下部カゝら不活性ガスをパブリングさせて、上記強酸性イオン交換榭脂を 攪拌することを特徴とするビスフエノール A製造用変性触媒の調製方法を提供するも のである。  That is, the present invention relates to a method for preparing a modified catalyst for the production of bisphenol A, which is obtained by partially modifying a strongly acidic ion exchange resin with a diamine conjugate containing a strongly acidic ion exchange resin. After filling the exchange resin and injecting and circulating an aqueous solution containing an acid and an iodamine compound therein, when denaturing the strongly acidic ion exchange resin, after injecting or circulating the above aqueous solution or temporarily. A modified catalyst for the production of bisphenol A, characterized in that the inert gas is bubbled from the lower part of the fixed bed reactor while the circulation is stopped and the strongly acidic ion exchange resin is stirred. It provides a method of preparation.
発明の効果  The invention's effect
[0006] 本発明によれば、強酸性イオン交換樹脂の破損がなぐ強酸性イオン交換樹脂が 均一に変性され、かつ触媒性能に優れたビスフエノール A製造用変性触媒を短時間 で調製することができる。  According to the present invention, it is possible to prepare a modified catalyst for producing bisphenol A in a short time, in which a strongly acidic ion exchange resin that does not break the strongly acidic ion exchange resin is uniformly modified and has excellent catalytic performance. it can.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0007] 本発明にお 、て用いる強酸性イオン交換榭脂としては、スノレホン化スチレンージビ -ルベンゼンコポリマー、スルホン化架橋スチレンポリマー、フエノールホルムアルデ ヒドースルホン酸榭脂、ベンゼンホルムアルデヒドースルホン酸榭脂等のスルホン酸型 イオン交換榭脂などが挙げられる。強酸性イオン交換榭脂は固定床反応器に充填さ れる。固定床に直接イオン交換榭脂を充填するため、イオン交換樹脂の変性工程に おいてイオン交換樹脂が破損することがなぐまた、バッチ反応器や変性触媒調製槽 力 の移送もないため、製造コスト的に有利である。 [0007] The strongly acidic ion-exchange resin used in the present invention includes sulfonates such as a snorephonated styrenedivinylbenzene copolymer, a sulfonated crosslinked styrene polymer, phenolformaldehyde hydrosulfonic acid resin, and benzeneformaldehyde-sulfonic acid resin. Acid form Ion-exchange resins and the like. Strongly acidic ion exchange resin is charged into a fixed bed reactor. Since the fixed bed is directly filled with ion exchange resin, the ion exchange resin will not be damaged in the denaturation process of the ion exchange resin, and there will be no transfer of batch reactors or modified catalyst preparation tanks. It is economically advantageous.
本発明にお 、て、強酸性イオン交換樹脂の変性に用いる含ィォゥァミン化合物とし ては、 3 メルカプトピリジン等のメルカプトピリジン類、 2 メルカプトェチルァミン等の メルカプトアルキルアミン類、 2, 2 ジメチルチアゾリジン等のチアゾリジン類、 4 アミ ノチオフ工ノール等のアミノチオフ工ノール類、 4 ピリジンエタンチオール等のピリジ ンアルカンチオール類などが挙げられる。このなかで、 4 ピリジンエタンチオール、 2 , 2—ジメチルチアゾリジン及び 2—メルカプトェチルァミンが好ましい。これらは一種を 単独で又は二種以上を組み合わせて用いることができる。  In the present invention, examples of the iodamine-containing compound used for modifying the strongly acidic ion exchange resin include mercaptopyridines such as 3 mercaptopyridine, 2 mercaptoalkylamines such as mercaptoethylamine, and 2,2-dimethylthiazolidine. Thiazolidine, etc .; aminothiofolones, such as 4-aminothiol, and pyridinalkanethiols, such as 4 pyridineethanethiol. Of these, 4 pyridineethanethiol, 2,2-dimethylthiazolidine and 2-mercaptoethylamine are preferred. These can be used alone or in combination of two or more.
含ィォゥアミンィ匕合物による強酸性イオン交換樹脂の変性率は、通常 5— 45%程 度、好ましくは 8— 35%、より好ましくは 10— 30%である。この変性率の上限を 45% 程度とすることにより、触媒活性が低くなることがなぐまた、下限を 5%程度とすること により、触媒寿命が短くなつたり、触媒活性や選択率が低くなることがない。ここで、強 酸性イオン交換樹脂の「変性率」とは、強酸性イオン交換樹脂の強酸性イオン交換 基の含ィォゥァミン化合物によるモル変性率を意味する。  The rate of modification of the strongly acidic ion exchange resin with the diamine-containing conjugate is usually about 5 to 45%, preferably 8 to 35%, more preferably 10 to 30%. By setting the upper limit of this modification rate to about 45%, the catalyst activity is not reduced, and by setting the lower limit to about 5%, the catalyst life is shortened and the catalyst activity and selectivity are reduced. There is no. Here, the “denaturation rate” of the strongly acidic ion exchange resin means the molar modification rate of the strongly acidic ion exchange resin by the iodiamine compound containing the strongly acidic ion exchange group.
酸としては有機酸や無機酸を用いることができる。有機酸としては、ベンゼンスルホ ン酸、パラトルエンスルホン酸、キシレンスルホン酸等の芳香族スルホン酸類、メタン スルホン酸、エタンスルホン酸等のアルキルスルホン酸類、酢酸及び蟻酸などが挙げ られる。このなかで、芳香族スルホン酸類が好ましぐパラトルエンスルホン酸がより好 ましい。また、スルホン酸型イオン交換樹脂の水洗処理で得られる酸性水溶液も好適 である。無機酸としては、リン酸、硼酸及び硫酸などが挙げられ、リン酸が好ましい。 芳香族スルホン酸類やリン酸を用いると、設備の腐食がほとんどないという利点があ る。  As the acid, an organic acid or an inorganic acid can be used. Examples of the organic acid include aromatic sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid and xylenesulfonic acid, alkylsulfonic acids such as methanesulfonic acid and ethanesulfonic acid, acetic acid and formic acid. Of these, p-toluenesulfonic acid, which is more preferred by aromatic sulfonic acids, is more preferred. Further, an acidic aqueous solution obtained by washing the sulfonic acid type ion exchange resin with water is also suitable. Examples of the inorganic acid include phosphoric acid, boric acid, and sulfuric acid, and phosphoric acid is preferable. The use of aromatic sulfonic acids or phosphoric acid has the advantage of almost no equipment corrosion.
水溶液の酸濃度は、芳香族スルホン酸類、アルキルスルホン酸類及び硫酸等の強 酸を用いる場合、通常 0. 01— 5質量%程度、好ましくは 0. 03— 2質量%である。酢 酸、蟻酸及びリン酸等の弱酸を用いる場合、通常 0. 01— 8質量%程度、好ましくは 0. 05— 3質量%である。酸濃度の上限を、強酸の場合 5質量%程度とすることにより 、また、弱酸の場合 8質量%程度とすることにより、酸溶液に溶解させる含ィォゥアミ ン化合物の濃度が高くなることがないので、酸の使用量も含ィォゥアミンィ匕合物の口 スも少なぐ経済的に好ましい。また、酸の濃度の下限を 0. 01質量%程度とすること により、含ィォゥァミン化合物の濃度が低くなり過ぎることがないため、変性に要する 時間が長くなりすぎることがない。 When a strong acid such as an aromatic sulfonic acid, an alkylsulfonic acid or sulfuric acid is used, the acid concentration of the aqueous solution is usually about 0.01 to 5% by mass, preferably 0.03 to 2% by mass. When a weak acid such as acetic acid, formic acid or phosphoric acid is used, it is usually about 0.01 to 8% by mass, preferably 0.05-3% by mass. By setting the upper limit of the acid concentration to about 5% by mass in the case of a strong acid and to about 8% by mass in the case of a weak acid, the concentration of the diamine-containing compound dissolved in the acid solution does not increase. It is economically preferable because the amount of acid used and the amount of mouth of the diamine-containing conjugate are small. By setting the lower limit of the acid concentration to about 0.01% by mass, the concentration of the iodamine-containing compound does not become too low, so that the time required for denaturation does not become too long.
[0009] 本発明においては、強酸性イオン交換樹脂の変性に先立ち、固定床反応器の固 定床 (強酸性イオン交換榭脂)に含まれる水を、上記酸を含む水溶液で置換すること が好ましい。これは、通常、強酸性イオン交換榭脂として使用されるゲル型イオン交 換榭脂の水膨潤タイプは、 50質量%程度含水しているからである。このような置換を 行うことより、反応器の出口力 流出した水溶液を循環させてリサイクルする場合に、 酸濃度が一定に保たれるという効果が得られる。 In the present invention, prior to denaturation of the strongly acidic ion exchange resin, the water contained in the fixed bed (strongly acidic ion exchange resin) of the fixed bed reactor may be replaced with an aqueous solution containing the above acid. preferable. This is because the water-swelling type of the gel-type ion exchange resin usually used as a strongly acidic ion exchange resin contains about 50% by mass of water. By performing such substitution, an effect is obtained in which the acid concentration is kept constant when the aqueous solution that has flowed out of the reactor is circulated and recycled.
触媒調製 (含ィォゥアミンィ匕合物による強酸性イオン交換樹脂の変性)の温度は、 通常 0— 120°C程度、好ましくは 20— 100°Cである。触媒調製温度の上限を 120°C 程度とすることにより、イオン交換樹脂の分解が起こらず、また、下限を 0°C程度とす ることにより、酸水溶液が固化すると 、う問題が生じな!/、。  The temperature for preparing the catalyst (modification of the strongly acidic ion-exchange resin with the diamine-containing conjugate) is usually about 0 to 120 ° C, preferably 20 to 100 ° C. By setting the upper limit of the catalyst preparation temperature at about 120 ° C., the ion exchange resin does not decompose, and by setting the lower limit at about 0 ° C., the solidification of the acid aqueous solution causes no problem! /.
酸と含ィォゥァミン化合物を含む水溶液の注入'循環量は、酸濃度や調製時間の 観点から、 LHSV (液空間速度)で通常 0. 1— 20h— 1程度、好ましくは 0. 2— 10h_1、 より好ましくは 0. 4— 5h 1である。また、この水溶液の線速は、通常 0. 01— lOOmZ h程度、好ましく ίま 0. 05— 50m/h、より好ましく ίま 0. 1— 20m/hである。 From the viewpoint of acid concentration and preparation time, the circulation amount of the aqueous solution containing an acid and an iodamine compound is usually about 0.1 to 20 h- 1 in LHSV (liquid hourly space velocity), preferably 0.2 to 10 h_1, more preferably 0. 4-5h 1. The linear velocity of the aqueous solution is usually about 0.01 to 100 mZh, preferably 0.05 to 50 m / h, and more preferably 0.1 to 20 m / h.
[0010] 触媒調製に要する時間は、水溶液に含まれる酸の濃度や酸の種類、含ィォゥアミ ン化合物の濃度、含ィォゥアミンィ匕合物による強酸性イオン交換樹脂の変性率及び LHSVなどにより決定される。触媒調製で消費する含ィォゥアミンィ匕合物の量は、変 性率により決定される。 [0010] The time required for preparing the catalyst is determined by the concentration of the acid and the type of the acid contained in the aqueous solution, the concentration of the diamine-containing compound, the modification rate of the strongly acidic ion-exchange resin with the diamine-containing conjugate, LHSV, and the like. . The amount of the diamine-containing conjugate to be consumed in the preparation of the catalyst is determined by the conversion.
次に、本発明の触媒調製方法の好ましい実施態様の一例について説明する。まず 、酸を含む水溶液に含ィォゥアミンィ匕合物を溶解させた液が固定床反応器の入口か ら注入し、次いで、酸を含む水溶液を注入。循環させることにより、酸と含ィォゥァミン 化合物を含む水溶液を固定床反応器の出口力も流出させる。本発明においては、こ の酸と含ィォゥアミンィ匕合物を含む水溶液を注入した後又は循環させながら、ある 、 は一時的に循環を停止した状態で、上記固定床反応器の下部から不活性ガスをバ プリングさせて、上記強酸性イオン交換榭脂を攪拌する。上記水溶液の循環を停止 した状態で不活性ガスをパブリングするときは、パブリングが終了した後、再び循環を 行う。攪拌時間は、通常 1一 120分程度、好ましくは 5— 60分である。攪拌の時期は 触媒調製に要する時間にもよるが、通常、触媒調製に要する時間の 1Z10— 3Z4 程度を経過した時間に行う。また、不活性ガスのパブリングは 2回以上行ってもよい。 不活性ガスとしては、ヘリウム、アルゴン及び窒素等が挙げられ、この中で窒素が好 ましい。不活性ガスの流量は、反応器の直径やガスの注入形態にもよる力 通常、反 応器の内容積又は触媒量に対して 2— 50倍 (体積) Zh程度であり、好ましくは 5— 3 0倍 (体積) Zhである。例えば、実装置のレベルでは、触媒 50m3 (反応器直径 4m) のとき、 700m3/hのガス流量が好ましい。パブリング後は、イオン交換樹脂が完全 に混合された状態に攪拌されて 、るのが好ま 、。 Next, an example of a preferred embodiment of the catalyst preparation method of the present invention will be described. First, a solution obtained by dissolving the diamine-containing conjugate in an aqueous solution containing an acid is injected from the inlet of the fixed bed reactor, and then an aqueous solution containing an acid is injected. By circulating, the aqueous solution containing the acid and the iodamine compound is also discharged at the outlet of the fixed bed reactor. In the present invention, After injecting or circulating an aqueous solution containing the acid and the diamine-containing conjugate of the above, while the circulating is temporarily stopped, an inert gas is bubbled from the lower part of the fixed bed reactor, The above strongly acidic ion exchange resin is stirred. When publishing the inert gas while the circulation of the aqueous solution is stopped, the circulation is performed again after the publishing is completed. The stirring time is usually about 11 to 120 minutes, preferably 5 to 60 minutes. The timing of stirring depends on the time required for catalyst preparation, but is usually performed after the time required for catalyst preparation has passed about 1Z10-3Z4. Further, publishing of the inert gas may be performed twice or more. Examples of the inert gas include helium, argon, and nitrogen, among which nitrogen is preferred. The flow rate of the inert gas is usually 2 to 50 times (volume) Zh, preferably 5 to 50 times the internal volume of the reactor or the amount of catalyst, depending on the diameter of the reactor and the gas injection mode. 30 times (volume) Zh. For example, at the level of an actual apparatus, a gas flow rate of 700 m 3 / h is preferable for a catalyst of 50 m 3 (reactor diameter 4 m). After publishing, it is preferable to stir the mixture so that the ion exchange resin is completely mixed.
触媒調製にぉ ヽて、固定床反応器での酸と含ィォゥアミンィ匕合物を含む水溶液の 流れは、ダウンフロー及びアップフローのいずれであってもよい。し力し、アップフロ 一の場合、この水溶液の注入量が多くなると、イオン交換樹脂の展開 (浮遊、流動等 )が高くなるので、本発明においてはダウンフローが好ましい。  In the preparation of the catalyst, the flow of the aqueous solution containing the acid and the diamine-containing conjugate in the fixed-bed reactor may be either a downflow or an upflow. In the case of an upflow, a large flow of the aqueous solution increases the development (floating, flowing, etc.) of the ion exchange resin. Therefore, a downflow is preferred in the present invention.
上記のようにして調製された変性触媒を用い、フエノールとアセトンを原料としてビ スフェノール Aを製造する。固定床反応器での変性触媒の原料に対する添加は、触 媒調製したときの条件 (LHSV及び線速)とほぼ同じ条件で添加することができる。フ ェノールとアセトンとの使用割合については特に制限はないが、生成するビスフエノ ール Aの精製の容易さや経済性などの点から、未反応のアセトンの量はできるだけ 少ないことが望ましぐしたがって、フエノールをィ匕学量論的量よりも過剰に用いるの が有利である。通常、アセトン 1モル当たり、 3— 30モル程度、好ましくは 5— 15モル のフエノールが用いられる。また、反応温度は、通常 40— 150°C程度、好ましくは 60 一 110°Cの範囲である。  Using the modified catalyst prepared as described above, bisphenol A is produced using phenol and acetone as raw materials. The addition of the modified catalyst to the raw material in the fixed-bed reactor can be performed under almost the same conditions as when preparing the catalyst (LHSV and linear velocity). The proportion of phenol and acetone used is not particularly limited, but it is desirable that the amount of unreacted acetone be as small as possible in view of the ease of purification of bisphenol A and the economical efficiency. It is advantageous to use phenol in excess of the stoichiometric amount. Usually, about 3 to 30 mol, preferably 5 to 15 mol of phenol is used per 1 mol of acetone. The reaction temperature is usually in the range of about 40 to 150 ° C, preferably 60 to 110 ° C.
フエノールとアセトンとの縮合反応は、回分式及び連続式の 、ずれであってもよ ヽ 力 変性触媒を充填した反応塔に、フエノールとアセトンを連続的に供給して反応さ せる固定床連続反応方式が好ま ヽ。 The condensation reaction between phenol and acetone may be carried out in batch or continuous manner. The reaction may be carried out by continuously supplying phenol and acetone to a reaction tower filled with a denaturation catalyst. The fixed bed continuous reaction method is preferred.
実施例 Example
次に、本発明を実施例によりさらに詳細に説明する力 本発明はこれらの例によつ てなんら限定されるものではな 、。  Next, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.
実施例 参考例 1及び比較例 1 Example Reference Example 1 and Comparative Example 1
反応器として、内径 50mm、長さ 250mm、出口側と入口側を外部配管で接続して 、反応器出口力も排出された液が入口側に循環されるようにし、さらに反応器下部か ら窒素パブリングを行うことができるようにした反応器を用いた。この反応器に、水膨 潤状態のスルホン酸型陽イオン交換榭脂 (三菱ィ匕学社製、商品名:ダイヤイオン SK 104) 200ミリリットルを充填し、ダウンフローにて蒸留水 1000ミリリットルで洗浄した 。次いで、 1. 0質量%パラトルエンスルホン酸水溶液で反応器内及び配管内の水を 置換した。 25°Cにて、 1. 0質量%パラトルエンスルホン酸水溶液 50ミリリットルに、 2, 2 ジメチルチアゾリジン 5. 9g (目標変性率 20%)を溶解させ、これを 30分間かけて 上記イオン交換樹脂に注入した。その後、 1. 0質量%パラトルエンスルホン酸水溶 液を 400ミリリットル ZMLHSV=2h— 線速 =0. 20mZh)で循環を開始した。そし て、 4時間経過した後、循環を一時停止し、反応器下部から窒素ガスを 150ミリリット ル Zminで流し、 20分間パブリングを行った。その後、さらに 1. 0質量%パラトルエン スルホン酸水溶液を、 400ミリリットル Zh(LHSV=2h_1、線速 =0. 20m/h)で 4時 間循環させた。 The reactor has an inner diameter of 50 mm, a length of 250 mm, and the outlet side and the inlet side are connected by an external pipe so that the discharged liquid from the reactor is circulated to the inlet side, and nitrogen publishing is performed from the lower part of the reactor. The reactor used was able to carry out the reaction. This reactor was charged with 200 ml of a water-swelled sulfonic acid type cation exchange resin (trade name: Diaion SK 104, manufactured by Mitsubishi Idani Gakusha), and washed with 1000 ml of distilled water by down flow. did . Next, water in the reactor and the piping was replaced with a 1.0% by mass aqueous solution of paratoluenesulfonic acid. At 25 ° C, 5.9 g of 2,2-dimethylthiazolidine (target modification rate: 20%) was dissolved in 50 ml of a 1.0% by mass aqueous solution of p-toluenesulfonic acid, and the solution was added to the above ion exchange resin over 30 minutes. Injected. Thereafter, circulation of a 1.0% by mass aqueous solution of paratoluenesulfonic acid was started at 400 ml (ZMLHSV = 2 h—linear velocity = 0.20 mZh). After 4 hours, the circulation was temporarily stopped, and nitrogen gas was flowed from the lower part of the reactor at 150 milliliters Zmin, and publishing was performed for 20 minutes. Thereafter, a 1.0% by mass aqueous solution of paratoluenesulfonic acid was further circulated at 400 ml Zh (LHSV = 2h_1 , linear velocity = 0.20 m / h) for 4 hours.
反応器力 変性触媒を 5個に分けて抜き出し、蒸留水にてパラトルエンスルホン酸 水溶液を除去した。なお、この変性触媒は、反応器入口側を 1番目の触媒とし、以下 、 2, 3, 4, 5番目の触媒とした。この変性触媒を乾燥させ、水酸化ナトリウム水溶液を 用いて滴定法により酸当量を測定し、下記式に基づいて中和率を算出し、この中和 率を変性率とした。結果を表 1に示す。  Reactor power The denaturing catalyst was divided into five parts, extracted, and the aqueous solution of paratoluenesulfonic acid was removed with distilled water. The modified catalyst was the first catalyst on the inlet side of the reactor, and hereinafter the second, third, fourth and fifth catalysts. The modified catalyst was dried, the acid equivalent was measured by titration using an aqueous sodium hydroxide solution, the neutralization rate was calculated based on the following equation, and the neutralization rate was defined as the modification rate. The results are shown in Table 1.
中和率(%) = 100 X { 1— [変性榭脂の酸当量 (meq./g)Z未変性樹脂の酸当量 (meq./g)] } Neutralization rate (%) = 100 X {1— [acid equivalent of modified resin (me q ./g) Z acid equivalent of unmodified resin (meq./g)]}
また、上記触媒調製工程において、酸水溶液の循環を一時停止したときのイオン 交換樹脂の変性率を上記と同様にして求めた (参考例 1)。さらに、上記触媒調製に おいて、窒素ガスによるパブリングを行わず、 1. 0質量%パラトルエンスルホン酸水 溶液を上記と同様の流量で、上記触媒調製に要したのと同時間循環させて得られた 変性触媒の変性率を上記と同様にして求めた (比較例 1)。これらの結果を表 1に示 す。 In the catalyst preparation step, the modification rate of the ion exchange resin when the circulation of the acid aqueous solution was temporarily stopped was determined in the same manner as described above (Reference Example 1). Furthermore, the above catalyst preparation The denaturation of the modified catalyst obtained by circulating a 1.0% by mass aqueous solution of p-toluenesulfonic acid at the same flow rate as described above and for the same time as that required for the preparation of the catalyst, without publishing with nitrogen gas. The ratio was determined in the same manner as above (Comparative Example 1). Table 1 shows these results.
なお、循環させた酸水溶液は、触媒調製後、再利用することができる。また、 2, 2- ジメチルチアゾリジンは加水分解してアセトンが副生するので、循環させた酸水溶液 にアセトンが含まれることとなる。実用的には、この酸水溶液を廃棄するときは、ァセト ンをスチームストリツビングして除去した後に、排水処理設備で処理するのが一般的 である。  The circulated acid aqueous solution can be reused after preparing the catalyst. In addition, since 2,2-dimethylthiazolidine is hydrolyzed to produce acetone as a by-product, acetone is contained in the circulated acid aqueous solution. Practically, when this acid aqueous solution is discarded, it is general that the acetone is removed by steam stripping and then treated in a wastewater treatment facility.
[0013] 実施例 2、参考例 2及び比較例 2  [0013] Example 2, Reference Example 2, and Comparative Example 2
実施例 1において、 1. 0質量%パラトルエンスルホン酸水溶液の代わりに 0. 1質量 %パラトルエンスルホン酸水溶液を用い、酸溶液の循環を開始してから 20時間経過 した後、循環を一時停止し、窒素ガスのパブリングを行ない、その後、さらに 0. 1質量 %パラトルエンスルホン酸水溶液を 24時間循環させた以外は実施例 1と同様にして 変性触媒を得た。得られた変性触媒について実施例 1と同様の評価を行った。  In Example 1, a 0.1% by mass aqueous solution of paratoluenesulfonic acid was used instead of the 1.0% by mass aqueous solution of paratoluenesulfonic acid, and the circulation was temporarily stopped 20 hours after the circulation of the acid solution was started. Then, a modified catalyst was obtained in the same manner as in Example 1 except that nitrogen gas was bubbled, and then a 0.1% by mass aqueous solution of paratoluenesulfonic acid was further circulated for 24 hours. The same evaluation as in Example 1 was performed for the obtained modified catalyst.
また、上記触媒調製工程において、酸水溶液の循環を一時停止したときのイオン 交換樹脂の変性率を上記と同様にして求めた (参考例 2)。さらに、上記触媒調製に おいて、窒素ガスによるパブリングを行わず、 0. 1質量%リン酸水溶液を上記と同様 の流量で、上記触媒調製に要したのと同時間循環させて得られた変性触媒の変性 率を上記と同様にして求めた (比較例 2)。これらの結果を表 2に示す。  Further, in the catalyst preparation step, the modification rate of the ion exchange resin when the circulation of the acid aqueous solution was temporarily stopped was determined in the same manner as described above (Reference Example 2). Further, in the preparation of the above catalyst, a modification obtained by circulating a 0.1% by mass aqueous solution of phosphoric acid at the same flow rate as described above without publishing with nitrogen gas and at the same time as that required for the preparation of the above catalyst was carried out. The modification rate of the catalyst was determined in the same manner as above (Comparative Example 2). Table 2 shows the results.
[0014] 実施例 3、参考例 3及び比較例 3 Example 3, Reference Example 3, and Comparative Example 3
実施例 1において、 1. 0質量%パラトルエンスルホン酸水溶液を 400ミリリットル Zh で循環させる代わりに、 1. 0質量%リン酸水溶液を用い、リン酸水溶液の循環を開始 してから 7時間経過した後、循環を一時停止し、窒素ガスのパブリングを行ない、その 後、さらに 1. 0質量%リン酸水溶液を、 400ミリリットル Zhで 3時間循環させた以外は 実施例 1と同様にして変性触媒を得た。得られた変性触媒につ!ヽて実施例 1と同様 の評価を行った。  In Example 1, instead of circulating a 1.0% by mass aqueous solution of paratoluenesulfonic acid at 400 mL Zh, a 1.0% by mass aqueous solution of phosphoric acid was used, and seven hours have elapsed since the circulation of the aqueous solution of phosphoric acid was started. After that, the circulation was stopped, nitrogen gas was bubbled, and then a 1.0% by mass aqueous phosphoric acid solution was further circulated at 400 ml Zh for 3 hours. Obtained. The same evaluation as in Example 1 was performed on the resulting modified catalyst.
また、上記触媒調製工程において、酸水溶液の循環を一時停止したときのイオン 交換樹脂の変性率を上記と同様にして求めた (参考例 3)。さらに、上記触媒調製に おいて、窒素ガスによるパブリングを行わず、 1. 0質量%リン酸水溶液を上記と同様 の流量で、上記触媒調製に要したのと同時間循環させて得られた変性触媒の変性 率を上記と同様にして求めた (比較例 3)。これらの結果を表 3に示す。 In the above catalyst preparation step, the ion The modification ratio of the exchange resin was determined in the same manner as described above (Reference Example 3). Further, in the preparation of the above catalyst, a modification obtained by circulating a 1.0% by mass aqueous solution of phosphoric acid at the same flow rate as described above and at the same time as that required for the preparation of the above catalyst, without publishing with nitrogen gas, was carried out. The modification rate of the catalyst was determined in the same manner as above (Comparative Example 3). Table 3 shows the results.
[0015] 実施例 4、参考例 4及び比較例 4 Example 4, Reference Example 4, and Comparative Example 4
実施例 1において、 1. 0質量%パラトルエンスルホン酸水溶液で反応器内及び配 管内の水を置換した以降の操作を以下のように変更し、変性触媒を得た。すなわち、 In Example 1, the operation after replacing the water in the reactor and the pipe with a 1.0% by mass aqueous solution of paratoluenesulfonic acid was changed as follows to obtain a modified catalyst. That is,
25°Cにて、 1. 0質量0 /0パラトルエンスルホン酸水溶液 50ミリリットルに、 2—メルカプト ェチルァミン 3. 9g (目標変性率 20%)を溶解させ、これを 30分間かけて上記イオン 交換樹脂に注入した。次いで、反応器下部から窒素ガスを 150ミリリットル Zminで流 し、 20分間パブリングを行った。その後、 1. 0質量%パラトルエンスルホン酸水溶液 を、 800ミリリットル Zhで 3時間循環させた。得られた変性触媒について実施例 1と同 様の評価を行った。 At 25 ° C, 1. 0 mass 0/0 p-toluenesulfonic acid aqueous solution 50 ml, 2-mercapto Echiruamin 3. 9 g (target modification ratio 20%) was dissolved, the ion exchange resin over this 30 minutes Was injected. Next, nitrogen gas was flowed from the lower part of the reactor at 150 ml Zmin, and publishing was performed for 20 minutes. Thereafter, a 1.0% by mass aqueous solution of paratoluenesulfonic acid was circulated at 800 ml Zh for 3 hours. The same evaluation as in Example 1 was performed for the obtained modified catalyst.
また、上記触媒調製工程において、酸水溶液注入後のイオン交換樹脂の変性率を 上記と同様にして求めた (参考例 4)。さらに、上記触媒調製において、窒素ガスによ るパブリングを行わず、 1. 0質量%パラトルエンスルホン酸水溶液を上記と同様の流 量で、上記触媒調製に要したのと同時間循環させて得られた変性触媒の変性率を 上記と同様にして求めた (比較例 4)。これらの結果を表 4に示す。  In the catalyst preparation step, the modification rate of the ion exchange resin after the injection of the acid aqueous solution was determined in the same manner as described above (Reference Example 4). Further, in the preparation of the above catalyst, a cycling of a 1.0% by mass aqueous solution of paratoluenesulfonic acid was carried out at the same flow rate as above, without publishing with nitrogen gas, for the same time as that required for the preparation of the catalyst. The modification ratio of the modified catalyst thus obtained was determined in the same manner as above (Comparative Example 4). Table 4 shows the results.
[0016] [表 1] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0017] [表 2] 0. 1質量%パラトルエンスルホン酸水溶液 [0017] [Table 2] 0.1% by mass p-toluenesulfonic acid aqueous solution
参考例 2 実施例 2 比較例 2  Reference Example 2 Example 2 Comparative Example 2
窒素パブリングし、  Nitrogen publishing,
循環 20時間後の 循環 24時間後の 循璣 44時間後の 反応器入口から 変性率(%) 変性率(%) 変性率(%)  Circulation after 20 hours Circulation after 24 hours Circulation after 44 hours From reactor inlet Denaturation rate (%) Denaturation rate (%) Denaturation rate (%)
1 86 21 68  1 86 21 68
2 14 20 31  2 14 20 31
3 0 19 1  3 0 19 1
4 0 20 0  4 0 20 0
5 0 20 0  5 0 20 0
[0018] [表 3] [0018] [Table 3]
[0019] [ [0019] [
Figure imgf000011_0001
Figure imgf000011_0001
[0020] 上述のようにして得られた変性触媒にっ 、て、反応性能の評価を行った。反応性 能の評価は、フエノールとアセトンを原料として、フラスコ内でビスフエノール Aを合成 することにより行った。反応温度は 75°C、フエノール Zアセトン (モル比)は 10Z1とし 、上記変性触媒の使用量は原料に対して 5質量%とし、 2時間反応を行った。結果を 表 5に示す。 [表 5] The reaction performance of the modified catalyst obtained as described above was evaluated. Evaluation of the reaction performance was performed by synthesizing bisphenol A in a flask using phenol and acetone as raw materials. The reaction temperature was 75 ° C., the phenol Z acetone (molar ratio) was 10Z1, the amount of the modified catalyst used was 5% by mass relative to the raw materials, and the reaction was carried out for 2 hours. Table 5 shows the results. [Table 5]
Figure imgf000012_0001
Figure imgf000012_0001
(注) (note)
選択率:生成物に対するビスフ ノール Aの割合 Selectivity: Ratio of bisphenol A to product
触媒 1:参考例 1、反応器入口から 1一 5番目の触媒の混合物 触媒 2:実施例 1、反応器入口から 1一 5番目の触媒の混合物 触媒 3:参考例 1、反応器入口から 5番目の触媒 Catalyst 1: Reference Example 1, a mixture of catalysts from the reactor inlet to the first to fifth catalysts Catalyst 2: Example 1, Mixture of catalysts from the inlet to the first to fifth catalysts Catalyst 3: Reference Example 1: 5 from the inlet to the reactors Th catalyst
触媒 4:参考例 2、反応器入口から 1一 5番目の触媒の混合物 触媒 5:実施例 2、反応器入口から 1一 5番目の触媒の混合物 触媒 6:参考例 3、反応器入口から 1一 5番目の触媒の混合物 触媒 7:実施例 3、反応器入口から 1一 5番目の触媒の混合物 触媒 8:参考例 4、反応器入口から 1番目の触媒 Catalyst 4: Reference Example 2, a mixture of catalysts 1 to 5 from the reactor inlet Catalyst 5: Example 2, Mixture of catalysts 1 to 5 from the reactor inlet Catalyst 6: Reference Example 3, 1 from the reactor inlet One-fifth catalyst mixture Catalyst 7: Example 3, from reactor inlet 1-Fifth catalyst mixture Catalyst 8: Reference Example 4, first catalyst from reactor inlet
触媒 9:実施例 4、反応器入口から 1一 5番目の触媒の混合物 触媒 10:比較例 1、反応器入口から 1一 5番目の触媒の混合物 触媒 11:比較例 2、反応器入口から 1一 5番目の触媒の混合物 触媒 12:比較例 3、反応器入口から 1一 5番目の触媒の混合物 触媒 13:比較例 4、反応器入口から 1一 5番目の触媒の混合物 産業上の利用可能性 Catalyst 9: Example 4, a mixture of catalysts 1 to 5 from the reactor inlet Catalyst 10: Comparative Example 1, a mixture of catalysts 1 to 5 from the reactor inlet Catalyst 11: Comparative Example 2, 1 from the reactor inlet Mixture of the 1st and 5th catalysts Catalyst 12: Comparative Example 3, a mixture of 1 to 5 catalysts from the reactor inlet Catalyst 13: Comparative Example 4, mixture of the 1st to 5th catalysts from the reactor inlet Industrial applicability
本発明によれば、触媒性能に優れたビスフエノール A製造用変性触媒を提供する ことができる。  According to the present invention, a modified catalyst for producing bisphenol A having excellent catalytic performance can be provided.

Claims

請求の範囲 The scope of the claims
[I] 強酸性イオン交換榭脂を含ィォゥァミン化合物で部分的に変性してなるビスフエノ ール A製造用の変性触媒を調製する方法において、固定床反応器に強酸性イオン 交換榭脂を充填し、これに酸と含ィォゥァミン化合物を含む水溶液を注入'循環させ て、強酸性イオン交換榭脂を変性するに際し、上記水溶液を注入した後又は循環さ せながら、あるいは一時的に循環を停止した状態で、上記固定床反応器の下部から 不活性ガスをパブリングさせて、上記強酸性イオン交換榭脂を攪拌することを特徴と するビスフエノール A製造用変性触媒の調製方法。  [I] In a method for preparing a modified catalyst for producing bisphenol A, which is obtained by partially modifying a strongly acidic ion exchange resin with an iodiamine compound, a fixed bed reactor is filled with the strongly acidic ion exchange resin. Injecting and circulating an aqueous solution containing an acid and an iodamine compound therein to denature the strongly acidic ion-exchange resin, after injecting or circulating the aqueous solution, or temporarily stopping circulation. A method for preparing a modified catalyst for producing bisphenol A, characterized in that an inert gas is bubbled from a lower part of the fixed bed reactor and the strongly acidic ion exchange resin is stirred.
[2] 含ィォゥアミンィ匕合物力 メルカプトアルキルアミン類、チアゾリジン類及びメルカプ トアルキルピリジン類力 選ばれる一種以上である請求項 1に記載の調製方法。  [2] The preparation method according to claim 1, which is at least one selected from the group consisting of mercaptoalkylamines, thiazolidines and mercaptoalkylpyridines.
[3] 酸力 芳香族スルホン酸類、アルキルスルホン酸類、酢酸及び蟻酸から選ばれる有 機酸である請求項 1又は 2に記載の調製方法。  [3] The method according to claim 1 or 2, wherein the acid is an organic acid selected from aromatic sulfonic acids, alkylsulfonic acids, acetic acid and formic acid.
[4] 水溶液が、芳香族スルホン酸類 0. 01— 5質量%を含む請求項 3に記載の調製方 法。  [4] The method according to claim 3, wherein the aqueous solution contains 0.01 to 5% by mass of aromatic sulfonic acids.
[5] 酸が、リン酸、硼酸及び硫酸力 選ばれる無機酸である請求項 1又は 2に記載の調 製方法。  [5] The preparation method according to claim 1 or 2, wherein the acid is an inorganic acid selected from phosphoric acid, boric acid and sulfuric acid.
[6] 水溶液が、リン酸 0. 01— 8質量%を含む請求項 5に記載の調製方法。  [6] The preparation method according to claim 5, wherein the aqueous solution contains 0.01 to 8% by mass of phosphoric acid.
[7] 水溶液が、スルホン酸型イオン交換榭脂の水洗処理で得られる酸性水溶液である 請求項 1又は 2に記載の調製方法。  [7] The preparation method according to claim 1 or 2, wherein the aqueous solution is an acidic aqueous solution obtained by washing the sulfonic acid type ion exchange resin with water.
[8] 不活性ガスが窒素ガスである請求項 1一 7の 、ずれかに記載の調製方法。 [8] The preparation method according to any one of claims 17 to 17, wherein the inert gas is nitrogen gas.
[9] 含ィォゥァミン化合物による強酸性イオン交換樹脂の変性を 0— 120°Cにお ヽて行 う請求項 1一 8のいずれかに記載の調製方法。 [9] The preparation method according to any one of [18] to [18], wherein the denaturation of the strongly acidic ion exchange resin with the iodiamine-containing compound is performed at 0 to 120 ° C.
[10] 含ィォゥアミンィ匕合物による強酸性イオン交換樹脂の変性率が 5— 45%である請 求項 1一 9のいずれかに記載の調製方法。 [10] The preparation method according to any one of claims 11 to 19, wherein the modification ratio of the strongly acidic ion exchange resin with the diamine-containing conjugate is 5-45%.
[II] 酸と含ィォゥアミンィ匕合物を含む水溶液の注入'循環量力 LHSV (液空間速度) で 0. 1— 20h_1である請求項 1一 10のいずれかに記載の調製方法。 [II] acid and containing Iouamini匕合product preparation method according to any one of claims 1 one 10 is 0. 1-20h _1 by injection 'circulation rate force LHSV (liquid hourly space velocity) of an aqueous solution containing.
PCT/JP2004/015700 2003-11-04 2004-10-22 Method of preparing modified catalyst for bisphenol a production WO2005042154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003373969A JP4452058B2 (en) 2003-11-04 2003-11-04 Method for preparing modified catalyst for production of bisphenol A
JP2003-373969 2003-11-04

Publications (1)

Publication Number Publication Date
WO2005042154A1 true WO2005042154A1 (en) 2005-05-12

Family

ID=34544172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015700 WO2005042154A1 (en) 2003-11-04 2004-10-22 Method of preparing modified catalyst for bisphenol a production

Country Status (3)

Country Link
JP (1) JP4452058B2 (en)
TW (1) TW200519077A (en)
WO (1) WO2005042154A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008157025A1 (en) * 2007-06-14 2008-12-24 Dow Global Technologies Inc. Preparation of catalyst for bisphenols production
EP2354127A2 (en) * 2009-12-30 2011-08-10 Jiangsu Sinorgchem Technology Co., Ltd Solid acid catalyst and method for preparing and using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932221B2 (en) * 2005-10-20 2012-05-16 出光興産株式会社 Extraction method of used ion exchange resin catalyst
CN102153511B (en) * 2010-02-12 2013-05-15 江苏圣奥化学科技有限公司 Industrial synthetic method for rubber antioxidant (RD)
CN102114432B (en) * 2009-12-30 2013-08-21 江苏圣奥化学科技有限公司 Composite solid acid catalyst and preparation method and uses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314680A (en) * 1976-07-26 1978-02-09 Shell Int Research Method of manufacturing fixed bed of partially neutralized cation exchange resin
JP2000254523A (en) * 1999-03-09 2000-09-19 Idemitsu Petrochem Co Ltd Method for preparing catalyst for producing bisphenol
JP2001286770A (en) * 2000-04-04 2001-10-16 Idemitsu Petrochem Co Ltd Preparation method of fixed bed of acidic cation exchange resin for bisphenol production
JP2001348350A (en) * 2000-06-07 2001-12-18 Idemitsu Petrochem Co Ltd Method for preparing fixed bed of acidic cation exchange resin for producing bisphenols

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314680A (en) * 1976-07-26 1978-02-09 Shell Int Research Method of manufacturing fixed bed of partially neutralized cation exchange resin
JP2000254523A (en) * 1999-03-09 2000-09-19 Idemitsu Petrochem Co Ltd Method for preparing catalyst for producing bisphenol
JP2001286770A (en) * 2000-04-04 2001-10-16 Idemitsu Petrochem Co Ltd Preparation method of fixed bed of acidic cation exchange resin for bisphenol production
JP2001348350A (en) * 2000-06-07 2001-12-18 Idemitsu Petrochem Co Ltd Method for preparing fixed bed of acidic cation exchange resin for producing bisphenols

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008157025A1 (en) * 2007-06-14 2008-12-24 Dow Global Technologies Inc. Preparation of catalyst for bisphenols production
TWI418403B (en) * 2007-06-14 2013-12-11 Dow Global Technologies Llc Preparation of catalyst for bisphenols production
US8932976B2 (en) 2007-06-14 2015-01-13 Dow Global Technologies Llc Preparation of catalyst for bisphenols production
KR101491874B1 (en) 2007-06-14 2015-02-09 다우 글로벌 테크놀로지스 엘엘씨 Preparation of catalyst for bisphenols production
EP2354127A2 (en) * 2009-12-30 2011-08-10 Jiangsu Sinorgchem Technology Co., Ltd Solid acid catalyst and method for preparing and using the same
US8293137B2 (en) * 2009-12-30 2012-10-23 Jiangsu Sinorgchem Technology Co., Ltd. Solid acid catalyst and method for preparing and using the same
US9186660B2 (en) 2009-12-30 2015-11-17 Jiangsu Sinorgchem Technology Co., Ltd. Solid acid catalyst and method for preparing and using the same

Also Published As

Publication number Publication date
TWI337179B (en) 2011-02-11
JP2005137950A (en) 2005-06-02
TW200519077A (en) 2005-06-16
JP4452058B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
WO2002070443A1 (en) Process for producing bisphenol a
WO2005042154A1 (en) Method of preparing modified catalyst for bisphenol a production
CN1239264C (en) Catalyst for producing bisphenol and method for producing bisphenol by using the same
JP4298438B2 (en) Method for preparing modified catalyst for production of bisphenol A
CN1038656A (en) The method for preparing aminomethyl phosphonic resin
JP2000319216A (en) Production of bisphenol a
CN1153621C (en) Method for regulating ion exchanging agents
JP2005074353A (en) Method of preparing modified catalyst for manufacturing bisphenol a
JP5432131B2 (en) Production of catalysts for bisphenol production
RU2373994C2 (en) Bisphenol synthesis catalyst
JP3551734B2 (en) How to use sulfuric acid / peroxide mixture
JP4971663B2 (en) Method for preparing catalyst for production of bisphenols
WO2000053315A1 (en) Process for preparing catalyst for use in bisphenol production
JP2004010566A (en) Method for producing bisphenol a
JP2001286770A (en) Preparation method of fixed bed of acidic cation exchange resin for bisphenol production
JP3864462B2 (en) Method for producing trioxane
JP3642590B2 (en) Method for purifying acrylonitrile
JP4595349B2 (en) Method for producing modified ion exchanger
JP4338966B2 (en) Method for producing bisphenol A
JPS632952A (en) Method for purifying methyl metacrylate
JPH05980A (en) Production of 9,9-bis(hydroxyphenyl)fluorenes
KR101272850B1 (en) Preparation method for (meth)acrylate
CN113683487A (en) Method for synthesizing p-tert-octylphenol and application thereof
JP2009196929A (en) Method for producing bisphenols
JP2007111629A (en) Extraction method of used ion-exchange resin catalyst

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase