WO2005041457A1 - Ofdm transmitter/receiver apparatus - Google Patents

Ofdm transmitter/receiver apparatus Download PDF

Info

Publication number
WO2005041457A1
WO2005041457A1 PCT/JP2004/014721 JP2004014721W WO2005041457A1 WO 2005041457 A1 WO2005041457 A1 WO 2005041457A1 JP 2004014721 W JP2004014721 W JP 2004014721W WO 2005041457 A1 WO2005041457 A1 WO 2005041457A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
modulation scheme
slot
information
circuit
Prior art date
Application number
PCT/JP2004/014721
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiteru Matsushita
Seiichi Sanpei
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2005514922A priority Critical patent/JP4287432B2/en
Publication of WO2005041457A1 publication Critical patent/WO2005041457A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • the present invention relates to an OF DM transmission / reception apparatus applied to an orthogonal frequency division multiplexing (hereinafter referred to as OFDM) transmission method used in a wireless communication system.
  • OFDM orthogonal frequency division multiplexing
  • OFDM is a type of multi-carrier modulation scheme, and is characterized in that it is more resistant to multipath fading that occurs when propagation paths are complicated by an obstacle than conventional single-carrier modulation schemes.
  • the first countermeasure is reception based on multipath fading based on propagation path characteristics of each subcarrier between the transmitting side (shown left) and the receiving side (shown right).
  • This is a subcarrier transmission power control system that adjusts the transmission power of each subcarrier in a manner to compensate for the power attenuation.
  • the attenuation of received power is large due to multipath fading, the subcarrier is low, the modulation scheme with multiple levels is small, the subcarrier is high, This is an adaptive modulation scheme that transmits with a multi-level modulation scheme.
  • multilevel transmission power is used to perform adaptive modulation and adjust the transmission power of subcarriers transmitting data so as to obtain a desired SNR. It is a control method (Multilevel Transmit Power Control: hereinafter referred to as "MTPC method").
  • MTPC method Multilevel Transmit Power Control
  • FIG. 23 is a diagram showing a configuration example of a frame format in the case of transmission according to the OFDMZ MTPC system.
  • the transmission frame 201 is composed of ten slots 202-1 to 202-10, and each slot 202-1 to 202-10 is roughly divided into synchronous Z control data part 203 and And the user data unit 204.
  • a channel estimation data string 205 (Channel Estimation word known to the receiving side used for channel estimation, which defines the modulation scheme of each subcarrier, which is a feature of the OFDMZ MTPC scheme, and the transmission power of each subcarrier. (Hereinafter referred to as CE)) and “modulation method information 206 (Modulation Level Information: hereinafter referred to as MLI)” for notifying the receiving side of the modulation method of each subcarrier for transmitting user data.
  • Sync Z control data unit 203 is included.
  • MLI is usually updated every frame.
  • modulation schemes of subcarriers in the synchronous Z control data unit and transmission powers of the subcarriers are as follows.
  • the transmission powers of the respective subcarriers are all made equal.
  • the transmit power of each subcarrier is adjusted according to the channel quality so that the receiver can obtain the desired reception CNR for each subcarrier.
  • the modulation scheme of subcarriers in the user data section and the transmission power of each subcarrier are transmitted as follows.
  • the modulation scheme for each subcarrier is the modulation scheme specified by MLI in the synchronous Z control data section.
  • each subcarrier is adjusted according to the quality of the propagation path so that the desired reception CNR can be obtained on the reception side for each subcarrier.
  • a subcarrier hole may be used without transmitting power to subcarriers with extremely poor propagation path quality.
  • FIG. 24 shows the configuration of a communication device of the OFDMZ MTPC communication system.
  • the RF signal is input to the OFDMZMTPC demodulation circuit 209 through the reception antenna 211 and the RF down converter 212 which down converts the RF signal.
  • the OFDMZMTPC demodulation circuit 209 converts the RF downconverter output 212 into an analog signal strength digital signal, an analog Z digital conversion circuit 213, and an output of the analog Z digital conversion circuit 213 in the slot configuration shown in FIG.
  • the demultiplexer 214 separately outputs each of the CE data unit 205, the MLI symbol unit 206, and the user data symbol unit 204, and the FFT circuit 215-1-215-3 for Fourier transforming the output of the demultiplexer 214 , Fourier transform circuit 215-1: A propagation path estimation circuit 216 that compares received CE data reproduced by the reference CE data with reference CE data and estimates the quality of the propagation path of each subcarrier; and Fourier transform circuit 215-2.
  • a propagation path compensation circuit 217 performs propagation path compensation on the regenerated received MLI symbol based on the estimation result of the propagation path estimation circuit 216.
  • a symbol demodulation circuit 218 that demodulates MLI data from the received MLI symbols that are channel-compensated by the path compensation circuit 217, and a demodulation scheme designation circuit that designates the demodulation scheme of each subcarrier of user data based on the demodulated MLI 2 19 and a channel compensation circuit 220 for performing channel compensation based on the estimation result of the channel estimation circuit 216 with respect to the received user data symbol reproduced by the Fourier transform circuit 215-3, and the channel compensation circuit
  • the symbol demodulation circuit 221 demodulates the reception user data symbol subjected to propagation path compensation in 220 by the demodulation method of the user data symbol portion of each subcarrier designated by the demodulation method designation circuit 219, and the symbol portion demodulation circuit 221.
  • a decoding circuit 222 for performing error correction and expansion processing on the demodulated code /
  • the CE, MLI, and portions for demodulating user data can be summarized as follows.
  • a user data demodulator 224 comprising two.
  • the OFDMZ MTPC modulation circuit 210 includes the following configuration.
  • An encoding circuit 2 26 that performs processing such as compression encoding of user data and addition of an error correction code.
  • Modulation scheme A symbol modulation circuit 2 27 that modulates user data encoded by the coding circuit 226 based on the modulation scheme of each subcarrier determined by the transmission power designation circuit 225.
  • a transmission power control circuit 228 which adjusts the modulation signal output of the symbol modulation circuit 227 to a value determined by the modulation scheme transmission power designation circuit 225 for each subcarrier.
  • Modulation scheme MLI generation circuit 230 that generates an MLI based on the modulation scheme of each subcarrier at the time of user data transmission determined by the transmission power designation circuit 225.
  • a symbol modulation circuit 231 that modulates the MLI generated by the MLI generation circuit 230.
  • a transmission power control circuit 232 which adjusts the modulation signal output of the symbol modulation circuit 231 to a value determined by the modulation scheme transmission power designation circuit 225 for each subcarrier.
  • a multiplexer 236 which multiplexes the outputs of the three IFFT circuits (229, 233, 235) so as to have the slot configuration of FIG.
  • a digital Z analog conversion circuit 237 which converts the output of the multiplexer 236 from a digital signal to an analog signal.
  • a CE modulation unit 238 configured of a CE generation circuit 234 and an IFFT circuit 235.
  • MLI modulation unit 239 including MLI generation circuit 230, symbol modulation circuit 231, transmission power control circuit 232, and IFFT circuit 233.
  • a user data modulation unit 240 comprising 9.
  • the output of the OFDMZ MTPC modulation circuit 210 is transmitted through the up converter 241 and the transmission antenna 242.
  • MLI is basic information and must be transmitted using all subcarriers. It is necessary to give a large amount of transmit power to the sub-carriers present at the drop point of the transmission path characteristic etc. so as to obtain the required reception SNR.
  • the transmission power control circuit controls the power by changing the amplitude by multiplying the coefficient according to the transmission power designation signal
  • the transmission power control circuit is a digital circuit, and therefore the multiplication coefficient and the multiplication result
  • the data such as has a certain bit width. Therefore, there is a certain limit to the range in which power can be controlled.
  • the present invention aims to provide an OFDM transceiver capable of improving the probability of successful MLI demodulation in a wireless communication system using the OFDMZ MTPC scheme.
  • Non-Patent Document 1 2003 IEICE General Conference "Study on interference countermeasures in 1 cell repetition OFDM adaptive modulation with multilevel transmission power control ZTDM A system” Means to solve the problem
  • the vector addition MLI means of the above-mentioned method 1 is characterized in that the vector addition MLI is generated using the propagation path compensated MLI symbol (method 2).
  • the vector addition MLI means of method 2 is characterized by using MLI transmitted by assigning data to different subcarriers in each slot (method 3).
  • the demodulator circuit is characterized in that it comprises a majority decision circuit for comparing the MLI data bit strings of a plurality of slots in the same frame to make a majority decision as a means for improving the demodulation success rate (scheme 4).
  • the majority decision judging means of the system 4 is characterized by using the MLI transmitted by assigning data to different subcarriers in each slot (system 5).
  • the majority decision judging means of the system 4 is characterized by using the MLI transmitted by rearranging the data bit sequence for each slot (system 6).
  • the data allocation subcarrier selection means of the above-mentioned method 3 and method 5 is a subcarrier selection method characterized in that reordering is performed according to a known reordering method at the transmitter / receiver.
  • the data allocation subcarrier selection means of the above-mentioned method 3 and method 5 is characterized by using the propagation path characteristic estimated from the slot sent from the receiver side (method 8).
  • the data allocation subcarrier selection means of the above-mentioned method 8 is to select from among several kinds of arrays set in advance in order to reduce the amount of information for notifying the reception side of the arrangement of subcarriers to which data are allocated. It is characterized in that the optimal sequence is selected and the sequence number is notified (scheme 9).
  • the data allocation subcarrier selection means of the above-mentioned method 8 can reduce the amount of information for notifying the reception side of the arrangement of subcarriers to which data are allocated, by using the arrangement of each slot in the frame.
  • Several combinations are set, and among It is characterized in that the appropriate combination is selected and the combination number is notified in the first slot (scheme 10).
  • the probability of successful demodulation of MLI can be improved, and there is an advantage that a decrease in data transmission efficiency as a whole system can be avoided.
  • FIG. 1 is a block diagram showing a configuration of an MLI demodulation unit according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a flow of vector addition processing operation according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration example of an MLI demodulation unit according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration example of an MLI demodulation unit according to a third embodiment of the present invention.
  • FIG. 5 is a flowchart showing a flow of majority decision processing operation according to the third embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of majority decision processing according to the third embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration example of an MLI modulator according to a fourth embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration example of an MLI demodulation unit according to a fourth embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration example of an MLI modulator according to a fifth embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration example of an MLI demodulation unit according to a fifth embodiment of the present invention.
  • FIG. 11 is a diagram showing a data allocation method according to the sixth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration example of an OFDM Z MTPC modulation circuit according to a seventh embodiment of the present invention.
  • FIG. 13 A block showing an example of configuration of a data sorting unit according to the seventh embodiment of the present invention.
  • FIG. 14 is a diagram showing an example of a slot format according to the seventh embodiment of the present invention.
  • FIG. 15 is a flowchart showing a flow of data rearrangement processing operation according to the seventh embodiment of the present invention.
  • FIG. 16 is a correspondence table of MLI symbols to subcarriers in the conventional rearrangement scheme.
  • FIG. 17 is a MLI symbol-to-subcarrier correspondence table according to the eighth embodiment of the present invention.
  • FIG. 18 is a correspondence table of slot pair reordering scheme combinations according to the ninth embodiment of the present invention.
  • FIG. 20 This is a spectrum in an orthogonal frequency division multiplexing system using subcarrier transmission power control.
  • FIG. 21 A spectrum in an orthogonal frequency division multiplexing system using an adaptive modulation scheme.
  • FIG. 22 A spectrum in an orthogonal frequency division multiplexing system using a multilevel transmission power control system.
  • FIG. 23 is a diagram showing a frame format in an orthogonal frequency division multiplexing system using a multilevel transmission power control system.
  • FIG. 24 A communication device of an orthogonal frequency division multiplexing system using a conventional multilevel transmission power control system.
  • FIG. 1 is a diagram showing a configuration example of the MLI demodulation unit according to the present embodiment.
  • the MLI demodulation unit 100 generates an error based on an error detection code or the like from the MLI vector addition unit 101 that performs vector addition of the MLI symbol unit output from the demultiplexer 214 and the output signal of the symbol demodulation circuit 218.
  • the MLI vector addition unit 101 stores the output of the vector addition circuit 102 for performing vector addition of the output of the demultiplexer 214 and the output of the memory circuit 103, and the output of the vector addition circuit 102. And a switching circuit 104 for switching the output of the demultiplexer 214 and the output of the vector addition circuit 102.
  • FIG. 2 is a flowchart showing the flow of the vector calculation process. The operation of the beta addition processing when the Nth slot after MLI modulation is received will be described according to the flowchart of FIG. 2 with reference to FIG.
  • the switching circuit 104 is set to output the output signal of the demultiplexer 128 !.
  • step S1 the Nth slot is received in step S1 and the received MLI in the Nth slot is demodulated (step S2).
  • the error detection circuit 102 determines whether or not the MLI has successfully demodulated the power (step S3). As a result of the determination in step S3, when it is determined that the MLI demodulation has failed, the switching circuit 104 is switched to the vector addition circuit 102 side (step S4).
  • Vector calculation circuit 102 includes an MLI symbol portion of the Nth slot output from demultiplexer 214 and an MLI symbol portion from the 1st slot stored in storage circuit 103 to the (N-1) th slot.
  • the vector calculation result of the vector calculation is performed (step S5).
  • the storage circuit 103 stores the result of vector addition of the MLI symbol part from the first slot to the Nth slot, which is output from the vector addition circuit 102 (step S6).
  • the vector addition results are demodulated (step S7).
  • the switching circuit 104 is switched to the multiplexer 214 (step S8).
  • the error detection circuit 105 determines whether the vector addition result has been correctly demodulated (step S9).
  • step S 9 If it is determined in step S 9 that the demodulation of the vector addition result has failed, the process returns to step S 1 to receive the next (N + 1) -th slot. After that, it operates according to the above rules. As a result of the determination in step S3 and step S9, when it is determined that the demodulation is successful, the data stored in the memory circuit 103 is discarded (step S10). If the MLI demodulation succeeds, the user data in the slot in the same frame is demodulated using that MLI. When the next frame is received, the MLI is demodulated again in the above manner.
  • the MLI of each slot in the same frame is the same, while the noise components included in those slots have no correlation. Therefore, by performing vector addition, only the desired signal power can be strengthened, and the SNR can be improved.
  • FIG. 3 is a book It is a figure which shows the structural example of the MLI demodulation part 106 by embodiment.
  • MLI vector addition section 107 performs vector addition of the MLI symbol section output from propagation path compensation circuit 217. Since the propagation path changes with time, the amount of phase rotation that each slot receives in the propagation path is different.
  • the demodulation unit according to the present embodiment compensates for the rotation of the phase with the propagation path compensation circuit and adds the force vectors, so that the desired signal can be efficiently added compared to the first embodiment. The amount of improvement is significant.
  • FIG. 4 is a diagram showing a configuration example of the MLI demodulation unit 108 according to the present embodiment.
  • the MLI demodulation unit 108 includes a majority decision unit 119 that determines the symbol-demodulated MLI by majority.
  • Majority determination section 109 determines majority determination circuit 110 which determines the output of symbol demodulation circuit 218 and the output of storage circuit 111 by majority determination, storage circuit 111 storing the output of symbol demodulation circuit 218, and And a switching circuit 112 that switches between the output of the symbol demodulation circuit 218 and the output of the majority decision circuit 110.
  • FIG. 5 is a flowchart showing the flow of the majority decision processing operation. The flow of the majority decision process when the Nth slot is received will be described along the flow chart shown in FIG. At the start of the demodulation operation, the switching circuit 112 is set to output the symbol demodulation circuit output signal 218.
  • step S11 the Nth slot is received.
  • step S12 the received MLI of the Nth slot is demodulated.
  • the error detection circuit 105 determines whether the MLI has been correctly demodulated (step S13). If it is determined in step S13 that the MLI demodulation has failed, it is determined whether the slot number N is even or odd (step S14). By performing the determination in step S14, the slot that has been correctly demodulated when N is even and the incorrect slot become the same number, and it becomes impossible to make the determination by majority decision, so it is meaningful to avoid the situation. If it is determined in step S14 that N is an even number, the process returns to step S11, and the next (N + 1) th slot is received.
  • the switching circuit 112 is switched to the majority decision circuit 110 (step S15).
  • the majority decision circuit 110 stores the N-th slot MLI output from the symbol modulation circuit 218 and the storage circuit 111.
  • Each bit with the MLI from the existing first slot to the (N ⁇ 1) slot is subjected to majority decision (step S16).
  • the method of majority decision for the first to seventh seven slots will be described with reference to FIG.
  • the storage circuit 111 additionally stores the MLI output from the symbol demodulation circuit 218 (step S17), and demodulates the majority decision result (step S18).
  • the switching circuit 112 is switched to the symbol demodulation circuit 218 (step S19), and the error detection circuit 105 determines whether the majority decision result is correctly demodulated (step S20).
  • the process returns to step S11, and the (N + 1) th slot is received. Thereafter, the operation is performed in accordance with the above rules.
  • step S21 the data stored in the memory circuit 111 is discarded (step S21). If the MLI is successfully demodulated, user data in slots in the same frame is demodulated using that MLI. When the next frame is received, MLI demodulation is performed again by the above method.
  • FIG. 7 is a diagram showing a configuration example of the MLI modulation unit 113 according to the present embodiment.
  • the MLI modulation unit 113 includes an MLI generation circuit 230, a data rearrangement circuit 114 that rearranges bit strings output from the MLI generation circuit 230, a symbol modulation circuit 231, a transmission power control circuit 232, and an IFFT circuit 233. And. A signal is output from the IFFT circuit 233 to the multiplexer.
  • FIG. 8 is a diagram showing a configuration example of the MLI demodulation unit 115 according to the present embodiment.
  • the MLI demodulation unit 115 rearranges the MLI, which has been symbol-demodulated and has become a bit string, in the reverse order of the transmission procedure, and puts it in the original order.
  • a data rearrangement circuit 116 is provided.
  • MLI is basic information
  • the bit sequence of M LI is rearranged for each slot and transmission is performed. Since the SNR is low and the bits transmitted on subcarriers are different in each slot, when demodulation and rearrangement are performed in the original order, the position at which error bits appear is different in each S slot. Therefore, the error correction ability of the majority decision is extremely excellent against such an error, so that there is an advantage that the MLI demodulation success probability can be improved.
  • FIG. 9 is a diagram showing a configuration example of the MLI modulation unit 117 according to the present embodiment.
  • the MLI modulator 117 according to the present embodiment is characterized in that it comprises a data reordering circuit 118 for reordering the output from the symbol modulation circuit 231.
  • FIG. 10 is a diagram showing a configuration example of the MLI demodulation unit 119 according to the present embodiment.
  • the MLI demodulation unit 119 rearranges the propagation path compensated MLI symbols in the reverse procedure to that for transmission, and restores the data to the original order.
  • a replacement circuit 120 is provided.
  • the SNR of the MLI symbol transmitted in the subcarrier over several slots is bad. Therefore, even if vector power calculation is performed, the amount of improvement in the SNR of the M LI symbol is small, which becomes a bottleneck of the MLI demodulation success probability.
  • FIG. 11 is a diagram showing an assignment method when the number of subcarriers in the present embodiment is 32.
  • the symbols dl to d32 shown in FIG. 11 are MLI symbols. Also, let SC1-SC32 be the subcarrier number.
  • the reordering method when transmitting the second slot is as follows.
  • the subcarrier is divided into two blocks of SC1-SC16 and SC17-SC32, which are respectively referred to as a first block and a second block.
  • the MLI symbol transmitted in the first block when transmitting the first slot is assigned to the second block.
  • the rearrangement scheme when transmitting the third slot is as follows.
  • the subcarrier is divided into four blocks of SC1-SC8, SC9-SC16, SC17-SC24, and SC25-SC32, which are respectively referred to as a first block, a second block, a third block, and a fourth block.
  • the third slot is divided into eight blocks, and the fourth slot is divided into 16 blocks, and MLI symbols are similarly allocated. If the number of blocks can not be divided equally, the remaining subcarriers are assigned to any block. In this embodiment, the number of subcarriers is equally divided and divided into blocks, and those blocks are allocated as a pair of two. MLI symbol replacement force is obtained. A similar effect can be obtained.
  • the alternative method is not limited to the above-described method.
  • This embodiment is one of the MLI symbol reordering methods performed by the data reordering circuit according to the fifth embodiment, and is characterized in that reordering is performed based on the propagation path estimation result.
  • FIG. 12 is a diagram showing a configuration example of the OFDM Z MTPC modulation circuit 121 according to the present embodiment.
  • the OFDMZMTPC modulation circuit 121 is a data specifying a data reordering method of the data reordering circuit based on the propagation path estimation result for each subcarrier of the propagation path estimation circuit 216 (FIG. 24) of the OFDMZMTPC demodulation circuit 209 (FIG. 24).
  • the signal generation circuit 123 for generating a signal and the signal generated in the signal generation circuit 123 are modulated.
  • FIG. 13 is a diagram showing a configuration example of the data rearrangement designation unit 122. As shown in FIG. As shown in FIG. 13, the data reordering specification unit 122 measures the power per subcarrier of the propagation path estimation result output from the propagation path estimation circuit 216 (FIG. 24) of the OFDMZMTPC demodulation circuit 209 (FIG. 24).
  • Power calculation circuit 128 to be calculated data sorting circuit 129 that rearranges the output signals of power calculation circuit 128 in subcarrier order as well as data, the output signal of data sorting circuit 129 and the output signal of storage circuit 131
  • the addition circuit 130 that adds the data
  • the storage circuit 131 that stores the output signal of the addition circuit 130
  • the data arrangement that specifies the MLI symbol rearrangement method from the output signal of the addition circuit 130 and the output signal of the power calculation circuit 128
  • a replacement designation circuit 132 a replacement designation circuit 132.
  • a frame format in the present embodiment is shown in FIG.
  • Signal subframe 133 is inserted to indicate the sort order of the MLI symbols.
  • the data reordering specification circuit 132 internally has a table in which subcarrier numbers and MLI symbol numbers correspond to each other.
  • Sub carrier number column at present The subcarrier power of the propagation path estimation result of the channel number is sequentially written in the subcarrier power, and the MLI symbol number column indicates the MLI symbol number in order from the MLI symbol estimated that the transmit / receive power of the slot transmitted so far is small.
  • Write The data rearrangement specification circuit 132 specifies the rearrangement scheme to assign the MLI symbol to the corresponding subcarrier on the table.
  • the table is sequentially updated each time a slot is transmitted.
  • FIG. 15 is a flowchart showing the flow of the operation of the data rearrangement designation unit.
  • the operation of the data reordering unit 122 at the time of Nth slot transmission will be described with reference to this flowchart.
  • the power calculation circuit 128 takes the latest propagation path estimation result output from the propagation path estimation circuit 216 (FIG. 24) of the OFDMZMTPC demodulation circuit 209 (FIG. 24) as the propagation path estimation result at the time of the Nth slot transmission.
  • the power of the propagation path estimation result for each subcarrier is calculated (step S31).
  • the subcarriers are rearranged in descending order of the power of the propagation path estimation result, and the subcarrier numbers are written in the table (step S32).
  • the data reordering specification circuit 132 specifies the reordering method so as to assign the MLI symbols to the corresponding subcarriers on the table (step S33).
  • the data sorting circuit 231 sorts the MLI symbols in accordance with the data sorting designation signal (step S34).
  • the data reordering circuit 129 reorders the power of the propagation path estimation result according to the data reordering designation signal. This corresponds to reordering the power of the channel estimation result at the time of Nth slot transmission in the order of MLI symbols (step S35).
  • Adder circuit 130 calculates the power of the propagation path estimation result at the time of Nth slot transmission output from data reordering circuit 129 and the received power estimation value up to the (N-1) th slot output from storage circuit 131. Add the sum (step S36).
  • the memory circuit 131 stores the output signal of the adder circuit 130 as the sum of the reception power estimated values up to the Nth slot (step S37).
  • the MLI symbols are rearranged in ascending order of the sum of received power estimated values, and the MLI symbol number is written to the table (step S38). It is determined whether the frame processing has been completed (step S39).
  • step S39 If it is determined in the step S39 that the frame processing has been completed and it is determined that the frame processing is completed, the process returns to the step S31 to prepare for the transmission of the (N + 1) th slot. Hereafter, it operates according to the above-mentioned rule. If it is determined as a result of step S39 that the frame processing has been completed, the data stored in the storage circuit 131 is discarded. And reset the table to the initial value (Reset: step S40).
  • the present embodiment is a kind of sorting method in the seventh embodiment, and relates to a sorting method for reducing the amount of sorting notification information.
  • the number of subcarriers is 32.
  • An example of the sorting order notification information at this time is shown in FIG. From the left, correspondence between subcarrier numbers and data numbers at the time of transmission of the first slot, transmission of the second slot, and transmission of the third slot is shown.
  • the present embodiment eight types of rearrangement methods up to 18 shown in FIG. 17 are set in advance as the rearrangement method, and this rearrangement method is also known on the receiving side.
  • data rearrangement is performed so as to assign the MLI symbols to the corresponding subcarriers on the table, but in the present embodiment, after considering the created table, Select the most appropriate sorting method out of the set 8 sorting methods, and sort according to the sorting method.
  • the subcarrier sort order notification information it is possible to transmit the sort method number of 3 bits (represented by "000", "0 0 ": L 11 "in FIG. 17) shown in the table. There is an advantage that the sort order notification information can be significantly reduced.
  • the present embodiment is a sort of sorting method in the eighth embodiment, and is a sorting method for reducing the amount of sorting notification information.
  • the subcarriers The number is 32 and 10 slots are one frame.
  • eight combinations are set as shown in FIG. 18 as a combination of the reordering method performed in each slot up to the 10th slot also in the first slot power, and this reordering method is known on the receiving side as well.

Abstract

In a radio communication system using OFDM/MTPC method, the MLI demodulation success rate is improved. An MLI demodulation part (100) includes an MLI vector addition part (101) for performing a vector addition of MLI symbol portions outputted from a demultiplexer (214); and an error detection circuit (105) for detecting, from an output signal of a symbol demodulation circuit (218), an error by use of an error detection code or the like. The MLI vector addition part (101) comprises a vector addition circuit (102) for vector adding an output of the demultiplexer (214) to an output of a storage circuit (103); the storage circuit (103) for storing an output of the vector addition circuit (102); and a switch circuit (104) for switching between the output of the demultiplexer (214) and the output of the vector addition circuit (102).

Description

明 細 書  Specification
OFDM送受信装置  OFDM transceiver
技術分野  Technical field
[0001] 本発明は、無線通信システムに用いる直交周波数分割多重(Orthogonal Frequ ency Division Multiplexing :以下、 OFDMと呼称)伝送方式に適用される OF DM送受信装置に関する。  [0001] The present invention relates to an OF DM transmission / reception apparatus applied to an orthogonal frequency division multiplexing (hereinafter referred to as OFDM) transmission method used in a wireless communication system.
背景技術  Background art
[0002] OFDMはマルチキャリア変調方式の一種で、従来のシングルキャリア変調方式に 比べて、障害物により伝搬路が錯綜した場合に発生するマルチパスフェージングに 対して、耐性が大きいという特徴がある。  [0002] OFDM is a type of multi-carrier modulation scheme, and is characterized in that it is more resistant to multipath fading that occurs when propagation paths are complicated by an obstacle than conventional single-carrier modulation schemes.
[0003] しかしながら、 OFDM信号であっても、マルチパスフェージングにより、図 19に示 すように特定周波数のサブキャリアの受信電力が低下して、所望の信号波対雑音電 力比(Signal to Noise Power Ratio:以下、 SNRと呼称)が得られない場合に は、一部のデータが復調不能となり、システムとしての伝送容量が低下する。  However, even in the case of an OFDM signal, multipath fading reduces the received power of subcarriers of a specific frequency as shown in FIG. 19, and a desired signal-to-noise power ratio (Signal to Noise). Power Ratio: In the case where SNR can not be obtained, some data can not be demodulated, and the transmission capacity of the system decreases.
[0004] このような問題に対しては、従来は図 20から図 22までに示すような対策が採られて きた。  In order to solve such problems, measures as shown in FIGS. 20 to 22 have been conventionally taken.
[0005] (1)第 1の対策は、図 20に示すように、送信側(図示左)と受信側(図示右)間の各サ ブキャリアの伝搬路特性を基に、マルチパスフェージングによる受信電力の減衰を、 補償する形で各サブキャリアの送信電力を調整するサブキャリア送信電力制御方式 である。  (1) As shown in FIG. 20, the first countermeasure is reception based on multipath fading based on propagation path characteristics of each subcarrier between the transmitting side (shown left) and the receiving side (shown right). This is a subcarrier transmission power control system that adjusts the transmission power of each subcarrier in a manner to compensate for the power attenuation.
[0006] (2)第 2の対策は、図 21に示すように、マルチパスフェージングにより受信電力の減 衰が大き 、サブキャリアは低 、多値数の変調方式、小さ 、サブキャリアは高 、多値 数の変調方式で伝送する適応変調方式である。  (2) As the second measure, as shown in FIG. 21, the attenuation of received power is large due to multipath fading, the subcarrier is low, the modulation scheme with multiple levels is small, the subcarrier is high, This is an adaptive modulation scheme that transmits with a multi-level modulation scheme.
[0007] (3)第 3の対策は、図 22に示すように、適応変調を行うと共に、データを伝送するサ ブキャリアの送信電力を、所望の SNRを得られるように調整するマルチレベル送信 電力制御方式(Multilevel Transmit Power Control:以下、「MTPC方式」と 称する。)である。 [0008] 上記第 1から第 3までの 3つの対策のうち、送信電力の最大値等についての制限、 サブキャリアの効率的な利用と 、う観点から、マルチパスフェージングへの対策として は、 3番目の MTPC方式が注目されて!/、る。 (3) As a third measure, as shown in FIG. 22, multilevel transmission power is used to perform adaptive modulation and adjust the transmission power of subcarriers transmitting data so as to obtain a desired SNR. It is a control method (Multilevel Transmit Power Control: hereinafter referred to as "MTPC method"). Among the above three measures from the first to the third, from the viewpoints of limiting the maximum value of transmission power etc., efficiently using subcarriers, and taking measures against multipath fading, 3 The second MTPC method is attracting attention!
[0009] 図 23は、 OFDMZMTPC方式により伝送される場合のフレームフォーマットの一 構成例を示す図である。図 23に示すように、伝送フレーム 201は、 10個のスロット 20 2—1— 202— 10により構成され、さらに各スロット 202— 1— 202— 10は、大きく分けて 同期 Z制御データ部 203と、ユーザデータ部 204と、の 2つの部分力 構成されてい る。  [0009] FIG. 23 is a diagram showing a configuration example of a frame format in the case of transmission according to the OFDMZ MTPC system. As shown in FIG. 23, the transmission frame 201 is composed of ten slots 202-1 to 202-10, and each slot 202-1 to 202-10 is roughly divided into synchronous Z control data part 203 and And the user data unit 204.
[0010] OFDMZMTPC方式の特徴である各サブキャリアの変調方式と、各サブキャリア の送信電力を定義する「伝搬路の推定に用いられる受信側に既知の伝搬路推定用 データ列 205 (Channel Estimation word:以下、 CEと称する。)」と、「ユーザデ ータを送信する各サブキャリアの変調方式を受信側に通知するための変調方式情報 206 (Modulation Level Information:以下、 MLIと称する。)」は、同期 Z制御 データ部 203に含まれる。尚、 MLIは通常フレーム毎に更新される。  [0010] A channel estimation data string 205 (Channel Estimation word known to the receiving side used for channel estimation, which defines the modulation scheme of each subcarrier, which is a feature of the OFDMZ MTPC scheme, and the transmission power of each subcarrier. (Hereinafter referred to as CE)) and “modulation method information 206 (Modulation Level Information: hereinafter referred to as MLI)” for notifying the receiving side of the modulation method of each subcarrier for transmitting user data. , Sync Z control data unit 203 is included. MLI is usually updated every frame.
[0011] 図 23に示すフレームフォーマットの信号を送信する場合、 OFDMZMTPC方式 は、同期 Z制御データ部のサブキャリアの変調方式と、各サブキャリアの送信電力と を、以下のようにする。  [0011] When transmitting a signal of the frame format shown in FIG. 23, according to the OFDMZMTPC system, modulation schemes of subcarriers in the synchronous Z control data unit and transmission powers of the subcarriers are as follows.
[0012] (1)全てのサブキャリアの変調方式は、 BPSK等の雑音に対する耐性が大きぐ信頼 性の高 、変調方式に統一する。  [0012] (1) The modulation scheme of all subcarriers is unified into a high reliability modulation scheme that is highly resistant to noise such as BPSK.
[0013] (2) CEデータを送るときは、各サブキャリアの送信電力を全て等しくする。 MLIデー タを送る時は、サブキャリア毎に受信側で所望の受信 CNRが得られるように、伝搬路 の品質に応じて各サブキャリアの送信電力を調整する。 (2) When transmitting CE data, the transmission powers of the respective subcarriers are all made equal. When transmitting MLI data, the transmit power of each subcarrier is adjusted according to the channel quality so that the receiver can obtain the desired reception CNR for each subcarrier.
[0014] ユーザデータ部のサブキャリアの変調方式と、各サブキャリアの送信電力を以下の ようにして送信する。 The modulation scheme of subcarriers in the user data section and the transmission power of each subcarrier are transmitted as follows.
[0015] (1)サブキャリア毎の変調方式は、同期 Z制御データ部の MLIで指定された変調方 式とする。  (1) The modulation scheme for each subcarrier is the modulation scheme specified by MLI in the synchronous Z control data section.
[0016] (2)サブキャリア毎に受信側で所望の受信 CNRが得られるように、伝搬路の品質に 応じて各サブキャリアの送信電力を調整する。 [0017] (3)伝搬路の品質が極めて悪いサブキャリアには送信電力を与えず、キャリアホール としてよい。 (2) The transmit power of each subcarrier is adjusted according to the quality of the propagation path so that the desired reception CNR can be obtained on the reception side for each subcarrier. (3) A subcarrier hole may be used without transmitting power to subcarriers with extremely poor propagation path quality.
[0018] OFDMZMTPC通信システムの通信機の構成を図 24に示す。 RF信号は、受信 アンテナ 211と、 RF信号をダウンコンバートする RFダウンコンバータ 212とを経て、 O FDMZMTPC復調回路 209に入力される。  FIG. 24 shows the configuration of a communication device of the OFDMZ MTPC communication system. The RF signal is input to the OFDMZMTPC demodulation circuit 209 through the reception antenna 211 and the RF down converter 212 which down converts the RF signal.
[0019] そして OFDMZMTPC復調回路 209は、 RFダウンコンバータ出力 212をアナログ 信号力 デジタル信号に変換するアナログ Zデジタル変換回路 213と、アナログ Z デジタル変換回路 213の出力を、図 23に示すスロットの構成に合わせて CEデータ 部 205、 MLIシンボル部 206、及びユーザデータシンボル部 204にそれぞれ分離し て出力するデマルチプレクサ 214と、デマルチプレクサ 214の出力を、フーリエ変換 する FFT回路 215— 1— 215— 3と、フーリエ変換回路 215— 1によって再生された受 信 CEデータと、参照用 CEデータを比較し、各サブキャリアの伝搬路の品質を推定 する伝搬路推定回路 216と、フーリエ変換回路 215— 2によって再生された受信 MLI シンボルに対して、伝搬路推定回路 216の推定結果に基づいて、伝搬路補償を行う 伝搬路補償回路 217と、伝搬路補償回路 217によって伝搬路補償された受信 MLI シンボルから、 MLIデータを復調するシンボル復調回路 218と、復調された MLIに 基づき、ユーザデータの各サブキャリアの復調方式を指定する復調方式指定回路 2 19と、フーリエ変換回路 215— 3によって再生された受信ユーザデータシンボルに対 して、伝搬路推定回路 216の推定結果に基づいて、伝搬路補償を行う伝搬路補償 回路 220と、伝搬路補償回路 220で伝搬路補償を施された受信ユーザデータシンポ ルを、復調方式指定回路 219の指定する各サブキャリアのユーザデータシンボル部 の復調方式で復調するシンボル復調回路 221と、シンボル部復調回路 221で復調さ れた符号ィ匕ユーザデータに対して、誤り訂正、伸張処理を行い、ユーザデータを復 号する復号回路 222と、を含んで構成されている。  Then, the OFDMZMTPC demodulation circuit 209 converts the RF downconverter output 212 into an analog signal strength digital signal, an analog Z digital conversion circuit 213, and an output of the analog Z digital conversion circuit 213 in the slot configuration shown in FIG. In addition, the demultiplexer 214 separately outputs each of the CE data unit 205, the MLI symbol unit 206, and the user data symbol unit 204, and the FFT circuit 215-1-215-3 for Fourier transforming the output of the demultiplexer 214 , Fourier transform circuit 215-1: A propagation path estimation circuit 216 that compares received CE data reproduced by the reference CE data with reference CE data and estimates the quality of the propagation path of each subcarrier; and Fourier transform circuit 215-2. A propagation path compensation circuit 217 performs propagation path compensation on the regenerated received MLI symbol based on the estimation result of the propagation path estimation circuit 216. A symbol demodulation circuit 218 that demodulates MLI data from the received MLI symbols that are channel-compensated by the path compensation circuit 217, and a demodulation scheme designation circuit that designates the demodulation scheme of each subcarrier of user data based on the demodulated MLI 2 19 and a channel compensation circuit 220 for performing channel compensation based on the estimation result of the channel estimation circuit 216 with respect to the received user data symbol reproduced by the Fourier transform circuit 215-3, and the channel compensation circuit The symbol demodulation circuit 221 demodulates the reception user data symbol subjected to propagation path compensation in 220 by the demodulation method of the user data symbol portion of each subcarrier designated by the demodulation method designation circuit 219, and the symbol portion demodulation circuit 221. A decoding circuit 222 for performing error correction and expansion processing on the demodulated code / user data and decoding the user data; There is.
[0020] 図 24に示す回路の中で、 CE、 MLI、ユーザデータを復調する部分を以下のように まとめることができる。  In the circuit shown in FIG. 24, the CE, MLI, and portions for demodulating user data can be summarized as follows.
[0021] (l) FFT回路 215— 1から構成される CE復調部。  (L) A CE demodulation unit composed of an FFT circuit 215-1.
[0022] (2) FFT回路 215-2と伝搬路補償回路 217とシンボル復調回路 218から構成される MLI復調部 223。 (2) FFT circuit 215-2 and propagation path compensation circuit 217 composed of symbol demodulation circuit 218 MLI demodulator 223.
[0023] (3) FFT回路 215— 3と伝搬路補償回路 220とシンボル復調回路 221と復号回路 22 (3) FFT circuit 215-3, propagation path compensation circuit 220, symbol demodulation circuit 221 and decoding circuit 22
2から構成されるユーザデータ復調部 224。 2. A user data demodulator 224 comprising two.
[0024] OFDMZMTPC変調回路 210は、以下の構成を含む。 The OFDMZ MTPC modulation circuit 210 includes the following configuration.
[0025] (1) OFDMZMTPC復調回路 209の伝搬路推定回路 216の各サブキャリアに対す る伝搬路推定結果に基づき、ユーザデータ送信時の各サブキャリアの送信電力、ュ 一ザデータ送信時の各サブキャリアの変調方式を決定する変調方式送信電力指定 回路 225。  (1) Based on the propagation path estimation result for each subcarrier of propagation path estimation circuit 216 of OFDMZMTPC demodulation circuit 209, the transmission power of each subcarrier at the time of user data transmission, each subcarrier at the time of user data transmission Modulation scheme transmission power specification circuit 225 that determines the modulation scheme of the carrier.
[0026] (2)ユーザデータの圧縮符号化、誤り訂正符号の付加等の処理を行う符号化回路 2 26。  (2) An encoding circuit 2 26 that performs processing such as compression encoding of user data and addition of an error correction code.
[0027] (3)変調方式送信電力指定回路 225で決定された各サブキャリアの変調方式に基 づき、符号ィ匕回路 226で符号化されたユーザデータを変調するシンボル変調回路 2 27。  (3) Modulation scheme A symbol modulation circuit 2 27 that modulates user data encoded by the coding circuit 226 based on the modulation scheme of each subcarrier determined by the transmission power designation circuit 225.
[0028] (4)シンボル変調回路 227の変調信号出力を、サブキャリア毎に変調方式送信電力 指定回路 225で決定された値に調整する送信電力制御回路 228。  (4) A transmission power control circuit 228 which adjusts the modulation signal output of the symbol modulation circuit 227 to a value determined by the modulation scheme transmission power designation circuit 225 for each subcarrier.
[0029] (5)送信電力制御回路 228の出力を逆フーリエ変換する IFFT回路 229。  (5) Inverse Fourier Transform of Output of Transmission Power Control Circuit 228 IFFT Circuit 229.
[0030] (6)変調方式送信電力指定回路 225で決定されたユーザデータ送信時の各サブキ ャリアの変調方式に基づき、 MLIを生成する MLI生成回路 230。  (6) Modulation scheme MLI generation circuit 230 that generates an MLI based on the modulation scheme of each subcarrier at the time of user data transmission determined by the transmission power designation circuit 225.
[0031] (7) MLI生成回路 230で生成された MLIを変調するシンボル変調回路 231。  (7) A symbol modulation circuit 231 that modulates the MLI generated by the MLI generation circuit 230.
[0032] (8)シンボル変調回路 231の変調信号出力を、サブキャリア毎に変調方式送信電力 指定回路 225で決定された値に調整する送信電力制御回路 232。  (8) A transmission power control circuit 232 which adjusts the modulation signal output of the symbol modulation circuit 231 to a value determined by the modulation scheme transmission power designation circuit 225 for each subcarrier.
[0033] (9)送信電力制御回路 232の出力を逆フーリエ変換する IFFT回路 233。  (9) IFFT circuit 233 that performs inverse Fourier transform on the output of the transmission power control circuit 232.
[0034] (10) CEを生成する CE生成回路 234。  (10) CE generating circuit 234 for generating CE.
[0035] (l l) CE生成回路 234で生成された CEを、逆フーリエ変換する IFFT回路 235。  (L l) CE The IFFT circuit 235 that performs an inverse Fourier transform on the CE generated by the CE generation circuit 234.
[0036] (12) 3つの IFFT回路(229、 233、 235)の出力を、図 25のスロットの構成となるよう に、多重するマルチプレクサ 236。 (12) A multiplexer 236 which multiplexes the outputs of the three IFFT circuits (229, 233, 235) so as to have the slot configuration of FIG.
[0037] (13)マルチプレクサ 236の出力を、デジタル信号からアナログ信号に変換するデジ タル Zアナログ変換回路 237。 [0038] 図 24に示す上記の回路の中で、 CE、 MLI、ユーザデータを変調する部分を以下 のようにまとめることができる。 (13) A digital Z analog conversion circuit 237 which converts the output of the multiplexer 236 from a digital signal to an analog signal. [0038] In the above circuit shown in FIG. 24, the CE, MLI, and the part that modulates user data can be summarized as follows.
[0039] (1) CE生成回路 234と IFFT回路 235から構成される CE変調部 238。 (1) A CE modulation unit 238 configured of a CE generation circuit 234 and an IFFT circuit 235.
[0040] (2) MLI生成回路 230とシンボル変調回路 231と送信電力制御回路 232と IFFT回 路 233から構成される MLI変調部 239。 (2) MLI modulation unit 239 including MLI generation circuit 230, symbol modulation circuit 231, transmission power control circuit 232, and IFFT circuit 233.
[0041] (3)符号回路 226とシンボル変調回路 227と送信電力制御回路 228と IFFT回路 22(3) Code circuit 226, symbol modulation circuit 227, transmission power control circuit 228, IFFT circuit 22
9から構成されるユーザデータ変調部 240。 A user data modulation unit 240 comprising 9.
[0042] そして OFDMZMTPC変調回路 210の出力は、アップコンバータ 241、送信用ァ ンテナ 242を経て送信される。 Then, the output of the OFDMZ MTPC modulation circuit 210 is transmitted through the up converter 241 and the transmission antenna 242.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0043] MLIは基本情報であり、全てのサブキャリアを用いて伝送しなければならな 、。伝 搬路特性の落込み箇所などに存在するサブキャリアに対しては、所要の受信 SNRが 得られるように多くの送信電力を与える必要がある。 [0043] MLI is basic information and must be transmitted using all subcarriers. It is necessary to give a large amount of transmit power to the sub-carriers present at the drop point of the transmission path characteristic etc. so as to obtain the required reception SNR.
[0044] しカゝしながら、送信電力制御回路は、送信電力指定信号に応じた係数を乗算して 振幅を変化させ電力を制御しているが、デジタル回路でありそのために乗算係数や 乗算結果等のデータはあるビット幅を持つ。従って、電力を制御できる範囲にはある 一定の限界がある。 While the transmission power control circuit controls the power by changing the amplitude by multiplying the coefficient according to the transmission power designation signal, the transmission power control circuit is a digital circuit, and therefore the multiplication coefficient and the multiplication result The data such as has a certain bit width. Therefore, there is a certain limit to the range in which power can be controlled.
[0045] そのため、十分な送信電力を与えることができず、 BPSKの所要 SNRでさえも満足 させることができない場合もある。このような場合、受信機が MLIの復調に失敗し、デ ータの復調ができないために、送信機が受信に失敗したスロットの再送を繰り返すこ とになり、システム全体としてのデータ伝送効率が低下してしまう。  Therefore, sufficient transmission power can not be provided, and even the required SNR of BPSK may not be satisfied. In such a case, since the receiver fails to demodulate the MLI and can not demodulate the data, the transmitter will repeat retransmission of the slot that failed to receive, resulting in the data transmission efficiency of the entire system. It will decrease.
[0046] 本発明は、上記問題点に鑑み、 OFDMZMTPC方式を使用する無線通信システ ムにおいて、 MLIの復調成功確率の向上が可能な OFDM送受信器を提供すること を目的とする。  [0046] In view of the above problems, the present invention aims to provide an OFDM transceiver capable of improving the probability of successful MLI demodulation in a wireless communication system using the OFDMZ MTPC scheme.
非特許文献 1: 2003年電子情報通信学会総合大会「マルチレベル送信電力制御を 適用した 1セル繰り返しの OFDM適応変調 ZTDM Aシステムにおける干渉対策に 関する検討」 課題を解決するための手段 Non-Patent Document 1: 2003 IEICE General Conference "Study on interference countermeasures in 1 cell repetition OFDM adaptive modulation with multilevel transmission power control ZTDM A system" Means to solve the problem
[0047] 本発明の一観点によれば、復調回路に MLIに対する雑音等の影響軽減手段とし て、同一フレーム内の複数スロットの MLIシンボルをベクトルカ卩算するベクトルカ卩算 M[0047] According to one aspect of the present invention, as a means for reducing the influence of noise on MLI in the demodulation circuit, it is possible to perform vector calculation M on the MLI symbols of a plurality of slots in the same frame.
LI生成手段を備え、このベクトル加算 MLIをユーザデータ復調時の MLIに使用する ことを特徴としている (方式 1)。 It is characterized by using LI generation means and using this vector addition MLI as MLI for user data demodulation (scheme 1).
[0048] また、前記方式 1のベクトル加算 MLI手段は、伝搬路補償された MLIシンボルを用 いてベクトル加算 MLIを生成することを特徴としている(方式 2)。また、前記方式 2の ベクトル加算 MLI手段は、スロット毎に異なるサブキャリアにデータを割り当てて送信 された MLIを用いることを特徴とする(方式 3)。また、復調回路に復調成功率の改善 手段として、同一フレーム内の複数スロットの MLIデータビット列を比較して多数決判 定を行う多数決判定回路を備えることを特徴とする (方式 4)。 [0048] Further, the vector addition MLI means of the above-mentioned method 1 is characterized in that the vector addition MLI is generated using the propagation path compensated MLI symbol (method 2). In addition, the vector addition MLI means of method 2 is characterized by using MLI transmitted by assigning data to different subcarriers in each slot (method 3). In addition, the demodulator circuit is characterized in that it comprises a majority decision circuit for comparing the MLI data bit strings of a plurality of slots in the same frame to make a majority decision as a means for improving the demodulation success rate (scheme 4).
[0049] また、前記方式 4の多数決判定手段は、スロット毎に異なるサブキャリアにデータを 割り当てて送信された MLIを用いることを特徴とする(方式 5)。 Further, the majority decision judging means of the system 4 is characterized by using the MLI transmitted by assigning data to different subcarriers in each slot (system 5).
[0050] また、前記方式 4の多数決判定手段は、スロット毎にデータビット列を並べ替えて送 信された MLIを用いることを特徴とする(方式 6)。 Further, the majority decision judging means of the system 4 is characterized by using the MLI transmitted by rearranging the data bit sequence for each slot (system 6).
[0051] また、前記方式 3および方式 5のデータ割り当てサブキャリア選択手段は、送受信 器で既知の並べ替え方式で並べ替えることを特徴とするサブキャリア選択方式である[0051] Further, the data allocation subcarrier selection means of the above-mentioned method 3 and method 5 is a subcarrier selection method characterized in that reordering is performed according to a known reordering method at the transmitter / receiver.
(方式 7)。 (Method 7).
[0052] また、前記方式 3および方式 5のデータ割り当てサブキャリア選択手段は、受信側 カゝら送られてきたスロットより推定された伝搬路特性を用いることを特徴とする(方式 8 [0052] Further, the data allocation subcarrier selection means of the above-mentioned method 3 and method 5 is characterized by using the propagation path characteristic estimated from the slot sent from the receiver side (method 8).
) o ) o
[0053] また、前記方式 8のデータ割り当てサブキャリア選択手段は、受信側にデータを割り 当てたサブキャリアの配列を通知する情報量を削減するために、あらかじめ設定され た数種類の配列の中から最適な配列を選択し、その配列番号を通知することを特徴 とする (方式 9)。  In addition, the data allocation subcarrier selection means of the above-mentioned method 8 is to select from among several kinds of arrays set in advance in order to reduce the amount of information for notifying the reception side of the arrangement of subcarriers to which data are allocated. It is characterized in that the optimal sequence is selected and the sequence number is notified (scheme 9).
[0054] また、前記方式 8のデータ割り当てサブキャリア選択手段は、受信側にデータを割り 当てたサブキャリアの配列を通知する情報量を削減するために、そのフレーム内の各 スロットで用いる配列の組み合わせをあら力じめ数種類設定しておき、その中カも最 適な組み合わせを選択し、第 1スロットでその組み合わせ番号を通知することを特徴 とする(方式 10)。 In addition, the data allocation subcarrier selection means of the above-mentioned method 8 can reduce the amount of information for notifying the reception side of the arrangement of subcarriers to which data are allocated, by using the arrangement of each slot in the frame. Several combinations are set, and among It is characterized in that the appropriate combination is selected and the combination number is notified in the first slot (scheme 10).
発明の効果  Effect of the invention
[0055] 本発明によれば、 MLIの復調が成功する確率を向上させることができ、システム全 体としてのデータ伝送効率の低下を避けることができるという利点がある。  According to the present invention, the probability of successful demodulation of MLI can be improved, and there is an advantage that a decrease in data transmission efficiency as a whole system can be avoided.
図面の簡単な説明  Brief description of the drawings
[0056] [図 1]本発明の第 1の実施の形態による MLI復調部の構成を示すブロック図である。  FIG. 1 is a block diagram showing a configuration of an MLI demodulation unit according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施の形態によるベクトル加算処理動作の流れを示すフローチ ヤート図である。  FIG. 2 is a flowchart showing a flow of vector addition processing operation according to the first embodiment of the present invention.
[図 3]本発明の第 2の実施の形態による MLI復調部の構成例を示すブロック図である  FIG. 3 is a block diagram showing a configuration example of an MLI demodulation unit according to a second embodiment of the present invention.
[図 4]本発明の第 3の実施の形態による MLI復調部の構成例を示すブロック図である FIG. 4 is a block diagram showing a configuration example of an MLI demodulation unit according to a third embodiment of the present invention.
[図 5]本発明の第 3の実施の形態による多数決判定処理動作の流れを示すフローチ ヤート図である。 FIG. 5 is a flowchart showing a flow of majority decision processing operation according to the third embodiment of the present invention.
[図 6]本発明の第 3の実施の形態による多数決判定処理の一例を示す図である。  FIG. 6 is a diagram showing an example of majority decision processing according to the third embodiment of the present invention.
[図 7]本発明の第 4の実施の形態による MLI変調部の構成例を示すブロック図である  FIG. 7 is a block diagram showing a configuration example of an MLI modulator according to a fourth embodiment of the present invention.
[図 8]本発明の第 4の実施の形態による MLI復調部の構成例を示すブロック図である FIG. 8 is a block diagram showing a configuration example of an MLI demodulation unit according to a fourth embodiment of the present invention.
[図 9]本発明の第 5の実施の形態による MLI変調部の構成例を示すブロック図である FIG. 9 is a block diagram showing a configuration example of an MLI modulator according to a fifth embodiment of the present invention.
[図 10]本発明の第 5の実施の形態による MLI復調部の構成例を示すブロック図であ る。 FIG. 10 is a block diagram showing a configuration example of an MLI demodulation unit according to a fifth embodiment of the present invention.
[図 11]本発明の第 6の実施の形態によるデータ割り当て方法を示す図である。  FIG. 11 is a diagram showing a data allocation method according to the sixth embodiment of the present invention.
[図 12]本発明の第 7の実施の形態による OFDMZMTPC変調回路の構成例を示す ブロック図である。  FIG. 12 is a block diagram showing a configuration example of an OFDM Z MTPC modulation circuit according to a seventh embodiment of the present invention.
[図 13]本発明の第 7の実施の形態によるデータ並べ替え部の構成例を示すブロック 図である。 [FIG. 13] A block showing an example of configuration of a data sorting unit according to the seventh embodiment of the present invention FIG.
[図 14]本発明の第 7の実施の形態によるスロットフォーマットの例を示す図である。  FIG. 14 is a diagram showing an example of a slot format according to the seventh embodiment of the present invention.
[図 15]本発明の第 7の実施の形態によるデータ並べ替え処理動作の流れを示すフロ 一チャート図である。  FIG. 15 is a flowchart showing a flow of data rearrangement processing operation according to the seventh embodiment of the present invention.
[図 16]従来の並べ替え方式における MLIシンボル対サブキャリアの対応表である。  FIG. 16 is a correspondence table of MLI symbols to subcarriers in the conventional rearrangement scheme.
[図 17]本発明の第 8の実施の形態による MLIシンボル対サブキャリアの対応表であ る。  FIG. 17 is a MLI symbol-to-subcarrier correspondence table according to the eighth embodiment of the present invention.
[図 18]本発明の第 9の実施の形態によるスロット対並べ替え方式組み合わせの対応 表である。  FIG. 18 is a correspondence table of slot pair reordering scheme combinations according to the ninth embodiment of the present invention.
[図 19]従来の直交周波数分割多重システムにおけるスペクトル  [Fig. 19] Spectrum in the conventional orthogonal frequency division multiplexing system
[図 20]サブキャリア送信電力制御方式を用いた直交周波数分割多重システムにおけ るスぺク卜ノレである。  [Fig. 20] This is a spectrum in an orthogonal frequency division multiplexing system using subcarrier transmission power control.
[図 21]適応変調方式を用いた直交周波数分割多重システムにおけるスペクトルであ る。  [Fig. 21] A spectrum in an orthogonal frequency division multiplexing system using an adaptive modulation scheme.
[図 22]マルチレベル送信電力制御方式を用いた直交周波数分割多重システムにお けるスペクトルである。  [Fig. 22] A spectrum in an orthogonal frequency division multiplexing system using a multilevel transmission power control system.
[図 23]マルチレベル送信電力制御方式を用いた直交周波数分割多重システムにお けるフレームフォーマットを示す図である。  FIG. 23 is a diagram showing a frame format in an orthogonal frequency division multiplexing system using a multilevel transmission power control system.
[図 24]従来のマルチレベル送信電力制御方式を用いた直交数周波数分割多重シス テムの通信機である。  [Fig. 24] A communication device of an orthogonal frequency division multiplexing system using a conventional multilevel transmission power control system.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0057] まず、本発明の第 1の実施の形態による送受信装置について図面を参照しつつ説 明を行う。図 1は、本実施の形態による MLI復調部の構成例を示す図である。図 1に 示すように、 MLI復調部 100は、デマルチプレクサ 214から出力される MLIシンボル 部をベクトル加算する MLIベクトル加算部 101と、シンボル復調回路 218の出力信 号から、誤り検出符号などにより誤りを検出する誤り検出回路 105と、を備えている。  First, the transmission / reception apparatus according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration example of the MLI demodulation unit according to the present embodiment. As shown in FIG. 1, the MLI demodulation unit 100 generates an error based on an error detection code or the like from the MLI vector addition unit 101 that performs vector addition of the MLI symbol unit output from the demultiplexer 214 and the output signal of the symbol demodulation circuit 218. And an error detection circuit 105 for detecting the
[0058] MLIベクトル加算部 101は、デマルチプレクサ 214の出力と記憶回路 103の出力と をベクトル加算するベクトル加算回路 102と、ベクトル加算回路 102の出力を保存す る記憶回路 103と、デマルチプレクサ 214の出力とベクトル加算回路 102との出力を 切り替える切替回路 104と、を含んで構成される。 The MLI vector addition unit 101 stores the output of the vector addition circuit 102 for performing vector addition of the output of the demultiplexer 214 and the output of the memory circuit 103, and the output of the vector addition circuit 102. And a switching circuit 104 for switching the output of the demultiplexer 214 and the output of the vector addition circuit 102.
[0059] 図 2は、ベクトルカ卩算処理の流れを示すフローチャート図である。図 1を参照しつつ 、図 2のフローチャート図に沿って、 MLI変調後の第 Nスロットを受信した際のベタト ル加算処理の動作について説明を行う。復調動作開始時は、切替回路 104はデマ ルチプレクサ 214の出力信号を出力するように設定されて!、る。  FIG. 2 is a flowchart showing the flow of the vector calculation process. The operation of the beta addition processing when the Nth slot after MLI modulation is received will be described according to the flowchart of FIG. 2 with reference to FIG. At the start of the demodulation operation, the switching circuit 104 is set to output the output signal of the demultiplexer 128 !.
[0060] まず、ステップ S 1にお!/、て、第 Nスロットを受信し、受信した第 Nスロットの MLIを復 調する (ステップ S2)。誤り検出回路 102で、 MLIが正しく復調できた力否かを判定 する(ステップ S3)。ステップ S3の判定の結果、 MLIの復調に失敗したと判定された とき、切替回路 104をベクトル加算回路 102側に切り替える (ステップ S4)。  First, in step S1, the Nth slot is received in step S1 and the received MLI in the Nth slot is demodulated (step S2). The error detection circuit 102 determines whether or not the MLI has successfully demodulated the power (step S3). As a result of the determination in step S3, when it is determined that the MLI demodulation has failed, the switching circuit 104 is switched to the vector addition circuit 102 side (step S4).
[0061] ベクトルカ卩算回路 102は、デマルチプレクサ 214から出力される第 Nスロットの MLI シンボル部と、記憶回路 103に保存されている第 1スロットから第 (N— 1)スロットまで の MLIシンボル部のベクトルカ卩算結果と、をベクトルカ卩算する(ステップ S5)。  [0061] Vector calculation circuit 102 includes an MLI symbol portion of the Nth slot output from demultiplexer 214 and an MLI symbol portion from the 1st slot stored in storage circuit 103 to the (N-1) th slot. The vector calculation result of the vector calculation is performed (step S5).
[0062] 記憶回路 103は、ベクトル加算回路 102から出力される第 1スロットから第 Nスロット までの MLIシンボル部のベクトル加算結果を保存する(ステップ S6)。ベクトル加算 結果を復調する(ステップ S7)。切替回路 104をマルチプレクサ 214の方に切り替え る (ステップ S8)。誤り検出回路 105において、ベクトル加算結果が正しく復調できた か否かを判定する (ステップ S9)。  The storage circuit 103 stores the result of vector addition of the MLI symbol part from the first slot to the Nth slot, which is output from the vector addition circuit 102 (step S6). The vector addition results are demodulated (step S7). The switching circuit 104 is switched to the multiplexer 214 (step S8). The error detection circuit 105 determines whether the vector addition result has been correctly demodulated (step S9).
[0063] ステップ S9の判定の結果、ベクトル加算結果の復調に失敗したと判定されたときは 、ステップ S1に戻り、次の第 (N+ 1)スロットを受信する。以降、上記の規則に則って 動作する。ステップ S3及びステップ S9の判定の結果、復調に成功したと判定された ときは、記憶回路 103に保存されているデータを破棄する (ステップ S10)。 MLIの復 調に成功した場合には、同一フレーム内のスロットのユーザデータは、その MLIを用 いて復調する。次のフレームを受信するとき、再び上記の方法で MLIの復調を行う。  If it is determined in step S 9 that the demodulation of the vector addition result has failed, the process returns to step S 1 to receive the next (N + 1) -th slot. After that, it operates according to the above rules. As a result of the determination in step S3 and step S9, when it is determined that the demodulation is successful, the data stored in the memory circuit 103 is discarded (step S10). If the MLI demodulation succeeds, the user data in the slot in the same frame is demodulated using that MLI. When the next frame is received, the MLI is demodulated again in the above manner.
[0064] 上記の技術を用いると、同一フレーム内の各スロットの MLIは同じであるのに対して 、それらのスロットに含まれる雑音成分には相関がない。そのため、ベクトル加算をす ると希望信号電力の方だけを強めることができ、 SNRを改善することができる。  [0064] Using the above-described technique, the MLI of each slot in the same frame is the same, while the noise components included in those slots have no correlation. Therefore, by performing vector addition, only the desired signal power can be strengthened, and the SNR can be improved.
[0065] 次に、本発明の第 2の実施の形態による復調技術について説明を行う。図 3は、本 実施の形態による MLI復調部 106の構成例を示す図である。 MLI復調部 106にお いて、 MLIベクトル加算部 107は、伝搬路補償回路 217から出力される MLIシンポ ル部をベクトル加算する。伝搬路は時間とともに変化するため、各スロットが伝搬路で 受ける位相回転量は異なる。本実施の形態による復調部は、伝搬路補償回路で位 相の回転を補償して力 ベクトル加算するため、第 1の実施の形態に比べて希望信 号を効率良く加算することができ、 SNRの改善量が大き 、と 、う利点がある。 Next, a demodulation technique according to the second embodiment of the present invention will be described. Figure 3 is a book It is a figure which shows the structural example of the MLI demodulation part 106 by embodiment. In MLI demodulation section 106, MLI vector addition section 107 performs vector addition of the MLI symbol section output from propagation path compensation circuit 217. Since the propagation path changes with time, the amount of phase rotation that each slot receives in the propagation path is different. The demodulation unit according to the present embodiment compensates for the rotation of the phase with the propagation path compensation circuit and adds the force vectors, so that the desired signal can be efficiently added compared to the first embodiment. The amount of improvement is significant.
[0066] 次に、本発明の第 3の実施の形態による復調部について図面を参照しつつ説明を 行う。図 4は、本実施の形態による MLI復調部 108の構成例を示す図である。この M LI復調部 108は、シンボル復調された MLIを多数決により判定する多数決判定部 1 09を備えている。 Next, a demodulator according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a diagram showing a configuration example of the MLI demodulation unit 108 according to the present embodiment. The MLI demodulation unit 108 includes a majority decision unit 119 that determines the symbol-demodulated MLI by majority.
[0067] 多数決判定部 109は、シンボル復調回路 218の出力と記憶回路 111の出力とを多 数決により判定する多数決判定回路 110と、シンボル復調回路 218の出力を保存す る記憶回路 111と、シンボル復調回路 218の出力と多数決判定回路 110の出力とを 切り替える切替回路 112と、を含んで構成される。  Majority determination section 109 determines majority determination circuit 110 which determines the output of symbol demodulation circuit 218 and the output of storage circuit 111 by majority determination, storage circuit 111 storing the output of symbol demodulation circuit 218, and And a switching circuit 112 that switches between the output of the symbol demodulation circuit 218 and the output of the majority decision circuit 110.
[0068] 図 5は、多数決判定処理動作の流れを示すフローチャート図である。図 5に示すフ ローチャート図に沿って、第 Nスロットを受信した場合の多数決判定処理の流れを説 明をする。復調動作開始時は、切替回路 112はシンボル復調回路出力信号 218を 出力するように設定されて 、る。  FIG. 5 is a flowchart showing the flow of the majority decision processing operation. The flow of the majority decision process when the Nth slot is received will be described along the flow chart shown in FIG. At the start of the demodulation operation, the switching circuit 112 is set to output the symbol demodulation circuit output signal 218.
[0069] まず、ステップ S11において、第 Nスロットを受信する。次いで、ステップ S12におい て、受信した第 Nスロットの MLIを復調する。誤り検出回路 105で、 MLIが正しく復調 できたか否かを判定する (ステップ S 13)。ステップ S 13の判定の結果、 MLIの復調 に失敗したと判定された場合には、スロット番号 Nが偶数か奇数かを判定する (ステツ プ S14)。ステップ S14の判定を行うことにより、 Nが偶数のときに正しく復調できたス ロットと誤ったスロットとが同数となり多数決による判定ができなくなるため、その状況 を避ける意味がある。ステップ S 14の判定の結果、 Nが偶数であった場合は、ステツ プ S11に戻り、次の第 (N+ 1)スロットを受信する。 Nが奇数であったとき、切替回路 1 12を多数決判定回路 110の方に切り替える (ステップ S15)。多数決判定回路 110 は、シンボル変調回路 218から出力される第 Nスロットの MLIと、記憶回路 111に保 存されている第 1スロットから第 (N— 1)スロットまでの MLIとの各ビットを多数決判定 する (ステップ S16)。例として、第 1から第 7までの 7スロット分の多数決判定の方法に っ 、て図 6を参照して説明する。 First, in step S11, the Nth slot is received. Then, in step S12, the received MLI of the Nth slot is demodulated. The error detection circuit 105 determines whether the MLI has been correctly demodulated (step S13). If it is determined in step S13 that the MLI demodulation has failed, it is determined whether the slot number N is even or odd (step S14). By performing the determination in step S14, the slot that has been correctly demodulated when N is even and the incorrect slot become the same number, and it becomes impossible to make the determination by majority decision, so it is meaningful to avoid the situation. If it is determined in step S14 that N is an even number, the process returns to step S11, and the next (N + 1) th slot is received. When N is an odd number, the switching circuit 112 is switched to the majority decision circuit 110 (step S15). The majority decision circuit 110 stores the N-th slot MLI output from the symbol modulation circuit 218 and the storage circuit 111. Each bit with the MLI from the existing first slot to the (N−1) slot is subjected to majority decision (step S16). As an example, the method of majority decision for the first to seventh seven slots will be described with reference to FIG.
[0070] 記憶回路 111は、シンボル復調回路 218から出力される MLIを追加保存し (ステツ プ S 17)、多数決判定結果を復調する (ステップ S 18)。次いで、切替回路 112をシン ボル復調回路 218の方に切り替え (ステップ S19)、誤り検出回路 105で、多数決判 定結果が正しく復調できたか判定する (ステップ S20)。ステップ S20の判定の結果、 多数決判定結果の復調に失敗したと判定された場合には、ステップ S 11に戻って第 (N+ 1)スロットを受信する。以降、上記の規則に沿って動作が行われる。ステップ S 13およびステップ S20の判定の結果、復調に成功したと判定されたとき、記憶回路 1 11に保存されているデータを破棄する (ステップ S21)。 MLIの復調に成功した場合 には、同一フレーム内のスロットのユーザデータは、その MLIを用いて復調する。次 のフレームを受信する際、再び、上記の方法により MLIの復調を行う。  The storage circuit 111 additionally stores the MLI output from the symbol demodulation circuit 218 (step S17), and demodulates the majority decision result (step S18). Next, the switching circuit 112 is switched to the symbol demodulation circuit 218 (step S19), and the error detection circuit 105 determines whether the majority decision result is correctly demodulated (step S20). As a result of the determination in step S20, when it is determined that the demodulation of the majority determination result has failed, the process returns to step S11, and the (N + 1) th slot is received. Thereafter, the operation is performed in accordance with the above rules. As a result of the determination in step S13 and step S20, when it is determined that the demodulation is successful, the data stored in the memory circuit 111 is discarded (step S21). If the MLI is successfully demodulated, user data in slots in the same frame is demodulated using that MLI. When the next frame is received, MLI demodulation is performed again by the above method.
[0071] 尚、図 6では、全ての場合において復調が成功したと判定されている。  In FIG. 6, it is determined that the demodulation is successful in all cases.
[0072] このように、多数決判定を行うことにより、雑音等でランダムな位置に現れる誤りを訂 正することができるという利点がある。  As described above, by performing the majority decision, there is an advantage that it is possible to correct an error appearing at a random position due to noise or the like.
[0073] 次に、本発明の第 4の実施の形態による変調部について図面を参照しつつ説明す る。図 7は、本実施の形態による MLI変調部 113の構成例を示す図である。 MLI変 調部 113は、 MLI生成回路 230と、 MLI生成回路 230から出力されるビット列を並べ 替えるデータ並べ替え回路 114と、シンボル変調回路 231と、送信電力制御回路 23 2と、 IFFT回路 233と、を備える。 IFFT回路 233からマルチプレクサに対して信号が 出力される。図 8は、本実施の形態による MLI復調部 115の構成例を示す図である。 MLI復調部 115は、上記第 3の実施の形態による MLI復調部 108の構成にカ卩えて、 シンボル復調されてビット列となつた MLIを送信時とは逆の手順で並べ替えて元の 順序に戻すデータ並べ替え回路 116を備える。  Next, a modulator according to a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a diagram showing a configuration example of the MLI modulation unit 113 according to the present embodiment. The MLI modulation unit 113 includes an MLI generation circuit 230, a data rearrangement circuit 114 that rearranges bit strings output from the MLI generation circuit 230, a symbol modulation circuit 231, a transmission power control circuit 232, and an IFFT circuit 233. And. A signal is output from the IFFT circuit 233 to the multiplexer. FIG. 8 is a diagram showing a configuration example of the MLI demodulation unit 115 according to the present embodiment. According to the configuration of the MLI demodulation unit 108 according to the third embodiment, the MLI demodulation unit 115 rearranges the MLI, which has been symbol-demodulated and has become a bit string, in the reverse order of the transmission procedure, and puts it in the original order. A data rearrangement circuit 116 is provided.
[0074] MLIは基本情報であるため、 SNRが悪いサブキャリアがある場合でもキャリアホー ルを設定することができず、全てのサブキャリアで伝送しなければならない。そのため 、再送してもそのサブキャリアで伝送された MLIシンボルの誤りが原因となって MLI の復調に失敗する可能性が高い。そこで、本実施の形態においては、スロット毎に M LIのビット列を並べ替えて送信を行う。 SNRの低 、サブキャリアで伝送されるビットが スロット毎に異なるため、復調して元の順序に並べ替えると、誤りビットの現れる位置 力 Sスロット毎に異なる。従って、多数決判定の誤り訂正能力は、このような誤りに対し て非常に優れているため、 MLIの復調成功確率を向上させることができるという利点 がある。 [0074] Since MLI is basic information, even if there is a subcarrier with poor SNR, it is not possible to set a carrier hole, and transmission must be performed on all subcarriers. Therefore, even if it is retransmitted, the MLI symbol error transmitted on that subcarrier causes MLI. There is a high possibility of failing to demodulate. Therefore, in the present embodiment, the bit sequence of M LI is rearranged for each slot and transmission is performed. Since the SNR is low and the bits transmitted on subcarriers are different in each slot, when demodulation and rearrangement are performed in the original order, the position at which error bits appear is different in each S slot. Therefore, the error correction ability of the majority decision is extremely excellent against such an error, so that there is an advantage that the MLI demodulation success probability can be improved.
[0075] 次に、本発明の第 5の実施の形態による変復調部について図面を参照しつつ説明 を行う。図 9は、本実施の形態による MLI変調部 117の構成例を示す図である。図 9 に示すように、本実施の形態による MLI変調部 117は、シンボル変調回路 231から の出力を並べ替えるデータ並べ替え回路 118を備える点を特徴とする。図 10は、本 実施の形態による MLI復調部 119の構成例を示す図である。 MLI復調部 119は、 第 2の実施の形態による MLI復調部 106の構成に加えて、伝搬路補償された MLIシ ンボルを送信時とは逆の手順で並べ替えて元の順序に戻すデータ並べ替え回路 12 0を備えている。本発明の第 2の実施の形態においては、伝搬路特性の落ち込みな どで SNRが極端に低いサブキャリアがある場合には、数スロットにわたりそのサブキ ャリアで伝送された MLIシンボルの SNRが悪 、ため、ベクトル力卩算を行ってもその M LIシンボルの SNRの改善量は小さぐ MLI復調成功確率のボトルネックとなってしま  Next, a modulation / demodulation unit according to a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 9 is a diagram showing a configuration example of the MLI modulation unit 117 according to the present embodiment. As shown in FIG. 9, the MLI modulator 117 according to the present embodiment is characterized in that it comprises a data reordering circuit 118 for reordering the output from the symbol modulation circuit 231. FIG. 10 is a diagram showing a configuration example of the MLI demodulation unit 119 according to the present embodiment. In addition to the configuration of the MLI demodulation unit 106 according to the second embodiment, the MLI demodulation unit 119 rearranges the propagation path compensated MLI symbols in the reverse procedure to that for transmission, and restores the data to the original order. A replacement circuit 120 is provided. In the second embodiment of the present invention, when there is a subcarrier with an extremely low SNR due to, for example, a drop in channel characteristics, the SNR of the MLI symbol transmitted in the subcarrier over several slots is bad. Therefore, even if vector power calculation is performed, the amount of improvement in the SNR of the M LI symbol is small, which becomes a bottleneck of the MLI demodulation success probability.
[0076] そこで、本実施の形態では、スロット毎に MLIシンボルを異なるサブキャリアに割り 当てて送信を行うことにより、特定の MLIシンボルの SNRが低くなることを避けること ができ、 MLI復調成功確率を向上させることができるという利点がある。 Therefore, in the present embodiment, by transmitting the MLI symbols allocated to different subcarriers in each slot, it is possible to prevent the SNR of a specific MLI symbol from being lowered, and the MLI demodulation success probability Has the advantage of being able to improve
[0077] 次に、本発明の第 6の実施の形態による変復調部について図面を参照しつつ説明 を行う。図 11は、本実施の形態におけるサブキャリア本数を 32本とした場合の、割り 当て方法を示す図である。図 11に示す dl— d32までは、 MLIシンボルである。また 、サブキャリア番号を SC1— SC32とする。第 2スロットを送信するときの並べ替え方 式は、以下の通りである。  Next, a modulation / demodulation unit according to a sixth embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a diagram showing an assignment method when the number of subcarriers in the present embodiment is 32. The symbols dl to d32 shown in FIG. 11 are MLI symbols. Also, let SC1-SC32 be the subcarrier number. The reordering method when transmitting the second slot is as follows.
[0078] (1)サブキャリアを SC1— SC16と SC17— SC32の 2つのブロックに分け、それぞれ 第 1ブロック、第 2ブロックとする。 [0079] (2)第 1スロットを送信するときに第 1ブロックで送信された MLIシンボルを、第 2プロ ックに割り当てる。 (1) The subcarrier is divided into two blocks of SC1-SC16 and SC17-SC32, which are respectively referred to as a first block and a second block. (2) The MLI symbol transmitted in the first block when transmitting the first slot is assigned to the second block.
[0080] (3)第 1スロットを送信するときに第 2ブロックで送信された MLIシンボルを第 1ブロッ クに割り当てる。  (3) When transmitting the first slot, the MLI symbol transmitted in the second block is assigned to the first block.
[0081] 第 3スロットを送信するときの並べ替え方式は、以下の通りである。  The rearrangement scheme when transmitting the third slot is as follows.
[0082] (1)サブキャリアを SC1— SC8、 SC9— SC16、 SC17— SC24、 SC25— SC32の 4 つのブロックに分け、それぞれ第 1ブロック、第 2ブロック、第 3ブロック、第 4ブロックと する。  (1) The subcarrier is divided into four blocks of SC1-SC8, SC9-SC16, SC17-SC24, and SC25-SC32, which are respectively referred to as a first block, a second block, a third block, and a fourth block.
[0083] (2)第 2スロットを送信するときに第 1ブロックで送信された MLIシンボルを、第 2ブロ ックに割り当てる。  (2) The MLI symbol transmitted in the first block when transmitting the second slot is assigned to the second block.
[0084] (3)第 2スロットを送信するときに第 2ブロックで送信された MLIシンボルを、第 1プロ ックに割り当てる。  (3) The MLI symbol transmitted in the second block when transmitting the second slot is assigned to the first block.
[0085] (4)第 2スロットを送信するときに第 3ブロックで送信された MLIシンボルを、第 4プロ ックに割り当てる。  (4) The MLI symbol transmitted in the third block when transmitting the second slot is assigned to the fourth block.
[0086] (5)第 2スロットを送信するときに第 4ブロックで送信された MLIシンボルを、第 3ブロ ックに割り当てる。  (5) The MLI symbol transmitted in the fourth block when transmitting the second slot is assigned to the third block.
[0087] 以降、第 3スロットでは 8個のブロックに分割し、第 4スロットでは 16個のブロックに分 割し、同様に MLIシンボルを割り当てる。ブロックに分割するときに等分できない本数 の場合は、余りのサブキャリアをいずれかのブロックに帰属させる。本実施の形態に おいては、サブキャリア本数を等分してブロックに分割し、それらのブロックを 2つず つの組にして割り当てる MLIシンボルの入れ替えを行った力 同様の効果が得られ る並べ替え方式であれば上述の手法に限定されるものではない。  Thereafter, the third slot is divided into eight blocks, and the fourth slot is divided into 16 blocks, and MLI symbols are similarly allocated. If the number of blocks can not be divided equally, the remaining subcarriers are assigned to any block. In this embodiment, the number of subcarriers is equally divided and divided into blocks, and those blocks are allocated as a pair of two. MLI symbol replacement force is obtained. A similar effect can be obtained. The alternative method is not limited to the above-described method.
[0088] 近接するサブキャリアが受ける伝搬路特性には相関があるため、近接するサブキヤ リアに MLIシンボルを割り当てたとしても、受ける伝搬路特性に大きな変化がな!、。 第 5の実施の形態の目的は、特定の MLIシンボルの SNRが低くなるのを避けること であるから、相関がないサブキャリアに割り当てるのが望ましい。上述の並べ替え方 式は、全ての MLIシンボルを以前のスロットで用いたサブキャリアから離れたサブキヤ リアに割り当て、早期に MLIの復調を成功させることができるという利点がある。 [0089] 次に、本発明の第 7の実施の形態について図面を参照しつつ説明を行う。本実施 の形態は、第 5の実施の形態によるデータ並べ替え回路で行う MLIシンボルの並べ 替え方式の一つであり、伝搬路推定結果に基づいて並べ替えを行うことを特徴とする There is a correlation between propagation path characteristics received by adjacent subcarriers, so even if MLI symbols are assigned to adjacent subcarriers, the propagation path characteristics received will not change significantly. Since the purpose of the fifth embodiment is to avoid the lowering of the SNR of a particular MLI symbol, it is desirable to assign to subcarriers without correlation. The above reordering scheme has the advantage that all MLI symbols can be assigned to subcarriers away from the subcarriers used in the previous slot, and early MLI demodulation can be successful. Next, a seventh embodiment of the present invention will be described with reference to the drawings. This embodiment is one of the MLI symbol reordering methods performed by the data reordering circuit according to the fifth embodiment, and is characterized in that reordering is performed based on the propagation path estimation result.
[0090] 図 12は、本実施の形態による OFDMZMTPC変調回路 121の構成例を示す図 である。 OFDMZMTPC変調回路 121は、 OFDMZMTPC復調回路 209 (図 24) の伝搬路推定回路 216 (図 24)の各サブキャリアに対する伝搬路推定結果に基づき 、データ並べ替え回路のデータの並べ替え方式を指定するデータ並べ替え指定部 1 22と、データ並べ替え指定部 122で決定された並べ替え方式に基づき、 Signalを生 成するシグナル(signal)生成回路 123と、シグナル生成回路 123において生成され た信号を変調するシンボル変調回路 124と、シンボル変調回路 124の変調信号出力 をサブキャリア毎に変調方式送信電力指定回路 225で決定された値に調整する送 信電力制御回路 125と、送信電力制御回路 125の出力を逆フーリエ変換する IFFT 回路 126と、データ並べ替え指定信号に基づき、データを並べ替えるデータ並べ替 え回路 127と、を含んで構成される。 FIG. 12 is a diagram showing a configuration example of the OFDM Z MTPC modulation circuit 121 according to the present embodiment. The OFDMZMTPC modulation circuit 121 is a data specifying a data reordering method of the data reordering circuit based on the propagation path estimation result for each subcarrier of the propagation path estimation circuit 216 (FIG. 24) of the OFDMZMTPC demodulation circuit 209 (FIG. 24). Based on the rearrangement scheme determined by the rearrangement designation unit 122 and the data rearrangement designation unit 122, the signal generation circuit 123 for generating a signal and the signal generated in the signal generation circuit 123 are modulated. A transmission power control circuit 125 for adjusting the modulation signal output of the symbol modulation circuit 124 and the symbol modulation circuit 124 to a value determined by the modulation type transmission power designation circuit 225 for each subcarrier, and an output of the transmission power control circuit 125 It comprises: an IFFT circuit 126 that performs inverse Fourier transform; and a data sorting circuit 127 that sorts data based on a data sorting specification signal.
[0091] 図 13は、データ並べ替え指定部 122の構成例を示す図である。図 13に示すよう〖こ 、データ並べ替え指定部 122は、 OFDMZMTPC復調回路 209 (図 24)の伝搬路 推定回路 216 (図 24)から出力される伝搬路推定結果のサブキャリア毎の電力を計 算する電力計算回路 128と、電力計算回路 128の出力信号をサブキャリア順カもデ ータ順に並べ替えるデータ並べ替え回路 129と、データ並べ替え回路 129の出力信 号と記憶回路 131の出力信号を加算する加算回路 130と、加算回路 130の出力信 号を保存する記憶回路 131と、加算回路 130の出力信号と電力計算回路 128の出 力信号より MLIシンボルの並べ替え方式を指定するデータ並べ替え指定回路 132と 、を含んで構成される。  FIG. 13 is a diagram showing a configuration example of the data rearrangement designation unit 122. As shown in FIG. As shown in FIG. 13, the data reordering specification unit 122 measures the power per subcarrier of the propagation path estimation result output from the propagation path estimation circuit 216 (FIG. 24) of the OFDMZMTPC demodulation circuit 209 (FIG. 24). Power calculation circuit 128 to be calculated, data sorting circuit 129 that rearranges the output signals of power calculation circuit 128 in subcarrier order as well as data, the output signal of data sorting circuit 129 and the output signal of storage circuit 131 The addition circuit 130 that adds the data, the storage circuit 131 that stores the output signal of the addition circuit 130, and the data arrangement that specifies the MLI symbol rearrangement method from the output signal of the addition circuit 130 and the output signal of the power calculation circuit 128 And a replacement designation circuit 132.
[0092] 本実施の形態におけるフレームフォーマットを図 14に示す。 CEサブフレーム 205 の後ろに、 MLIシンボルの並べ替え順序を通知するための Signalサブフレーム 133 が挿入されている。データ並べ替え指定回路 132は、内部にサブキャリア番号と MLI シンボル番号を対応させたテーブルを持っている。サブキャリア番号欄には、現時点 の伝搬路推定結果の電力が大きいサブキャリア力 順番にそのサブキャリア番号を 書き込み、 MLIシンボル番号欄は、それまで送信したスロットの送受信電力が小さい と推定される MLIシンボルから順番にその MLIシンボル番号を書き込む。データ並 ベ替え指定回路 132は、 MLIシンボルをテーブル上で対応するサブキャリアに割り 当てるように並べ替え方式を指定する。テーブルはスロットを送信する毎に順次更新 される。 A frame format in the present embodiment is shown in FIG. At the end of CE subframe 205, Signal subframe 133 is inserted to indicate the sort order of the MLI symbols. The data reordering specification circuit 132 internally has a table in which subcarrier numbers and MLI symbol numbers correspond to each other. Sub carrier number column at present The subcarrier power of the propagation path estimation result of the channel number is sequentially written in the subcarrier power, and the MLI symbol number column indicates the MLI symbol number in order from the MLI symbol estimated that the transmit / receive power of the slot transmitted so far is small. Write The data rearrangement specification circuit 132 specifies the rearrangement scheme to assign the MLI symbol to the corresponding subcarrier on the table. The table is sequentially updated each time a slot is transmitted.
図 15は、データ並べ替え指定部の動作の流れを示すフローチャート図である。この フローチャート図に沿って、第 Nスロット送信時のデータ並べ替え指定部 122の動作 について説明する。電力計算回路 128は、 OFDMZMTPC復調回路 209 (図 24) の伝搬路推定回路 216 (図 24)から出力される最新の伝搬路推定結果を第 Nスロット 送信時の伝搬路推定結果とし、そのときのサブキャリア毎の伝搬路推定結果の電力 を計算する (ステップ S31)。伝搬路推定結果の電力が大きい順にサブキャリアを並 ベ替え、そのサブキャリア番号をテーブルに書き込む (ステップ S32)。データ並べ替 え指定回路 132は、 MLIシンボルをテーブル上で対応するサブキャリアに割り当てる ように並べ替え方式を指定する (ステップ S33)。データ並べ替え回路 231は、データ 並べ替え指定信号に従って MLIシンボルを並べ替える(ステップ S34)。データ並べ 替え回路 129は、データ並べ替え指定信号に従って、伝搬路推定結果の電力を並 ベ替える。このことは、第 Nスロット送信時の伝搬路推定結果の電力を MLIシンボル 順に並べ替えたことに相当する (ステップ S35)。加算回路 130は、データ並べ替え 回路 129から出力される第 Nスロット送信時の伝搬路推定結果の電力と、記憶回路 1 31から出力される第 (N— 1)スロットまでの受信電力推定値の総和を加算する (ステツ プ S36)。記憶回路 131は、加算回路 130の出力信号を第 Nスロットまでの受信電力 推定値の総和として保存する (ステップ S37)。受信電力推定値の総和が小さい順に MLIシンボルを並べ替え、その MLIシンボル番号をテーブルに書き込む(ステップ S 38)。フレーム処理が完了したか判定する(ステップ S39)。ステップ S39の結果、フレ ーム処理が完了して!/、な 、と判定されたときは、 S31に戻って第 (N+ 1)スロットの送 信準備をする。以降、上記の規則に沿って動作する。ステップ S39の結果、フレーム 処理が完了したと判定されたときには、記憶回路 131の保存されているデータを破棄 するとともに、テーブルを初期値に戻す (リセット:ステップ S40)。 FIG. 15 is a flowchart showing the flow of the operation of the data rearrangement designation unit. The operation of the data reordering unit 122 at the time of Nth slot transmission will be described with reference to this flowchart. The power calculation circuit 128 takes the latest propagation path estimation result output from the propagation path estimation circuit 216 (FIG. 24) of the OFDMZMTPC demodulation circuit 209 (FIG. 24) as the propagation path estimation result at the time of the Nth slot transmission. The power of the propagation path estimation result for each subcarrier is calculated (step S31). The subcarriers are rearranged in descending order of the power of the propagation path estimation result, and the subcarrier numbers are written in the table (step S32). The data reordering specification circuit 132 specifies the reordering method so as to assign the MLI symbols to the corresponding subcarriers on the table (step S33). The data sorting circuit 231 sorts the MLI symbols in accordance with the data sorting designation signal (step S34). The data reordering circuit 129 reorders the power of the propagation path estimation result according to the data reordering designation signal. This corresponds to reordering the power of the channel estimation result at the time of Nth slot transmission in the order of MLI symbols (step S35). Adder circuit 130 calculates the power of the propagation path estimation result at the time of Nth slot transmission output from data reordering circuit 129 and the received power estimation value up to the (N-1) th slot output from storage circuit 131. Add the sum (step S36). The memory circuit 131 stores the output signal of the adder circuit 130 as the sum of the reception power estimated values up to the Nth slot (step S37). The MLI symbols are rearranged in ascending order of the sum of received power estimated values, and the MLI symbol number is written to the table (step S38). It is determined whether the frame processing has been completed (step S39). If it is determined in the step S39 that the frame processing has been completed and it is determined that the frame processing is completed, the process returns to the step S31 to prepare for the transmission of the (N + 1) th slot. Hereafter, it operates according to the above-mentioned rule. If it is determined as a result of step S39 that the frame processing has been completed, the data stored in the storage circuit 131 is discarded. And reset the table to the initial value (Reset: step S40).
[0094] 上記の方法によれば、伝搬路推定結果に基づき並べ替えを行って!/、るため、特定 の MLIシンボルの SNRが低くなるという状況を確実に回避することができる。また、 並べ替え方式について細かく制御できるため、効率良く SNRの底上げをすることが できるという利点がある。  According to the above method, reordering is performed based on channel estimation results! /, So that the situation in which the SNR of a particular MLI symbol is low can be reliably avoided. Also, since the reordering method can be finely controlled, there is an advantage that the SNR can be efficiently raised.
[0095] 次に、本発明の第 8の実施の形態による変復調部について図面を参照しつつ説明 を行う。尚、本実施の形態は、第 7の実施の形態における並べ替え方式の一種であり 、並べ替え通知情報量を削減する並べ替え方式に関する。本実施の形態では、サブ キャリア本数を 32本とする。  Next, a modem according to an eighth embodiment of the present invention will be described with reference to the drawings. The present embodiment is a kind of sorting method in the seventh embodiment, and relates to a sorting method for reducing the amount of sorting notification information. In the present embodiment, the number of subcarriers is 32.
[0096] まず、一般的な並べ替え順序通知情報の一例として、第 1サブキャリアに割り当てら れた MLIシンボル力 順番に、前のスロットで割り当てられて!/、たサブキャリア番号を 記述していくものとする。サブキャリア本数が 32本であると、サブキャリア番号を表す のに 5ビット必要であり、それがサブキャリア本数の 32本分あるため、並べ替え順序 通知情報は、 5 X 32= 160 (ビット)が必要となる。このときの並べ替え順序通知情報 の一例を図 16に示す。左から、第 1スロット送信時、第 2スロット送信時、第 3スロット 送信時のサブキャリア番号とデータ番号との対応を示している。  First, as an example of general sort order notification information, the MLI symbol powers assigned to the first subcarrier are described in the previous slot in the order of MLI symbol power! Let's go. If the number of subcarriers is 32, 5 bits are required to indicate the subcarrier number, which is 32 for the number of subcarriers. Therefore, the sort order notification information is 5 x 32 = 160 (bits) Is required. An example of the sorting order notification information at this time is shown in FIG. From the left, correspondence between subcarrier numbers and data numbers at the time of transmission of the first slot, transmission of the second slot, and transmission of the third slot is shown.
[0097] 本実施の形態においては、予め並べ替え方式として図 17に示す 1一 8までの 8種 類の並べ替え方式が設定されており、この並べ替え方式は受信側においても既知で あるものとする。第 7の実施の形態では、 MLIシンボルをテーブル上の対応するサブ キャリアに割り当てるようにデータ並べ替えを行って 、たが、本実施の形態にぉ 、て は、作成したテーブルを考慮した上で、設定した 8種類の並べ替え方式の中から最 適な並べ替え方式を選択し、その並べ替え方式に従って並べ替えを行う。サブキヤリ ァ並べ替え順序通知情報としては、表中に示した 3ビット(図 17における、 "000"、 "0 0 …": L 11 "で表される)の並べ替え方式番号を送信すればよぐ並べ替え順序通 知情報を大幅に削減することができるという利点がある。  In the present embodiment, eight types of rearrangement methods up to 18 shown in FIG. 17 are set in advance as the rearrangement method, and this rearrangement method is also known on the receiving side. I assume. In the seventh embodiment, data rearrangement is performed so as to assign the MLI symbols to the corresponding subcarriers on the table, but in the present embodiment, after considering the created table, Select the most appropriate sorting method out of the set 8 sorting methods, and sort according to the sorting method. As the subcarrier sort order notification information, it is possible to transmit the sort method number of 3 bits (represented by "000", "0 0 ...": L 11 "in FIG. 17) shown in the table. There is an advantage that the sort order notification information can be significantly reduced.
[0098] 次に、本発明の第 9の実施の形態による変復調部について図面を参照しつつ説明 を行う。本実施の形態は、第 8の実施の形態における並べ替え方式の一種であり、並 ベ替え通知情報量を削減する並べ替え方式である。本実施の形態では、サブキヤリ ァ本数を 32本、 10スロットで 1フレームとする。本実施の形態に関しては、第 1スロット 力も第 10スロットまでの各スロットで行う並べ替え方式の組み合わせとして図 18に示 すように 8種類が設定されており、この並べ替え方式は受信側でも既知であるものと する。尚、図 18中のマトリックス内に記載されている 1一 8までの番号は、図 17に示す 並べ替え方式番号 1一 8までの ヽずれかに対応して ヽる。並べ替え方式指定回路は 、フレーム時間内では伝搬路の変動は微小であると仮定して、第 1スロット送信時に、 伝搬路推定結果を鑑みた上で、設定した 8種類の並べ替え方式の組み合わせの中 から最適な並べ替え方式の組み合わせを選択する。サブキャリア並べ替え順序通知 情報としては、図中に示した 3ビットの並べ替え方式の組み合わせ番号を第 1スロット のときのみ送信すればよぐ並べ替え順序通知情報を大幅に削減することができると いう利点がある。 Next, a modulation / demodulation unit according to a ninth embodiment of the present invention will be described with reference to the drawings. The present embodiment is a sort of sorting method in the eighth embodiment, and is a sorting method for reducing the amount of sorting notification information. In the present embodiment, the subcarriers The number is 32 and 10 slots are one frame. In the present embodiment, eight combinations are set as shown in FIG. 18 as a combination of the reordering method performed in each slot up to the 10th slot also in the first slot power, and this reordering method is known on the receiving side as well. Shall be The numbers from 1 to 18 listed in the matrix in FIG. 18 correspond to the numbers from 1 to 8 in the reordering system shown in FIG. It is assumed that the variation of the propagation path is small within the frame time, and the combination of the eight types of permutation methods set in consideration of the propagation path estimation result at the time of the first slot transmission, assuming that the variation of the propagation path is small within the frame time. Select the optimal combination of sorting methods from. As the subcarrier rearrangement order notification information, it is possible to significantly reduce the rearrangement order notification information by transmitting the combination number of the 3-bit rearrangement scheme shown in the figure only in the first slot. There is an advantage.
[0099] 以上、各実施の形態による OFDM通信装置について、具体的に説明した力 上 記実施の形態に限定されるものではなぐ様々な変形が可能であることはいうまでも ない。例えば、上記各実施の形態において説明したステップをコンピュータに実行さ せるためのプログラムも本発明の範疇に入るものである。  It goes without saying that various modifications can be made to the OFDM communication apparatus according to each of the embodiments described above, which are not limited to the specifically described embodiments. For example, a program for causing a computer to execute the steps described in the above embodiments also falls within the scope of the present invention.
産業上の利用可能性  Industrial applicability
[0100] 高速データ通信などにおける SNRを大幅に低減することができるため、品質の良 好な通信システムを実現することができる。 Since the SNR in high-speed data communication and the like can be significantly reduced, a communication system with good quality can be realized.

Claims

請求の範囲 The scope of the claims
[1] 複数のサブキャリアを使用し、同一の通信フレーム内においてデータと該データを 復調するための制御情報とを伝送するための複数のスロットを有し、前記制御情報に 、少なくとも、各サブキャリアの変調方式を受信側に通知するための変調方式情報を 含んで 、る無線通信システムに用いられる復調器であって、  [1] A plurality of slots are used to transmit data and control information for demodulating the data in the same communication frame using a plurality of subcarriers, and at least each sub- A demodulator for use in a wireless communication system including modulation scheme information for notifying a receiving side of a modulation scheme of a carrier,
同じ通信フレームに属する個々のスロットに対して、前記変調方式情報に相当する 受信信号の振幅成分と位相成分とを、べ外ル加算するベクトル加算変調方式情報 生成手段と、  Vector-added modulation scheme information generation means for adding the amplitude component and the phase component of the received signal corresponding to the modulation scheme information to individual slots belonging to the same communication frame;
ベクトル加算を行った前記変調方式情報を、同一の通信フレーム内に存在する個 々のスロット中のデータに相当する各サブキャリアを復調する際の変調方式情報とし て使用するデータ復調手段と  Data demodulation means for using the modulation scheme information subjected to vector addition as modulation scheme information at the time of demodulating each subcarrier corresponding to data in each slot present in the same communication frame;
を備える復調器。  Demodulator with.
[2] 前記ベクトル加算変調方式情報生成手段は、伝搬路補償された変調方式情報を 用いて、ベクトル加算変調方式情報を生成するベクトル加算変調方式情報生成手段 を備えることを特徴とする請求項 1に記載の復調器。  [2] The vector addition modulation method information generation means includes vector addition modulation method information generation means for generating vector addition modulation method information using propagation path compensated modulation method information. Demodulator as described in.
[3] 請求項 1に記載の通信システムの変調方式情報は、  [3] The modulation scheme information of the communication system according to claim 1 is
同一のフレーム内において、スロット毎に異なるサブキャリアに割り当てられて送信 され、  In the same frame, each slot is assigned to different subcarriers and transmitted,
前記ベクトル加算変調方式情報は、前記スロット毎に異なるサブキャリアに割り当て られた変調方式情報を用いて生成することを特徴とする請求項 1に記載の復調器。  The demodulator according to claim 1, wherein the vector addition modulation scheme information is generated using modulation scheme information assigned to different subcarriers for each slot.
[4] 請求項 1に記載の無線通信システムに用いられる復調器であって、  [4] A demodulator for use in the wireless communication system according to claim 1;
同一の通信フレームに属する個々のスロットに対して、前記変調方式情報に相当 する受信信号をシンボル復調し、前記シンボル復調された個々のスロットの変調方式 情報の各ビット列をそれぞれ比較してビット列毎に多数決によりビットを決定し、決定 した前記各ビットを組み合わせたビット配置を、各サブキャリアの復調時に変調方式 情報として使用することを特徴とする復調器。  The received signal corresponding to the modulation scheme information is symbol-demodulated with respect to each slot belonging to the same communication frame, and each bit string of the modulation scheme information of each symbol-demodulated slot is compared with each other for each bit sequence. A demodulator characterized in that bits are determined by majority decision, and a bit arrangement combining the determined bits is used as modulation scheme information at the time of demodulation of each subcarrier.
[5] 更に、前記変調方式情報は、同一のフレーム内において、スロット毎に異なるサブ キャリアに割り当てられて送信され、前記多数決の判定に使用する変調方式情報は 、前記スロット毎に異なるサブキャリアに割り当てられた変調方式情報を用いることを 特徴とする請求項 4に記載の復調器。 [5] Further, in the same frame, the modulation scheme information is allocated to different subcarriers for each slot and transmitted, and the modulation scheme information used for the majority decision is 5. The demodulator according to claim 4, wherein modulation scheme information assigned to different subcarriers is used for each slot.
[6] 更に、前記変調方式情報は、同一のフレーム内において、スロット毎に異なるビット 配置に並び替えられて送信され、 [6] Further, in the same frame, the modulation scheme information is transmitted after being rearranged into a different bit arrangement for each slot.
前記多数決の判定に使用する変調方式情報は、前記スロット毎にビット配置に並 び替えられた変調方式情報を、元の配置に復元して用いることを特徴とする請求項 4 に記載の復調器。  The demodulator according to claim 6, wherein the modulation scheme information used for the majority decision is that the modulation scheme information rearranged to the bit arrangement for each slot is restored to the original arrangement and used. .
[7] 前記サブキャリアの個々のスロットにおける割り当て方法は、  [7] The allocation method in each slot of the subcarrier is
第 1のステップで、初回に割り当てたスロットにおいて、前記変調方式情報を割り当て たサブキャリアを、周波数帯域を基準として第 1のサブキャリアブロックと第 2のサブキ ャリアブロックとに分割し、  In the first step, in the first allocated slot, the subcarrier to which the modulation scheme information is allocated is divided into a first subcarrier block and a second subcarrier block with reference to a frequency band,
第 2のステップで、前記第 1のサブキャリアブロックと前記第 2のサブキャリアブロック の周波数帯域を交換し、  In the second step, the frequency bands of the first subcarrier block and the second subcarrier block are exchanged,
第 3のステップで、周波数帯域交換後の前記第 1のサブキャリアブロックと交換後の 前記第 2のサブキャリアブロックを次のスロットに割り当て、  In the third step, the second subcarrier block after exchange with the first subcarrier block after frequency band exchange is assigned to the next slot,
第 4のステップで、前記第 3のステップで割り当てた各サブキャリアブロック内におい て、周波数帯域を基準として第 3のサブキャリアブロックと、第 4のサブキャリアブロック と、に分割し、  In the fourth step, each subcarrier block allocated in the third step is divided into the third subcarrier block and the fourth subcarrier block based on the frequency band,
第 5のステップで、前記第 3のサブキャリアブロックと前記第 4のサブキャリアブロック との周波数帯域を交換し、  In a fifth step, the frequency bands of the third subcarrier block and the fourth subcarrier block are exchanged,
第 6のステップで、周波数帯域交換後の前記第 3のサブキャリアブロックと周波数帯 域交換後の前記第 4のサブキャリアブロックとを次のスロットに割り当て、  In the sixth step, the third subcarrier block after frequency band exchange and the fourth subcarrier block after frequency band exchange are allocated to the next slot,
さらに、前記第 4のステップ力 前記第 6のステップまでを繰り返すことを特徴とする 請求項 3又は請求項 5に記載の復調器。  The demodulator according to claim 3, further comprising repeating the steps up to the sixth step.
[8] 請求項 1から請求項 7までのいずれか 1項に記載の復調器を備えた受信装置と、 請求項 1から請求項 7のいずれ力 1項に記載の復調器が受信する信号を変調する 変調器を備えた送信装置と、を有する無線通信機。 [8] A receiving apparatus comprising the demodulator according to any one of claims 1 to 7, and a signal according to any one of claims 1 to 7 that is received by the demodulator. And a transmitter comprising a modulator for modulation.
[9] さらに、前記制御情報に、スロット毎に前記変調方式情報を構成するシンボルの並 び替え情報を受信側に通知するための並び替え順序通知情報を含んでいることを 特徴とする請求項 1に記載の無線通信システム。 [9] Further, in the control information, a series of symbols constituting the modulation scheme information for each slot is provided. The wireless communication system according to claim 1, further comprising rearranging order notification information for notifying the receiving side of the rearrangement information.
[10] 請求項 9に記載の無線通信システムに用いられる変調器であって、 [10] A modulator for use in the wireless communication system according to claim 9;
通信相手先との各サブキャリアの伝播路状態を示す伝播路推定結果を入力情報と して受信する機能を備え、前記伝播路推定結果を用い、各サブキャリアの伝播路状 態に応じて前記変調方式情報をいずれのサブキャリアに割り当てるかを選択するサ ブキャリア選択手段を備えることを特徴とする変調器。  It has a function to receive, as input information, the propagation path estimation result indicating the propagation path state of each subcarrier with the communication partner, and using the propagation path estimation result, the above-mentioned propagation path state of each subcarrier is used according to the propagation path state. A modulator comprising subcarrier selection means for selecting to which subcarrier modulation scheme information is to be assigned.
[11] 前記伝播路推定結果は、受信側から送られてきたスロットより推定された各サブキヤ リアの伝播路特性であることを特徴とする請求項 10に記載の変調器。 11. The modulator according to claim 10, wherein the propagation path estimation result is a propagation path characteristic of each subcarrier estimated from the slot sent from the receiving side.
[12] さらに、前記サブキャリア選択手段は、 [12] Further, the subcarrier selection means
予め設定された複数の前記変調方式情報の配列パターン力 選択して、サブキヤ リアを割り当てることを特徴とする請求項 10に記載の変調器。  11. The modulator according to claim 10, wherein sub-carriers are assigned by selecting an array pattern of a plurality of pieces of modulation scheme information set in advance.
[13] さらに、前記サブキャリア選択手段は、予め設定された複数の前記変調方式情報 の配列パターンから選択して、最初のスロットで前記選択した変調方式情報の配列 ノターンを通信相手先に通知することを特徴とする請求項 11に記載の変調器。 [13] Further, the subcarrier selection means selects from the array pattern of the plurality of modulation system information set in advance, and notifies the communication partner of the alignment notion of the selected modulation system information in the first slot. The modulator according to claim 11, characterized in that:
[14] 請求項 9に記載の無線通信システムに用いられる復調器であって、 [14] A demodulator for use in the wireless communication system according to claim 9;
前記並び替え順序通知情報を受信し、前記並び替え順序通知情報に基づ!、て、 個々のスロットの変調方式情報のシンボルを、元の配置に復元するように並び替えて 各サブキャリアの復調時に変調方式情報として使用することを特徴とする復調器。  The rearrangement order notification information is received, and the symbols of the modulation scheme information of each slot are rearranged so as to restore the original arrangement based on the rearrangement order notification information, and demodulation of each subcarrier is performed. A demodulator characterized in that it is used as modulation method information.
[15] 請求項 10から 13までのいずれか 1項に記載の変調器を有する送信装置と、請求 項 14に記載の復調器を有する受信装置と、を含む無線通信機。  [15] A wireless communication device comprising: a transmitter having the modulator according to any one of claims 10 to 13; and a receiver having the demodulator according to claim 14.
[16] 複数のサブキャリアを使用し、同一の通信フレーム内においてデータと該データを 復調するための制御情報とを伝送するための複数のスロットを有し、前記制御情報に 、少なくとも、各サブキャリアの変調方式を受信側に通知するための変調方式情報を 含んでいる無線通信システムにおける復調方法であって、  [16] Using a plurality of subcarriers, and having a plurality of slots for transmitting data and control information for demodulating the data in the same communication frame, and at least each of the A demodulation method in a wireless communication system including modulation scheme information for notifying a receiving side of a modulation scheme of a carrier,
同じ通信フレームに属する個々のスロットに対して、前記変調方式情報に相当する 受信信号の振幅成分と位相成分とを、べ外ル加算するベクトル加算変調方式情報 生成するステップと、 ベクトル加算を行った前記変調方式情報を、同一の通信フレーム内に存在する個 々のスロット中のデータに相当する各サブキャリアを復調する際の変調方式情報とし て使用するデータ復調ステップと Generating vector addition modulation scheme information in which the amplitude component and the phase component of the reception signal corresponding to the modulation scheme information are added to each slot belonging to the same communication frame; A data demodulation step of using the modulation scheme information subjected to vector addition as modulation scheme information at the time of demodulating each subcarrier corresponding to data in each slot present in the same communication frame;
を備える復調方法。 A demodulation method comprising:
複数のサブキャリアを使用し、同一の通信フレーム内においてデータと該データを復 調するための制御情報とを伝送するための複数のスロットを有し、前記制御情報に、 少なくとも、各サブキャリアの変調方式を受信側に通知するための変調方式情報を含 んでいる無線通信システムにおける変調方法であって、 A plurality of slots are used to transmit data and control information for demodulating the data in the same communication frame using a plurality of subcarriers, and at least the control information includes A modulation method in a wireless communication system including modulation method information for notifying a receiving side of a modulation method,
通信相手先との各サブキャリアの伝播路状態を示す伝播路推定結果を入力情報と して受信するステップと、前記伝播路推定結果を用い、各サブキャリアの伝播路状態 に応じて前記変調方式情報をいずれのサブキャリアに割り当てるかを選択するサブ キャリア選択するステップと、を備えることを特徴とする変調方法。  Receiving, as input information, a propagation path estimation result indicating a propagation path state of each subcarrier with a communication partner, and using the propagation path estimation result, the modulation scheme according to the propagation path state of each subcarrier And d) selecting a subcarrier to which information is to be assigned.
PCT/JP2004/014721 2003-10-23 2004-10-06 Ofdm transmitter/receiver apparatus WO2005041457A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514922A JP4287432B2 (en) 2003-10-23 2004-10-06 OFDM transceiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003363745 2003-10-23
JP2003-363745 2003-10-23

Publications (1)

Publication Number Publication Date
WO2005041457A1 true WO2005041457A1 (en) 2005-05-06

Family

ID=34510067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014721 WO2005041457A1 (en) 2003-10-23 2004-10-06 Ofdm transmitter/receiver apparatus

Country Status (2)

Country Link
JP (1) JP4287432B2 (en)
WO (1) WO2005041457A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428934A (en) * 2005-07-26 2007-02-07 Ovus Ltd Orthogonal Frequency Division Multiplex (OFDM) Repeaters
WO2009017225A1 (en) * 2007-08-02 2009-02-05 Sharp Kabushiki Kaisha Reception device, communication system, and reception method
JP2012157015A (en) * 2006-07-28 2012-08-16 Qualcomm Inc Method and apparatus for sending signaling for data transmission in wireless communication system
CN108574962A (en) * 2017-03-09 2018-09-25 中兴通讯股份有限公司 Data sending, receiving method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247003A (en) * 2001-02-22 2002-08-30 Hitachi Kokusai Electric Inc Transmission device using orthogonal frequency division multiplexing modulation system
JP2003101972A (en) * 2001-09-21 2003-04-04 Sanyo Electric Co Ltd Tmcc decoding circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247003A (en) * 2001-02-22 2002-08-30 Hitachi Kokusai Electric Inc Transmission device using orthogonal frequency division multiplexing modulation system
JP2003101972A (en) * 2001-09-21 2003-04-04 Sanyo Electric Co Ltd Tmcc decoding circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKANISHI T. ET AL: "Multi level Soshin Denryoku Seigyo o Tekiyo Shita 1 Cell Kurikaeshi OFDM Tekio Hencho/TDMA System ni okeru Kansho Taisaku ni Kansuru Kento", 2003 NEN DENSHI JOHO TSUSHIN GAKKAI SOGO TAIKAI KOEN RONBUNSHU, vol. 1, 3 March 2003 (2003-03-03), pages 548, XP002989372 *
UEHARA M. ET AL: "Chijo Degital Hoso TMCC Shingo no Denso Tokusei no Kento", ITE TECHNICAL REPORT, vol. 23, no. 13, 18 February 1999 (1999-02-18), pages 13 - 18, XP002989373 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428934A (en) * 2005-07-26 2007-02-07 Ovus Ltd Orthogonal Frequency Division Multiplex (OFDM) Repeaters
JP2012157015A (en) * 2006-07-28 2012-08-16 Qualcomm Inc Method and apparatus for sending signaling for data transmission in wireless communication system
US8902861B2 (en) 2006-07-28 2014-12-02 Qualcomm Incorporated Method and apparatus for sending signaling for data transmission in a wireless communication system
WO2009017225A1 (en) * 2007-08-02 2009-02-05 Sharp Kabushiki Kaisha Reception device, communication system, and reception method
CN108574962A (en) * 2017-03-09 2018-09-25 中兴通讯股份有限公司 Data sending, receiving method and device
CN108574962B (en) * 2017-03-09 2023-01-24 中兴通讯股份有限公司 Data transmitting and receiving method and device

Also Published As

Publication number Publication date
JPWO2005041457A1 (en) 2007-04-26
JP4287432B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US7965793B2 (en) Method for reducing ambiguity levels of transmitted symbols
CN101636996B (en) Radio transmission device and radio reception device
EP1596550B1 (en) Peak-to-average power ratio control
US20070092020A1 (en) Radio communication method and system, and receiver apparatus and transmitter apparatus
WO2003052983A1 (en) Multi-carrier variable mode method and system
EP1533926B1 (en) Radio transmission device, radio reception device, and method for selecting transmission cancel subcarriers
JP2003309535A (en) Multicarrier transmitter, multicarrier receiver, and multicarrier transmitting method
WO2006057238A1 (en) Rate matching apparatus, wireless transmitting apparatus, wireless receiving apparatus, and rate matching method
JP2003309538A (en) Communication system and communication device and communication method for wireless communication scheme using plural carriers
JP4091827B2 (en) Wireless transmission device and wireless reception device
CN101902433B (en) Radio communication system
EP0941585B1 (en) Radio communication system
KR20090117580A (en) A method of generating codewords
JP4195073B2 (en) Apparatus and method for obtaining delay diversity
WO2005041457A1 (en) Ofdm transmitter/receiver apparatus
EP1807960B1 (en) Method for reducing ambiguity levels of transmitted symbols
JP2006511154A (en) Transmitter diversity method for OFDM system
JP4536778B2 (en) Apparatus and method for achieving cyclic delay diversity
CN101340609B (en) Broadcast multicast service transmitting method, apparatus and system
JP4425811B2 (en) OFDM transmission method, OFDM transmission apparatus, and OFDM transmission program
JP4820874B2 (en) Transmitting apparatus, receiving apparatus, and multicarrier transmission / reception system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514922

Country of ref document: JP

122 Ep: pct application non-entry in european phase