WO2005040649A1 - Non-contact oil seal mechanism for rotating shaft - Google Patents

Non-contact oil seal mechanism for rotating shaft Download PDF

Info

Publication number
WO2005040649A1
WO2005040649A1 PCT/JP2004/014843 JP2004014843W WO2005040649A1 WO 2005040649 A1 WO2005040649 A1 WO 2005040649A1 JP 2004014843 W JP2004014843 W JP 2004014843W WO 2005040649 A1 WO2005040649 A1 WO 2005040649A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rotating shaft
seal mechanism
recovery chamber
casing
Prior art date
Application number
PCT/JP2004/014843
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Akita
Tomoyuki Takahashi
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to JP2005514925A priority Critical patent/JPWO2005040649A1/en
Priority to DE112004000627T priority patent/DE112004000627T5/en
Publication of WO2005040649A1 publication Critical patent/WO2005040649A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession
    • F16J15/004Sealings comprising at least two sealings in succession forming of recuperation chamber for the leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid

Definitions

  • the present invention relates to a lubricating oil seal mechanism for a rotating part of a rotating machine, and more particularly to a rotating shaft having a function of preventing the lubricant from leaking outside by being in non-contact with the rotating shaft.
  • the present invention relates to a non-contact type oil seal mechanism.
  • a seal mechanism is provided at a portion of a rotating machine or the like that penetrates a casing of a rotating shaft so as to prevent intrusion of dust and the like from outside the casing and leakage of lubricating oil from inside the casing to the outside.
  • contact-type seals such as o-rings, oil seals, and mechanical seals are often used.
  • a contact-type sealing mechanism a member that is in contact with a rotating shaft is worn out or deteriorates due to aging over a long period of operation, and does not serve as a seal. This often requires frequent replacement of parts.
  • a non-contact type sealing mechanism that can exhibit a sealing function without contacting the shaft may be employed.
  • Such a non-contact type seal mechanism is employed in a device in which parts cannot be easily replaced, and includes a static pressure seal and a labyrinth seal.
  • a static pressure seal for example, two annular grooves are provided so as to surround the shaft, adjacent to the part where the rotating shaft protrudes to the outside or the bearing, such as a casing, and the gas is sent to one of the annular grooves.
  • the other annular groove force is exhausted, a thin, gaseous film is formed between the shaft and the inner peripheral surface of the through-hole to prevent oil from leaking to the outside. It is known (for example, see Patent Document 1).
  • the labyrinth seal is provided with a number of fin-shaped seal fins on an inner peripheral surface of a hole through which a rotating shaft penetrates a wall of a casing or the like, and the distance between the tip of the fin and the shaft is minute.
  • the annular space formed between the fins allows oil that leaks to the outside along the shaft surface to intersect the flow due to the pressure difference between the inside and the outside of the casing.
  • the expansion and expansion of the air gap is attenuated by the compression action, eliminating the differential pressure and oil leakage (See, for example, Patent Document 2).
  • Patent Document 1 JP-A-48-100554
  • Patent Document 2 JP-A-6-330893
  • non-contact type seal mechanisms such as the static pressure seal and the labyrinth seal have the following problems as the seal mechanism. That is, in the case of a static pressure seal, a pressurized fluid (mainly air) for the seal must always be supplied during operation. Of course, a separate source of the pressure fluid is required.
  • a pressurized fluid mainly air
  • the labyrinth seal seems to be structurally simple, it requires machining accuracy and requires some contrivance in assembling, resulting in a high cost. Of course, if the assembly accuracy is not good, there is a problem that the sealing effect is significantly reduced.
  • the present invention has been made in view of such circumstances, and as a non-contact type seal having a simple structure, a non-contact type rotary shaft capable of achieving its purpose for a long period of time. It is an object of the present invention to provide an oil seal mechanism.
  • a non-contact oil seal mechanism for a rotating shaft comprises a rotating shaft and a casing having a casing hole for rotatably holding the rotating shaft.
  • a non-contact type oil seal mechanism provided in a rotary machine in which the rotating shaft is kept in a non-contact state with the casing hole, and a lubricating oil flows through the gap.
  • the non-contact type oil seal mechanism for a rotary shaft according to the second invention is the non-contact type oil seal mechanism for a rotary shaft according to the first invention, wherein the protrusion formed between the adjacent grooves is the same as that of the first aspect. It is characterized in that the edges are angular.
  • a non-contact oil seal mechanism for a rotating shaft according to a third invention is the non-contact oil seal mechanism for a rotating shaft according to the first and second inventions, wherein the recovery chamber is arranged along an axial direction of the rotating shaft. A plurality of grooves are formed on the rotating shaft at positions corresponding to the respective oil recovery chambers.
  • a non-contact oil seal mechanism for a rotating shaft according to a fourth invention is an oil bath that stores lubricating oil to be supplied to the gap, in comparison with the non-contact oil seal mechanism for a rotating shaft according to the third invention.
  • a drain pipe for communicating the lubricating oil collected in each oil recovery chamber to the oil bath, and the drain pipes are formed independently for each oil recovery chamber. It is characterized by having.
  • the lubricating oil adhering to the surface of the rotating shaft is moved from the inside to the outside due to a pressure difference between the inside and the outside of the casing hole (internal pressure increases due to a rise in the temperature of the rotation drive mechanism).
  • the lubricating oil moves in the axial direction due to the protrusions formed between the grooves of the plurality of oil cut grooves provided on the shaft at the position of the oil recovery chamber formed on the casing hole side. The speed can be reduced.
  • the lubricating oil supplied to the gap is prevented from leaking to the outside of the casing.
  • the sealing function can be maintained over a period.
  • the present invention in a shaft rotating at a low speed, a case caused by the operation of the rotating machine is provided. Even if the difference between the internal pressure and the external pressure (atmospheric pressure) is great, the oil that is about to leak can be stopped and recovered by the configuration in which the oil cut groove and the oil recovery chamber correspond to each other. .
  • oil lubrication can be performed by a plurality of ridges.
  • a set of an oil-cutting groove and an oil recovery chamber capable of exhibiting the same function as the first invention is arranged at a plurality of locations, so that the set is provided inside and outside the casing hole. Due to the pressure difference described above, the oil to be leaked is prevented in multiple stages, and the speed is reduced and the flow of the oil is stopped every step.
  • the oil recovered by the oil recovery mechanism consisting of the inner oil recovery chamber and the corresponding oil cut groove is passed through the drain pipe to the oil recovery chamber disposed outside.
  • This has the effect of preventing backflow and oil leakage.
  • by providing a drain pipe independently for each oil recovery chamber it is possible to prevent a backflow phenomenon of the oil recovered without connecting the front and rear oil recovery chambers, and to reliably prevent oil leakage.
  • FIG. 1 is a cross-sectional view showing a specific example of a non-contact oil seal mechanism of a rotary roller according to the present invention.
  • FIG. 2 is an enlarged partial cross-sectional view of a main part of the embodiment.
  • FIG. 3A is a cross-sectional view of a test device used to verify the function of the non-contact oil seal mechanism of the present invention.
  • FIG. 3B is an enlarged sectional view of a main part of the test apparatus.
  • FIG. 4A is a cross-sectional view of a main part of the test apparatus according to the present invention.
  • FIG. 4B is a graph showing a relationship between the test apparatus and the pressure at which the gas leaks out.
  • FIG. 5A is a cross-sectional view of another main part of the test apparatus according to the present invention.
  • FIG. 5B is a graph showing the relationship between the above-mentioned test apparatus and the pressure at which the leaking sound starts. Explanation of symbols
  • FIG. 1 is a cross-sectional view showing a specific example of a non-contact type oil seal mechanism of a rotating shaft according to the present invention.
  • FIG. 2 shows an enlarged partial cross-sectional view of a main part.
  • the rotary shaft non-contact type oil seal mechanism 1 (hereinafter simply referred to as the oil seal mechanism 1) shown in FIG. 1 is attached to a portion of the rotating shaft 12 that rotates at a low speed and protrudes outside from the bearing portion 15 of the rotating machine 10. It is a specific example of the provided embodiment.
  • the oil seal mechanism 1 is a rotary shaft of an input unit provided in a casing 11 of the rotary machine 10.
  • a housing cover 14 attached to the outside of a bearing housing 13 for supporting the bearing 12.
  • the oil seal mechanism 1 includes a plurality of oil recovery chambers 4 formed on the inner peripheral surface of the casing hole 3 and a plurality of oil recovery chambers 4 provided on the outer peripheral surface of the rotary shaft 12 according to the position of each oil recovery chamber 4.
  • a cut groove 5 and a plurality of drain pipes 16 provided in each oil recovery chamber 4 are provided.
  • a rotating body (not shown) is attached to the rotating shaft 12 at a shaft end that protrudes therethrough.
  • the rotating shaft 12 When the rotating body rotates, the rotating shaft 12 is supported by the bearing portion 15 and the rotating shaft 12 is rotated.
  • the lubricating oil flows through the gap t between the casing holes 3 to achieve smooth rotation. Note that the smaller the gap t is, the better.
  • the rotating shaft 12 since the rotating shaft 12 must not come into contact with the housing cover 14 during the rotation of the rotating shaft 12, it is generally preferable to secure a clearance of about 0.5 mm. Better ,.
  • each of the oil recovery chambers 4 is configured as a concave groove having a rectangular cross section, and the inner peripheral surface of the casing hole 3 closer to the end of the rotary shaft 12 than the bearing 15. Formed in two places The concave groove is continuous so as to make a round along the circumferential direction of the rotating shaft 12.
  • the width W1 of the inner oil recovery chamber 4 along the rotation axis is set to, for example, 2 Omm, and the depth D1 is set to, for example, 20 mm.
  • a drain pipe 16 is connected to the bottom of the concave groove of each oil recovery chamber 4, and the drain pipe 16 connected to the oil recovery chamber 4 formed inside in FIG. As a result, the other end of the drain pipe 16 is connected to a force oil bath (not shown).
  • This oil bath stores lubricating oil in order to supply the lubricating oil to the bearing 15, and the lubricating oil collected in the oil recovery chamber 4 is returned to the oil bath via the drain line 16.
  • the inner diameter of the portion of the drain line 16 communicating with the oil recovery chamber 4 is desirably as large as possible, it is 18 mm ⁇ , which is slightly smaller than the width of the oil recovery chamber 4. It has been.
  • the reason for setting the drain pipe 16 to such a diameter is that the lubricating oil that has fallen into the oil recovery chamber 4 from the oil kerf 5 described later must be collected promptly so that the lubricating oil stays in the oil recovery chamber 4. Then, it may leak into the gap t again.
  • Such a drain pipe 16 is formed by drilling a hole or the like upward from a bottom portion (a lower surface in FIG. 2) of the casing 11 and further crossing the hole from a direction perpendicular to the rear end surface of the casing 11 so as to cross the hole.
  • the holes can be formed by, for example, forming holes by closing the end surfaces of the holes with a packing (sealing member) such as an elastic member.
  • a drain pipe similar to the above is formed in the outside (right side in FIG. 1) oil recovery chamber 4 so as to reach the oil bath independently of the drain pipe 16. If this is described in 1, the drain pipes will intersect, so the drawing is omitted for convenience. Further, a seal ring 18 is additionally provided outside the outer oil recovery chamber 4 so as to close the casing hole 3.
  • the seal ring 18 is made of a soft material and functions as an auxiliary seal member of the oil seal mechanism 1.
  • the oil cut groove 5 is a groove formed so as to make a full circumference in the circumferential direction of the outer peripheral surface of the rotating shaft 12, and as shown in FIG. It is engraved on the rotating shaft 12 as a group of multiple oil kerf grooves 5.
  • a plurality of grooves are formed at required intervals with a narrow width.
  • a groove is formed between adjacent oil kerfs 5 by engraving.
  • Article 6 is formed.
  • the ridges 6 are preferably formed such that both ends 6a, which are corners of the radial end of the rotating shaft 12, are angular. In this way, the axial speed of the oil adhering to the shaft peripheral surface and flowing out with the rotation is reduced by the surface tension at the tip of the ridge 6 that connects to the oil cut groove 5, and the oil's axial speed is reduced by the surface tension. It is effective to shake off.
  • each oil-cutting groove 5 are determined by the shape of both ends 6 a of the ridge 6 and the length of the end surface of the ridge 6 at the radial end of the rotating shaft 12. Therefore, the width dimension W2 and the depth dimension D2 of the oil groove 5 have basically no correlation with the diameter of the rotating shaft 12 (120 mm ⁇ in the present embodiment). In the present embodiment, the width dimension W2 and the depth dimension D2 of each oil kerf groove 5 are approximately 3 mm.
  • the group of the oil kerf 5 is not formed as at least two or more groups, the effect will not be produced.
  • the present invention The effect cannot be achieved.
  • three oil kerfs 5 are formed per group, and two ridges 6 are formed between them.
  • the width dimension W3 of the ridge 6 is substantially equal to the width of the oil kerf 5.
  • the width W4 of the group of three oil kerfs 5 is set to W1> W4 so as to be accommodated in the oil recovery chamber 4 having the width W1.
  • the oil seal mechanism 1 is provided in a casing hole 3 protruding outside from a bearing 15 of a rotating shaft 12 rotating at a low speed.
  • the oil moving from the inside to the outside along the peripheral surface of the rotating shaft 12 faces the portion of the oil recovery chamber 4. do it Since the horizontal line (both ends 6a of the ridge 6) of the oil groove 5 provided is formed angularly, the speed in the axial direction is reduced by the action of surface tension, and the oil is removed from the shaft surface by gravity. The oil that has not been shaken off here is shaken off again by the ridges 6 of the adjacent oil kerf 5. The oil dropped in the oil cut groove 5 is thereafter sequentially shaken down to the oil recovery chamber 4 side by the above operation and separated, and the oil adhering to the shaft surface is gradually removed.
  • the pressure around the second seal mechanism lb Since the difference (pressure difference between the spaces 4A and 4B) becomes smaller, the axial velocity of the oil ejected from the second seal mechanism lb to the space 4B becomes smaller, and the oil is easily removed by the second seal mechanism lb. Is recovered and the function of the non-contact oil seal can be fully exhibited.
  • the drain pipe 16 provided in the first oil recovery chamber 4 and the drain pipe provided in the second oil recovery chamber 4 are omitted (the symbols are omitted because they are overlapped in the figure). Are connected to the casing 11 independently of each other to prevent the oil collected in the first oil recovery chamber from flowing back to the second pond recovery chamber through the drain pipe to cause oil leakage, A sealing function can be issued.
  • a seal mechanism is incorporated adjacent to the front bearing housing 24 of the front and rear bearings 23, 23 'supporting the rotating shaft 22 penetrating the casing 21.
  • the rotating shaft 22 is driven by a variable speed motor 25 at a required rotation.
  • a seal mechanism as shown in an enlarged view of a main part P in FIG. 3B, a gap t of a minute dimension is provided with the rotating shaft 22, and a decompression chamber 26 (corresponding to an oil storage chamber) is formed in front of the gap t. I did it.
  • a transparent acrylic plate 27 was attached to the front end so that Uchike could be seen.
  • the support structure 28 was arranged on the base 29 so that the axis was inclined forward by 5 ° as a condition that oil leakage easily occurred.
  • FIG. 4B is as shown by a graph comparing grooved and non-grooved.
  • a part 26B having two parts 26 having decompression chambers 26 and 2 is exchanged, and corresponding to those decompression chambers.
  • a plurality of oil-cutting grooves 32 were formed in the outer peripheral surface of the rotating shaft 22 for each of the decompression chambers 26 and 2 to perform oil-cutting.
  • a test was performed in the same manner as in Experimental Example 1.
  • the groove is not formed on the rotating pong side, and This makes it possible to maintain the injection leak starting pressure approximately 16 times higher than that of the conventional sealing method.
  • the effect can be exhibited by adopting the seal portion of the rotating shaft that rotates at a low speed, so that the maintenance of the driving portion that is installed at a high position, such as a wind power generator, can be performed.
  • excellent effects can be expected when used in rotating parts of equipment that cannot be easily performed.
  • the present invention can be suitably adopted as a sealing mechanism of a rotating machine requiring long-term durability, and is suitably used as a sealing mechanism of a rotating mechanism used for wind power generation or the like, for example. Can be.

Abstract

A non-contact oil seal mechanism for a rotating shaft installed in a rotary machine which has the rotating shaft (12) and a casing in which a casing hole (3) rotatably holding the rotating shaft (12) is formed and in which the rotating shaft (12) is held in the casing hole (3) with a clearance t so as to come into non-contact with each other and lubricating oil flows through the clearance (t). The seal mechanism comprises an oil recovery chamber (4) formed in the inner peripheral surface of the casing hole (3) along the circumferential direction of the rotating shaft (12) and recovering the lubricating oil and a plurality of oil cutting grooves (5) formed in the outer peripheral surface of the rotating shaft (12) along the circumferential direction of the rotating shaft (12), arranged along the axial direction of the rotating shaft (12), and opposed to the oil recovery chamber (4). The plurality of oil cutting grooves (5) are formed to be stored within the axial width dimension W1 of the oil recovery chamber (4).

Description

明 細 書  Specification
回転軸の非接触式オイルシール機構  Non-contact oil seal mechanism for rotating shaft
技術分野  Technical field
[0001] 本発明は、回転機械における回転部の潤滑油シール機構に関するもので、特に回 転軸と非接触状態にして潤滑油が外部に漏れ出すのを防止できる機能を備えた回 転軸の非接触式オイルシール機構に関するものである。  The present invention relates to a lubricating oil seal mechanism for a rotating part of a rotating machine, and more particularly to a rotating shaft having a function of preventing the lubricant from leaking outside by being in non-contact with the rotating shaft. The present invention relates to a non-contact type oil seal mechanism.
背景技術  Background art
[0002] 一般に、回転機械などにおける回転軸のケーシングを貫通する箇所にはシール機 構を設けて、ケーシング外部力もの粉塵などの侵入とケーシング内部から潤滑油が 外部に漏れるのを防止するようにされている。このシール機構としては oリング,オイ ルシールあるいはメカ-カルシールなどの接触式のシールが多く採用されて 、る。 し力しながら、接触式のシール機構では長期間にわたる運転で、回転する軸と接触 してシールしている部材が摩耗して、あるいは経年変化で劣化してシールの役目を 果たさなくなる。そのために、ときには頻繁に部品の交換を必要とする。  [0002] In general, a seal mechanism is provided at a portion of a rotating machine or the like that penetrates a casing of a rotating shaft so as to prevent intrusion of dust and the like from outside the casing and leakage of lubricating oil from inside the casing to the outside. Have been. As this sealing mechanism, contact-type seals such as o-rings, oil seals, and mechanical seals are often used. However, in a contact-type sealing mechanism, a member that is in contact with a rotating shaft is worn out or deteriorates due to aging over a long period of operation, and does not serve as a seal. This often requires frequent replacement of parts.
[0003] このようなことから、軸と接触することなくシール機能を発揮できる非接触式シール 機構が採用される場合がある。このような非接触式シール機構は、簡単に部品交換 ができない装置などで採用されており、静圧シールやラビリンスシールなどがある。静 圧シールとしては、例えばケーシングなどの回転軸が外部に突き出す部分や軸受部 に隣接して、軸を取り囲むように二箇所に環状の溝を設け、その一方の環状溝に気 体を送り、他方の環状溝力 排気するようにして軸とその貫通する孔の内周面との間 に薄 、気体の膜を形成して外部に油が漏れ出さな 、ようにすると 、う構成のものが知 られている (例えば、特許文献 1参照)。  [0003] For this reason, a non-contact type sealing mechanism that can exhibit a sealing function without contacting the shaft may be employed. Such a non-contact type seal mechanism is employed in a device in which parts cannot be easily replaced, and includes a static pressure seal and a labyrinth seal. For the hydrostatic seal, for example, two annular grooves are provided so as to surround the shaft, adjacent to the part where the rotating shaft protrudes to the outside or the bearing, such as a casing, and the gas is sent to one of the annular grooves. When the other annular groove force is exhausted, a thin, gaseous film is formed between the shaft and the inner peripheral surface of the through-hole to prevent oil from leaking to the outside. It is known (for example, see Patent Document 1).
[0004] また、前記ラビリンスシールは、ケーシングなどの壁体を回転軸が貫通する孔部の 内周面にフィン状のシールフィンを枚数設けて、それらのフィンの先端と軸との間隔 を微小間隔になるようにされ、軸の用面に沿って外部に漏れ出す油を各フィン間に 形成される環状の空間部によって、ケーシング内部と外部との聞に生じる圧力差での 流動を、断続する空隙の膨張'圧縮作用によって減衰させ、差圧をなくして油の漏出 を阻止するものである(例えば、特許文献 2参照)。 [0004] Furthermore, the labyrinth seal is provided with a number of fin-shaped seal fins on an inner peripheral surface of a hole through which a rotating shaft penetrates a wall of a casing or the like, and the distance between the tip of the fin and the shaft is minute. The annular space formed between the fins allows oil that leaks to the outside along the shaft surface to intersect the flow due to the pressure difference between the inside and the outside of the casing. The expansion and expansion of the air gap is attenuated by the compression action, eliminating the differential pressure and oil leakage (See, for example, Patent Document 2).
[0005] 特許文献 1:特開昭 48— 100554号公報 Patent Document 1: JP-A-48-100554
特許文献 2:特開平 6— 330893号公報  Patent Document 2: JP-A-6-330893
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しカゝしながら、前記静圧シールやラビリンスシールのような非接触式のシール機構 では、シール機構として、次のような問題点がある。すなわち、静圧シールでは、運転 中常時シールのための圧力流体 (主としてエア)を供給しなければならな 、。当然、 その圧力流体の供給源が別途必要になる。 [0006] However, non-contact type seal mechanisms such as the static pressure seal and the labyrinth seal have the following problems as the seal mechanism. That is, in the case of a static pressure seal, a pressurized fluid (mainly air) for the seal must always be supplied during operation. Of course, a separate source of the pressure fluid is required.
したがって、余分な機器を付帯させるとともに、その運転管理が要求されることにな り、使用できるようにするには圧力流体の供給源を容易に確保できる特定のものでの み有効である。  Therefore, it is necessary to add extra equipment and control its operation, and to use it, it is effective only for specific equipment that can easily secure the supply source of the pressure fluid.
[0007] また、ラビリンスシールの場合は、構造的に簡単のようであるが、工作精度が要求さ れ、組み付けるにも工夫が必要で、結果的に高価につくという難点がある。もちろん、 組立て精度が良くないとシール効果が著しく低下するという問題がある。  [0007] Although the labyrinth seal seems to be structurally simple, it requires machining accuracy and requires some contrivance in assembling, resulting in a high cost. Of course, if the assembly accuracy is not good, there is a problem that the sealing effect is significantly reduced.
一方、設置後メンテナンスが簡単に行えないような構成の機械設備における回転 機械の軸部のシール機構としては、前述のように接触式のシールを用いると、長期間 のシール効果が望めず、さりとて、前述のような非接触式のシール機構ではその効果 に期待することが困難である。  On the other hand, if a contact-type seal is used as a seal mechanism for the shaft of a rotating machine in a mechanical facility that cannot be easily maintained after installation as described above, a long-term sealing effect cannot be expected, and However, it is difficult to expect the effect of the non-contact type sealing mechanism as described above.
[0008] 本発明は、このような事情に鑑みてなされたもので、構造簡単な非接触式のシール として、長期間にわたりその目的を達成することが可能である、回転軸の非接触式ォ ィルシール機構を提供することを目的とするものである。  [0008] The present invention has been made in view of such circumstances, and as a non-contact type seal having a simple structure, a non-contact type rotary shaft capable of achieving its purpose for a long period of time. It is an object of the present invention to provide an oil seal mechanism.
課題を解決するための手段  Means for solving the problem
[0009] 前記目的を達成するために、第 1発明に係る回転軸の非接触式オイルシール機構 は、回転軸と、この回転軸を回転自在に保持するケーシング孔が形成されたケーシ ングとを備え、前記回転軸が前記ケーシング孔に対して非接触となる間隙を有して保 持され、この間隙に潤滑油が流通する回転機械に設けられる非接触式オイルシール 機構であって、前記回転軸の円周方向に沿って前記ケーシング孔部内周面に形成 され、前記潤滑油を回収する油回収室と、前記回転軸の円周方向に沿って前記回 転軸の外周面に形成され、前記回転軸の軸方向に沿って配列され、前記油回収室 と対向する複数の油切り溝条とを備え、前記複数の油切り溝条は、前記油回収室の 同方向幅寸法内に収まるように形成されていることを特徴とする。 In order to achieve the above object, a non-contact oil seal mechanism for a rotating shaft according to the first invention comprises a rotating shaft and a casing having a casing hole for rotatably holding the rotating shaft. A non-contact type oil seal mechanism provided in a rotary machine in which the rotating shaft is kept in a non-contact state with the casing hole, and a lubricating oil flows through the gap. Formed on the inner surface of the casing hole along the circumferential direction of the shaft An oil recovery chamber for recovering the lubricating oil, and an oil recovery chamber formed on an outer peripheral surface of the rotation shaft along a circumferential direction of the rotation shaft and arranged along an axial direction of the rotation shaft. And a plurality of oil cut grooves facing each other, wherein the plurality of oil cut grooves are formed so as to fit within the same width dimension of the oil recovery chamber.
[0010] 第 2発明に係る回転軸の非接触式オイルシール機構は、第 1発明に係る回転軸の 非接触式オイルシール機構において、隣合う前記溝条間に形成される突条は、その 縁部が角張って 、ることを特徴とする。  [0010] The non-contact type oil seal mechanism for a rotary shaft according to the second invention is the non-contact type oil seal mechanism for a rotary shaft according to the first invention, wherein the protrusion formed between the adjacent grooves is the same as that of the first aspect. It is characterized in that the edges are angular.
第 3発明に係る回転軸の非接触式オイルシール機構は、第 1発明及び第 2発明に 係る回転軸の非接触式オイルシール機構において、前記回収室は、前記回転軸の 軸方向に沿って複数形成され、前記回転軸には、各油回収室に応じた位置に、前記 複数の溝条が形成されて 、ることを特徴とする。  A non-contact oil seal mechanism for a rotating shaft according to a third invention is the non-contact oil seal mechanism for a rotating shaft according to the first and second inventions, wherein the recovery chamber is arranged along an axial direction of the rotating shaft. A plurality of grooves are formed on the rotating shaft at positions corresponding to the respective oil recovery chambers.
[0011] 第 4発明に係る回転軸の非接触式オイルシール機構は、第 3発明に係る回転軸の 非接触式オイルシール機構にぉ ヽて、前記間隙に供給する潤滑油を貯留するオイ ルバスと各油回収室とを連絡し、各油回収室で回収された潤滑油をこのオイルバス に戻すドレン管路を備え、前記ドレン管路は、各油回収室に応じて独立して形成され ていることを特徴とする。  [0011] A non-contact oil seal mechanism for a rotating shaft according to a fourth invention is an oil bath that stores lubricating oil to be supplied to the gap, in comparison with the non-contact oil seal mechanism for a rotating shaft according to the third invention. And a drain pipe for communicating the lubricating oil collected in each oil recovery chamber to the oil bath, and the drain pipes are formed independently for each oil recovery chamber. It is characterized by having.
発明の効果  The invention's effect
[0012] 第 1発明によれば、ケーシング孔部における内外間の圧力差(回転駆動機構の温 度上昇などで内部の圧力が高まる)で、回転軸の表面に付着する潤滑油が内側から 外に向力つて移動するのを、ケーシング孔側に形成された油回収室位置で軸に設け られた複数条の油切り溝の溝条間に形成される突条により、潤滑油の軸方向移動速 度を減退させることが可能となる。  [0012] According to the first invention, the lubricating oil adhering to the surface of the rotating shaft is moved from the inside to the outside due to a pressure difference between the inside and the outside of the casing hole (internal pressure increases due to a rise in the temperature of the rotation drive mechanism). The lubricating oil moves in the axial direction due to the protrusions formed between the grooves of the plurality of oil cut grooves provided on the shaft at the position of the oil recovery chamber formed on the casing hole side. The speed can be reduced.
この結果、隣合う溝条間の突条で滞留した潤滑油は、回転軸の回転に伴う遠心力 によって油回収室に振り落とされることとなる。  As a result, the lubricating oil retained in the ridges between the adjacent grooves is shaken down into the oil recovery chamber by the centrifugal force caused by the rotation of the rotating shaft.
従って、間隙に供給される潤滑油はケーシング外部に漏出することがなぐ回収さ れた潤滑油を、潤滑油を貯留するオイルバス等に戻し、間隙部に潤滑油を再度供給 することにより、長期間に亘つてシール機能を維持することが可能となる。  Therefore, the lubricating oil supplied to the gap is prevented from leaking to the outside of the casing. The sealing function can be maintained over a period.
ちなみに、本発明によれば、低速で回転する軸において、回転機の作動によるケ 一シング内圧力と外部圧力(大気圧)との差止が大きくとも、前記油切り溝条と油回収 室とを対応させる構成により、漏出しょうとする油を止めて回収することができるので ある。 By the way, according to the present invention, in a shaft rotating at a low speed, a case caused by the operation of the rotating machine is provided. Even if the difference between the internal pressure and the external pressure (atmospheric pressure) is great, the oil that is about to leak can be stopped and recovered by the configuration in which the oil cut groove and the oil recovery chamber correspond to each other. .
[0013] 第 2発明の構成を採用することにより、回転軸の回転が低速回転であっても、突条 の周縁部が角張った形状とされるのでその縁部の表面張力によって油の軸方向速 度を低下させる機能が作用して、付着する油を回転軸力 有効に分離させることがで きるのである。  [0013] By adopting the configuration of the second invention, even if the rotation of the rotating shaft is at low speed, the peripheral edge of the ridge is formed in an angular shape, so that the surface tension of the edge causes the oil to move in the axial direction. The function of reducing the speed acts to effectively separate the adhering oil from the rotating shaft force.
したがって、軸表面を伝って移動する潤滑油が断続する油切り溝を越えて順次外 側に移動しても、また、軸の回転による遠心力が小さくても複数の突条によって油切 りが行える  Therefore, even if the lubricating oil that moves along the shaft surface moves sequentially over the intermittent oil cut groove, and even if the centrifugal force due to the rotation of the shaft is small, oil lubrication can be performed by a plurality of ridges. Can do
[0014] 第 3発明の構成を採用することにより、前記第 1発明と同様の機能を発揮できる油 切り溝条と油回収室とのセットを複数箇所に配設することで、ケーシング孔内外での 圧力差によって漏出しょうとする油が複数段階に阻止され、ステップを踏むごとに減 速されて油の流動が阻止されるという効果を奏する。  [0014] By adopting the configuration of the third invention, a set of an oil-cutting groove and an oil recovery chamber capable of exhibiting the same function as the first invention is arranged at a plurality of locations, so that the set is provided inside and outside the casing hole. Due to the pressure difference described above, the oil to be leaked is prevented in multiple stages, and the speed is reduced and the flow of the oil is stopped every step.
第 4発明の構成を採用することにより、内側の油回収室と対応する油切り溝条とで なる油回収機構で回収された油がドレン管路を通じて、外側に配設される油回収室 に逆流して油漏れを発生させることを阻止する効果を奏する。要するにドレン管路を 油回収室ごとに独立して設けることで、前後の油回収室を連通させないで回収される 油の逆流現象を防止して油漏れを確実に阻止できる。  By employing the configuration of the fourth invention, the oil recovered by the oil recovery mechanism consisting of the inner oil recovery chamber and the corresponding oil cut groove is passed through the drain pipe to the oil recovery chamber disposed outside. This has the effect of preventing backflow and oil leakage. In short, by providing a drain pipe independently for each oil recovery chamber, it is possible to prevent a backflow phenomenon of the oil recovered without connecting the front and rear oil recovery chambers, and to reliably prevent oil leakage.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]図 1は本発明にかかる回転転軸の非接触式オイルシール機構の一具体例を表 わす断面図。  FIG. 1 is a cross-sectional view showing a specific example of a non-contact oil seal mechanism of a rotary roller according to the present invention.
[図 2]図 2は前記実施形態の要部の拡大一部断面図。  FIG. 2 is an enlarged partial cross-sectional view of a main part of the embodiment.
[図 3A]図 3Aは本発明の非接触式オイルシール機構の機能を検証するために用いら れたテスト装置の断面図。  [FIG. 3A] FIG. 3A is a cross-sectional view of a test device used to verify the function of the non-contact oil seal mechanism of the present invention.
[図 3B]図 3Bは前記テスト装置の要部の拡大断面図。  FIG. 3B is an enlarged sectional view of a main part of the test apparatus.
[図 4A]図 4Aは前記テスト装置における本発明にかかる要部の断面図。  FIG. 4A is a cross-sectional view of a main part of the test apparatus according to the present invention.
[図 4B]図 4Bは前記テスト装置による噴出漏れ開始圧との関係を表すグラフ。 [図 5A]図 5Aは前記テスト装置における本発明にかかる他の要部断面図。 [FIG. 4B] FIG. 4B is a graph showing a relationship between the test apparatus and the pressure at which the gas leaks out. FIG. 5A is a cross-sectional view of another main part of the test apparatus according to the present invention.
[図 5B]図 5Bは前記テスト装置による噴出漏れ聞始圧との関係を表わすグラフ。 符号の説明  [FIG. 5B] FIG. 5B is a graph showing the relationship between the above-mentioned test apparatus and the pressure at which the leaking sound starts. Explanation of symbols
[0016] 1…非接触式オイルシール機構、 3…ケーシング孔、 4…油回収室、 4Α、 4Β· ··空間 部、 5…油切り溝、 6…突条、 6a…突条の縁部、 11…ケーシング、 12· ··回転軸、 14 …ハウジングカバー、 15…軸受、 16· ··ドレン管路、 t…間隙  [0016] 1 ... non-contact type oil seal mechanism, 3 ... casing hole, 4 ... oil recovery chamber, 4 mm, 4 mm ... space, 5 ... oil cut groove, 6 ... ridge, 6a ... edge of ridge , 11 ... casing, 12 ... rotating shaft, 14 ... housing cover, 15 ... bearing, 16 ... drain line, t ... gap
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 次に、本発明にカゝかる回転軸の非接触式オイルシール機構について、その実施の 形態を、図面を参照しつつ説明する。 Next, an embodiment of a non-contact type oil seal mechanism of a rotating shaft according to the present invention will be described with reference to the drawings.
図 1には、本発明にカゝかる回転軸の非接触式オイルシール機構の一具体例を表わ す断面図が示されている。図 2には、要部の拡大一部断面図が示されている。 この図 1によって示される回転軸の非接触式オイルシール機構 1 (以下、単にオイ ルシール機構 1という)は、回転機械 10における軸受部 15から外部に突出する低速 で回転する回転軸 12の部分に設けられた実施形態の一具体例である。  FIG. 1 is a cross-sectional view showing a specific example of a non-contact type oil seal mechanism of a rotating shaft according to the present invention. FIG. 2 shows an enlarged partial cross-sectional view of a main part. The rotary shaft non-contact type oil seal mechanism 1 (hereinafter simply referred to as the oil seal mechanism 1) shown in FIG. 1 is attached to a portion of the rotating shaft 12 that rotates at a low speed and protrudes outside from the bearing portion 15 of the rotating machine 10. It is a specific example of the provided embodiment.
[0018] オイルシール機構 1は、回転機械 10のケーシング 11に設けられる入力部の回転軸[0018] The oil seal mechanism 1 is a rotary shaft of an input unit provided in a casing 11 of the rotary machine 10.
12を支持するベアリングノヽウジング 13の外側に取り付くハウジングカバー 14内に設 けられている。 It is provided in a housing cover 14 attached to the outside of a bearing housing 13 for supporting the bearing 12.
このオイルシール機構 1は、ケーシング孔 3の内周面に形成される複数の油回収室 4と、各油回収室 4の位置に応じて、回転軸 12の外周面に設けられる複数条の油切 り溝 5と、各油回収室 4に設けられる複数のドレン管路 16とを備えている。  The oil seal mechanism 1 includes a plurality of oil recovery chambers 4 formed on the inner peripheral surface of the casing hole 3 and a plurality of oil recovery chambers 4 provided on the outer peripheral surface of the rotary shaft 12 according to the position of each oil recovery chamber 4. A cut groove 5 and a plurality of drain pipes 16 provided in each oil recovery chamber 4 are provided.
なお、この回転軸 12には、貫通して突き出される軸端には図示されない回転体が 取付けられ、回転体が回転すると、回転軸 12が軸受部 15に支承されるとともに、回 転軸 12及びケーシング孔 3間の間隙 tに潤滑油が流通することにより、滑らかな回転 を実現している。尚、間隙 tは少なければ少ない程よいが、回転軸 12の回転中に回 転軸 12がハウジングカバー 14と接触してはいけないので、一般的には 0. 5mm程度 のクリアランスを確保するのが好まし 、。  A rotating body (not shown) is attached to the rotating shaft 12 at a shaft end that protrudes therethrough. When the rotating body rotates, the rotating shaft 12 is supported by the bearing portion 15 and the rotating shaft 12 is rotated. The lubricating oil flows through the gap t between the casing holes 3 to achieve smooth rotation. Note that the smaller the gap t is, the better. However, since the rotating shaft 12 must not come into contact with the housing cover 14 during the rotation of the rotating shaft 12, it is generally preferable to secure a clearance of about 0.5 mm. Better ,.
[0019] 前記油回収室 4は、図 2に示すように、それぞれが断面矩形の凹形の溝として構成 され、軸受部 15よりも回転軸 12の端部側のケーシング孔 3の内周面に 2箇所形成さ れ、凹形の溝は、回転軸 12の円周方向に沿って一周するように連続している。尚、 本実施形態においては、内側の油回収室 4の回転軸に沿った幅寸法 W1は例えば 2 Omm、深さ寸法 D1は例えば 20mmと設定されている。 As shown in FIG. 2, each of the oil recovery chambers 4 is configured as a concave groove having a rectangular cross section, and the inner peripheral surface of the casing hole 3 closer to the end of the rotary shaft 12 than the bearing 15. Formed in two places The concave groove is continuous so as to make a round along the circumferential direction of the rotating shaft 12. In the present embodiment, the width W1 of the inner oil recovery chamber 4 along the rotation axis is set to, for example, 2 Omm, and the depth D1 is set to, for example, 20 mm.
各油回収室 4の凹形溝の底部にはドレン管路 16が繋がれており、図 1中内側に形 成される油回収室 4に繋がるドレン管路 16は、ハウジングカバー 14からケーシング 1 1に至り、ドレン管路 16の他端は、図示を略した力 オイルバスに接続されている。こ のオイルバスは、軸受部 15に潤滑油を供給するために潤滑油を貯留する部分であり 、油回収室 4で回収された潤滑油は、ドレン管路 16を介してオイルバスに戻される。 尚、本実施形態においては、ドレン管路 16の油回収室 4と連通する部分の内径寸法 は、可能な限り大きくするのが望ましいため、油回収室 4の幅寸法よりも僅かに小さな 18mm φとされている。尚、ドレン管路 16をこのような径に設定したのは、後述する油 切り溝 5から油回収室 4に落下した潤滑油を速やかに回収しないと、油回収室 4内で 潤滑油が滞留し、再び間隙 tに漏れ出すことがあるからである。  A drain pipe 16 is connected to the bottom of the concave groove of each oil recovery chamber 4, and the drain pipe 16 connected to the oil recovery chamber 4 formed inside in FIG. As a result, the other end of the drain pipe 16 is connected to a force oil bath (not shown). This oil bath stores lubricating oil in order to supply the lubricating oil to the bearing 15, and the lubricating oil collected in the oil recovery chamber 4 is returned to the oil bath via the drain line 16. . In the present embodiment, since the inner diameter of the portion of the drain line 16 communicating with the oil recovery chamber 4 is desirably as large as possible, it is 18 mm φ, which is slightly smaller than the width of the oil recovery chamber 4. It has been. The reason for setting the drain pipe 16 to such a diameter is that the lubricating oil that has fallen into the oil recovery chamber 4 from the oil kerf 5 described later must be collected promptly so that the lubricating oil stays in the oil recovery chamber 4. Then, it may leak into the gap t again.
[0020] このようなドレン管路 16は、ケーシング 11の底面部(図 2中下面)から上方にドリル 等で孔を開け、さらにこれに交差するように、ケーシング 11の後部端面直交方向から ドリル等で孔を開け、各孔の端面を弾性部材等のパッキン (封止部材)等によって塞 ぐことにより形成することができる。 [0020] Such a drain pipe 16 is formed by drilling a hole or the like upward from a bottom portion (a lower surface in FIG. 2) of the casing 11 and further crossing the hole from a direction perpendicular to the rear end surface of the casing 11 so as to cross the hole. The holes can be formed by, for example, forming holes by closing the end surfaces of the holes with a packing (sealing member) such as an elastic member.
尚、図 1において、外側(図 1中右側)の油回収室 4にも前記と同様のドレン管路が 前記ドレン管路 16とは独立してオイルバスに至るように形成されている力 図 1でこれ を記載すると両ドレン管が交差してしまうため、便宜上図面記載を省略している。 また、外側の油回収室 4のさらに外側には、ケーシング孔 3を塞ぐようにシールリン グ 18が付設されている。このシールリング 18は弹性材カゝらなり、オイルシール機構 1 の補助的なシール部材として機能する。  In FIG. 1, a drain pipe similar to the above is formed in the outside (right side in FIG. 1) oil recovery chamber 4 so as to reach the oil bath independently of the drain pipe 16. If this is described in 1, the drain pipes will intersect, so the drawing is omitted for convenience. Further, a seal ring 18 is additionally provided outside the outer oil recovery chamber 4 so as to close the casing hole 3. The seal ring 18 is made of a soft material and functions as an auxiliary seal member of the oil seal mechanism 1.
[0021] 前記油切り溝 5は、回転軸 12の外周面の円周方向に一周するように形成される溝 条であり、図 2に示すように、油回収室 4の位置に応じて、複数条の油切り溝 5のダル ープとして回転軸 12上に刻設されている。 The oil cut groove 5 is a groove formed so as to make a full circumference in the circumferential direction of the outer peripheral surface of the rotating shaft 12, and as shown in FIG. It is engraved on the rotating shaft 12 as a group of multiple oil kerf grooves 5.
油切り溝 5のグループは、 、ずれも細幅で所要の間隔にて複数条刻設されて 、る。 この油切り溝 5のグループにおいて、隣り合う油切り溝 5間には溝の刻設によって突 条 6が形成される。 In the group of the oil kerf 5, a plurality of grooves are formed at required intervals with a narrow width. In this group of oil kerf 5, a groove is formed between adjacent oil kerfs 5 by engraving. Article 6 is formed.
この突条 6は、回転軸 12の径方向先端の角隅となる両端部 6aが角張った状態に 形成されているのが好ましい。このようにすることにより、回転に伴い軸周面に付着し て流れ出す油の軸方向速度を油切り溝 5に連接する突条 6先端で、表面張力により 油の軸方向速度を減じ、油を振り切るのに効果的である。  The ridges 6 are preferably formed such that both ends 6a, which are corners of the radial end of the rotating shaft 12, are angular. In this way, the axial speed of the oil adhering to the shaft peripheral surface and flowing out with the rotation is reduced by the surface tension at the tip of the ridge 6 that connects to the oil cut groove 5, and the oil's axial speed is reduced by the surface tension. It is effective to shake off.
[0022] ここで、各油切り溝 5の幅、深さは、前記突条 6の両端部 6aの形状と、回転軸 12の 径方向先端の突条 6の端面の長さによって決められる。従って、油切り溝 5の幅寸法 W2及び深さ寸法 D2は、回転軸 12の径 (本実施の形態では 120mm φ )とは基本的 に相関はない。本実施の形態では、各油切り溝条 5の幅寸法 W2及び深さ寸法 D2は 略 3mmとされている。 Here, the width and depth of each oil-cutting groove 5 are determined by the shape of both ends 6 a of the ridge 6 and the length of the end surface of the ridge 6 at the radial end of the rotating shaft 12. Therefore, the width dimension W2 and the depth dimension D2 of the oil groove 5 have basically no correlation with the diameter of the rotating shaft 12 (120 mm φ in the present embodiment). In the present embodiment, the width dimension W2 and the depth dimension D2 of each oil kerf groove 5 are approximately 3 mm.
また、油切り溝 5のグループは、少なくとも 2本以上のグループとして形成しなけれ ば効果を生じることがなぐ例えば、 1箇所の油回収室に対して 1本の油切り溝のみで は、本発明の効果を奏することはできない。本実施の形態ではグループ当たり 3本の 油切り溝 5を形成し、その間に 2本の突条 6が形成されるようにされ、突条 6の幅寸法 W3は油切り溝 5の幅と略同じ 3mmとされ、 3本の油切り溝 5のグループの幅寸法 W4 は、幅寸法 W1の油回収室 4の内部に納められるように、 W1 >W4とされている。 さらに、各回収室 4に配置される油切り溝 5のグループ間の距離 W5は、長ければ 長い程、潤滑油が流れる距離が多くて潤滑油の漏出上好ましいが、本実施形態にお いてはケーシングカバー 14のサイズの制約から 20mmとして設定している。  In addition, if the group of the oil kerf 5 is not formed as at least two or more groups, the effect will not be produced.For example, if only one oil kerf is provided for one oil recovery chamber, the present invention The effect cannot be achieved. In the present embodiment, three oil kerfs 5 are formed per group, and two ridges 6 are formed between them. The width dimension W3 of the ridge 6 is substantially equal to the width of the oil kerf 5. The width W4 of the group of three oil kerfs 5 is set to W1> W4 so as to be accommodated in the oil recovery chamber 4 having the width W1. Furthermore, the longer the distance W5 between the groups of the oil kerf grooves 5 arranged in each recovery chamber 4 is, the longer the lubricating oil flows and the more preferable the lubricating oil leakage is, but in the present embodiment, It is set to 20 mm due to the size limitation of the casing cover 14.
[0023] 次に、このように構成されるオイルシール機構 1の作用について説明する。 Next, the operation of the thus configured oil seal mechanism 1 will be described.
このオイルシール機構 1は、低速で回転する回転軸 12の軸受部 15から外部に突き 出されるケーシング孔 3に設けられる。  The oil seal mechanism 1 is provided in a casing hole 3 protruding outside from a bearing 15 of a rotating shaft 12 rotating at a low speed.
このオイルシール機構 1が設けられた回転機械 10では、ケーシング 11内部の気圧 がケーシング外部の大気圧よりも高くなると、気圧差によって回転軸 12の外周とケー シング孔 3の内周とにより形成される僅かな間隙 tを通じてケーシング 11内から外部 に向力つて油が押し出されて漏れ出す現象が発生し易くなる。  In the rotating machine 10 provided with the oil seal mechanism 1, when the pressure inside the casing 11 becomes higher than the atmospheric pressure outside the casing, the pressure difference is formed between the outer circumference of the rotating shaft 12 and the inner circumference of the casing hole 3. The phenomenon that the oil is pushed out from the inside of the casing 11 to the outside through the small gap t and leaks out easily occurs.
[0024] し力しながら、本実施形態のオイルシール機構 1が設けられた位置では、回転軸 12 の周面に沿って内部から外部へ移動する油は、前記油回収室 4の部分に対向して 配設される油切り溝 5の横線 (突条 6の両端部 6a)が角張って形成されて!ヽる関係で 、表面張力の働きによって軸方向速度を減じられ重力によって軸表面から除かれる。 ここで振り切られな力つた油は、再び隣接する油切り溝 5の突条 6によって振り落とさ れる。油切り溝 5に落とされた油は、以後前記動作により順次油回収室 4側に振り落と されて分離され次第に軸表面に付着する油が取り除かれる。 At the position where the oil seal mechanism 1 of the present embodiment is provided, the oil moving from the inside to the outside along the peripheral surface of the rotating shaft 12 faces the portion of the oil recovery chamber 4. do it Since the horizontal line (both ends 6a of the ridge 6) of the oil groove 5 provided is formed angularly, the speed in the axial direction is reduced by the action of surface tension, and the oil is removed from the shaft surface by gravity. The oil that has not been shaken off here is shaken off again by the ridges 6 of the adjacent oil kerf 5. The oil dropped in the oil cut groove 5 is thereafter sequentially shaken down to the oil recovery chamber 4 side by the above operation and separated, and the oil adhering to the shaft surface is gradually removed.
[0025] このようにして、第 1の油切り溝グループ箇所 5Aで大部分の油の移動を阻止される のであるが、何らかの理由によりケーシング内部の気圧がさらに高まると、油の移動 速度が速くなり、低下効果が充分発揮できなくなることがある。 [0025] In this way, the movement of most of the oil is prevented at the first oil groove group location 5A. However, if the pressure inside the casing further increases for some reason, the movement speed of the oil increases. And the lowering effect may not be sufficiently exhibited.
そこで、第 1のシール機構部 laでシールできずに移動する油を、やや離れて設けら れる第 2のシール機構部 lbにて、前記要領で油の移動を阻止するようにしたのであ る。  Therefore, the oil that moves without being able to be sealed by the first seal mechanism la is prevented from moving by the second seal mechanism lb that is provided a little apart in the manner described above. .
[0026] この第 2のシール機構部 lbにおいては、第 1のシール機構部 laにて除去できなか つた油の移動を再び当該位置において軸側に設けられる油切り溝 5のグループと油 回収室 4とによって、前記要領で軸 12に付着する油を除去する。  [0026] In the second seal mechanism lb, the movement of the oil that could not be removed by the first seal mechanism la is transferred again to the group of the oil cut grooves 5 provided on the shaft side at the corresponding position and the oil recovery chamber. 4 removes oil adhering to the shaft 12 as described above.
この第 2の油回収室 4によって形成される空間部 4Bでは、第 1の油回収室による空 間部 4Aで油をすベて回収できなくても、第 2のシール機構部 lb前後の圧力差 (空間 部 4Aと 4Bの圧力差)は小さくなるので、第 2のシール機構部 lbから空間部 4Bへ噴 出す油の軸方向速度は小さくなり、第 2のシール機構部 lbによって容易に油が回収 されて、非接触でのオイルシールの機能を充分に発揮することができるのである。 また、上記において、第 1の油回収室 4に設けるドレン管路 16と第 2の油回収室 4に 設けるドレン管路(図上重複状態になっているので符弓での表示を省略する)を各々 に独立してケーシング 11内に接続することにより、第 1の油回収室で回収された油が ドレン管路を通じて第 2の池回収室に逆流して油漏れとなることを防ぎ、オイルシー ル機能を発挿することができる。  In the space 4B formed by the second oil recovery chamber 4, even if all the oil cannot be recovered in the space 4A by the first oil recovery chamber, the pressure around the second seal mechanism lb Since the difference (pressure difference between the spaces 4A and 4B) becomes smaller, the axial velocity of the oil ejected from the second seal mechanism lb to the space 4B becomes smaller, and the oil is easily removed by the second seal mechanism lb. Is recovered and the function of the non-contact oil seal can be fully exhibited. In the above description, the drain pipe 16 provided in the first oil recovery chamber 4 and the drain pipe provided in the second oil recovery chamber 4 are omitted (the symbols are omitted because they are overlapped in the figure). Are connected to the casing 11 independently of each other to prevent the oil collected in the first oil recovery chamber from flowing back to the second pond recovery chamber through the drain pipe to cause oil leakage, A sealing function can be issued.
実施例 1  Example 1
[0027] 次に低回転軸での非接触式オイルシールの機能を検証するために、下記の実施 例により実験を行った。なお、この実施例では、図 3Aに示される実験装置を用いて 行った。 (実験例 1) Next, in order to verify the function of the non-contact type oil seal on the low rotation shaft, an experiment was performed according to the following example. In this example, the experiment was performed using the experimental apparatus shown in FIG. 3A. (Experimental example 1)
このテスト装置 20では、ケーシング 21を貫通する回転軸 22を支持する前後の軸受 23, 23' のうち前部の軸受ハウジング 24に隣接してシール機構を組み込むようにさ れている。  In the test device 20, a seal mechanism is incorporated adjacent to the front bearing housing 24 of the front and rear bearings 23, 23 'supporting the rotating shaft 22 penetrating the casing 21.
また、回転軸 22は可変速モータ 25により所要の回転で駆動されるようになされてい る。シール機構としては、図 3Bに要部 Pの拡大図で示されるように、回転軸 22と微小 寸法の間隙 tを設け、その前側に減圧室 26 (油収納室に対応する)が形成されるよう にした。また、前端に透明なアクリル板 27を取付けて内祁が視認できる状態とした。 このような構成で、油漏れしやすい条件として、軸線が 5° 前傾するように支持構造 体 28にてベース 29上に配置した。  The rotating shaft 22 is driven by a variable speed motor 25 at a required rotation. As a seal mechanism, as shown in an enlarged view of a main part P in FIG. 3B, a gap t of a minute dimension is provided with the rotating shaft 22, and a decompression chamber 26 (corresponding to an oil storage chamber) is formed in front of the gap t. I did it. In addition, a transparent acrylic plate 27 was attached to the front end so that Uchike could be seen. With such a configuration, the support structure 28 was arranged on the base 29 so that the axis was inclined forward by 5 ° as a condition that oil leakage easily occurred.
[0028] 前述のようなテスト装置を用い、下記の条件でテストを行った。 Using the test apparatus as described above, a test was performed under the following conditions.
(1) 回転軸 22の軸径(Φ 120 回転速度 1800rpm (高速回転)  (1) Shaft diameter of rotating shaft 22 (Φ 120 rotating speed 1800rpm (high speed rotation)
" 回転速度 20rpm (低速回転)  "Rotation speed 20rpm (low speed rotation)
(2)テストに用いた潤滑油種および油温  (2) Lubricating oil type and oil temperature used in the test
油種 EO10 油温 38°C 動粘度 37cSt  Oil type EO10 Oil temperature 38 ° C Kinematic viscosity 37cSt
供給油量 30LZmin  Supply oil amount 30LZmin
なお、ケーシング内の圧力が高まることに対応するように、ケーシング 11内にエアを 送り込んで確認をすることとした。  It should be noted that air was sent into the casing 11 to check the pressure in the casing in order to cope with the increase in the pressure.
(3)間隙 tの寸法: 0. 5mm  (3) Dimension of gap t: 0.5mm
減圧室 26の幅寸法 X深さ寸法 = 20mm X 20mm  Decompression chamber 26 width X depth = 20mm X 20mm
回転軸上の油切り溝:無し  Oil cut groove on rotating shaft: None
ドレン管の径寸法: 18mm φ  Drain tube diameter: 18mm φ
[0029] 上記の実験結果によれば、まず、ケーシング内圧が高まったときの油漏れ原因とし て、(a)エアがケーシング 21からドレン 30を経由して減圧室 26に逆流し、ドレン 30に 落ちた油がドレンロ 13( 力も噴き上げることによる噴き上げ漏れと、(b)間隙 tを 通過した油が軸方向へある流速で噴出することによる噴出漏れを発生することが目 視により確認された。前記 (a)の油漏れ原因があることがわ力つたので、ドレン 30の管 径は大きいほど、シール性の点で好ましい。また、複数のオイルシール機構がある場 合、そのドレン管路は各々独立してケーシングに接続したほうが、シール性がよいこと がわかった。 [0029] According to the above experimental results, first, as a cause of oil leakage when the internal pressure of the casing increases, ( a ) air flows backward from the casing 21 to the decompression chamber 26 via the drain 30 and It was visually confirmed that the dropped oil generated a drainage leak due to the drainlo 13 (force also being sprayed up) and (b) a jet leak caused by the oil passing through the gap t being ejected at a certain flow velocity in the axial direction. (a) It is obvious that there is a cause of oil leakage, so the larger the diameter of the drain 30 is, the better in terms of sealing performance. In this case, it was found that connecting the drain pipes to the casing independently provided better sealing performance.
[0030] (実験例 2)  (Experiment 2)
上記のような結果から、噴出漏れ対策として図 4Aに示されるように、回転軸 22に減 圧室 26に対向するようにして油切り溝 32を設けた構造にして、これを前記実験例 1と 同じ要領でテストを行 、、図 3Bで示される構造のものと比較した。  From the above results, as shown in FIG. 4A, as a countermeasure against jet leakage, a structure was provided in which the rotary shaft 22 was provided with an oil cut groove 32 so as to face the pressure reducing chamber 26. The test was performed in the same manner as in Example 1 and compared with that of the structure shown in FIG. 3B.
ここにおいて、減圧室 26に応じた位置の回転軸 12の外周面には、油切り溝 32を 3 本形成している。尚、油切り溝 32は 3本形成し、それぞれの幅寸法 X深さ寸法は 3 mm X 3mmであり、隣合う油切り溝間の突条の幅寸法も 3mmとして実験を行った。 その結果、図 4Bに溝付きと溝なしとを比較したグラフによって示すとおりである。な お、圧力は 0. 002MPa= lとして相対値で示している。回転軸に油切り溝 (溝と表示 )を設けたものにすると、低速回転において、噴出漏れ開始圧が溝なしの場合の約 4 倍も高くなることがわ力つた。  Here, three oil cut grooves 32 are formed on the outer peripheral surface of the rotating shaft 12 at a position corresponding to the decompression chamber 26. The experiment was conducted with three oil cut grooves 32 formed, each having a width dimension X depth dimension of 3 mm X 3 mm, and a width dimension of a ridge between adjacent oil cut grooves of 3 mm. As a result, FIG. 4B is as shown by a graph comparing grooved and non-grooved. The pressure is shown as a relative value as 0.002MPa = l. When the rotary shaft was provided with an oil kerf (marked as groove), it was evident that at low speed rotation, the pressure at which the squirting leak started was about four times higher than without the groove.
また、目視により溝の縁の突条部が表面張力により油を切る状況が確認された。つ まり、満の縁は角張って 、るほうがよ 、ことがわかった。  In addition, it was visually confirmed that the ridge at the edge of the groove cut off oil due to surface tension. In other words, it turned out that the full edge was sharper and better.
また、高速回転では、油は遠心力で軸から離れるので、溝を設けなくとも耐圧は高 ぐ油切り満を付加しても噴出漏れ開始圧は変わらな力 た。  In addition, at high speeds, the oil separated from the shaft by centrifugal force, so the pressure at the start of leaking was constant even if a grease was applied without a groove and the oil pressure was high.
[0031] (実験例 3) (Experimental example 3)
そこで、図 5Aに示されるように、前記テスト装置における減圧室形成部品 26Aに代 えて、二箇所に減圧室 26, 2 を有する部品 26を有する部品 26Bと交換するととも に、それら減圧室に対応する回転軸 22の外周面に、各減圧室 26, 2 に対し複数 の油切り溝 32を形成して油切りを行わせる構造のもので、前記実験例 1と同様にして テストを行った。  Therefore, as shown in FIG. 5A, in place of the decompression chamber forming part 26A in the test apparatus, a part 26B having two parts 26 having decompression chambers 26 and 2 is exchanged, and corresponding to those decompression chambers. A plurality of oil-cutting grooves 32 were formed in the outer peripheral surface of the rotating shaft 22 for each of the decompression chambers 26 and 2 to perform oil-cutting. A test was performed in the same manner as in Experimental Example 1.
[0032] 前記減圧室と油切り溝との組合せを二つ設けた場合の噴出漏れ開始圧を計測した 結果、図 5Bにグラフによって示すように、二筒所にシール機構を設けることで、噴出 漏れ開始圧力 倍になり、結果的に低速回転軸の溝なし軸では 16倍も高い噴出漏 れ開始圧となることがわ力つた。  [0032] As a result of measuring the injection leak start pressure when two combinations of the decompression chamber and the oil cut groove were provided, as shown by a graph in FIG. It was evident that the pressure at which the leak started doubled, resulting in a 16-fold higher leaking pressure at the low-speed rotating shaft without grooves.
[0033] このように、本発明のオイルシール機構によれば、回転紬側に溝を付けな 、状態で のシール方式と比較して約 16倍の噴出漏れ開始圧に保持することが可能になり、言 V、換えると在来の非接触式オイルシール機構に比べて、回転機械におけるケーシン グ内部と回転軸 [0033] As described above, according to the oil seal mechanism of the present invention, the groove is not formed on the rotating pong side, and This makes it possible to maintain the injection leak starting pressure approximately 16 times higher than that of the conventional sealing method.In other words, compared to the conventional non-contact oil seal mechanism, the inside of the casing of the rotating machine and the rotation axis
の突き出し外部との間で大きく差圧が生じても、油の噴出しが防止され、シール効果 を高めることができるのである。  Even if there is a large pressure difference between the outside and the outside of the protrusion, the injection of oil is prevented and the sealing effect can be enhanced.
[0034] したがって、本発明によれば、低速で回転する回転軸のシール部に採用して効力 を発揮できるので、例えば風力発電装置のように、高所位置に設置されて駆動部分 のメンテナンスを簡単に行えない設備の回転部に用いて優れた効果が期待できる。 産業上の利用分野 [0034] Therefore, according to the present invention, the effect can be exhibited by adopting the seal portion of the rotating shaft that rotates at a low speed, so that the maintenance of the driving portion that is installed at a high position, such as a wind power generator, can be performed. Excellent effects can be expected when used in rotating parts of equipment that cannot be easily performed. Industrial applications
[0035] 本発明は、長期耐久性が要求される回転機械のシール機構として好適に採用する ことができ、たとえば、風力発電等に用いられる回転機構のシール機構として好適に 用!/、ることができる。  The present invention can be suitably adopted as a sealing mechanism of a rotating machine requiring long-term durability, and is suitably used as a sealing mechanism of a rotating mechanism used for wind power generation or the like, for example. Can be.

Claims

請求の範囲 The scope of the claims
[1] 回転軸と、この回転軸を回転自在に保持するケーシング孔が形成されたケーシン グとを備え、前記回転軸が前記ケーシング孔に対して非接触となる間隙を有して保 持され、この間隙に潤滑油が流通する回転機械に設けられる回転軸の非接触式オイ ルシール機構であって、  [1] A rotating shaft and a casing having a casing hole for rotatably holding the rotating shaft are provided, and the rotating shaft is held with a gap in which the casing is not in contact with the casing hole. A non-contact oil seal mechanism of a rotating shaft provided in a rotating machine in which lubricating oil flows through the gap,
前記回転軸の円周方向に沿って前記ケーシング孔内周面に形成され、前記潤滑 油を回収する油回収室と、  An oil collection chamber formed on the inner peripheral surface of the casing hole along a circumferential direction of the rotation shaft, and configured to collect the lubricating oil;
前記回転軸の円周方向に沿って前記回転軸の外周面に形成され、前記回転軸の 軸方向に沿って配列され、前記油回収室と対向する複数の油切り溝条とを備え、 前記複数の油切り溝条は、前記油回収室の同方向幅寸法内に収まるように形成さ れて ヽることを特徴とする回転軸の非接触式オイルシール機構。  A plurality of oil cut grooves formed on the outer peripheral surface of the rotating shaft along the circumferential direction of the rotating shaft, arranged along the axial direction of the rotating shaft, and facing the oil recovery chamber; A non-contact oil seal mechanism for a rotating shaft, wherein the plurality of oil cut grooves are formed so as to fit within the same width of the oil recovery chamber.
[2] 請求項 1に記載の回転軸の非接触式オイルシール機構にぉ 、て、  [2] The rotary shaft non-contact type oil seal mechanism according to claim 1,
隣合う前記溝条間に形成される突条は、その縁部が角張って!/ヽることを特徴とする 回転軸の非接触式オイルシール機構。  A non-contact type oil seal mechanism for a rotating shaft, wherein a ridge formed between the adjacent grooves has a square edge.
[3] 請求項 1又は請求項 2に記載の回転軸の非接触式オイルシール機構にぉ 、て、 前記油回収室は、前記回転軸の軸方向に沿って複数形成され、 [3] In the non-contact type oil seal mechanism for a rotating shaft according to claim 1 or 2, a plurality of the oil recovery chambers are formed along an axial direction of the rotating shaft.
前記回転軸には、各油回収室に応じた位置に、前記複数の溝条が形成されている ことを特徴とする回転軸の非接触式オイルシール機構。  The non-contact oil seal mechanism for a rotating shaft, wherein the plurality of grooves are formed on the rotating shaft at positions corresponding to the respective oil recovery chambers.
[4] 請求項 3に記載の回転軸の非接触式オイルシール機構にぉ 、て、 [4] The non-contact oil seal mechanism for a rotating shaft according to claim 3,
前記間隙に供給する潤滑油を貯留するオイルバスと各油回収室とを連絡し、各油 回収室で回収された潤滑油をこのオイルバスに戻すドレン管路を備え、  An oil bath for storing the lubricating oil supplied to the gap and each oil recovery chamber, and a drain pipe for returning the lubricating oil recovered in each oil recovery chamber to the oil bath;
前記ドレン管路は、各油回収室に応じて独立して形成されていることを特徴とする 回転軸の非接触式オイルシール機構。  The non-contact type oil seal mechanism of a rotating shaft, wherein the drain pipe is formed independently for each oil recovery chamber.
PCT/JP2004/014843 2003-10-29 2004-10-07 Non-contact oil seal mechanism for rotating shaft WO2005040649A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005514925A JPWO2005040649A1 (en) 2003-10-29 2004-10-07 Non-contact oil seal mechanism of rotating shaft
DE112004000627T DE112004000627T5 (en) 2003-10-29 2004-10-07 Contactless oil-sealing device for a rotary shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003368933 2003-10-29
JP2003-368933 2003-10-29

Publications (1)

Publication Number Publication Date
WO2005040649A1 true WO2005040649A1 (en) 2005-05-06

Family

ID=34510364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014843 WO2005040649A1 (en) 2003-10-29 2004-10-07 Non-contact oil seal mechanism for rotating shaft

Country Status (4)

Country Link
JP (1) JPWO2005040649A1 (en)
CN (1) CN100476270C (en)
DE (1) DE112004000627T5 (en)
WO (1) WO2005040649A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113156A (en) * 2007-11-07 2009-05-28 Ntn Corp Static pressure gas bearing spindle
JP2015175472A (en) * 2014-03-17 2015-10-05 本田技研工業株式会社 Multiple disc friction clutch
JP2017215039A (en) * 2016-05-25 2017-12-07 Jfeスチール株式会社 Oil bath type rotary machine and lubricating oil recovery method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010064421B3 (en) * 2009-03-03 2012-11-22 Sew-Eurodrive Gmbh & Co. Kg Arrangement for non-contact sealing of a rotatably mounted shaft to a housing and gearbox
CA2791812C (en) 2010-03-03 2016-12-20 Sew-Eurodrive Gmbh & Co. Kg Arrangement for contactlessly sealing off a rotatably mounted shaft from a housing, and gearing
CN102359594A (en) * 2011-09-09 2012-02-22 湖南远扬煤机制造有限公司 Rotating shaft backflow type seal housing
EP2901046B1 (en) * 2012-09-25 2017-02-01 Sew-Eurodrive GmbH & Co. KG Seal arrangement for the sealing of a shaft and transmission
CN102979908A (en) * 2012-10-30 2013-03-20 吴江新劲纺织有限公司 Oil seepage resistant structure of weaving machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517722A (en) * 1978-07-19 1980-02-07 Mitsuru Kuroda Method of waterproofing guide roller in cross-guider
JPS638479U (en) * 1986-07-01 1988-01-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517722A (en) * 1978-07-19 1980-02-07 Mitsuru Kuroda Method of waterproofing guide roller in cross-guider
JPS638479U (en) * 1986-07-01 1988-01-20

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113156A (en) * 2007-11-07 2009-05-28 Ntn Corp Static pressure gas bearing spindle
JP2015175472A (en) * 2014-03-17 2015-10-05 本田技研工業株式会社 Multiple disc friction clutch
JP2017215039A (en) * 2016-05-25 2017-12-07 Jfeスチール株式会社 Oil bath type rotary machine and lubricating oil recovery method

Also Published As

Publication number Publication date
JPWO2005040649A1 (en) 2007-04-19
CN1806139A (en) 2006-07-19
CN100476270C (en) 2009-04-08
DE112004000627T5 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
KR100273593B1 (en) Spindle assembly for mechanics tool
JPWO2018088350A1 (en) Sliding parts
JP2009236068A (en) Supercharger
WO2005040649A1 (en) Non-contact oil seal mechanism for rotating shaft
JP4824552B2 (en) Static and dynamic discharger pressure-resistant shaft seal
JPS63501307A (en) Improvement of sealing method in bearing assembly
JP2006234106A (en) Shaft seal device of fluid and rotating electric machine using the shaft seal device
JPH084776A (en) Bearing sealing device
JP6941479B2 (en) Seal structure and mechanical seal
JPH07224948A (en) Mechanical seal
JP2010286023A (en) Sealing device
CN104395038A (en) Power tool
JP3305196B2 (en) Shaft sealing device
JP2004286080A (en) Sealing structure of lubricating oil for motor bearing
KR960017011A (en) Plummer block
EP1634001B1 (en) Pressure resistant static and dynamic expeller shaft sealing
JP4099934B2 (en) Labyrinth seal
JP2004293639A (en) Axis sealing device
WO2022080278A1 (en) Sliding component
CN111350551B (en) Be used for flexible cylinder air film seal structure between birotor axle
CN207539078U (en) Auto pump mechanical seal
US20050271520A1 (en) Liquid ring compressor
JP2001012483A (en) Rotating shaft device
JPH1030730A (en) Non-contact sealing device
BR102020020029A2 (en) Stationary restrictive protector for bearing housing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005514925

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048162477

Country of ref document: CN

122 Ep: pct application non-entry in european phase