WO2005041443A1 - Wireless communication apparatus - Google Patents

Wireless communication apparatus Download PDF

Info

Publication number
WO2005041443A1
WO2005041443A1 PCT/JP2004/016073 JP2004016073W WO2005041443A1 WO 2005041443 A1 WO2005041443 A1 WO 2005041443A1 JP 2004016073 W JP2004016073 W JP 2004016073W WO 2005041443 A1 WO2005041443 A1 WO 2005041443A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
calibration
wireless communication
antennas
array
Prior art date
Application number
PCT/JP2004/016073
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Ohnishi
Masaki Suto
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Publication of WO2005041443A1 publication Critical patent/WO2005041443A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/18Monitoring during normal operation

Definitions

  • the present invention relates to a radio communication device such as a base station device provided with an adaptive array antenna, and more particularly to a radio communication device having a large number of antennas constituting an array antenna.
  • the present invention relates to a wireless communication device that realizes highly accurate antenna calibration.
  • BACKGROUND ART For example, mobile radio communication systems such as a mobile phone system and a personal handy phone system (PHS), and a base station equipped with an adaptive array antenna composed of a plurality of antennas. 2. Description of the Related Art Wireless communication with a mobile station device is performed by a device. Further, in such a base station apparatus, an error between transmission processing and reception processing for each antenna, an error between transmission processing or reception processing for a plurality of antennas, and an error between reception processing are corrected (calibrated). The antenna is calibrated (see, for example, Patent Document 1).
  • the present invention has been made in view of such a conventional situation. For example, even when the number of antennas constituting an array antenna is large, a radio which can realize a highly accurate antenna calibration is provided. It is intended to provide a communication device.
  • Another object of the present invention is to provide a wireless communication device capable of suppressing interference by lowering the level of a signal for performing calibration, for example.
  • Another object of the present invention is to provide a wireless communication device that can continue operation even when a failure occurs in a calibration antenna, for example.
  • the wireless communication device performs wireless communication using an antenna as the following configuration.
  • a plurality of calibration antennas used to execute a calibration process related to the antenna system are provided, and the antenna system calibration process execution means uses the plurality of calibration antennas as an array antenna. To perform the calibration process for the antenna system.
  • a plurality of calibration antennas are used as an array antenna, and the calibration process relating to the wireless communication antenna system is not performed, so that highly accurate antenna calibration can be realized. For example, even when the number of antennas constituting an array antenna for wireless communication is large, a high-precision antenna calibration is required.
  • the number of antennas used for performing wireless communication is not particularly limited, and may be one, or may be two or more.
  • the number of the plurality of antennas used for executing the calibration process for the antenna system is not particularly limited, and various numbers may be used.
  • the wireless communication includes, for example, wirelessly transmitting a signal to a wireless communication device as a communication partner and receiving a signal wirelessly transmitted from a wireless communication device as a communication partner.
  • Various processes may be used as the calibration process for the antenna system. For example, a signal amplitude error and a signal phase error related to transmission, reception, and transmission / reception of an antenna system used for wireless communication may be used. A process for correcting is used.
  • Various signals may be used as the signal for performing the calibration.
  • a communication signal wirelessly transmitted from a wireless communication antenna used for wireless communication to a communication partner may be used.
  • a dedicated signal for calibration may be prepared and used.
  • the signal for performing the calibration is wirelessly transmitted from, for example, an antenna for wireless communication and received by the antenna for calibration.
  • various antennas may be used as the respective antennas. Also, various antenna arrangements may be used.
  • the antenna-based calibration processing execution means may include any one of the obstacles related to one of the calibration antennas. If an error occurs, the calibration process for the antenna system is executed using the calibration antenna excluding the calibration antenna in which the failure occurred.
  • the calibration process can be performed.
  • the operation of wireless communication using the communication antenna can be continued.
  • a case where a failure related to the calibration antenna occurs a case where a failure related to an arbitrary number of calibration antennas may be used, for example, one calibration antenna may be used. In the case where a failure has occurred with respect to, or in the case where a failure has occurred with two or more calibration antennas in addition to the above case, it can be used.
  • various methods may be used as a method of grasping that a failure related to the calibration antenna has occurred.
  • a method for detecting the occurrence of a failure related to the calibration antenna may be used.
  • a configuration including antenna failure detection means may be used, or a configuration in which a failure related to a specific calibration antenna is input from an external device user or the like may be used. You may be.
  • a fault in the calibration antenna system is used.
  • a fault in the calibration antenna or a fault in the calibration antenna is used.
  • Failures such as receiving circuits other than the antenna for calibration are used.
  • the wireless communication device has the following configuration as one configuration example. That is, a plurality of antennas for wireless communication used for performing wireless communication are provided, and the wireless communication means performs wireless communication using the plurality of antennas for wireless communication as an array antenna.
  • the plurality of antennas for wireless communication are divided into two or more groups. Then, the antenna system calibration processing means executes a calibration process regarding the antenna system for each group for the antenna for wireless communication.
  • the multiple antennas for wireless communication are divided into two or more groups, and the calibration process for the antenna system is executed for each group, thereby improving the efficiency of the calibration for the antenna system as a whole. Can be done.
  • the number of calibration processes for the antenna system can be reduced as a whole It is.
  • various numbers may be used as the number of two or more groups related to the antenna for wireless communication.
  • the number of wireless communication antennas included in each group is not particularly limited. For example, two or more wireless communication antennas may be included in all groups, or one wireless communication antenna may be included. An embodiment may be used in which there is one or more groups including only communication antennas.
  • a signal for example, a communication signal or a signal for calibration
  • a wireless communication antenna used for wireless communication is used to execute a calibration process for an antenna system.
  • Carriers used The signal is received by the shaking antenna, and the calibration process for the antenna system is executed based on the receiving result.
  • the calibration processing is sequentially performed on a plurality of antenna systems used for wireless communication one by one.
  • a plurality of calibration antennas are used as an adaptive array antenna.
  • the plurality of antennas for wireless communication are:
  • the frequency (first frequency) of the communication signal wirelessly received from the communication partner by the wireless communication means the frequency (second frequency) of the communication signal wirelessly transmitted to the communication partner by the wireless communication means, and the like. are different.
  • various communication partners may be used.
  • a mobile station device or the like can be used as a communication partner.
  • Various signals may be used as a communication signal wirelessly received from a communication partner and a communication signal wirelessly transmitted to the communication partner.
  • various frequencies may be used as the first frequency and the second frequency, respectively.
  • a predetermined frequency component extraction unit extracts a component of a predetermined frequency from a signal wirelessly received by the calibration antenna. Further, the antenna system calibration processing execution means weights and combines the extraction results of the plurality of antenna systems for calibration by the predetermined frequency component extraction means, and performs the calibration processing on the antenna system based on the weighted synthesis results. Execute.
  • the transmission system and the reception A common antenna is shared with the system.
  • separate antennas are used for the transmission system and the reception system for each wireless communication antenna.
  • FIG. 1 is a diagram showing a configuration example of a portion related to an adaptive array antenna of a base station apparatus according to one embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of a base station device and the like.
  • FIG. 3 is a diagram showing an example of an antenna pattern of an adaptive array antenna.
  • FIG. 4 is a diagram showing a configuration example of an adaptive array antenna device in an FDD system.
  • FIG. 5 is a diagram showing an example of a reception pattern and a transmission pattern having a deviation in the adaptive array antenna.
  • a moving object including an adaptive array antenna composed of a plurality of N systems and a calibration adaptive array antenna composed of a plurality of M systems is provided.
  • the case where the present invention is applied to a base station apparatus for wireless communication is shown.
  • a case is shown in which a calibration process such as an antenna transmission / reception calibration is performed.
  • FIG. 1 shows a configuration example of a portion related to an adaptive array antenna of a base station apparatus according to one embodiment of the present invention.
  • antennas A1 to AN and transmission / reception switching switches are provided for each of N systems.
  • DACs Digital to Analog converters
  • the base station apparatus of this example has a processing unit for performing wireless communication with a mobile station apparatus or the like as a communication partner.
  • An adder 1 for summing the signals to obtain a received signal as an entire adaptive array antenna, and receiving antennas for each of the antennas A 1 to AN based on the received signal, and transmitting for each of the antennas A 1 to AN
  • a weight calculation / calibration circuit 2 for calculating weights and performing calibration processing is provided.
  • the antennas I1 to IM As a processing unit for performing calibration of the antenna system, the antennas I1 to IM, the receiving circuits (Rx) J1 to JM, AZD (Analog to Digital) converters (ADCs) K1 to KM and multipliers L1 to LM for multiplying the reception signals of each antenna I1 to IM by the reception weight of each antenna I1 to IM Has been.
  • Rx receiving circuits
  • ADCs Analog to Digital converters
  • the signals received by each of the antennas I 1 to IN after receiving weight multiplication are summed in common to the M systems.
  • An adder 11 for obtaining a received signal (calibration received signal) as a whole, and a weight calculation / phase setting circuit 12 for calculating the reception weight of each of the antennas I 1 to IN based on the received signal are provided. I have.
  • N keys which are processing units that perform wireless communication with a mobile station device or the like that is a communication partner.
  • N keys which are processing units that perform wireless communication with a mobile station device or the like that is a communication partner.
  • the operation of the antennas A1 to AN for example, a general operation can be used, and therefore, in this example, the M antennas I which are the processing units for performing the calibration of the antenna system are used. 1 to IM operations will be described in detail.
  • a plurality of calibration antennas (calibration antennas) I1 to IM constitute an array antenna, and there are M calibration antennas (# C1 to #CM).
  • the calibration antennas I1 to IM are reception-only array antennas.
  • the signals transmitted wirelessly from the array antennas A1 to AN for wireless communication are received and processed by the system of array antennas I1 to IM for calibration, so that the array antenna A1 for wireless communication is received. Execute the calibration process for the ⁇ AN system.
  • Each of the calibration receiver circuits J1 to JM transmits radio waves with a known amplitude and phase in order from N antennas A1 to AN, which contribute to the antenna pattern of wireless communication.
  • the reception processing is performed by each of the antennas I1 to IM.
  • Each of the receiving circuit units J1 to JM performs, for example, a band limitation by a filter or the like and a designated phase control on the received signal.
  • the received signal of each calibration antenna system is converted from an analog signal to a digital signal (digital value) by the AZD converters Kl to KM.
  • Phase setting circuit 12 performs appropriate weight calculation based on the calibration reception signal, and supplies the reception weight of each calibration antenna system reflecting the result to each of multipliers L1 to LM I do. Weight calculation: The phase setting circuit 12 performs appropriate phase setting, for example, corresponding to each calibration antenna system circuit, and outputs phase control information to each of the receiving circuits J1 to JM. I do.
  • the received signal converted to the digital value is weighted with a complex amplitude by complex multiplication of each receiving weight in each of the multipliers L1 to LM, and is controlled to be converted to an appropriate level.
  • circuit units of these calibration antenna systems operate as so-called phased array circuits.
  • Weight calculation 'Phase setting circuit 12' may be composed of various types, for example, DSP (Digital Signal Processor) or FPGA (Field Programmable Gate Array), etc., easily realize digital signal processing It is preferable to use a structure that can be used.
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the weight calculation and phase setting circuit 12 calculates the antenna pattern of the calibration antenna, the calculation of the amplitude weight or the calculation of the phase weight, and the array sequence for calibration (antenna I 1 to IM). Calculate the phase settings up to.
  • the configuration is such that the phase of the analog reception signal is controlled in each of the receiving circuits J1 to JM.
  • the configuration may be such that phase control is performed by digital signal processing. is there.
  • the base station apparatus of this example has the same array system (# C1 to # CM) in which the number of array elements that do not contribute to the antenna pattern of wireless communication is M (M is a natural number of 2 or more). These array systems function as array antennas for performing calibration. '
  • N is a natural number of 2 or more
  • N that contributes to the radio communication radiation is considered in consideration of the antenna pattern in all phases and amplitudes in the number M of array elements.
  • Preliminary information on the absolute amount of phase and amplitude of radio waves received from array elements The weight calculation and the phase setting circuit 12 are operated based on such a table of information.
  • the calibration timing is, for example, from the first antenna A1. Calibration is performed in order up to the Nth antenna AN, and calibration is performed sequentially for each antenna A1 to AN in a frame in which calibration is permitted.
  • one of the antennas A1 to AN that contributes to the radiation of wireless communication wirelessly transmits a signal with a weak amplitude at a known amplitude and a known phase from one of the antennas A1 to AN. Then, the signal is received by a calibration array antenna composed of M antennas I1 to IM. After the calibration of all array systems # 1 to #N is completed, for example, a mode in which calibration is continuously performed may be used, or the calibration may be periodically performed at an arbitrary time interval. A mode in which the solution is performed may be used.
  • the base station apparatus system of the present example for example, when a failure occurs in one or more antennas or a plurality of antennas of the calibration array systems # C1 to #CM, This is determined, for example, from the calibration reception signal. Then, when such a failure occurs, it is possible to continue the operation by forming an antenna beam in each of the array systems except for the array system in which the failure has occurred in the carrier precision system. Further, when such a failure occurs, it is also possible to adopt a configuration in which information about the failure is notified to a management center or the like. '
  • an array antenna is configured in advance. Prepare an algorithm when a part of the antenna is missing.
  • any one of them is missing and the remaining (M-1) antennas operate as array antennas.
  • M-1 antennas operate as array antennas.
  • M-2 antennas operate as an array antenna.
  • the antenna beam gain changes and the gain decreases compared to normal operation. It is considered that the performance is deteriorated compared to the normal operation. For this reason, it is possible to continue the operation, but it is desirable to carry out maintenance immediately.
  • elements having the number N of array elements that contribute to the antenna pattern of wireless communication can be grouped.
  • N antennas A 1 to A 1 to antennas I 1 to IM are grouped so that antennas with little difference in the level and phase of signals (transmitted signals) received by IM are grouped into the same group.
  • the number of times of performing calibration is d times compared to, for example, the case where calibration is performed for N antennas A1 to AN one by one. It is possible to reduce the number of times to (dZN) times. Also, for example, assuming that the number of antennas included in each group is the same (NZ d), for each of the d groups, If the antennas included in these groups are calibrated one by one, the number of calibrations performed in each group can be (NZ d).
  • the number of array elements contributing to the antenna pattern for wireless communication or calibration is (N + M), and a plurality of N antennas are used for wireless communication. M antennas are used as array antenna elements for calibration.
  • the calibration time can be reduced by simultaneously performing the calibration. Also, when the number of array antenna elements is large, the mutual coupling between the antennas is very small in some cases.Therefore, preparing a plurality of calibration antennas and grouping the antenna groups for calibration Is also possible.
  • an antenna beam is formed in an array system excluding the number of the failed antenna elements, and M antenna beams are formed. It is also possible to use this antenna as an antenna for calibration.
  • FIG. 2 (a) shows an example of the overall configuration of the base station apparatus.
  • the base station device shown in FIG. 2A includes, for example, an adaptive array antenna unit (AAA unit) 21 including an antenna, a transmission / reception unit, and a weight calculation unit, and modulation and demodulation of a communication signal.
  • AAA unit adaptive array antenna unit
  • Modem section 22 that performs
  • baseband section (BB section) 23 that performs baseband (BB) processing
  • control section 24 that controls these processing sections 21 to 23
  • base station controller 25 a base station controller
  • the base station apparatus shown in FIG. 2 (a) for example, as a configuration of the AAA unit 21, a configuration relating to an adaptive array antenna as shown in FIG. The formation is used. .
  • the received and received signal number "" is slightly different from the received and received signal number "". Is input to and output from the modem section 22 22, and the transmission / reception signal '''' is input from the mode modem section 22 22. .
  • the present invention is not necessarily limited to what is shown in the embodiment of the present embodiment, but various types of configuration may be used. 55 can be used. .
  • FIG. 22 shows the data communication ((TT xx or RR xx)) in the TT DD DD system.
  • a gadget frame in the garbage collection system and a garbage collection system for data communication in the FF DD DD system ((chome and))
  • a garbage collection system for data communication in the FF DD DD system ((chome and))
  • the Dodoff frame is shown. .
  • the calibration is performed. This allows for more efficient processing of the calibration process. This is where you can go to your destination. .
  • the wireless communication The number of elementary elements that contribute to the elementary elementary element element of NN, and, for example, in the vicinity of 1155 Relay element number
  • the device has an elementary element element for a MM-capacity re-bracketing operation.
  • each of the NN books that contributes to the wireless communication communication of Aantante Tenana Papata Turn is 11 from AA11 to AANN
  • the radio wave is transmitted and transmitted in a known amplitude width and a known phase phase, and the radio wave is transmitted to the carrier.
  • Aeontetenana II 11 ⁇ II MM to receive and receive.
  • the key is
  • the antenna pattern which is composed of 0 groups, and is formed by the calibration array antenna, sequentially receives the calibration data from the wireless communication array antenna and performs the calibration process.
  • the signal level for transmitting and receiving signals between antennas may be very low.5
  • four elements of the calibration antenna To transmit from each antenna to space Power may be as low as 6 dB (25%). This is equivalent to doubling the distance between the antennas for the wireless communication array antennas A1 to AN and the calibration antennas I1 to IM.
  • the mutual coupling with the array antennas A1 to AN for wireless communication is remarkably reduced, and approaches the characteristics of the antenna patterns of the array antennas Al to AN for wireless communication individually.
  • the operation of the failed antenna is performed without stopping the operation.
  • Calibration can be performed with each calibration antenna element except for.
  • the number of elements of the array element N contributing to the antenna pattern of the wireless communication is divided into a plurality of d groups to reduce the number of times of carrying out the calibration. Can be.
  • the base station apparatus by providing a plurality of array antenna elements I1 to IM completely independent of the plurality of array antenna elements A1 to AN performing wireless communication, for example, It is possible to dynamically calibrate each array antenna series for wireless communication during operation, and it is possible to perform such calibration using, for example, weak radio waves. Accuracy can be increased. That is, by performing calibration using an array antenna composed of a plurality of antennas I1 to IM, the receiving sensitivity is improved by forming using the calibration antenna.
  • the base station apparatus it is possible to suppress the suspension of the system operation due to the failure of one antenna (in this embodiment, the calibration antenna) which is a weak point of the array system. Obviously, it is possible to suppress the suspension of the system operation due to the failure of one antenna (in this embodiment, the calibration antenna) which is a weak point of the array system. Obviously, it is possible to suppress the suspension of the system operation due to the failure of one antenna (in this embodiment, the calibration antenna) which is a weak point of the array system. Become.
  • antenna calibration can be performed automatically and with high accuracy during operation.
  • the calibration antenna does not affect the array antenna, but in the present embodiment, the calibration antenna does not affect the array antenna. Is assumed.
  • various positions may be used as the positions of the arrangements of the antennas provided in the base station apparatus according to the present embodiment.
  • an algorithm is prepared corresponding to the pattern of each arrangement.
  • a plurality of antennas for wireless communication are configured by a plurality of N antennas A1 to AN used for performing wireless communication with a communication partner.
  • the function of performing wireless communication using the antennas A1 to AN constitutes wireless communication means.
  • a plurality of calibration antennas are configured by a plurality of M antennas I1 to IM used for executing a calibration process for the AN system, and the M antennas I1 to I1 to IM are used.
  • the function of executing the calibration processing for the antenna system by the IM constitutes the antenna system calibration processing execution means.
  • the configuration in which the antenna for wireless communication and the antenna for calibration are provided as separate antennas has been described.
  • the antenna for wireless communication and the antenna for calibration are provided. It is also possible to use a configuration in which some or all of the antennas are shared.
  • the adaptive array antenna system can direct the peak of the antenna pattern in the direction in which the desired user exists by changing the phase and amplitude of each array sequence. This is adaptive beamforming.
  • a 7-adaptive array antenna system for example, in the case of a plurality of N-element antennas, there are N series from # 1 to #N.
  • the adaptive array antenna system can direct a null (NULL) of a transmission antenna pattern so as to suppress reception of an interference wave from an undesired user and reduce interference in an undesired user direction.
  • NULL null
  • adaptive beamforming for communicating with the maximum transmission power is performed for the mobile communication terminal that performs communication with another interfering mobile communication terminal that is not performing communication.
  • Adaptive null steering can be performed so as not to affect them.
  • FIG. 3 shows an example of adaptive beamforming and adaptive null steering.
  • an antenna 31 of a base station device equipped with an adaptive array antenna and its antenna pattern (directivity pattern) and a plurality of mobile communication terminal devices 41 to 43 are shown.
  • the beam is directed in the direction of the mobile terminal device 42 corresponding to the desired wave, and the null is directed in the direction of the mobile terminal devices 41 and 43 corresponding to the interference wave.
  • TDMA Time Division Multiple Access
  • FDD Freauency Division Duplex
  • DMA / TDD Time Division Duplex
  • the radio wave propagation environment from the base station device to the user terminal is equal to the radio wave propagation environment from the user terminal side to the base station device, and reversibility of the radio wave propagation environment is established between the base station device and the user terminal.
  • FIG. 4 shows a configuration example of an adaptive array antenna device in an FDD system.
  • antennas 01 to ⁇ N transmission and reception switching switches (SW) P1 to PN, reception circuits (Rx) Q1 to QN, and A / D ( Analog to Digital) Converters (ADC) R1 to RN, multipliers S1 to SN for multiplying the reception signal of each antenna by the reception weight of each antenna, and transmission of each antenna for the transmission signal Multipliers T1 to TN for multiplying weights, DZA (Digital to Analog) converters (DACs) U1 to UN, and transmission circuits (Tx) V1 to VN are provided.
  • SW transmission and reception switching switches
  • Rx reception circuits
  • ADC Analog to Digital converters
  • each antenna reception signal after reception weight multiplication is calculated.
  • An adder 51 that acquires a received signal as a signal, and a weight calculation circuit 52 that calculates the reception weight of each antenna divided by the transmission weight of each antenna based on the received signal are provided.
  • the weights of the complex amplitudes corresponding to the individual antenna elements O 1 to ⁇ are determined by the weight calculation circuit 52. Is given to the received signal corresponding to each antenna element 0 1 to ON.
  • an expected antenna pattern is formed by adding a correction value (frequency calibration) including the frequency difference component to the weight to the transmission signal from the transmission data. Thereby, the same pattern can be formed in transmission and reception.
  • a correction weight that includes a frequency difference component for the same weight is used for reception and transmission.
  • a desired antenna pattern may not be generated because the reception pattern and the transmission pattern are different, and the gain in a desired direction is reduced or the gain for a hired user is increased.
  • Fig. 5 shows the reception pattern Z by such an adaptive array antenna.
  • the side lobe peak of the transmission pattern may be directed, and the desired transmission pattern may not be obtained.
  • individual hardware calibration is performed as a method of removing such a variation of each array series. More specifically, the deviation between all the reception analog sections and the transmission analog section is measured, the correction amount is calculated in advance, and the weight set for each element in consideration of the correction amount during actual operation. Is calculated.
  • the initially obtained correction amount changes during operation. is there.
  • the cause of this is, for example, a change in the characteristics of an analog active component (for example, an amplifier, a mixer, a synthesizer, etc.) due to a difference in outside air temperature between day and night.
  • an analog active component for example, an amplifier, a mixer, a synthesizer, etc.
  • other passive components eg, fillers, power brass, etc.
  • the cause may be slight phase fluctuation due to expansion and contraction of the length of the connection cable used inside the device.
  • phase fluctuations due to external vibrations such as wind, rain, snow, and the like may be considered.
  • the performance of the adaptive array antenna device is greatly deteriorated.
  • a desired wave and an interference wave are generated similarly to the antenna pattern shown in FIG. 5, a desired wave and an interference wave (including a noise component) are generated.
  • Degradation of SINR Signal to Interference plus Noise Rat io
  • SINR Signal to Interference plus Noise Rat io
  • the present invention as described above, such a conventional problem can be solved and an effective effect can be realized.
  • the configurations of the wireless communication device, the communication device, the base station device, and the like according to the present invention are not necessarily limited to those described above, and various configurations may be used.
  • the present invention can be provided, for example, as a method or a method for executing the processing according to the present invention, a program for realizing such a method or method, a recording medium for recording the program, and the like. Yes, and can also be provided as various devices and systems.
  • application field of the present invention is not necessarily limited to the above-described fields, and the present invention can be applied to various fields.
  • a processor is a ROM (Read Only Memory).
  • a configuration controlled by executing a control program stored in the CPU may be used.
  • each functional unit for executing the processing may be configured as an independent hardware circuit.
  • the present invention can be understood as a computer-readable recording medium such as a floppy (registered trademark) disk (CD) or a ROM storing the above-mentioned control program, or the program (itself).
  • the processing according to the present invention can be performed by inputting the control program from the recording medium to a computer and causing the processor to execute the control program.
  • the calibration processing for the wireless communication antenna system is performed by using a plurality of calibration antennas as an array antenna.
  • Antenna calibration can be realized. For example, even when the number of antennas constituting an array antenna for wireless communication is large, high-precision antenna calibration is possible. —You can achieve shilling. Further, according to the present invention, for example, it is possible to suppress interference by lowering the level of a signal for performing the calibration, May be able to continue operation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

In a wireless communication apparatus of, for example, a base station apparatus having an adaptive array antenna, a high-precision antenna calibration can be realized even when the number of the antennas constituting the array antenna is large. There are provided a plurality of calibration antennas (I1-IM) used for executing calibration processings related to the systems of antennas (A1-AN) used for wireless communication. Antenna system calibration processing executing means uses the plurality of calibration antennas (I1-IM) as the antenna array to execute the calibration processing related to the antenna systems.

Description

無線通信装置  Wireless communication device
技術分野 本発明は、例えば、 ァダプティブアレイアンテナを備えた基地局装置などの 無線通信装置に関し、特に、アレイアンテナを構成するアンテナの数が'多いような 明 TECHNICAL FIELD The present invention relates to a radio communication device such as a base station device provided with an adaptive array antenna, and more particularly to a radio communication device having a large number of antennas constituting an array antenna.
場合においても、高精度なアンテナキヤリブレーションを実現する無線通信装置に 関する。 書 Even in this case, the present invention relates to a wireless communication device that realizes highly accurate antenna calibration. book
背景技術 例えば、 携帯電話システムや簡易型携帯電話システム (P H S : Personal Handy phone Sys tem) などの移動体無線通信システムでま、 複数のアンテナから構 成されるァダプティブアレイアンテナを備えた基地局装置により移動局装置との 間で無線通信することが行われている。 また、 このような基地局装置では、各アンテナにお^"る送信処理と受信処理と の間の誤差や、複数のアンテナにおける送信処理の間の誤差或いは受信処理の間の 誤差を補正(キャリブレーション)するために、 アンテナのキヤリブレーションの 処理が行われる (例えば、 特許文献 1参照。)。 特許文献 1 BACKGROUND ART For example, mobile radio communication systems such as a mobile phone system and a personal handy phone system (PHS), and a base station equipped with an adaptive array antenna composed of a plurality of antennas. 2. Description of the Related Art Wireless communication with a mobile station device is performed by a device. Further, in such a base station apparatus, an error between transmission processing and reception processing for each antenna, an error between transmission processing or reception processing for a plurality of antennas, and an error between reception processing are corrected (calibrated). The antenna is calibrated (see, for example, Patent Document 1).
特開 2 0 0 2— 2 6 1 6 6 8号公報  Japanese Patent Application Laid-Open No. 2002-26261
'発明の開示 しかしながら、従来におけるァダプティブアレイアンテナを備えた基地局装置 では、 例えば、 アレイアンテナを構成するアンテナの数が多いような場合には、 キ ヤリブレーシヨンの精度が不十分となってしまうといった問題があった。また、例 えば、キャリブレーションを行うための信号のレベルを低くして干渉を抑制したい という要求や、キャリブレーション用のァンテナに障害が発生した場合においても 運用の続行を可能にしたいという要求があつた。 'Disclosure of the Invention However, in a conventional base station apparatus equipped with an adaptive array antenna, for example, when the number of antennas constituting the array antenna is large, There was a problem that the accuracy of the vibration was insufficient. In addition, for example, there is a demand for lowering the level of a signal for performing calibration to suppress interference and a demand for allowing operation to be continued even if a failure occurs in a calibration antenna. Was.
本発明は、 このような従来の事情に鑑み為されたもので、 例えば、 アレイァ ンテナを構成するアンテナの数が多いような場合においても、高精度なアンテナキ ヤリブレーシヨンを実現することができる無線通信装置を提供することを目的と する。  The present invention has been made in view of such a conventional situation. For example, even when the number of antennas constituting an array antenna is large, a radio which can realize a highly accurate antenna calibration is provided. It is intended to provide a communication device.
また、 本発明は、 例えば、 キャリブレーションを行うための信号のレベルを低 くして干渉を抑制することが可能な無線通信装置を提供することを目的とする。  Another object of the present invention is to provide a wireless communication device capable of suppressing interference by lowering the level of a signal for performing calibration, for example.
また、 本発明は、 例えば、 キャリブレーション用のアンテナに障害が発生した 場合においても、運用の続行を可能とすることができる無線通信装置を提供するこ とを目的とする。  Another object of the present invention is to provide a wireless communication device that can continue operation even when a failure occurs in a calibration antenna, for example.
上記目的を達成するため、本発明に係る無線通信装置では、次のような構成 として、 アンテナを用いて無線により通信する。  In order to achieve the above object, the wireless communication device according to the present invention performs wireless communication using an antenna as the following configuration.
すなわち、アンテナ系に関するキヤリブレーション処理を実行するために用い られる複数のキャリブレーション用のアンテナを備え、そして、 アンテナ系キヤリ ブレーション処理実行手段が、複数のキヤリブレーシヨン用のアンテナをアレイァ ンテナとして用いて、 アンテナ系に関するキヤリブレーション処理を実行する。  That is, a plurality of calibration antennas used to execute a calibration process related to the antenna system are provided, and the antenna system calibration process execution means uses the plurality of calibration antennas as an array antenna. To perform the calibration process for the antenna system.
従って、複数のキャリブレーション用のアンテナがアレイアンテナとして用 いられて、無線通信用のアンテナの系に関するキヤリブレーション処理が実行され るだめ、 高精度なアンテナキャリブレーションを実現することができる。 例えば、 無線通信用のアレイアンテナを構成するアンテナの数が多いような場合において も、 高精度なアンテナキヤリブレ  Therefore, a plurality of calibration antennas are used as an array antenna, and the calibration process relating to the wireless communication antenna system is not performed, so that highly accurate antenna calibration can be realized. For example, even when the number of antennas constituting an array antenna for wireless communication is large, a high-precision antenna calibration is required.
—シヨンを実現することができる。 また、複数のキヤリブレーション用のアンテナがアレイアンテナとして用い られることから受信感度が良好となるため、例えば、キャリブレーションを行うた めの信号のレベルを低くすることが可能であり、当該信号による干渉を抑制するこ とが可能である。 —You can achieve shilling. In addition, since a plurality of calibration antennas are used as an array antenna, the reception sensitivity is improved, so that, for example, the level of a signal for performing calibration can be lowered, and the It is possible to suppress interference.
ここで、無線通信を行うために用いられるアンテナの数としては、特に限定 はなく、 1つであってもよく、 或いは、 2以上であってもよい。  Here, the number of antennas used for performing wireless communication is not particularly limited, and may be one, or may be two or more.
また、アンテナ系に関するキャリブレーション処理を実行するために用いられ る複数のアンテナの数としては、 特に限定はなく、 種々な数が用いられてもよい。  Further, the number of the plurality of antennas used for executing the calibration process for the antenna system is not particularly limited, and various numbers may be used.
また、 無線通信としては、 例えば、 通信相手となる無線通信装置に対して信 号を無線により送信することや、通信相手となる無線通信装置から無線により送信 された信号を受信することが行われる。  The wireless communication includes, for example, wirelessly transmitting a signal to a wireless communication device as a communication partner and receiving a signal wirelessly transmitted from a wireless communication device as a communication partner. .
また、アンテナ系に関するキャリブレーション処理としては、種々な処理が用 いられてもよく、例えば、無線通信に用いられるアンテナの系の送信や受信や送受 信に関する信号振幅の誤差や信号位相の誤差を補正するための処理が用いられる。  Various processes may be used as the calibration process for the antenna system. For example, a signal amplitude error and a signal phase error related to transmission, reception, and transmission / reception of an antenna system used for wireless communication may be used. A process for correcting is used.
また、キャリブレーションを行うための信号としては、種々な信号が用いら れてもよく、例えば、無線通信に用いられる無線通信用のアンテナから通信相手に 対して無線送信される通信信号が用いられてもよく、或いは、キャリブレーション に専用の信号が用意されて用いられてもよい。キャリブレーションを行うための信 号は、 例えば、 無線通信用のアンテナから無線送信されて、 キャリブレーション用 のアンテナにより受信される。  Various signals may be used as the signal for performing the calibration. For example, a communication signal wirelessly transmitted from a wireless communication antenna used for wireless communication to a communication partner may be used. Alternatively, a dedicated signal for calibration may be prepared and used. The signal for performing the calibration is wirelessly transmitted from, for example, an antenna for wireless communication and received by the antenna for calibration.
また、キヤリブレーション用のアンテナや、無線通信用のアンテナについて、 'それぞれのアンテナとしては、 種々なアンテナが用いられてもよい。 また、 種々な ァンテナの配置が用いられてもよい。  Further, with respect to the antenna for calibration and the antenna for wireless communication, various antennas may be used as the respective antennas. Also, various antenna arrangements may be used.
本発明に係る無線通信装置では、一構成例として、 アンテナ系キヤリブレー ション処理実行手段は、いずれかのキヤリブレーション用のアンテナに関する障害 が発生した場合には、障害が発生したキャリブレーション用のアンテナを除外した キヤリブレーション用のアンテナを用いてアンテナ系に関するキヤリブレーショ ン処理を実行する。 In the wireless communication apparatus according to the present invention, as one configuration example, the antenna-based calibration processing execution means may include any one of the obstacles related to one of the calibration antennas. If an error occurs, the calibration process for the antenna system is executed using the calibration antenna excluding the calibration antenna in which the failure occurred.
従って、例えば、一部のキャリブレーション用のアンテナに関して障害が発 生した場合においても、キャリブレーションの処理を可能とすることができ、 これ により、 アンテナ系に関するキャリブレーションが為され得る環境において、無線 通信用のアンテナによる無線通信の運用を続行することができる。  Therefore, for example, even when a failure occurs with respect to some of the calibration antennas, the calibration process can be performed. The operation of wireless communication using the communication antenna can be continued.
ここで、キャリブレーション用のアンテナに関する障害が発生した場合とし ては、任意の数のキヤリブレーション用のアンテナに関する障害が発生した場合が 用いられてもよく、例えば、 1つのキャリブレーション用のアンテナに関して障害 が発生した場合や、或いは、当該場合と共に 2以上のキャリブレーション用のアン テナに関して障害が発生した場合、 などを用いることができる。  Here, as a case where a failure related to the calibration antenna occurs, a case where a failure related to an arbitrary number of calibration antennas may be used, for example, one calibration antenna may be used. In the case where a failure has occurred with respect to, or in the case where a failure has occurred with two or more calibration antennas in addition to the above case, it can be used.
また、キヤリブレーション用のアンテナに関する障害が発生したことを把握 する仕方としては、 種々な仕方が用いられてもよく、 例えば、 キャリブレーション 用のアンテナに関する障害が発生したことを検出するキャリブレーション用アン テナ障害発生検出手段を備える構成が用いられてもよく、或いは、外部の装置ゃュ 一ザなどから特定のキャリブレーション用のアンテナに関する障害が発生したこ とが入力されるような構成が用いられてもよい。  In addition, various methods may be used as a method of grasping that a failure related to the calibration antenna has occurred. For example, a method for detecting the occurrence of a failure related to the calibration antenna may be used. A configuration including antenna failure detection means may be used, or a configuration in which a failure related to a specific calibration antenna is input from an external device user or the like may be used. You may be.
また、キャリブレーション用のアンテナに関する障害としては、種々なもの が用いられてもよく、例えば、キャリブレーション用のアンテナ系の障害が用いら れ、 具体的には、 キャリブレーション用のアンテナの障害や、 キャリブレーション 用のァンテナ以外の受信回路などの障害が用いられる。  Further, various types of faults related to the calibration antenna may be used. For example, a fault in the calibration antenna system is used. Specifically, a fault in the calibration antenna or a fault in the calibration antenna is used. Failures such as receiving circuits other than the antenna for calibration are used.
—構成例として、 いずれかのアンテナに障害が発生した場合には、その旨を管 理側などへ通知する。  —As an example of configuration, if a failure occurs in any of the antennas, notify the management to that effect.
本発明に係る無線通信装置では、 一構成例として、 次のような構成とする。 すなわち、無線通信を行うために用いられる複数の無線通信用のアンテナを備 え、 そして、 無線通信手段が、 複数の無線通信用のアンテナをアレイアンテナとし て用いて、 無線通信を行う。 The wireless communication device according to the present invention has the following configuration as one configuration example. That is, a plurality of antennas for wireless communication used for performing wireless communication are provided, and the wireless communication means performs wireless communication using the plurality of antennas for wireless communication as an array antenna.
また、 複数の無線通信用のアンテナは、 2以上のグループに分けられる。 そして、 アンテナ系キヤリブレーション処理手段は、無線通信用のアンテナに ついて、各グループ毎に、アンテナ系に関するキヤリプレーション処理を実行する。  Further, the plurality of antennas for wireless communication are divided into two or more groups. Then, the antenna system calibration processing means executes a calibration process regarding the antenna system for each group for the antenna for wireless communication.
従って、複数の無線通信用のアンテナを 2以上のグループに分けて、各ダル ープ毎にアンテナ系に関するキヤリブレーション処理が実行されることにより、ァ ンテナ系に関するキヤリブレ一ションを全体として効率化させることができる。  Therefore, the multiple antennas for wireless communication are divided into two or more groups, and the calibration process for the antenna system is executed for each group, thereby improving the efficiency of the calibration for the antenna system as a whole. Can be done.
一例として、それぞれのグループに含まれる無線通信用のアンテナをひとま とめとして共通なキヤリブレーション処理を実行することにより、アンテナ系に関 するキヤリブレーション処理の回数を全体として少なくすることが可能である。  As an example, by performing a common calibration process for all the wireless communication antennas included in each group, the number of calibration processes for the antenna system can be reduced as a whole It is.
他の例として、それぞれのグループ毎に、 グループに含まれる無線通信用のァ ンテナについて 1本ずつ順番に、アンテナ系に関するキヤリブレーション処理を実 行するような態様を用いることも可能である。  As another example, it is also possible to use a mode in which the calibration process for the antenna system is executed in order for each of the antennas for wireless communication included in the group for each group.
ここで、 無線通信用のアンテナに関する 2以上のグループの数としては、 種々な数が用いられてもよい。  Here, various numbers may be used as the number of two or more groups related to the antenna for wireless communication.
また、それぞれのグループに含まれる無線通信用のアンテナの数としては、特 に限定はなく、例えば、全てのグループに 2以上の無線通信用のアンテナが含まれ てもよく、或いは、 1つの無線通信用のアンテナのみを含むグループが 1以上存在 するような態様が用いられてもよい。  Further, the number of wireless communication antennas included in each group is not particularly limited. For example, two or more wireless communication antennas may be included in all groups, or one wireless communication antenna may be included. An embodiment may be used in which there is one or more groups including only communication antennas.
以下で、 更に、 本発明に係る構成例を示す。  Hereinafter, a configuration example according to the present invention will be further described.
一構成例として、無線通信に用いられる無線通信用のアンテナから無線送信さ れる信号 (例えば、 通信信号、 或いは、 キャリブレーション用の信号) を、 アンテ ナ系に関するキヤリプレーション処理を実行するために用いられるキヤリブレー シヨン用のアンテナにより受信し、 当該受信結果に基づいて、 アンテナ系に関する キヤリブレーション処理を実行する。 As one configuration example, a signal (for example, a communication signal or a signal for calibration) wirelessly transmitted from a wireless communication antenna used for wireless communication is used to execute a calibration process for an antenna system. Carriers used The signal is received by the shaking antenna, and the calibration process for the antenna system is executed based on the receiving result.
一構成例として、無線通信に用いられる複数のアンテナ系に対して 1つずつ 順番にキャリブレーション処理を実行していく。  As an example of the configuration, the calibration processing is sequentially performed on a plurality of antenna systems used for wireless communication one by one.
構成例として、複数のキャリブレーション用のアンテナは、 ァダプティブァ レイアンテナとして使用される。  As a configuration example, a plurality of calibration antennas are used as an adaptive array antenna.
一構成例として、複数の無線通信用のアンテナは、
Figure imgf000008_0001
As one configuration example, the plurality of antennas for wireless communication are:
Figure imgf000008_0001
ナとして使用される。 Used as na.
一構成例として、無線通信手段により通信相手から無線受信する通信信号の周 波数(第 1周波数) と、 無線通信手段により通信相手に対して無線送信する通信信 号の周波数 (第 2周波数) とは異なっている。  As one configuration example, the frequency (first frequency) of the communication signal wirelessly received from the communication partner by the wireless communication means, the frequency (second frequency) of the communication signal wirelessly transmitted to the communication partner by the wireless communication means, and the like. Are different.
ここで、 通信相手としては、 種々なものが用いられてもよい。 一例として、 本 発明に係る無線通信装置を移動体無線通信システムの基地局装置に適用した場合 には、 通信相手として移動局装置などを用いることができる。  Here, various communication partners may be used. As an example, when the wireless communication device according to the present invention is applied to a base station device of a mobile wireless communication system, a mobile station device or the like can be used as a communication partner.
また、通信相手から無線受信する通信信号や、通信相手に対して無線送信す る通信信号としては、 それぞれ、 種々な信号が用いられてもよい。  Various signals may be used as a communication signal wirelessly received from a communication partner and a communication signal wirelessly transmitted to the communication partner.
また、 第 1周波数や、 第 2周波数としては、 それぞれ、 種々な周波数が用いら れてもよい。  Further, various frequencies may be used as the first frequency and the second frequency, respectively.
一構成例として、それぞれのキャリブレーション用のアンテナ系では、所定 周波数成分抽出手段がキヤリプレーシヨン用のアンテナにより無線受信される信 号から所定の周波数の成分を抽出する。 また、 アンテナ系キャリブレーション処理 実行手段は、複数のキヤリブレーシ ン用のアンテナ系について所定周波数成分抽 出手段による抽出結果を重み付け合成し、当該重み付け合成結果に基づいてアンテ ナ系に関するキヤリブレーシヨン処理を実行する。  As one configuration example, in each of the calibration antenna systems, a predetermined frequency component extraction unit extracts a component of a predetermined frequency from a signal wirelessly received by the calibration antenna. Further, the antenna system calibration processing execution means weights and combines the extraction results of the plurality of antenna systems for calibration by the predetermined frequency component extraction means, and performs the calibration processing on the antenna system based on the weighted synthesis results. Execute.
一構成例として、それぞれの無線通信用のアンテナについて、送信系と受信 系とで共通のアンテナが共用される。他の構成例として、それぞれの無線通信用の アンテナについて、 送信系と受信系とで別個なアンテナが用いられる。 図面の簡単な説明 As one configuration example, the transmission system and the reception A common antenna is shared with the system. As another configuration example, separate antennas are used for the transmission system and the reception system for each wireless communication antenna. Brief Description of Drawings
第 1図は、本発明の一実施例に係る基地局装置のァダプティブアレイアンテ ナに関する部分の構成例を示す図である。  FIG. 1 is a diagram showing a configuration example of a portion related to an adaptive array antenna of a base station apparatus according to one embodiment of the present invention.
第 2図は、 基地局装置などの構成例を示す図である。  FIG. 2 is a diagram illustrating a configuration example of a base station device and the like.
第 3図は、ァダプティブアレイアンテナのアンテナパターンの一例を示す図 である。  FIG. 3 is a diagram showing an example of an antenna pattern of an adaptive array antenna.
第 4図は、 F D Dシステムにおけるァダプティブアレイアンテナ装置の構成 例を示す図である。  FIG. 4 is a diagram showing a configuration example of an adaptive array antenna device in an FDD system.
第 5図は、ァダプティブアレイアンテナにおける偏差を有する受信パターン と送信パターンの一例を示す図である。 発明を実施するための最良の形態  FIG. 5 is a diagram showing an example of a reception pattern and a transmission pattern having a deviation in the adaptive array antenna. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る一実施例を図面を参照して説明する。  An embodiment according to the present invention will be described with reference to the drawings.
本実施例では、複数である N個の系から構成されたァダプティブアレイアンテ ナを備えるとともに複数である M個の系から構成されたキャリブレーション用の ァダプティブアレイアンテナを備えた移動体無線通信の基地局装置に本発日 を適 用した場合を示す。 また、 本実施例では、 アンテナの送受信キヤリブレーションな どのキヤリブレーシヨン処理を行う場合を示す。  In the present embodiment, a moving object including an adaptive array antenna composed of a plurality of N systems and a calibration adaptive array antenna composed of a plurality of M systems is provided. The case where the present invention is applied to a base station apparatus for wireless communication is shown. In the present embodiment, a case is shown in which a calibration process such as an antenna transmission / reception calibration is performed.
第 1図には、本発明の一実施例に係る基地局装置のァダプティブアレイアン テナに関する部分の構成例を示してある。  FIG. 1 shows a configuration example of a portion related to an adaptive array antenna of a base station apparatus according to one embodiment of the present invention.
本例の基地局装置には、通信相手となる移動局装置などと無線通信を行う処理 部として、 N個の系のそれぞれに、 アンテナ A 1〜ANと、 送受切り替え用のスィ ツチ (SW) B1〜BNと、 受信回路 (Rx) C1〜CNと、 AZD (Analog to Digital) 変換器 (ADC) D1〜DNと、 各アンテナ A 1〜ANの受信信号に対 して各アンテナ A 1〜ANの受信ウェイトを乗算するための乗算器 E 1〜ENと、 送信信号に対して各アンテナ A 1〜ANの送信ウェイトを乗算するための乗算器 F1〜FNと、 D/A (Digital to Analog) 変換器 (DAC) G1〜GNと、 送 信回路 (Tx) Η 1〜ΗΝが備えられている。 In the base station apparatus of this example, as processing units for performing wireless communication with a mobile station apparatus or the like as a communication partner, antennas A1 to AN and transmission / reception switching switches are provided for each of N systems. Switches (SW) B1 to BN, receiving circuits (Rx) C1 to CN, AZD (Analog to Digital) converters (ADC) D1 to DN, and antennas A1 to AN A1 to EN for multiplying the reception weights of A1 to AN, and multipliers F1 to FN for multiplying the transmission signal by the transmission weight of each antenna A1 to AN, and D / A ( Digital to Analog) converters (DACs) G1 to GN and transmission circuits (Tx) Η1 to ΗΝ are provided.
また、本例の基地局装置には、通信相手となる移動局装置などと無線通信を 行う処理部として、 Ν個の系に共通に、受信ウェイト乗算後の各アンテナ A 1〜Α Νによる受信信号を総和してァダプティブアレイアンテナ全体としての受信信号 を取得する加算器 1と、当該受信信号に基づいて各アンテナ A 1〜 ANの受信ゥェ ィトゃ各アンテナ A 1〜ANの送信ウェイトを算出することやキヤリブレーショ ンの処理を行うウェイト計算 ·キャリブレーション回路 2が備えられている。  In addition, the base station apparatus of this example has a processing unit for performing wireless communication with a mobile station apparatus or the like as a communication partner. An adder 1 for summing the signals to obtain a received signal as an entire adaptive array antenna, and receiving antennas for each of the antennas A 1 to AN based on the received signal, and transmitting for each of the antennas A 1 to AN A weight calculation / calibration circuit 2 for calculating weights and performing calibration processing is provided.
また、本例の基地局装置には、 アンテナ系のキャリブレーションを行うため の処理部として、 M個の系のそれぞれに、アンテナ I 1〜IMと、受信回路(Rx) J 1〜JMと、 AZD (Analog to Digital) 変換器 (ADC) K1〜KMと、 各 アンテナ I 1〜 I Mの受信信号に対して各アンテナ I 1〜IMの受信ウェイトを 乗算するための乗算器 L 1〜LMが備えられている。  Further, in the base station apparatus of this example, as a processing unit for performing calibration of the antenna system, the antennas I1 to IM, the receiving circuits (Rx) J1 to JM, AZD (Analog to Digital) converters (ADCs) K1 to KM and multipliers L1 to LM for multiplying the reception signals of each antenna I1 to IM by the reception weight of each antenna I1 to IM Has been.
また、本例の基地局装置には、 アンテナ系のキャリブレーションを行うため の処理部として、 M個の系に共通に、受信ウェイト乗算後の各アンテナ I 1〜 I N による受信信号を総和してキヤリブレーショ
Figure imgf000010_0001
In the base station apparatus of this example, as a processing unit for calibrating the antenna system, the signals received by each of the antennas I 1 to IN after receiving weight multiplication are summed in common to the M systems. Calibration
Figure imgf000010_0001
全体としての受信信号 (キャリブレーション受信信号) を取得する加算器 11と、 当該受信信号に基づいて各アンテナ I 1〜 I Nの受信ウェイトの計算などを行う ウェイト計算 ·位相設定回路 12が備えられている。 An adder 11 for obtaining a received signal (calibration received signal) as a whole, and a weight calculation / phase setting circuit 12 for calculating the reception weight of each of the antennas I 1 to IN based on the received signal are provided. I have.
本例の基地局装置により行われる動作の一例を示す。  An example of an operation performed by the base station device of the present example will be described.
なお、通信相手となる移動局装置などと無線通信を行う処理部である N本のァ ンテナ A 1〜ANの系の動作としては、例えば、一般的な動作を用いることが可能 であるため、本例では、アンテナ系のキャリブレーションを行うための処理部であ る M本のアンテナ I 1〜 I Mの系の動作について詳しく説明する。 In addition, N keys, which are processing units that perform wireless communication with a mobile station device or the like that is a communication partner. As the operation of the antennas A1 to AN, for example, a general operation can be used, and therefore, in this example, the M antennas I which are the processing units for performing the calibration of the antenna system are used. 1 to IM operations will be described in detail.
本例の基地局装置では、複数のキャリブレーション用のアンテナ(キヤリブ レーシヨンアンテナ) I 1〜 I Mがアレイアンテナを構成しており、キヤリプレー シヨンアンテナが M本 (# C 1〜# C M) ある。  In the base station apparatus of the present example, a plurality of calibration antennas (calibration antennas) I1 to IM constitute an array antenna, and there are M calibration antennas (# C1 to #CM).
本例では、キヤリブレーシヨンアンテナ I 1〜 I Mは受信専用のアレイアンテ ナとなっている。  In this example, the calibration antennas I1 to IM are reception-only array antennas.
本例では、無線通信用のアレイアンテナ A 1〜ANから無線送信される信号を キャリブレーション用のアレイアンテナ I 1〜 I Mの系により受信して処理する ことで、無線通信用のアレイアンテナ A 1〜ANの系に関するキヤリブレーション 処理を実行する。  In this example, the signals transmitted wirelessly from the array antennas A1 to AN for wireless communication are received and processed by the system of array antennas I1 to IM for calibration, so that the array antenna A1 for wireless communication is received. Execute the calibration process for the ~ AN system.
キヤリブレーション系の各受信回路部 J 1〜 J Mは、無線通信のアンテナパ ターンに寄与する N本の各アンテナ A 1〜ANから 1本ずつ順番に既知の振幅と 位相で電波を送信したものを、各アンテナ I 1〜I Mにより受信処理する。各受信 回路部 J 1〜J Mでは、 受信信号に対して、例えば、 フィルタなどによる帯域制限 や、 指定の位相制御を行う。  Each of the calibration receiver circuits J1 to JM transmits radio waves with a known amplitude and phase in order from N antennas A1 to AN, which contribute to the antenna pattern of wireless communication. The reception processing is performed by each of the antennas I1 to IM. Each of the receiving circuit units J1 to JM performs, for example, a band limitation by a filter or the like and a designated phase control on the received signal.
そして、各キャリブレーションアンテナ系の受信信号は、 AZD変換器 K l〜 KMによりアナログ信号からデジタル信号 (デジタル値) へ変換される。  The received signal of each calibration antenna system is converted from an analog signal to a digital signal (digital value) by the AZD converters Kl to KM.
ウェイト計算 ·位相設定回路 1 2は、キヤリブレーション受信信号に基づい て適切なウェイ卜計算を行い、その結果を反映した各キヤリブレーションアンテナ 系の受信ウェイトを各乗算器 L 1〜L Mへ供給する。 また、 ウェイト計算:位相設 定回路 1 2は、例えば各キヤリブレーションアンテナ系の回路に対応して、適切な 位相設定を行い、 位相の制御情報を各受信回路 J 1〜J Mに対して出力する。  Weight calculation ・ Phase setting circuit 12 performs appropriate weight calculation based on the calibration reception signal, and supplies the reception weight of each calibration antenna system reflecting the result to each of multipliers L1 to LM I do. Weight calculation: The phase setting circuit 12 performs appropriate phase setting, for example, corresponding to each calibration antenna system circuit, and outputs phase control information to each of the receiving circuits J1 to JM. I do.
各キヤリブレーションアンテナ系の AZD変換器 K 1〜KMによりデジ夕 ル値へ変換された受信信号は、各乗算器 L 1〜L Mにおいて各受信ウェイ卜が複素 乗算されることにより、 複素振幅の重み付けがされ、 また、 適切なレベルに変換制 御される。 AZD converter K1 ~ KM of each calibration antenna system The received signal converted to the digital value is weighted with a complex amplitude by complex multiplication of each receiving weight in each of the multipliers L1 to LM, and is controlled to be converted to an appropriate level.
その後、各乗算器 L 1〜; L Mから出力される受信ウェイト乗算後の受信信号は、 加算器(合成器) 1 1により全てのキャリブレーションアンテナ系について加算(合 成) され、 当該加算結果がキャリブレーション受信信号として出力される。  Thereafter, the received signals after receiving weight multiplication output from the multipliers L1 to LM are added (synthesized) by the adder (synthesizer) 11 for all the calibration antenna systems, and the addition result is obtained. Output as a calibration reception signal.
本例では、 これらのキャリブレーションアンテナ系の回路部は、 いわゆる、 フェーズドアレイ回路として動作している。  In this example, the circuit units of these calibration antenna systems operate as so-called phased array circuits.
ウェイト計算'位相設定回路 1 2としては、種々なものから構成されてもよく、 例えば、 D S P (Digital Signal Processor)や F P G A (Field Programmable Gate Array) などのように、 デジタル信号処理を容易に実現することができるようなも のを用いて構成するのが好ましい。  Weight calculation 'Phase setting circuit 12' may be composed of various types, for example, DSP (Digital Signal Processor) or FPGA (Field Programmable Gate Array), etc., easily realize digital signal processing It is preferable to use a structure that can be used.
上述のように、 ウェイト計算 ·位相設定回路 1 2では、 キャリブレーション アンテナのアンテナパターンの計算や、振幅ウェイトの計算或いは位相ウェイ卜の 計算や、 キャリブレーション用のアレイ系列(アンテナ I 1〜I M) までの位相設 定値の計算を行う。 なお、 本例では、 各受信回路 J 1〜 J Mにおいてアナログ受信 信号の位相の制御を行う構成としたが、他の構成例として、デジタル信号処理で位 相制御を行う構成とすることも可能である。  As described above, the weight calculation and phase setting circuit 12 calculates the antenna pattern of the calibration antenna, the calculation of the amplitude weight or the calculation of the phase weight, and the array sequence for calibration (antenna I 1 to IM). Calculate the phase settings up to. In this example, the configuration is such that the phase of the analog reception signal is controlled in each of the receiving circuits J1 to JM. However, as another configuration example, the configuration may be such that phase control is performed by digital signal processing. is there.
このように、本例の基地局装置では、無線通信のアンテナパターンに寄与し ないアレイ素子数が M (Mは 2以上の自然数) である同一のアレイ系統(# C 1〜 # CM) を有しており、 これらのアレイ系統がキヤリブレ一シヨンを行うためのァ レイアンテナとして機能する。 '  As described above, the base station apparatus of this example has the same array system (# C1 to # CM) in which the number of array elements that do not contribute to the antenna pattern of wireless communication is M (M is a natural number of 2 or more). These array systems function as array antennas for performing calibration. '
ここで、 本例の基地局装置では、 アレイ素子数 Mにおける全ての位相.振幅に おけるアンテナパターンを考慮した上で、無線通信の放射に寄与する N (Nは 2以 上の自然数)本のアレイ素子から受信する電波の位相や振幅の絶対量の情報を事前 に把握しており、 このような情報のテーブルに基づいてウェイト計算 '位相設定回 路 1 2を動作させている。 Here, in the base station device of this example, N (N is a natural number of 2 or more) N that contributes to the radio communication radiation is considered in consideration of the antenna pattern in all phases and amplitudes in the number M of array elements. Preliminary information on the absolute amount of phase and amplitude of radio waves received from array elements The weight calculation and the phase setting circuit 12 are operated based on such a table of information.
また、キャリブレーションのタイミングとしては、本例のように N本のアン テナ A 1〜ANから通信用アレイアンテナが構成される基地局装置の場合には、例 えば、第 1のアンテナ A 1から第 Nのアンテナ ANまで順番にキヤリブレーション をすることとし、 また、キャリブレーションを行うことが許容されたフレームで順 番に各アンテナ A 1〜AN毎にキヤリブレーションを行う。  In the case of a base station apparatus in which a communication array antenna is composed of N antennas A1 to AN as in this example, the calibration timing is, for example, from the first antenna A1. Calibration is performed in order up to the Nth antenna AN, and calibration is performed sequentially for each antenna A1 to AN in a frame in which calibration is permitted.
具体的には、 1回のキャリブレーションでは、無線通信の放射に寄与するァ レイアンテナ A 1〜 ANのうちの 1つのアンテナから既知の振幅と既知の位相で 微弱な電波にて信号を無線送信し、当該信号を M本のアンテナ I 1〜 I Mから成る キャリブレーション用のアレイアンテナで受信する。 また、全てのアレイ系 # 1〜 # Nのキャリブレーションが終了した後には、例えば、継続してキヤリブレーショ ンを行う態様が用いられてもよく、或いは、任意の時間間隔で定期的にキヤリブレ ーシヨンを行う態様が用いられてもよい。  Specifically, in one calibration, one of the antennas A1 to AN that contributes to the radiation of wireless communication wirelessly transmits a signal with a weak amplitude at a known amplitude and a known phase from one of the antennas A1 to AN. Then, the signal is received by a calibration array antenna composed of M antennas I1 to IM. After the calibration of all array systems # 1 to #N is completed, for example, a mode in which calibration is continuously performed may be used, or the calibration may be periodically performed at an arbitrary time interval. A mode in which the solution is performed may be used.
また、 本例の基地局装置のシステムでは、例えば、 キャリブレーション用の アレイ系統 # C 1〜# C Mのうちの 1つのアンテナ或いは複数のアンテナ又はそ れらの装置に障害が発生したようなときには、このことが例えばキヤリブレーショ ン受信信号から判断される。そして、 このような障害が発生したときには、 キヤリ プレーシヨン系において、各障害が発生したアレイ系統を除く各アレイ系統でアン テナビームを形成して、 運用を継続することが可能である。 また、 このような障害 が発生したときに、当該障害に関する情報を管理セン夕などへ通知する構成とする ことも可能である。 '  Also, in the base station apparatus system of the present example, for example, when a failure occurs in one or more antennas or a plurality of antennas of the calibration array systems # C1 to #CM, This is determined, for example, from the calibration reception signal. Then, when such a failure occurs, it is possible to continue the operation by forming an antenna beam in each of the array systems except for the array system in which the failure has occurred in the carrier precision system. Further, when such a failure occurs, it is also possible to adopt a configuration in which information about the failure is notified to a management center or the like. '
ここで、 アレイアンテナを構成する 1以上のアンテナに障害が発生して、 ァ レイアンテナを構成するアンテナの総数が変化した場合には、通常、制御の方法を 変化させることが必要となる。 このため、 例えば、 予めアレイアンテナを構成する アンテナの一部が欠けた場合のアルゴリズムを用意する。 Here, when a failure occurs in one or more antennas constituting the array antenna and the total number of antennas constituting the array antenna changes, it is usually necessary to change the control method. For this reason, for example, an array antenna is configured in advance. Prepare an algorithm when a part of the antenna is missing.
具体的には、キヤリブレーション系について、 M本のアンテナがァレイアン テナとして動作する場合のアルゴリズムのほかに、任意の 1本が欠けて残りの(M 一 1 )本のアンテナがアレイアンテナとして動作する場合のアルゴリズムや、任意 の 2本が欠けて残りの(M— 2 )本のアンテナがアレイアンテナとして動作する場 合のアルゴリズムなどのように、一部のァンテナが欠けたそれぞれのパターンに対 応したアルゴリズムを用意して切り替えて使用する。  Specifically, for the calibration system, in addition to the algorithm when M antennas operate as array antennas, any one of them is missing and the remaining (M-1) antennas operate as array antennas. For example, in the case where two antennas are missing and the other (M-2) antennas operate as an array antenna, each antenna pattern with some missing antennas is used. Prepare a suitable algorithm and switch to use it.
また、 無線通信を行う N本のアンテナ A 1〜ANについても、 同様に、 種々な パターンに対応したアルゴリズムを用意して、障害の発生時などに用いることが可 能である。  Similarly, with respect to the N antennas A1 to AN that perform wireless communication, algorithms corresponding to various patterns can be prepared and used when a failure occurs.
なお、このように障害が発生してキヤリブレーション系のアレイ系統の総数 が 1以上少なくなる場合には、アンテナのビーム利得が変化することから正常運用 時と比べて利得が減少するため、通常、正常運用時と比べて性能が劣化すると考え られる。 このため、 運用を継続することは可能であるが、 早急のメンテナンスを行 うことが望ましいと考えられる。  If the total number of calibration-based array systems decreases by 1 or more due to such a failure, the antenna beam gain changes and the gain decreases compared to normal operation. It is considered that the performance is deteriorated compared to the normal operation. For this reason, it is possible to continue the operation, but it is desirable to carry out maintenance immediately.
また、 本例の基地局装置では、 例えば、 無線通信のアンテナパターンに寄与 するアレイ素子数 Nの素子をグループ分けすることもできる。  Further, in the base station device of the present example, for example, elements having the number N of array elements that contribute to the antenna pattern of wireless communication can be grouped.
一例として、キヤリブレーション用のアンテナ I 1〜 I Mにより受信する信号 (送信信号)のレベルや位相にそれほど差がないアンテナを同一のグループにまと めるように、 N本のアンテナ A 1〜ANを複数である d個のグループに分割する。  As an example, N antennas A 1 to A 1 to antennas I 1 to IM are grouped so that antennas with little difference in the level and phase of signals (transmitted signals) received by IM are grouped into the same group. Divide AN into multiple d groups.
そして、 d個のグループの各グループ毎を単位としてキヤリブレーションを 行うと、例えば N本のアンテナ A 1〜 ANを 1本ずつキヤリブレーションする場合 と比べて、キャリブレーションを行う回数を d回に短縮することが可能であり、( d ZN)倍の回数に短縮することが可能である。 また、 例えば、 各グループに含まれ るアンテナの数を同数 (NZ d ) として、 d個のグループのそれぞれ毎に、 それぞ れのグループに含まれるアンテナを 1本ずつキヤリブレーシヨンすると、それぞれ のグループでキャリブレーションを行う回数を (NZ d ) 回とすることができる。 When calibration is performed for each group of d groups, the number of times of performing calibration is d times compared to, for example, the case where calibration is performed for N antennas A1 to AN one by one. It is possible to reduce the number of times to (dZN) times. Also, for example, assuming that the number of antennas included in each group is the same (NZ d), for each of the d groups, If the antennas included in these groups are calibrated one by one, the number of calibrations performed in each group can be (NZ d).
このように、本例の基地局装置では、無線通信或いはキャリブレーション用 のアンテナパターンに寄与するアレイ素子数が(N + M) である素子を有し、 複数 である N本のアンテナが無線通信用のアレイァンテナ素子として用いられ、複数で ある M本のアンテナがキャリブレーション用のアレイアンテナ素子として用いら れる。  As described above, in the base station apparatus of this example, the number of array elements contributing to the antenna pattern for wireless communication or calibration is (N + M), and a plurality of N antennas are used for wireless communication. M antennas are used as array antenna elements for calibration.
なお、 M本のキャリブレーションアンテナでは、 例えば、 キヤリプレーショ ンを同時に行うことで、キャリブレーション時間を短縮することも可能である。 ま た、 アレイアンテナ素子数が多いときには、 アンテナ間の相互結合量が非常に小さ いものもあるため、キヤリブレーションアンテナを複数用意することで、キヤリブ レーションを行うアンテナ群のグループ分けをすることも可能である。  With the M calibration antennas, for example, the calibration time can be reduced by simultaneously performing the calibration. Also, when the number of array antenna elements is large, the mutual coupling between the antennas is very small in some cases.Therefore, preparing a plurality of calibration antennas and grouping the antenna groups for calibration Is also possible.
また、 このような構成において、 アレイアンテナを構成するアンテナの 1 つ或いは 2以上に障害が発生したときには、例えば、障害が発生したアンテナ素子 数分を除くアレイ系統でアンテナビームを形成し、 M本のアンテナをキヤリブレー シヨン用のアンテナとして使用するようなことも可能である。  Further, in such a configuration, when a failure occurs in one or more of the antennas constituting the array antenna, for example, an antenna beam is formed in an array system excluding the number of the failed antenna elements, and M antenna beams are formed. It is also possible to use this antenna as an antenna for calibration.
次に、 以上に示した実施例に関して、 更に説明する。  Next, the embodiment described above will be further described.
第 2図 (a ) には、 基地局装置の全体的な構成の一例を示してある。  FIG. 2 (a) shows an example of the overall configuration of the base station apparatus.
同図 (a ) に示した基地局装置には、 例えばアンテナや送受信部やウェイ卜計 算部を含んで構成されるァダプティブアレイアンテナ部(AAA部) 2 1と、 通信 信号の変復調を行うモデム部(変復調部) 2 2と、ベースバンド (B B: Base Band) 処理を行うベースバンド部(B B部) 2 3と、 これら各処理部 2 1〜2 3を制御す る制御部 2 4が備えられており、 また、 基地局制御装置等 2 5が備えられている。  The base station device shown in FIG. 2A includes, for example, an adaptive array antenna unit (AAA unit) 21 including an antenna, a transmission / reception unit, and a weight calculation unit, and modulation and demodulation of a communication signal. Modem section (modem section) 22 that performs, baseband section (BB section) 23 that performs baseband (BB) processing, and control section 24 that controls these processing sections 21 to 23 , And a base station controller 25.
ここで、 上記第 2図 (a ) に示した基地局装置では、 例えば、 A A A部 2 1 の構成として、上記第 1図に示したようなァダプティプアレイァンテナに関する構 成成がが用用いいらられれるる。。 上上記記第第 11図図にに示示ししたた、、、、受受信信信信号号""やや、、、、キキヤヤリリブブレレーーシシヨヨンン受受信信信信 号号""ははモモデデムム部部 22 22へへ出出力力さされれ、、 、、、、送送信信信信号号''''ははモモデデムム部部 22 22かからら入入力力さされれるる。。 Here, in the base station apparatus shown in FIG. 2 (a), for example, as a configuration of the AAA unit 21, a configuration relating to an adaptive array antenna as shown in FIG. The formation is used. . As shown in FIG. 11 of the above description, the received and received signal number "" is slightly different from the received and received signal number "". Is input to and output from the modem section 22 22, and the transmission / reception signal '''' is input from the mode modem section 22 22. .
ななおお、、基基地地局局装装置置のの全全体体的的なな構構成成やや、、 ァァダダププテティィブブアアレレイイアアンンテテナナにに関関すするる構構 成成ととししててはは、、必必ずずししもも本本実実施施例例でで示示ししたたももののにに限限らられれずず、、種種々々なな構構成成がが用用いいらられれてて 55 ももよよいい。。  In addition, the overall configuration of the base station equipment and the configuration related to Aadaptive Bua Alley Leia Antentenana. However, the present invention is not necessarily limited to what is shown in the embodiment of the present embodiment, but various types of configuration may be used. 55 can be used. .
第第 22図図 ((bb )) ににはは、、 TT DD DD方方式式ににおおけけるるデデーータタ通通信信 ((TT xx或或いいはは RR xx )) のの間間 ののガガーードドフフレレーームムのの一一例例やや、、 FF DD DD方方式式ににおおけけるるデデーータタ通通信信((丁丁 及及びび )) のの間間 ののガガーードドフフレレーームムのの一一例例をを示示ししててああるる。。  FIG. 22 ((bb)) shows the data communication ((TT xx or RR xx)) in the TT DD DD system. One example of a gadget frame in the garbage collection system, and a garbage collection system for data communication in the FF DD DD system ((chome and)) One example of the Dodoff frame is shown. .
本本実実施施例例にに係係るる基基地地局局装装置置でではは、、例例ええばば、、 ここののよよううななガガーードドフフレレーームムのの期期間間なな 1100 どどののよよううにに、、デデーータタがが通通信信中中ででははなないい領領域域ででああるるととききにに、、キキャャリリブブレレーーシショョンンのの処処 理理をを行行ううここととをを許許容容しし、、 ここれれにによよりり、、キキャャリリブブレレーーシショョンンのの処処理理をを効効率率的的にに行行ううここ ととががででききるる。。  In the base station apparatus according to the embodiment of the present embodiment, for example, for example, during the period of the gagardoff frame, such as In some cases, such as when the data is in an area that is not in communication, the calibration is performed. This allows for more efficient processing of the calibration process. This is where you can go to your destination. .
以以上上ののよよううにに、、本本実実施施例例にに係係るる基基地地局局装装置置でではは、、無無線線通通信信ののアアンンテテナナパパタターー ンンにに寄寄与与すするるアアレレイイ素素子子数数 NNのの素素子子をを有有ししてていいるるととととももにに、、例例ええばばそそのの近近傍傍にに、、 ァァ 1155 レレイイ素素子子数数 MMののキキヤヤリリブブレレーーシショョンン用用ののアアレレイイアアンンテテナナ素素子子をを有有ししてていいるる。。そそししてて、、 無無線線通通信信ののアアンンテテナナパパタターーンンにに寄寄与与すするる NN本本のの各各アアンンテテナナ AA 11〜〜AANNかからら 11本本ずず つつ順順番番にに既既知知のの振振幅幅とと既既知知のの位位相相でで電電波波をを送送信信しし、、当当該該電電波波ををキキヤヤリリブブレレーーシショョンン アアンンテテナナ II 11〜〜II MMにによよりり受受信信すするる。。  As described above, in the base station apparatus according to the embodiment of the present invention, the wireless communication The number of elementary elements that contribute to the elementary elementary element element of NN, and, for example, in the vicinity of 1155 Relay element number The device has an elementary element element for a MM-capacity re-bracketing operation. . Then, each of the NN books that contributes to the wireless communication communication of Aantante Tenana Papata Turn is 11 from AA11 to AANN In order, the radio wave is transmitted and transmitted in a known amplitude width and a known phase phase, and the radio wave is transmitted to the carrier. Aeontetenana II 11 ~~ II MM to receive and receive. .
ここののよよううにに、、本本実実施施例例でではは、、キキヤヤリリププレレーーシショョ
Figure imgf000016_0001
As in this example, in the present embodiment, the key is
Figure imgf000016_0001
0 ナ群で構成し、そして、キャリブレーション用のアレイアンテナによりフォーミン グされるァンテナパタ一ンが、無線通信用のアレイアンテナから順々にキヤリブレ —'シヨン用のデータを受信して、 キャリブレーション処理を実行する。  The antenna pattern, which is composed of 0 groups, and is formed by the calibration array antenna, sequentially receives the calibration data from the wireless communication array antenna and performs the calibration process. Execute
本実施例では、キヤリプレーションアンテナ I 1〜 I Mもアレイアンテナと なっているため、ァンテナ間で信号の送受を行う信号レベルは非常に低くてもよく、 5 例えば、キヤリブレ一ションアンテナを 4素子にすると各アンテナから空間に送信 する電力は 6 d B ( 2 5 %) 低くてもよい。 これは、 無線通信用のアレイアンテナ A 1〜ANとキヤリブレーションアンテナ I 1〜 I Mとのアンテナ間の距離を 2 倍離したことと等価であり、キヤリブレ一ションアンテナ I 1〜 I Mと無線通信用 のアレイアンテナ A 1〜ANとの相互結合量は格段に低下し、無線通信用のアレイ アンテナ A l〜 ANのアンテナパターンが個別に有する特性に近づく。 In this embodiment, since the calibration antennas I1 to IM are also array antennas, the signal level for transmitting and receiving signals between antennas may be very low.5 For example, four elements of the calibration antenna To transmit from each antenna to space Power may be as low as 6 dB (25%). This is equivalent to doubling the distance between the antennas for the wireless communication array antennas A1 to AN and the calibration antennas I1 to IM. The mutual coupling with the array antennas A1 to AN for wireless communication is remarkably reduced, and approaches the characteristics of the antenna patterns of the array antennas Al to AN for wireless communication individually.
また、 本実施例に係る基地局装置では、 例えば、 キャリブレーション用のァ レイ素子 I 1〜 I Mの 1つ又は 2以上に障害が発生したときには、運用を停止する ことなく、障害が発生したアンテナを除く各キャリブレーション用ァンテナ素子で キャリブレーションを行うことなどができる。  Further, in the base station apparatus according to the present embodiment, for example, when a failure occurs in one or more of the calibration array elements I1 to IM, the operation of the failed antenna is performed without stopping the operation. Calibration can be performed with each calibration antenna element except for.
また、 本例の基地局装置では、 例えば、 無線通信のアンテナパターンに寄与す るアレイ素子数 Nの素子を複数である d個のグループに分けて、キヤリプレーショ ンを行う回数を短縮することができる。  Further, in the base station apparatus of the present example, for example, the number of elements of the array element N contributing to the antenna pattern of the wireless communication is divided into a plurality of d groups to reduce the number of times of carrying out the calibration. Can be.
従って、本実施例に係る基地局装置では、無線通信を行う複数のアレイアン テナ素子 A 1〜 ANとは全く独立した複数のキヤリブレーシヨン用のアレイアン テナ素子 I 1〜 I Mを備えることにより、 例えば、 運用中に動的に、 無線通信用の 各アレイアンテナ系列のキャリブレーションを行うことが可能であり、このような キヤリブレーションを例えば微弱電波で行うことが可能であり、キヤリブレーショ ンの精度を高めることができる。つまり、複数のアンテナ I 1〜 I Mから構成され るアレイアンテナによりキヤリブレーションを行うことで、キヤリブレーション用 アンテナによるフォーミングにより、 受信感度が良好となる。  Therefore, in the base station apparatus according to the present embodiment, by providing a plurality of array antenna elements I1 to IM completely independent of the plurality of array antenna elements A1 to AN performing wireless communication, for example, It is possible to dynamically calibrate each array antenna series for wireless communication during operation, and it is possible to perform such calibration using, for example, weak radio waves. Accuracy can be increased. That is, by performing calibration using an array antenna composed of a plurality of antennas I1 to IM, the receiving sensitivity is improved by forming using the calibration antenna.
また、本実施例に係る基地局装置では、 アレイシステムの弱点である 1つの アンテナ (本実施例では、 キャリブレーション用のアンテナ) が故障することによ るシステムの運用停止を抑えることが可能となる。  Further, in the base station apparatus according to the present embodiment, it is possible to suppress the suspension of the system operation due to the failure of one antenna (in this embodiment, the calibration antenna) which is a weak point of the array system. Become.
一例として、移動体通信端末の無線基地局装置において、運用中にアンテナキ ヤリブレーシヨンを自動的に且つ高精度に行うようなことができる。 ここで、従来のキヤリブレーションでは、キャリブレーション用アンテナが アレイ系アンテナに影響を及ぼさないことを前提としているが、本実施例では、 キ ヤリブレ一シヨン用アンテナがアレイ系アンテナに影響を及ぼすことを前提とし ている。 As an example, in a radio base station apparatus of a mobile communication terminal, antenna calibration can be performed automatically and with high accuracy during operation. Here, in the conventional calibration, it is assumed that the calibration antenna does not affect the array antenna, but in the present embodiment, the calibration antenna does not affect the array antenna. Is assumed.
また、本実施例に係る基地局装置に備えられる各アンテナの配置の位置とし ては、種々な位置が用いられてもよい。複数のアンテナのそれぞれの設置位置とそ れらのアンテナによるフォーミング等については、例えば、それぞれの配置のパ夕 ーンに対応してアルゴリズムを用意する。  Also, various positions may be used as the positions of the arrangements of the antennas provided in the base station apparatus according to the present embodiment. For the installation positions of the plurality of antennas and forming by the antennas, for example, an algorithm is prepared corresponding to the pattern of each arrangement.
なお、本実施例では、本発明に係る無線通信装置を基地局装置に適用した場 合を示した。  In this embodiment, a case has been described in which the wireless communication apparatus according to the present invention is applied to a base station apparatus.
また、本実施例に係る基地局装置では、通信相手と無線通信を行うために用い られる複数である N本のアンテナ A 1〜 ANにより複数の無線通信用のァンテナ が構成されており、これら N本のアンテナ A 1〜ANにより無線通信を行う機能に より無線通信手段が構成されている。  Further, in the base station apparatus according to the present embodiment, a plurality of antennas for wireless communication are configured by a plurality of N antennas A1 to AN used for performing wireless communication with a communication partner. The function of performing wireless communication using the antennas A1 to AN constitutes wireless communication means.
また、本実施例に係る基地局装置では、無線通信用の N本のアンテナ A 1〜 Further, in the base station apparatus according to the present embodiment, N antennas A 1 to
ANの系に関するキャリブレーション処理を実行するために用いられる複数であ る M本のアンテナ I 1〜 I Mにより複数のキヤリブレーション用のアンテナが構 成されており、これら M本のアンテナ I 1〜I Mによりアンテナ系に関するキヤリ ブレーシヨン処理を実行する機能によりアンテナ系キヤリブレーション処理実行 手段が構成されている。 A plurality of calibration antennas are configured by a plurality of M antennas I1 to IM used for executing a calibration process for the AN system, and the M antennas I1 to I1 to IM are used. The function of executing the calibration processing for the antenna system by the IM constitutes the antenna system calibration processing execution means.
また、本実施例では、無線通信用のアンテナとキャリブレーション用のアンテ ナとを別個なアンテナとして備える構成を示したが、他の構成例として、無線通信 用のアンテナとキヤリブレーション用のアンテナとで、一部或いは全部のアンテナ が共用されるような構成を用いることも可能である。  Further, in this embodiment, the configuration in which the antenna for wireless communication and the antenna for calibration are provided as separate antennas has been described. However, as another configuration example, the antenna for wireless communication and the antenna for calibration are provided. It is also possible to use a configuration in which some or all of the antennas are shared.
以下で、 本発明に関する技術の背景を示す。 なお、 ここで記載する事項は、 必ずしも全てが従来の技術であるとは限定しない。 The background of the technology relating to the present invention will be described below. The items described here are: Not all are necessarily limited to conventional techniques.
例えば、 移動体無線通信において、 高速通信実現のために、 ァダプティプアレ イアンテナシステムを用いることは非常に有効なことである。ァダプティプアレイ アンテナシステムは、各アレイ系列の位相や振幅を変更することにより、所望のュ 一ザが存在する方向へアンテナパターンのピークを向けることができる。 これは、 ァダプティブなビームフォーミングである。 また、 7ダプテイブアレイアンテナシ ステムでは、 例えば、 複数である N素子のアンテナの場合には、 # 1から # Nまで の N個の系列を有する。  For example, in mobile radio communication, it is very effective to use an adaptive array antenna system to realize high-speed communication. The adaptive array antenna system can direct the peak of the antenna pattern in the direction in which the desired user exists by changing the phase and amplitude of each array sequence. This is adaptive beamforming. In a 7-adaptive array antenna system, for example, in the case of a plurality of N-element antennas, there are N series from # 1 to #N.
また、 ァダプティブアレイアンテナシステムは、非所望ユーザからの干渉波 受信を抑圧し、非所望ユーザ方向への干渉を削減するように送信アンテナパターン のヌル(NUL L) を向けることができる。 これは、 ァダプティブなヌルスティア リングである。  In addition, the adaptive array antenna system can direct a null (NULL) of a transmission antenna pattern so as to suppress reception of an interference wave from an undesired user and reduce interference in an undesired user direction. This is adaptive null steering.
そして、ァダプティブアレイアンテナシステムでは、通信を行う移動体通信端 末に対しては最大の送信電力で通信するァダプティブビームフォーミングを行レ 通信を行っていない他の干渉移動体通信端末に対しては影響を与えないようにす るァダプティブヌルスティアリングを行うことができる。  In the adaptive array antenna system, adaptive beamforming for communicating with the maximum transmission power is performed for the mobile communication terminal that performs communication with another interfering mobile communication terminal that is not performing communication. Adaptive null steering can be performed so as not to affect them.
第 3図には、ァダプテイブビームフォーミング及びァダプティブヌルスティ ァリングの一例を示してある。  FIG. 3 shows an example of adaptive beamforming and adaptive null steering.
具体的には、ァダプティブアレイアンテナを搭載した基地局装置のアンテナ 3 1及びそのアンテナパターン(指向性パターン) と、 複数の移動体通信端末装置 4 1〜4 3を示してある。  Specifically, an antenna 31 of a base station device equipped with an adaptive array antenna and its antenna pattern (directivity pattern) and a plurality of mobile communication terminal devices 41 to 43 are shown.
希望波に対応する移動体端末装置 4 2の方向にはビームを向け、妨害波に対応 する移動体端末装置 4 1、 4 3の方向にはヌルを向けている。  The beam is directed in the direction of the mobile terminal device 42 corresponding to the desired wave, and the null is directed in the direction of the mobile terminal devices 41 and 43 corresponding to the interference wave.
ところで、 移動体通信には、 TDMA (Time Divis ion Mul t iple Access) 方式や F D D (Freauency Division Duplex) 方式のシステムがあり、 例えば、 T DMA/TDD (Time Division Duplex) 方式の通信システムにおいては、 送受の 周波数が全く同一である。基地局装置からユーザ端末側の電波伝搬環境とユーザ端 末側から基地局装置までの電波伝搬環境が等しく、基地局装置とユーザ端末との間 で電波伝搬環境の可逆性が成立する。 By the way, in mobile communication, there are TDMA (Time Division Multiple Access) and FDD (Freauency Division Duplex) systems. In a DMA / TDD (Time Division Duplex) communication system, the transmission and reception frequencies are exactly the same. The radio wave propagation environment from the base station device to the user terminal is equal to the radio wave propagation environment from the user terminal side to the base station device, and reversibility of the radio wave propagation environment is established between the base station device and the user terminal.
つまり、基地局装置側の受信と送信のアンテナパターンを同 にすることが、 でき、非常に簡易な構成で実現することができる。 これらは、 現在において一部で サービスされている PHS (Personal Handy phone System) 基地局装置などで実 用されている。  That is, it is possible to make the reception and transmission antenna patterns of the base station apparatus the same, and it is possible to realize a very simple configuration. These are currently used in PHS (Personal Handy phone System) base station equipment that is partially provided.
一方、 PDC (Personal Digital Cellular)方式や CDMA (Code Division Multiple Access) 方式等の FDDシステムでは、 上り回線と下り回線の周波数が 異なるため、受信と送信のアンテナパターンを厳密には同一にすることができない。  On the other hand, in FDD systems such as the PDC (Personal Digital Cellular) system and the CDMA (Code Division Multiple Access) system, since the uplink and downlink frequencies are different, it is necessary to make the reception and transmission antenna patterns exactly the same. Can not.
第 4図には、 FDDシステムにおけるァダプティブアレイアンテナ装置の構 成例を示してある。  FIG. 4 shows a configuration example of an adaptive array antenna device in an FDD system.
具体的には、 複数である N個の系のそれぞれに、 アンテナ 01〜〇Nと、 送受 切り替え用のスィッチ (SW) P1〜PNと、 受信回路 (Rx) Q1〜QNと、 A /D (Analog to Digital) 変換器 (ADC) R1〜RNと、 各アンテナの受信信 号に対して各アンテナの受信ウェイトを乗算するための乗算器 S 1〜SNと、送信 信号に対して各アンテナの送信ウェイトを乗算するための乗算器 T 1〜TNと、 D ZA (Digital to Analog) 変換器 (DAC) U1〜UNと、 送信回路 (Tx) V 1〜VNが備えられている。  Specifically, antennas 01 to 〇N, transmission and reception switching switches (SW) P1 to PN, reception circuits (Rx) Q1 to QN, and A / D ( Analog to Digital) Converters (ADC) R1 to RN, multipliers S1 to SN for multiplying the reception signal of each antenna by the reception weight of each antenna, and transmission of each antenna for the transmission signal Multipliers T1 to TN for multiplying weights, DZA (Digital to Analog) converters (DACs) U1 to UN, and transmission circuits (Tx) V1 to VN are provided.
また、 N個の系に共通に、受信ウェイト乗算後の各アンテナ受信信号を総和
Figure imgf000020_0001
としての受信信号を取得する加算器 51と、 当該受信信号に基づいて各アンテナの受信ウェイトゃ各アンテナの送信ウェイト を算出するウェイト計算回路 52が備えられている。
In addition, for each of the N systems, the sum of each antenna reception signal after reception weight multiplication is calculated.
Figure imgf000020_0001
An adder 51 that acquires a received signal as a signal, and a weight calculation circuit 52 that calculates the reception weight of each antenna divided by the transmission weight of each antenna based on the received signal are provided.
のような FDDシステム ί; 装置では、 個々のアンテナ素子(# 1〜# N) 0 1〜O Nに対する受信信号に基づいて、 個々 のアンテナ素子 O 1〜Ο Νに対応する複素振幅の重み付けをウェイト計算回路 5 2で決定し、このウェイトを各アンテナ素子 0 1 ~O Nに対応する受信信号に付与 する。 また、 これとともに、 当該ウェイトに周波数差成分を含めた補正値 (周波数 キャリブレーション)を送信データからの送信信号に付与することで、期待するァ ンテナパターンを形成する。 これにより、送受信で同一のパターンを形成すること ができる。 FDD system like ί; Based on the received signals for the individual antenna elements (# 1 to #N) 0 1 to ON, the weights of the complex amplitudes corresponding to the individual antenna elements O 1 to {} are determined by the weight calculation circuit 52. Is given to the received signal corresponding to each antenna element 0 1 to ON. At the same time, an expected antenna pattern is formed by adding a correction value (frequency calibration) including the frequency difference component to the weight to the transmission signal from the transmission data. Thereby, the same pattern can be formed in transmission and reception.
しかしながら、受信と送信で同一のパターンを形成することは現実的には困 難である。  However, it is practically difficult to form the same pattern for reception and transmission.
例えば、各アレイ系列の送信アナログ部や受信アナログ部の通過振幅特性及び 通過位相特性に偏差 (バラツキ) があるため、 受信と送信で同じ重みに対する周波 数差成分を含めた補正ウェイトを用いた場合においても、受信パターンと送信パタ ―ンが異なり、所望方向への利得が低くなつたり千渉ユーザへの利得が高くなつた りして、 所望のアンテナパターンを生成することができないことがある。  For example, when there is a deviation (variation) in the transmission amplitude and transmission phase characteristics of the transmission analog part and reception analog part of each array series, when a correction weight that includes a frequency difference component for the same weight is used for reception and transmission. In this case, a desired antenna pattern may not be generated because the reception pattern and the transmission pattern are different, and the gain in a desired direction is reduced or the gain for a hired user is increased.
第 5図には、このようなァダプティブアレイアンテナによる受信パターン Z Fig. 5 shows the reception pattern Z by such an adaptive array antenna.
1と送信パターン Z 2の一例を示してあり、偏差により受信パ夕一ン Z 1と送信パ ターン Z 2とがずれている。 1 and an example of the transmission pattern Z2 are shown, and the reception pattern Z1 and the transmission pattern Z2 are shifted due to a deviation.
そして、 図示されるように、 受信パターン Z 1から推定したヌル (NU L L ) 角度において、送信パターンのサイドローブピークが向いてしまうようなことが生 じ、 所望め送信パターンにならない。  Then, as shown in the figure, at the null (NULL) angle estimated from the reception pattern Z1, the side lobe peak of the transmission pattern may be directed, and the desired transmission pattern may not be obtained.
このような各アレイ系列のバラツキを取り除く方法として、一般的には、個 別のハードウェアキャリブレーションが行われる。具体的には、全ての受信アナ口 グ部と送信アナログ部の偏差を測定して、 補正量を予め算出し、 そして、 実際の運 用時にその補正量を考慮して各素子に設定する重みを算出する。  In general, individual hardware calibration is performed as a method of removing such a variation of each array series. More specifically, the deviation between all the reception analog sections and the transmission analog section is measured, the correction amount is calculated in advance, and the weight set for each element in consideration of the correction amount during actual operation. Is calculated.
しかしながら、最初に求めた補正量が運用中に変化してしまうような場合が ある。 この原因としては、例えば、 昼夜の外気温度変化の違いによるアナログ部の アクティブ部品(例えば、増幅器、ミキサ、シンセサイザなど)の特性変化がある。 また、 それ以外のパッシブ部品 (例えば、 フィル夕、 力ブラなど) についても若干 の特性変化がある。 However, there are cases where the initially obtained correction amount changes during operation. is there. The cause of this is, for example, a change in the characteristics of an analog active component (for example, an amplifier, a mixer, a synthesizer, etc.) due to a difference in outside air temperature between day and night. In addition, other passive components (eg, fillers, power brass, etc.) have some characteristic changes.
また、原因としては、装置内部に使用している接続ケーブルの長さの伸縮に よる微小な位相変動などが考えられる。或いは、アンテナと増幅器とを接続するケ 一ブルが屋外に露出している場合には、風や雨や雪などの外部要因によってケープ ルが振動することによる位相変動などが考えられる。  The cause may be slight phase fluctuation due to expansion and contraction of the length of the connection cable used inside the device. Alternatively, if the cable connecting the antenna and the amplifier is exposed outdoors, phase fluctuations due to external vibrations such as wind, rain, snow, and the like may be considered.
このような変化が生じると、ァダプティプアレイァンテナ装置の性能が大幅 に劣化し、例えば上記第 5図に示したアンテナパターンと同様に、所望波と干渉波 (ノイズ成分も含む) との比である S I N R (Signal to Interference plus Noise Rat io) の劣化が起きる。 この結果、 干渉抑圧ができずに、 通信品質が劣化したり する。 このため、 キャリブレーションは一度では不十分であり、 運用中にリアルタ ィムにキヤリブレーションすることが要求される。  When such a change occurs, the performance of the adaptive array antenna device is greatly deteriorated. For example, similarly to the antenna pattern shown in FIG. 5, a desired wave and an interference wave (including a noise component) are generated. Degradation of SINR (Signal to Interference plus Noise Rat io), which is the ratio of As a result, interference suppression cannot be performed and communication quality deteriorates. For this reason, calibration is not sufficient at one time, and it is necessary to perform calibration in real time during operation.
また、ァダプティブアレイアンテナ基地局装置のアンテナ素子数が多い場合 には、 アンテナ素子数が多いことからアンテナ間の距離があるため、キヤリプレー シヨンの精度が高くない傾向がある。 このため、キヤリブレーション時の参照信号 レベルを高くする必要があるが、周辺の基地局装置との干渉の原因となるため望ま しくない。 また、信号レベルを低くする場合には、 キャリブレーションの精度が必 要であり、 キャリブレーションアンテナに求められる仕様は厳しい。 また、 ァダプ ティブアレイシステムにおいてキャリブレーションアンテナに障害がでたときな どはそれ自体ですぐに基地局装置が停止となるなど、特性 ·信頼性ともに重要なも のである。  In addition, when the number of antenna elements of the adaptive array antenna base station apparatus is large, there is a distance between antennas due to the large number of antenna elements, so that the accuracy of the calibration is not high. For this reason, it is necessary to increase the reference signal level at the time of calibration, but this is not desirable because it causes interference with nearby base station apparatuses. In addition, when the signal level is reduced, the accuracy of the calibration is required, and the specifications required for the calibration antenna are strict. In addition, in the case of a failure of the calibration antenna in an adaptive array system, the base station equipment is immediately stopped by itself, so that both characteristics and reliability are important.
これに対して、本発明では、 以上に説明したように、 このような従来の問題を 解消することができ、 有効な効果を実現することができる。 ここで、本発明に係る無線通信装置や通信機や基地局装置などの構成として は、必ずしも以上に示したものに限られず、種々な構成が用いられてもよい。また、 本発明は、例えば、 本発明に係る処理を実行する方法或いは方式や、 このような方 法や方式を実現するためのプログラムや当該プログラムを記録する記録媒体など として提供することも可能であり、また、種々な装置やシステムとして提供するこ とも可能である。 On the other hand, according to the present invention, as described above, such a conventional problem can be solved and an effective effect can be realized. Here, the configurations of the wireless communication device, the communication device, the base station device, and the like according to the present invention are not necessarily limited to those described above, and various configurations may be used. Further, the present invention can be provided, for example, as a method or a method for executing the processing according to the present invention, a program for realizing such a method or method, a recording medium for recording the program, and the like. Yes, and can also be provided as various devices and systems.
また、本発明の適用分野としては、 必ずしも以上に示したものに限られず、本 発明は、 種々な分野に適用することが可能なものである。  Further, the application field of the present invention is not necessarily limited to the above-described fields, and the present invention can be applied to various fields.
また、本発明に係る無線通信装置や通信機や基地局装置などにおいて行われ る各種の処理としては、例えばプロセッサやメモリ等を備えたハードウェア資源に おいてプロセッサが R OM (Read Only Memory) に格納された制御プログラムを実 行することにより制御される構成が用いられてもよく、 また、例えば当該処理を実 行するための各機能手段が独立したハードウェア回路として構成されてもよい。  Further, as various processes performed in the wireless communication device, the communication device, the base station device, and the like according to the present invention, for example, in a hardware resource including a processor, a memory, and the like, a processor is a ROM (Read Only Memory). A configuration controlled by executing a control program stored in the CPU may be used. For example, each functional unit for executing the processing may be configured as an independent hardware circuit.
また、本発明は上記の制御プログラムを格納したフロッピー (登録商標) ディ スクゃ C D (Compact Disc) 一 R OM等のコンピュータにより読み取り可能な記録 媒体や当該プログラム (自体) として把握することもでき、 当該制御プログラムを 当該記録媒体からコンピュータに入力してプロセッサに実行させることにより、本 発明に係る処理を遂行させることができる。  In addition, the present invention can be understood as a computer-readable recording medium such as a floppy (registered trademark) disk (CD) or a ROM storing the above-mentioned control program, or the program (itself). The processing according to the present invention can be performed by inputting the control program from the recording medium to a computer and causing the processor to execute the control program.
産業上の利用可能性 Industrial applicability
以上説明したように、本発明に係る無線通信装置によると、複数のキヤリブ レーシヨン用のアンテナをアレイアンテナとして用いて無線通信用のアンテナ系 に関するキヤリブレーシヨン処理を実行するようにしたため、高精度なアンテナキ ヤリブレーシヨンを実現することができ、例えば、無線通信用のアレイアンテナを 構成するアンテナの数が多いような場合においても、高精度なアンテナキヤリブレ —シヨンを実現することができる。 また、 本発明によると、 例えば、 キヤリプレー ションを行うための信号のレベルを低くして干渉を抑制することを可能とするこ とができ、 また、キャリブレーション用のアンテナに障害が発生した場合において も運用を続行することを可能とすることができる。 As described above, according to the wireless communication apparatus according to the present invention, the calibration processing for the wireless communication antenna system is performed by using a plurality of calibration antennas as an array antenna. Antenna calibration can be realized. For example, even when the number of antennas constituting an array antenna for wireless communication is large, high-precision antenna calibration is possible. —You can achieve shilling. Further, according to the present invention, for example, it is possible to suppress interference by lowering the level of a signal for performing the calibration, May be able to continue operation.

Claims

請 求 の 範 囲 The scope of the claims
1 . アンテナを用いて無線により通信する無線通信装置において、 1. In a wireless communication device that performs wireless communication using an antenna,
アンテナ系に関するキャリブレーション処理を実行するために用いられる複数 のキャリブレーション用のアンテナと、  A plurality of calibration antennas used to perform a calibration process on the antenna system;
複数のキヤリブレーション用のアンテナをアレイアンテナとして用いてアンテ ナ系に関するキヤリブレーシヨン処理を実行するアンテナ系キヤリブレーシヨン 処理実行手段と、  An antenna-based calibration processing executing means for executing a calibration processing related to an antenna system using a plurality of calibration antennas as an array antenna;
を備えたことを特徴とする無線通信装置。  A wireless communication device comprising:
2 . 請求の範囲第 1項に記載の無線通信装置において、 2. In the wireless communication device according to claim 1,
アンテナ系キヤリブレーション処理実行手段は、いずれかのキヤリブレーシヨン 用のアンテナに関する障害が発生した場合には、障害が発生したキヤリプレーショ ン用のアンテナを除外したキヤリプレーシヨン用のアンテナを用いてアンテナ系 に関するキヤリブレーション処理を実行する、  The antenna-based calibration processing execution means uses a calibration antenna that excludes the failed calibration antenna when a failure occurs in any of the calibration antennas. To execute the calibration process for the antenna system
ことを特徴とする無線通信装置。  A wireless communication device characterized by the above-mentioned.
3 . 請求の範囲第 1項又は請求の範囲第 2項に記載の無線通信装置において、 無線通信を行うために用いられる複数の無線通信用のアンテナと、  3. The wireless communication device according to claim 1 or claim 2, wherein a plurality of wireless communication antennas used for performing wireless communication;
複数の無線通信用のアンテナをアレイアンテナとして用いて無線通信を行う無 線通信手段と、 を備え、  Wireless communication means for performing wireless communication using a plurality of wireless communication antennas as an array antenna;
複数の無線通信用のアンテナは、 2以上のグループに分けられ、  Multiple wireless communication antennas are divided into two or more groups,
アンテナ系キャリブレーション処理手段は、無線通信用のアンテナについて、各 グループ毎に、 アンテナ系に関するキヤリブレーション処理を実行する、  The antenna system calibration processing means executes a calibration process for the antenna system for each group with respect to the antenna for wireless communication,
こと 特徵とする無線通信装置。 '  A wireless communication device to be characterized. '
PCT/JP2004/016073 2003-10-27 2004-10-22 Wireless communication apparatus WO2005041443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003365443A JP4384892B2 (en) 2003-10-27 2003-10-27 Wireless communication device
JP2003-365443 2003-10-27

Publications (1)

Publication Number Publication Date
WO2005041443A1 true WO2005041443A1 (en) 2005-05-06

Family

ID=34510168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016073 WO2005041443A1 (en) 2003-10-27 2004-10-22 Wireless communication apparatus

Country Status (2)

Country Link
JP (1) JP4384892B2 (en)
WO (1) WO2005041443A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376681A1 (en) * 2017-03-13 2018-09-19 Kabushiki Kaisha Toshiba Wireless communication device and wireless communication method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153507B2 (en) * 2008-08-04 2013-02-27 三菱電機株式会社 Wireless communication device
JP5517564B2 (en) * 2009-10-29 2014-06-11 日本無線株式会社 Vibration control device
CN102340339B (en) * 2010-07-16 2014-03-26 上海贝尔股份有限公司 Method for calibrating antenna reciprocity in base station of wireless network and apparatus thereof
JP5669874B2 (en) * 2013-02-22 2015-02-18 電気興業株式会社 Base station antenna apparatus for mobile communication system
JP6329348B2 (en) * 2013-08-13 2018-05-23 株式会社Nttドコモ Base station apparatus and calibration method
WO2016024326A1 (en) 2014-08-12 2016-02-18 電気興業株式会社 Mobile communication system and base-station antenna device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336149A (en) * 1997-05-28 1998-12-18 Matsushita Electric Ind Co Ltd Cdma radio communication device with arrayed antenna
JP2001177458A (en) * 1999-12-20 2001-06-29 Nippon Telegr & Teleph Corp <Ntt> Adaptive array antenna transmitter-receiver and its calibration method
JP2002261668A (en) * 2001-03-01 2002-09-13 Hitachi Kokusai Electric Inc Communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336149A (en) * 1997-05-28 1998-12-18 Matsushita Electric Ind Co Ltd Cdma radio communication device with arrayed antenna
JP2001177458A (en) * 1999-12-20 2001-06-29 Nippon Telegr & Teleph Corp <Ntt> Adaptive array antenna transmitter-receiver and its calibration method
JP2002261668A (en) * 2001-03-01 2002-09-13 Hitachi Kokusai Electric Inc Communication apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376681A1 (en) * 2017-03-13 2018-09-19 Kabushiki Kaisha Toshiba Wireless communication device and wireless communication method
US10187110B2 (en) 2017-03-13 2019-01-22 Kabushiki Kaisha Toshiba Wireless communication device and wireless communication method

Also Published As

Publication number Publication date
JP4384892B2 (en) 2009-12-16
JP2005130315A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
CN105940552B (en) The communication unit and method of antenna array calibration
JP3502348B2 (en) Adaptive array antenna, calibration amount calculation method and calibration method for adaptive array antenna receiving system
EP2396903B1 (en) Network element for providing active beamforming to existing base station and antenna array
US8712475B2 (en) Method to calibrate RF paths of an FHOP adaptive base station
CN113541828A (en) Communication unit, integrated circuit and method for generating a plurality of fan-shaped beams
EP2107637A1 (en) Antenna array and corresponding method for power loss compensation and suppression of sidelobes
US9923585B2 (en) Interference cancellation in microwave backhaul systems
JPWO2011074031A1 (en) Radio signal processing apparatus and radio apparatus
US11575401B2 (en) Method for processing of passive intermodulation products
WO2005041443A1 (en) Wireless communication apparatus
JP4447337B2 (en) Wireless communication device
WO2002023670A1 (en) Method of generating directional antenna beams, and radio transmitter
JP4623327B2 (en) Mobile communication system, base station, interference canceling method
JP3597694B2 (en) Adaptive antenna device
JP3589605B2 (en) Adaptive array antenna transceiver
US20110223872A1 (en) Wireless transceiving apparatus
JP4394416B2 (en) Wireless communication device
JP3640891B2 (en) Arrival wave direction estimation apparatus and arrival wave direction estimation method
EP1271802A1 (en) A system and a method for calibrating radio frequency transceiver systems including antenna arrays
JP4291595B2 (en) Radio apparatus and radio base station
JP4489460B2 (en) Adaptive array antenna system, adaptive array antenna control method, and radio apparatus
JP2003264418A (en) Adaptive array antenna
JP2003338772A (en) Cdma mobile communication base station apparatus
JP2005005910A (en) Array antenna communication apparatus
JP2007174072A (en) Calibration device and wireless device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase