WO2005040018A1 - Web smoothing roller, and web roll producing device and method - Google Patents

Web smoothing roller, and web roll producing device and method Download PDF

Info

Publication number
WO2005040018A1
WO2005040018A1 PCT/JP2004/015391 JP2004015391W WO2005040018A1 WO 2005040018 A1 WO2005040018 A1 WO 2005040018A1 JP 2004015391 W JP2004015391 W JP 2004015391W WO 2005040018 A1 WO2005040018 A1 WO 2005040018A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
roller
stretching
roll
fiber structure
Prior art date
Application number
PCT/JP2004/015391
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Kawashita
Masayoshi Kimura
Toshihiro Hayashi
Shintaro Kuge
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP04792560A priority Critical patent/EP1679275A4/en
Priority to US10/577,454 priority patent/US20070131809A1/en
Publication of WO2005040018A1 publication Critical patent/WO2005040018A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H27/00Special constructions, e.g. surface features, of feed or guide rollers for webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/022Registering, tensioning, smoothing or guiding webs transversely by tentering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/022Registering, tensioning, smoothing or guiding webs transversely by tentering devices
    • B65H23/025Registering, tensioning, smoothing or guiding webs transversely by tentering devices by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/414Winding
    • B65H2301/4148Winding slitting

Definitions

  • the present invention relates to a web stretching roller, a web roll manufacturing apparatus, and a manufacturing method.
  • a tenter or a cross guider that pulls both ends in the width direction of the web outward in the width direction is in contact with the entire width of the web.
  • Expander rollers are known.
  • the expander roller includes a bending type and a flat type.
  • the bending type expander opening roller also generates a rotating roller force having a curved rotation center axis, and applies a tension in the width direction to the web contacting the rotating roller.
  • the flat-type expander roller has a structure in which the roller shell expands and contracts in the direction of the central axis with rotation as the rotating roller force has a straight rotation central axis, and applies a tension in the width direction to the web contacting the rotating roller.
  • roller force for web stretching using a flat expander roller is disclosed in Patent Literature 1, Patent Literature 2, Patent Literature 3, or Patent Literature 4.
  • the roller disclosed in Patent Literature 1 or Patent Literature and Patent Literature 3 has a large number of elastic rods that are spaced apart in the circumferential direction of the roller and extend in parallel with the axial direction of the roller.
  • the roller disclosed in Patent Document 4 has a rubber knob.
  • the conventional bending type expander roller has the following problem.
  • the flat-expandable rollers disclosed in Patent Document 1 or Patent Document 2 and Patent Document 3 are intended to solve the drawbacks of the bending type expander roller.
  • this flat expander roller since a large number of rods having elasticity are arranged with a gap, the widening action is stepwise, and the outer periphery of the roller tends to be uneven. There is. Further, in the case where the roller shell is provided with a groove for holding the rod, there is a problem that the rod rubs against the groove and generates dust.
  • Patent Document 4 discloses a flat expander roller using a rubber noise in order to solve these problems.
  • this method also requires a large torque required for rotation.
  • this roll in order to use this roll for manufacturing a thin film having a low winding tension, it is necessary to drive this roll. Therefore, the cost of manufacturing equipment increases.
  • both the expander roller of the method disclosed in Patent Document 1 or Patent Document 2 and the expander roller of the method disclosed in Patent Document 3, and the expander roller of the method disclosed in Patent Document 4 It is formed from a simple continuum of hard material such as metal or rubber. For this reason, there is a problem that if the web is easily scratched, the power and the amount of width cannot be increased.
  • Patent Document 1 Japanese Patent Publication No. 44-20877
  • Patent Document 2 U.S. Pat.No. 3,344,493
  • Patent Document 3 Patent No. 3,028,483
  • Patent Document 4 Japanese Utility Model Publication No. 57-11966
  • the web stretching roller of the present invention includes a rotating roller body, a stretchable fiber structure that covers the outer peripheral surface of the rotating roller body, and a rotation of the rotating roller body that rotates the fiber structure. And a stretching means for stretching in the direction of the central axis.
  • the fibrous structure is a tubular fabric.
  • the tubular fabric is preferably seamless.
  • the tubular fabric is an elastic yarn or a yarn containing the elastic yarn.
  • the tubular fabric is a knitted fabric.
  • the knitted material is an elastic yarn or a yarn including the elastic yarn.
  • the knitted fabric is preferably seamless.
  • the expansion / contraction means is disposed on both outer sides in the rotation center axis direction of the rotating roller main body, and with respect to the rotation center axis inclined with respect to the rotation center axis.
  • a rotatable inclined collar force is formed, the end of the fiber structure is gripped by the inclined collar, and an outer package surrounding the rotating roller body is formed by the fiber structure and the inclined collar. Is preferred,.
  • the fibrous structure and the web Is preferably 0.3 to 0.7, and the static friction coefficient force between the fibrous structure and the rotating roller body is preferably 0.4 or less.
  • the web roll manufacturing apparatus of the present invention includes a web supply device that continuously supplies a web, a web transport device that transports the web that is continuously supplied from the supply device, and a web transport device that continuously feeds the web. And a web take-up device for continuously winding the conveyed web into a roll form, wherein at least one point of the conveying device is used to stretch the web of the present invention.
  • a roller is provided.
  • the web supply device for continuously supplying the web in the web roll manufacturing apparatus of the present invention is a film forming device for continuously forming the web, or a web for continuously unwinding the web from the web roll. Means unwinding device.
  • the web stretching roller is arranged so as to be able to press against the surface of the web roll formed in the web winding device.
  • the method for producing a web roll according to the present invention includes: a web supply step of continuously supplying web; a web transport step of continuously transporting webs continuously supplied by the supply step;
  • a method for manufacturing a web roll comprising: a web winding step of continuously winding a web conveyed continuously in a conveying step into a roll form, at least one point of the web conveying step includes the present invention.
  • a roller for stretching the web is provided.
  • the web supply step of continuously feeding the web is a film forming step of continuously forming the web, or a web unwinding process of continuously winding the web from the web roll. Means a process.
  • the web is preferably a polyester film.
  • the elasticity of the fiber structure in the present invention is defined as follows.
  • the fiber structure is cut into a square with a length of 120 mm and a width of 120 mm to make a sample sheet for evaluating the elasticity.
  • it is not gripped with a vise Hold with a vice so that the length of the part becomes 100mm. In this state, apply tension to the sample sheet by moving the vise in the two opposite directions (tension direction) slowly enough that the speed does not affect the result.
  • the sample sheet is stretched to 11 Omm or more without breaking, and after stretching to 11 Omm, the vise is moved in the direction opposite to the tension direction at a speed of ImmZ seconds to act on the sample sheet. Then, when the tension is released and the tension is returned to the non-tension state again, when the interval in the direction in which the tension is applied to the portion not gripped by a vice in the direction in which the tension is applied is restored to the range of 100 mm to 105 mm, The fibrous structure is evaluated as having elasticity in the tension direction.
  • the direction along the rotation center axis of the rotating roller body is the length direction of the sample sheet, and the direction along the rotating direction of the rotating roller body is the sample. It is manufactured so as to be in the width direction of the sheet.
  • the fiber structure is evaluated as having elasticity.
  • the above experiment is basically performed in the air at a temperature of 25 ° C and a relative humidity of 40%. However, if it is clear that the condition of use of the roller is far from this, the operation shall be performed under the temperature, humidity and other environment under the condition of use. If the experiment cannot be performed properly, such as when the fibrous structure cannot be cut into the above dimensions, the fiber structure is cut into experimental dimensions and the above values are evaluated in proportion to the dimensions in the tension direction.
  • the direction in which elasticity is recognized is a direction close to the rotation center axis direction of the rotary roller body. Use it to face.
  • a fiber structure in which elasticity is recognized in both directions perpendicular to each other is more preferable.
  • a fiber structure is a general term for a fabric such as a woven fabric, a knitted fabric, or a nonwoven fabric made of natural fibers or chemical fibers. Knitting is often an extensible fibrous structure according to the present invention. Many woven and non-woven fabrics do not have elasticity. However, woven fabrics and nonwoven fabrics made of elastic yarns having elasticity or yarns containing the elastic yarns have elasticity and can be used as the fiber structure having elasticity according to the present invention. is there.
  • the cylindrical fabric means that the inside portion excluding at least both ends is cylindrical.
  • a knitted fabric as an example, as a tubular knitted fabric, a sheet-shaped knitted fabric formed by sewing or other methods into a tubular shape, or a tubular knitted fabric knitted by a tubular knitting machine, that is, There is a seamless tubular knitting.
  • the outer package body refers to a structure having one or more member strengths that substantially covers at least a side surface of the rotating roller body.
  • the elastic yarn forming the fibrous structure in the present invention is defined as follows.
  • the yarn used for the fiber structure is cut to a length of 120 mm to prepare a sample yarn.
  • the obtained sample yarn is placed in the horizontal direction, and both ends of the sample yarn are gripped with a vice in a state where no tension acts on the sample yarn (no tension).
  • grip with a vice so that the length of the part that is not gripped with a vise is 100 mm.
  • the vise is moved in the length direction (tensile direction) of the sample yarn slowly enough that the speed does not affect the result, and tension is applied to the sample yarn.
  • the sample yarn is stretched to 110 mm or more without breaking, and after stretching to 110 mm, the vise is moved in the direction opposite to the tension direction at a speed of ImmZ seconds to act on the sample yarn. If the tension in the direction where tension is applied to the part that is not gripped by a vice is restored to the range of 100 mm to 105 mm when the tension applied is released and returned to the non-tension state again, The yarn is evaluated as an elastic yarn.
  • the above experiment is basically performed in the air at a temperature of 25 ° C and a relative humidity of 40%.
  • the operation shall be performed under the temperature, humidity and other environment under the condition of use. If the experiment cannot be carried out properly, such as when the yarn cannot be cut to the above dimensions, cut it to a length that can be tested, and evaluate the above values in proportion to the length in the tension direction.
  • the outermost peripheral surface of the roller has the shortest portion and the longest portion in the roller rotation center axis direction length of the fiber structure. Even if the difference in length, that is, the widening amount of the fibrous structure is increased, the torque required for rotation can be reduced. For this reason, in some cases, it is possible to rotate the rotating roller body only by the frictional force of the web running in contact with the roller. In this case, a large increase in cost and labor for large-scale equipment such as drive equipment is not required. This makes it possible to exhibit a greater effect.
  • the fibrous structure is used on the roller surface, the degree of freedom in the type of yarn is high. Further, the use of the fibrous structure brings about an effect that, in addition to the effect of preventing scratches on the web, a change in friction coefficient due to aging can be reduced as compared with a conventional rubber rod. As a result, almost the same lengthening effect can be maintained for a long time.
  • a stretchable fiber structure is used as the web stretching means.
  • the fibrous structure provides a web stretching action in the width direction of the web running in contact with the web. Since this stretching action is due to the fibrous structure, there is substantially no scratch on the force web, which is sufficient for stretching.
  • FIG. 1 is a schematic perspective view of one embodiment of a web stretching roller of the present invention.
  • FIG. 2 is a flowchart for explaining a general plastic film manufacturing process.
  • FIG. 3 is a schematic cross-sectional view of a film winding device in a case where the roller for stretching in accordance with the present invention is used as a pressing roller.
  • FIG. 4 is a longitudinal sectional view of the roller for stretching the paper of the present invention shown in FIG. 1.
  • FIG. 5 is a cross-sectional view for explaining the relationship between the maximum widening position and the web embracing angle.
  • FIG. 6 is a plan view for explaining a method of evaluating elasticity in the length direction of a fiber structure.
  • FIG. 7 is a plan view for explaining a method for evaluating the elasticity of the fiber structure in the width direction.
  • FIG. 8 is a plan view for explaining a method for preparing a sample sheet for friction coefficient measurement.
  • FIG. 9 is a view for explaining a method of measuring a friction coefficient between a fiber structure and a roller shell.
  • FIG. 10 is a cross-sectional view for explaining a method of measuring a friction coefficient between a fiber structure and a web to be stretched.
  • FIG. 11 is a plan view of a sample piece used for an acceleration test that models expansion and contraction of a fiber structure.
  • This embodiment relates to an apparatus for manufacturing a plastic film roll using a roller for stretching in accordance with the present invention, and will be described with reference to FIGS. 1 to 3.
  • FIG. 1 is a schematic perspective view of a roller for stretching the paper of the present invention.
  • the roller 1 for stretching is composed of a rotating roller body 12 supported on a shaft 11, a fiber structure 14 covering an outer peripheral surface 13 of the rotating roller body 12, and a fiber roller 14 rotating the fiber structure 14.
  • the center of rotation of the main body 12 comprises expansion / contraction means 15 for expanding / contracting in the axial direction.
  • the rotating roller body 12 may be rotatably supported on the shaft 11, or may be fixed and supported on the shaft 11, and the shaft 11 may be a rotating shaft.
  • the central axis of the shaft 11 is the rotation central axis.
  • the outer peripheral surface 13 of the rotating roller body 12 and the fiber structure 14 are rotatably contacted at substantially the same speed.
  • the fibrous structure 14 is stretched by the stretching means 15, and at the upper position 17, the fibrous structure 14 is contracted by the stretching means 15.
  • the fiber structure 14 is expanded and contracted in the direction of the central axis of rotation of the rotating roller body 12 by the expansion and contraction means 15, whereby tension in the width direction is applied to a web (not shown) that moves in contact with the fiber structure 14. Granted. As a result, the occurrence of a sheet on the web is prevented, or the sheet generated on the web is extended.
  • a fabric having elasticity such as a woven fabric, a knitted fabric, or a nonwoven fabric made of a natural fiber or a chemically synthesized fiber is used. Knitting such as flat knitting, rib knitting, and pearl knitting exhibits elasticity due to deformation of the stitch itself. Many woven fabrics and non-woven fabrics such as plain weave and twill weave have poor elasticity, but woven fabrics and non-woven fabrics made of elastic yarns or yarns containing the same have elasticity.
  • the fibrous structure 14 covers the outer peripheral surface 13 of the rotating roller main body 12, that is, the cylindrical structure. In this state, the roller 1 is formed.
  • the tubular fiber structure 14 is formed by joining one side of one or a plurality of fabrics and their opposite sides by bonding, sewing, or the like.
  • the tubular fiber structure 14 is covered by the rotating roller body 12 and the expansion / contraction means 15, and both ends of the fiber structure 14 are fixed to the left and right expansion / contraction means 15.
  • the seam portion of the fabric of the tubular fiber structure 14 may have an adverse effect on the web quality / stretching effect.
  • a seamless tubular fabric that is, a seamless tubular fabric as the fibrous structure 14.
  • a seamless tubular knitted fabric is particularly preferable.
  • a knitted fabric having poor elasticity such as polyamide, polyester, or acrylic, is used as the fibrous structure 14 because it has elasticity due to deformation of the stitch itself.
  • elastic yarns or knitted fabrics containing yarn can be deformed significantly with a small force, and the amount of widening must be set larger without significantly increasing the torque required for rotation. Therefore, it is more preferably used as the fiber structure 14.
  • the knitted fabric has greater flexibility, and is therefore more preferably used as the fibrous structure 14.
  • a polytrimethylene glycolone yarn or a polyurethane fiber is used as the ⁇ 3 ⁇ 4 yarn.
  • polyurethane fiber having excellent elongation and resilience is suitably used.
  • Polyurethane fibers are preferably used in the form of a multilayered yarn such as a single covered yarn, a double covered yarn, and a core spun yarn, because they are vulnerable to wear.
  • the cover yarn of the outermost layer is a yarn made of a material having good charge compatibility with the web to be produced (a material that is unlikely to generate triboelectric charging).
  • Covered yarn in which polyurethane fiber is used for the core yarn and the cover yarn also has a material strength in which frictional electrification with the web is unlikely to be generated makes it possible to prevent defects of the web caused by electrostatic force S due to electrification.
  • the web is a polyester film, it is preferable to use polyester yarn as the cover yarn.
  • the fineness of the fibers forming the fiber structure 14 is preferably 30 denier (33 dtex) to 450 denier (500 dtex). According to the findings of the present inventors, thin fibers are used. It is a component that increases the effect of preventing scratches on the web. However, the fibrous structure 14 using thin fibers has a problem in strength, such as easy tearing. In consideration of the strength, the fineness of the fibers forming the fiber structure 14 is more preferably 100 denier (111 decitex) to 250 denier (278 decitex)!
  • the core yarn may be 60 denier (66 dtex) to 200 denier (222 dtex), and the cover yarn strength may be 30 denier (33 dtex) to 100 denier (111 dtex). preferable. In this case, both the yarn strength and the effect of preventing the web from being damaged can be achieved.
  • the coefficient of static friction between the target web and the fibrous structure 14 is preferably higher.
  • the coefficient of static friction is more preferably 0.3 to 0.7!
  • the material of the outer peripheral surface 13 of the rotary roller body 12 is not particularly limited.
  • it may be metal, resin, or rubber.
  • the static friction coefficient between the fiber structure 14 and the outer peripheral surface 13 be low. Normally, if the static friction coefficient is 0.4 or less, the intended function can be achieved without any problem. It is preferable that the material and surface roughness of the outer peripheral surface 13 be selected so that the static friction coefficient falls within this range.
  • a sample sheet shown in FIG. 8 is used to measure the static friction coefficient between the fibrous structure 14 and the outer peripheral surface 13 of the roller, and the measurement is performed by a measuring device shown in FIG.
  • the direction of the rotation center axis of the rotating roller body 12 of the fibrous structure 14 covering the outer peripheral surface 13 of the rotating roller body 12 is defined as the length direction of the fibrous structure 14.
  • a sample sheet with a length of 350 mm and a width of 50 mm 81 is cut and made.
  • the length direction of the sample sheet 81 matches the length direction of the fibrous structure 14.
  • Fixing plates 83a and 83b 1S having holes 82a and 82b for attaching weights and panel springs are attached to both ends in the length direction of the sample sheet 81, respectively.
  • the fixing plates 83a and 83b are attached to the sample sheet 81 evenly in the width direction and without slipping, for example, by bolting. These fixed plates
  • the sample sheet 81 to which 83a and 83b are attached is provided to a measuring device as a test piece 84 for measuring static friction coefficient.
  • Fig. 9 shows a measuring apparatus 91.
  • the measuring device 91 includes a rotating roller body 12 supported so as not to rotate, a weight 92, and a panel 93.
  • a test piece 84 is wound around the outer peripheral surface 13 of the rotating roller body 12 which is supported so as not to rotate over a circumferential direction of 180 °.
  • a weight 92 is attached to a hole 82b of one fixing plate 83b of the test piece 84.
  • the weight of the weight 92 is selected so that the sum of the weight of the fixing plate 83b and the weight of the weight 92 becomes 100g.
  • a panel force 93 is attached to the hole 82a of the other fixing plate 83a of the test piece 84.
  • T1 is the tension generated by the weight 92 (here, 100 gf (0.98N))
  • T2 is the load measured by the panel force 93
  • is the winding angle of the test piece 84 ( Here, 7u rad)
  • In represents the natural logarithm. Note that the measurement is performed at five locations except for both ends in the direction of the rotation center axis of the rotating roll main body 12 for every six divided lengths of the outer peripheral surface of the rotating roll main body 12.
  • Load T2 is the average value of the loads obtained by each measurement.
  • the coefficient of static friction between the fibrous structure 14 and the web in a state where the fibrous structure 14 is mounted on the rotating roller body 12 is measured, and the static friction between the fibrous structure 14 and the outer peripheral surface 13 of the rotating roller body 12 is measured. It is performed in a manner similar to the measurement of the coefficient of friction.
  • a test piece 104 similar to the test piece 84 of FIG. 8 is produced from the web that comes into contact with the fiber structure 14 in the web transporting step, instead of the sample sheet 81 having the fibrous structure 14 in the test piece 84.
  • the measuring device 101 is shown in FIG.
  • the measuring device 101 is composed of a rotating roller body 12 supported so as not to rotate, a fiber structure 14 mounted to cover the outer peripheral surface 13 of the rotating roller body 12, a weight 102, and a panel force 103.
  • a fibrous structure 14 is shown in FIG.
  • the rotary roller main body 12 is mounted so that the maximum widening position is located vertically above the rotary roller main body 12.
  • the measurement is performed by a test piece 104 wound around the fibrous structure 14 in FIG.
  • the winding angle of the test piece 104 around the fiber structure 14 and the subsequent measurement procedure are the same as the winding angle and the measurement procedure described above with reference to FIG.
  • a polyester film having a thickness of 30 m is used.
  • a polyester film “Lumirror” S10 type manufactured by Toray Industries, Inc. having a thickness of 30 ⁇ m is used.
  • a sample sheet 81 having a length of 350 mm was used as shown in FIG. 8, but when the diameter of the rotating roll body 12 exceeds 150 mm. For example, when the measurement is difficult with this length, the length may be appropriately changed. Further, when the weight of the sample sheet 81 is relatively heavy, the weight of the weight 92 may be corrected to such an extent that its influence can be ignored.
  • the measurement of the coefficient of static friction is performed in air at a temperature of 25 ° C and a relative humidity of 40%. However, if it is clear that the use state of the rotating roller body 12 in the process is far from this, the measurement of the coefficient of static friction is performed under the temperature, humidity, and other environment in the use state of the rotating roller body 12. It is.
  • the expansion / contraction means 15 does not exert any force as long as it can expand and contract the fiber structure 14 in the direction of the rotation center axis of the rotary roller body 12.
  • a plurality of actuators are arranged on a circumferential orbit, and the actuators hold both ends of the fiber structure 14 and rotate the fiber structure 14 in the direction of the rotation center axis of the rotating roller body 12 while rotating in synchronization with the web transport speed.
  • an expanding / contracting means having a mechanical force for expanding / contracting.
  • an expansion / contraction means having an inclined collar force rotatable with respect to a rotation axis inclined with respect to the rotation center axis disposed on both outer sides in the rotation center axis direction may be used.
  • the inclined collar system is preferably used as the expansion and contraction means because of its simple structure, small power that requires no power, and easy synchronization of rotation.
  • the setting of the tilt angle of the tilt collar can be arbitrarily changed.
  • the inclination can be adjusted according to the thickness, width and tension of the web to be stretched.
  • the angle can be changed, and the stretching effect can be adjusted appropriately.
  • a fibrous structure 14 that contacts the web is used. Since the surface of the fibrous structure 14 has elasticity, the contact with the web is soft, and when foreign matter is present during the process, the foreign matter is prevented from being strongly pressed against the web, and the surface of the web is prevented. Hardly damages The fibrous structure 14 is lighter than the other means, and can be easily selected so as to have appropriate friction against the web. In this case, the torque required for the rotation is small, and a speed difference from the web is hardly generated, so that the web surface is hardly damaged by the slip. The fibrous structure 14 generally has air permeability. Therefore, even if air enters between the web such as a plastic film and the roller, it is easy to escape without staying as it is.
  • the transport roller of the present invention when used as the transport roller used in the winding step for producing a plastic film, the transport roller is provided with a preceding force to release air. May not be necessary.
  • FIG. 5 is a cross-sectional view for explaining the relationship between the maximum widening position of the fiber structure 14 in the roller 1 and the angle of embedment of the web 53 to the fiber structure 14.
  • the maximum widening position 51 is a position in the rotation direction in which the fiber structure 14 is maximally extended by the expansion / contraction means
  • the maximum contraction position 52 is a rotation direction in which the fiber structure 14 is maximally contracted by the expansion / contraction means 15.
  • the hugging angle ⁇ of the web 53 is preferably 30 ° or more. In order to achieve a higher stretching effect, the hugging angle 120 is more preferably 120 ° or more and the widening angle ⁇ or less.
  • the widening angle ⁇ is an angle formed by the rotation center axis, the maximum widening position 51, and the maximum contraction position 52 on a plane orthogonal to the rotation axis.
  • the widening angle ⁇ is usually 180 °
  • the expansion angle ⁇ is usually an arbitrary angle. I can do it.
  • the attachment angle OC is an angle formed by the rotation center axis, the maximum widening position 51, and the point at which the web 53 separates from the fiber structure 14 in a plane orthogonal to the rotation center axis.
  • the attachment angle ⁇ is preferably 0 ° or more, but 45 ° or more. If so, there are many practical problems!
  • the web stretching roller of the present invention has a high effect of preventing the occurrence of scratches in the web, and is therefore preferably used in an apparatus for producing webs with strict quality requirements regarding scratches, for example, plastic films for optical applications.
  • FIG. 2 is a schematic view of a general plastic film manufacturing process.
  • the molten polymer of the thermoplastic resin is continuously extruded from the sheet forming die 21 into a sheet.
  • the extruded molten sheet comes into contact with the cooling drum 22 and is cooled to be a solidified film 23.
  • the film 23 is continuously introduced into the stretching device 24.
  • the film 23 is stretched in the stretching device 24 in the longitudinal direction and the width direction.
  • the stretched film 25 is conveyed to the winding device 27 by the conveying rollers 26a and 26b, where the film 25 is wound into a roll.
  • the film wound into a roll forms a film roll (web roll) 28.
  • the winding device 27 is provided with a rotary pressure roller 29 that contacts the film roll 28 being formed with a predetermined pressure in order to improve the formation of the film roll 28.
  • the manufactured film roll 28 may be shipped as a product in that state. When the width of the manufactured film roll 28 is long, it is usually supplied to the slitting process as an intermediate product 30. Is done.
  • the film 31 continuously drawn from the intermediate product 30 is conveyed by the conveying openings 32a and 32b to reach the slitter 33.
  • the finolem 31 is slit into a predetermined width to form a plurality of films.
  • Each of the plurality of films is wound by a respective winding device 34 to form a film roll (web roll) 35 as a final product.
  • the winding device 34 is provided with a rotary contact pressure roller 36 that contacts the film roll 35 being formed with a predetermined pressure in order to improve the formation of the film roll 35.
  • a roller for stretching the web of the present invention is used as necessary. Further, as the rotating contact pressure rollers 29 and 36, the roller for stretching the web of the present invention is used as necessary.
  • the film roll 28 or the film roll 35 was decompressed by a vacuum evaporation device or the like.
  • the atmosphere is supplied to a step that undergoes a predetermined process.
  • the film is drawn by the film rolls 28 and 35, conveyed by a conveyance roll, subjected to a predetermined process, and then wound up.
  • the film may need to be stretched.
  • a conventional sheet stretching means such as a bending-type expander roller force
  • the effect of the accompanying airflow entering between the roller surface and the film is much more than that in the atmosphere. Become smaller.
  • the coefficient of friction between the roller and the film increases.
  • the film is susceptible to damage because excessive tension develops in the width direction of the film immediately.
  • the web stretching roller of the present invention when used as a web stretching means in the step of being placed in a reduced-pressure atmosphere, the stretch / flexibility of the fiber structure is A slight speed difference is absorbed and a relative speed difference is less likely to occur. Furthermore, since the excessive tension generated in the width direction of the film is absorbed by the minute deformation of the fibrous structure, as in the above-described conventional sheet stretching means. No problem! / ,.
  • FIG. 3 is a cross-sectional view of a film winding device using the web stretching roller of the present invention as a pressure roller.
  • the conveyed plastic film 37 is taken up as a film roll (web roll) 38 in a roll form, it is composed of a rotating roller body 12, a fiber structure 14 covering the outer peripheral surface 13 of the rotating roller body 12, and expansion / contraction means 15.
  • the web stretching roller 1 of the present invention is pressed against the film roll 38 to form the film roll 38.
  • the winding device 27 is provided with a pressing roller 29 or a pressing roller 36 on the winding device 34.
  • a web stretching opening of the present invention shown in FIG. By using rollers for the pressure rollers 29 and 36, the free path length in which the stretched film travels without being gripped can be shortened. For this reason, the stretched film re-sags, thereby preventing the film from re-sealing.
  • FIG. 4 is a longitudinal sectional view of an example of the roller 1 of the present invention.
  • the rotating roller body 12 includes a roller shell 41 made of carbon fiber reinforced plastic having a length of lm and an outer diameter of 80 mm, an annular member 42 supporting shells 41 attached to both inner ends of the shell 41, and an annular member 42. And a metal fixed shaft 11 to which the ball bearing 43 is attached.
  • the surface of the roller shell 41 is coated with a urethane resin-based paint from the viewpoint of preventing contamination and improving lubricity.
  • the sample sheet 71 placed horizontally was gripped uniformly with a vise over the entire width with two sides in the length direction spaced 80 mm in the width direction, and indicated by arrows 73a and 73b.
  • the length of each sample was measured for three sample sheets 71 prepared one by one.
  • the dimensions after releasing the tension were restored to 82 mm to 84 mm, and it was confirmed that they had elasticity.
  • the coefficient of static friction between the fiber structure 14 and the surface of the roller shell 41 and the coefficient of static friction between the fiber structure 14 and the polyester film (web) 44 are as described above.
  • the measurement was performed by the method described with reference to FIGS.
  • Three sample sheets were prepared by cutting a 3 ⁇ m-thick polyester film “Lumirror” C21 type, manufactured by Toray Industries, Inc., for measuring the static friction coefficient of both.
  • the coefficient of static friction between the fibrous structure 14 and the surface of the roller shell 41 was measured on three sample sheets, and was found to be 0.15 to 0.24.
  • the results of measuring the coefficient of friction between the fibrous structure 14 and the polyester film 44 for the three sample sheets were 0.43 to 0.52. It was confirmed that these values were within the above-mentioned preferred values.
  • the expansion / contraction means 15 includes an annular inclined collar 45 having a rotation center axis inclined with respect to the rotation center axis of the rotating roller body 12, a ball bearing 46 mounted inside the inclination collar 45, A ball bearing 46 is attached to the outer circumference, and the inner circumference is composed of an inclined collar support member 47 fixed to the shaft 11.
  • the inclined collar 45 is attached to the shaft 11 via a ball bearing 46 and an inclined collar support member 47 with a clearance of 25 mm from the end of the rotating roller body 12 on the outer side in the rotation center axis direction of the rotating roller body 12. Have been.
  • the clearance is the distance between the position of the inclined collar 45 closest to the end of the roller shell 41 and the end of the roller shell 41.
  • Both ends of the fiber structure 14 covered by the rotating roller body 12 are gripped by left and right inclined collars 45, respectively.
  • the tilt angle of the rotation center axis of the tilt collar 45 with respect to the rotation center axis of the rotary roller body 12 (hereinafter, referred to as the tilt angle of the tilt collar) has a structure that can be adjusted stepwise.
  • the inclination angle of the inclination collar is 15 °.
  • the web stretching roller 1 formed here is used as a web stretching roller (FIG. 1) provided immediately before the pressing roller 36 of the winding device 34 in the slitting process of the biaxially stretched polyester film. (Not shown).
  • the roller 1 used was a type in which the shaft 11 was not driven to rotate, that is, a free roller type.
  • the fibrous structure 14 When the biaxially stretched polyester film 31 is conveyed in contact with the fibrous structure 14, the fibrous structure 14, the inclined collar 45, and the rotating roller body 12 (roller shell 41) 1S are substantially synchronized. To rotate. By this rotation, the fibrous structure 14 expands and contracts in the direction of the rotation center axis of the rotating roller body 12. Due to this expansion and contraction, tension in the width direction is applied to the polyester film 31.
  • the film pass line was configured so that the embracing angle of the film 31 was 140 °, the mounting angle oc was 0 °, and the widening angle ⁇ was 180 °.
  • a tape having a thickness of 0.2 mm was attached to the transport rollers 32a and 32b in the slitting process, and a step was locally formed to generate a shear on the film 31 and a winding tension of 30NZm.
  • the web was wound at a winding speed of 200 mZmin, and the mixing of the screen into the film roll 35 before and after the application of the web stretching roller of the present invention was compared.
  • the force generated by the transport rollers 32a and 32b to be wound directly onto the film roll 35 is used as the wrinkle-stretching roller of this embodiment.
  • the film roll 35 was formed in a state where the shear generated by the transport rollers 32a and 32b was removed. It was also confirmed that the film of the film roll 35 had no scratches.
  • the surface coating of the roller shell 41 was changed to a node chrome plating.
  • the hard chrome plating has a higher abrasion resistance than the coating of Example 1 and can maintain the contamination prevention effect and the lubricity for a longer period of time.
  • This acceleration test was performed by the following method. With the length direction of the circular knitting machine as the length direction and the circumferential direction as the width direction, cut out a sample piece with a width of 20 mm and a length of 70 mm without tension. Next, as shown in FIG. 11, a range of squares 112a and 112b of 10 mm in both ends in the length direction and 10 mm in the center in the width direction of the sample piece 111 is gripped tightly, and one side of the sample piece 111 is gripped. was fixed, and the other side end of the sample piece 111 was reciprocated at a frequency of 10 Hz. The stroke range of the vibration was set so that the distance between the fixed portions at both ends was 50 mm to 19 Omm. That is, it was expanded and contracted in the range of 1 to 3.8 times the natural length of tension 0. The fibrous structure 14 mounted on the web stretching roller 1 of the present embodiment expands and contracts in a range of 2.0 times to 2.3 times.
  • the web stretching roller 1 formed here is provided with a web stretching provided immediately before the pressing roller 36 of the winding device 34 in the slitting process of the biaxially stretched polyester film.
  • Roller (not shown).
  • the roller 1 used was a type in which the shaft 11 was not driven to rotate, that is, a free roller type.
  • the film pass line was configured so that the hugging angle of the film 31 was 140 °, the mounting angle a was 0 °, and the widening angle j8 was 180 °.
  • the inclination angle of the inclination collar 45 was set to 15 °.
  • the web stretching roller 1 having the same configuration as that of the first embodiment is provided with a web stretching roller provided immediately before the pressing roller 36 of the winding device 34 in the slitting process of the biaxially stretched polypropylene film. (Not shown).
  • the roller 1 used was a type in which the shaft 11 was not driven to rotate, that is, a free roller type.
  • the film pass line was configured so that the hugging angle of the film 31 was 1S 140 °, the mounting angle ⁇ was 0 °, and the widening angle j8 was 180 °.
  • the inclination angle of the inclination collar 45 was 8 °.
  • Example 4 In the same manner as in Example 1, the roller 1 for stretching a web of the present invention shown in Fig. 1 was produced.
  • the detailed structure is the same as that of the first embodiment, and is as shown in FIG.
  • the rotating roller body 12 includes a roller shell 41 made of carbon fiber reinforced plastic having a length of 2,800 mm and an outer diameter of 110 mm, an annular member 42 for supporting shells 41 attached to both inner ends of the shell 41, and an annular member 42.
  • the ball bearing 43 mounted inside the inside and the metal fixed shaft 11 to which the ball bearing 43 is mounted also have a force.
  • the surface of the roller shell 41 was subjected to hard chrome plating from the viewpoints of improving the wear resistance and the lubricity of the surface and preventing contamination.
  • the fibrous structure 14 was the one used in Example 1. Both ends of the fibrous structure 14 were pulled with a tension of 150 N and attached to the outer peripheral surface 13 of the roller shell 41.
  • the same inclined collar 45 as in Example 1 was used.
  • the inclined collar 45 is attached to the shaft 11 via a ball bearing 46 and an inclined collar support member 47, with a clearance of 25 mm from the end of the rotating roller body 12 outside the rotation center axis direction of the rotating roller body 12. Have been.
  • the clearance is the distance between the position of the inclined collar 45 closest to the end of the roller shell 41 and the end of the roller shell 41.
  • Both end portions of the fibrous structure 14 covered by the rotary roller body 12 are gripped by left and right inclined collars 45, respectively.
  • the tilt angle of the rotation center axis of the tilt collar 45 with respect to the rotation center axis of the rotary roller body 12 (hereinafter, referred to as the tilt angle of the tilt collar) has a structure that can be adjusted stepwise.
  • the inclination angle of the inclination collar is set to 15 °.
  • the displacement force of the fibrous structure 14 provided by the elastic means 15 at both ends does not reach the entire fibrous structure 14, but the fibrous structure Although it expands and contracts only in the range of about 700 mm at both ends of 14, the results of the experiment confirm that there is also an effect of stretching the center. That is, it has been found that the desired web stretching effect can be obtained if the web can be sufficiently stretched at both ends without expanding and contracting the central portion.
  • the web stretching roller 1 configured as described above is provided with a web stretching roller (just before the pressing roller 29 of the winding device 27 in the biaxially stretched polyester film manufacturing apparatus). (Not shown).
  • the roller 1 used was a type in which the shaft 11 was not driven to rotate, that is, a free roller type.
  • a biaxially stretched polyester film having a thickness of 3 ⁇ m and a width of 2,400 mm (a polyester film "Lumirror” C10 type manufactured by Toray Industries, Inc.) was formed by using the film winding process thus configured. was carried out a winding test. As winding conditions, a winding tension of 30 NZm and a winding speed of 200 mZmin were adopted.
  • a stretchable fiber structure is used as the web stretching means.
  • the fibrous structure provides a web stretching action in the width direction of the web running in contact with the web. Since this stretching action is due to the fibrous structure, there is substantially no scratch on the force web, which is sufficient for stretching.
  • the web stretching roller of the present invention is preferably used as a web stretching roller in a plastic film manufacturing process. In particular, it is most suitable as a sheet stretching roller used in the process of producing a web that is resistant to scratches, for example, a plastic film for optical use.

Abstract

A web smoothing roller comprising a rotary roller main body, a fiber structure with stretchability, covering the outer peripheral surface of the rotary roller main body, and an expansion/contraction means for expanding/contracting the fiber structure in the direction of the rotation center axis of the rotary roller main body.

Description

明 細 書  Specification
ウェブのシヮ伸ばし用ローラ、ならびに、ウェブロールの製造装置、および 、製造方法  Roller for web web stretching, web roll manufacturing apparatus, and manufacturing method
技術分野  Technical field
[0001] 本発明は、ウェブのシヮ伸ばし用ローラ、ならびに、ウェブロールの製造装置、およ び、製造方法に関する。  The present invention relates to a web stretching roller, a web roll manufacturing apparatus, and a manufacturing method.
背景技術  Background art
[0002] プラスチックフィルム、紙などのシート状物(以下、ウェブと云う)の製造工程にお!/ヽ て、ウェブを取り扱うために、例えば、ウェブの搬送やカ卩ェのために、各種ローラが用 いられている。ローラによるウェブの取り扱いにおいて、ウェブにキズゃシヮが発生す る場合がある。ウェブのキズゃシヮの発生は、製品の歩留まりの低下や製造工程の 操業性悪化をもたらす。  [0002] In the manufacturing process of sheet-like materials (hereinafter, referred to as web) such as plastic films and paper, various rollers are used to handle the web, for example, for transporting the web and for kneading. Is used. When handling the web with the roller, the web may be scratched. The occurrence of scratches on the web results in lower product yields and lower operability in the manufacturing process.
[0003] ウェブ製造工程におけるシヮの発生を防止する、あるいは、発生したシヮを伸ばす 手段として、ウェブの幅方向両端を幅方向外側に引つ張るテンターやクロスガイダゃ 、ウェブの全幅に接触するエキスパンダローラが知られている。エキスパンダローラに は、ベンディングタイプとフラットタイプとがある。ベンディングタイプのエキスパンダ口 ーラは、湾曲した回転中心軸を有する回転ローラ力もなり、回転ローラに接触するゥ エブに幅方向の張力を付与する。フラットタイプのエキスパンダローラは、ストレートの 回転中心軸を有する回転ローラ力 なるとともに回転に伴ってローラシェルが中心軸 方向に伸縮する構造を有し、回転ローラに接触するウェブに幅方向の張力を付与す る。  [0003] As means for preventing the generation of a shear in the web manufacturing process or extending the generated shear, a tenter or a cross guider that pulls both ends in the width direction of the web outward in the width direction is in contact with the entire width of the web. Expander rollers are known. The expander roller includes a bending type and a flat type. The bending type expander opening roller also generates a rotating roller force having a curved rotation center axis, and applies a tension in the width direction to the web contacting the rotating roller. The flat-type expander roller has a structure in which the roller shell expands and contracts in the direction of the central axis with rotation as the rotating roller force has a straight rotation central axis, and applies a tension in the width direction to the web contacting the rotating roller. Give.
[0004] フラットエキスパンダローラを用いたウェブのシヮ伸ばし用ローラ力 特許文献 1、 特許文献 2、特許文献 3、あるいは、特許文献 4に開示されている。特許文献 1あるい は特許文献、ならびに、特許文献 3が開示するローラは、ローラの円周方向に間隔を ぉ 、てローラの軸方向に平行に延びる多数の弾性棒状体を有する。特許文献 4が開 示するローラは、ゴムノィプを有する。  [0004] Roller force for web stretching using a flat expander roller is disclosed in Patent Literature 1, Patent Literature 2, Patent Literature 3, or Patent Literature 4. The roller disclosed in Patent Literature 1 or Patent Literature and Patent Literature 3 has a large number of elastic rods that are spaced apart in the circumferential direction of the roller and extend in parallel with the axial direction of the roller. The roller disclosed in Patent Document 4 has a rubber knob.
[0005] し力しながら、上記の従来の技術では、より高度な品質が求められる製品における シヮ伸ばしとキズ防止を実現させることが困難である。 [0005] However, in the conventional technology described above, in products requiring higher quality, It is difficult to achieve the extension and the prevention of scratches.
[0006] すなわち、従来のベンディングタイプのエキスパンダローラは、次の問題を有する。  [0006] That is, the conventional bending type expander roller has the following problem.
回転に必要なトルクが非常に大きぐ駆動することが前提であるため設備費が高い。 構造上ウェブ中央部に過剰な幅方向の張力が発生してウェブが歪む。ウェブ端部の シヮ伸ばし効果が小さい。ローラ周速とウェブ搬送速度との速度差が、特にウェブ端 部において大きくなりやすぐローラとウェブとの接触面において滑りが生じやすい。 ローラ中央部と両端部とでは、前後ローラ間のウェブのパスラインが異なるため、ゥェ ブ端部にタルミが発生しやす 、。  Since it is premised that the driving required for the rotation is very large, the equipment cost is high. Excessive tension in the width direction is generated at the center of the web structurally, and the web is distorted. The effect of stretching the web end is small. The speed difference between the peripheral speed of the roller and the web transport speed becomes large, especially at the end of the web, and the contact surface between the roller and the web tends to slip immediately. Since the web pass lines between the front and rear rollers are different between the center and both ends of the roller, it is easy to cause thickening at the end of the web.
[0007] 特許文献 1あるいは特許文献 2、ならびに、特許文献 3に開示されているフラットェ キスパンダローラは、ベンディングタイプのエキスパンダローラの欠点の解消を意図し たものである。しかし、このフラットエキスパンダローラにおいては、弾性体力もなる多 数の棒状体は間隙を持って配置されているため、拡幅作用が段階的であり、また、口 ーラ外周が凹凸になりやすい問題がある。さらに、棒状体を保持するためにローラシ エルに溝をつけたものでは、溝にぉ 、て棒状体が擦過して発塵する問題がある。  [0007] The flat-expandable rollers disclosed in Patent Document 1 or Patent Document 2 and Patent Document 3 are intended to solve the drawbacks of the bending type expander roller. However, in this flat expander roller, since a large number of rods having elasticity are arranged with a gap, the widening action is stepwise, and the outer periphery of the roller tends to be uneven. There is. Further, in the case where the roller shell is provided with a groove for holding the rod, there is a problem that the rod rubs against the groove and generates dust.
[0008] これらの問題を解消すべくゴムノイブを用いたフラットエキスパンダローラが特許文 献 4で開示されている。しかし、この方式も回転に必要なトルクが大きい。特に、巻き 取り張力が低く設定される薄物フィルムの製造にこのロールを用いるには、このロー ルを駆動する必要がある。そのため、製造設備費が高くなる。  [0008] Patent Document 4 discloses a flat expander roller using a rubber noise in order to solve these problems. However, this method also requires a large torque required for rotation. In particular, in order to use this roll for manufacturing a thin film having a low winding tension, it is necessary to drive this roll. Therefore, the cost of manufacturing equipment increases.
[0009] また、特許文献 1あるいは特許文献 2、ならびに、特許文献 3に開示されている方 式のエキスパンダローラも特許文献 4に開示されている方式のエキスパンダローラも、 ローラ外周面は、金属やゴムなど硬い材料の単純な連続体から形成されている。そ のため、ウェブにキズをつけやすいと力、拡幅量を大きくとることができないとかの問 題がある。  [0009] Further, both the expander roller of the method disclosed in Patent Document 1 or Patent Document 2, and the expander roller of the method disclosed in Patent Document 3, and the expander roller of the method disclosed in Patent Document 4, It is formed from a simple continuum of hard material such as metal or rubber. For this reason, there is a problem that if the web is easily scratched, the power and the amount of width cannot be increased.
特許文献 1:特公昭 44— 20877号公報  Patent Document 1: Japanese Patent Publication No. 44-20877
特許文献 2 :米国特許第 3, 344, 493号明細書  Patent Document 2: U.S. Pat.No. 3,344,493
特許文献 3 :特許第 3, 028, 483号公報  Patent Document 3: Patent No. 3,028,483
特許文献 4:実公昭 57— 11966号公報  Patent Document 4: Japanese Utility Model Publication No. 57-11966
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems the invention is trying to solve
[0010] 本発明の目的は、ウェブのシヮを全幅にわたって軽減し、かつ、キズ発生を低減で きるウェブのシヮ伸ばし用ローラを提供することである。本発明の他の目的は、シヮゃ キズの少な!/、ウェブロールを製造するための製造装置を提供することである。本発明 の更に他の目的は、シヮゃキズの少ないウェブロールを製造するための製造方法を 提供することである。  [0010] An object of the present invention is to provide a web stretching roller that can reduce the web shear over the entire width and reduce the occurrence of scratches. Another object of the present invention is to provide a manufacturing apparatus for manufacturing a web roll with less scratches. Still another object of the present invention is to provide a production method for producing a web roll with less scratches.
課題を解決するための手段  Means for solving the problem
[0011] 本発明のウェブのシヮ伸ばし用ローラは、回転ローラ本体と、該回転ローラ本体の 外周面を被覆する伸縮性を有する繊維構造体と、該繊維構造体を前記回転ローラ 本体の回転中心軸方向に伸縮させる伸縮手段とからなる。  [0011] The web stretching roller of the present invention includes a rotating roller body, a stretchable fiber structure that covers the outer peripheral surface of the rotating roller body, and a rotation of the rotating roller body that rotates the fiber structure. And a stretching means for stretching in the direction of the central axis.
[0012] 本発明のウェブのシヮ伸ばし用ローラにおいて、前記繊維構造体が、筒状の布帛 であることが好ましい。  [0012] In the web stretching roller of the present invention, it is preferable that the fibrous structure is a tubular fabric.
[0013] 本発明のウェブのシヮ伸ばし用ローラにおいて、前記筒状の布帛が、シームレス であることが好ましい。  [0013] In the web stretching roller of the present invention, the tubular fabric is preferably seamless.
[0014] 本発明のウェブのシヮ伸ばし用ローラにおいて、前記筒状の布帛が、弾性糸ある いはそれを含む糸条カもなることが好まし 、。  In the web stretching roller of the present invention, it is preferable that the tubular fabric is an elastic yarn or a yarn containing the elastic yarn.
[0015] 本発明のウェブのシヮ伸ばし用ローラにおいて、前記筒状の布帛が、編み物であ ることが好ましい。 In the web stretching roller of the present invention, it is preferable that the tubular fabric is a knitted fabric.
[0016] 本発明のウェブのシヮ伸ばし用ローラにおいて、前記編み物が、弾性糸あるいは それを含む糸条カもなることが好まし 、。  [0016] In the web stretching roller of the present invention, it is preferable that the knitted material is an elastic yarn or a yarn including the elastic yarn.
[0017] 本発明のウェブのシヮ伸ばし用ローラにおいて、前記編み物が、シームレスである ことが好ましい。 [0017] In the web stretching roller of the present invention, the knitted fabric is preferably seamless.
[0018] 本発明のウェブのシヮ伸ばし用ローラにおいて、前記伸縮手段が、前記回転ロー ラ本体の回転中心軸方向両外側に配設され、該回転中心軸に対して傾斜した回転 中心軸に関して回転自在な傾斜カラー力 なり、該傾斜カラーに、前記繊維構造体 の端部が把持され、前記繊維構造体と前記傾斜カラーとにより前記回転ローラ本体 を包囲する外包体が形成されて 、ることが好ま 、。  [0018] In the web stretching roller of the present invention, the expansion / contraction means is disposed on both outer sides in the rotation center axis direction of the rotating roller main body, and with respect to the rotation center axis inclined with respect to the rotation center axis. A rotatable inclined collar force is formed, the end of the fiber structure is gripped by the inclined collar, and an outer package surrounding the rotating roller body is formed by the fiber structure and the inclined collar. Is preferred,.
[0019] 本発明のウェブのシヮ伸ばし用ローラにおいて、前記繊維構造体と前記ウェブと の間の静止摩擦係数が、 0. 3乃至 0. 7であり、前記繊維構造体と前記回転ローラ本 体との間の静止摩擦係数力 0. 4以下であることが好ましい。 In the web stretching roller of the present invention, the fibrous structure and the web Is preferably 0.3 to 0.7, and the static friction coefficient force between the fibrous structure and the rotating roller body is preferably 0.4 or less.
[0020] 本発明のウェブロールの製造装置は、ウェブを連続して供給するウェブ供給装置 と、該供給装置から連続して供給されるウェブを搬送するウェブ搬送装置と、該搬送 装置にて連続して搬送されるウェブを連続してロール形態に巻き取るウェブ卷取装 置とからなるウェブロールの製造装置において、少なくとも前記搬送装置の少なくとも 1力所に、本発明のウェブのシヮ伸ばし用ローラが配設されてなる。  [0020] The web roll manufacturing apparatus of the present invention includes a web supply device that continuously supplies a web, a web transport device that transports the web that is continuously supplied from the supply device, and a web transport device that continuously feeds the web. And a web take-up device for continuously winding the conveyed web into a roll form, wherein at least one point of the conveying device is used to stretch the web of the present invention. A roller is provided.
[0021] 本発明のウェブロールの製造装置におけるウェブを連続して供給するウェブ供給 装置は、ウェブを連続して成形する製膜装置、あるいは、ウェブロールからウェブを連 続して巻き出すゥ ブ巻き出し装置を意味する。  [0021] The web supply device for continuously supplying the web in the web roll manufacturing apparatus of the present invention is a film forming device for continuously forming the web, or a web for continuously unwinding the web from the web roll. Means unwinding device.
[0022] 本発明のウェブロールの製造装置において、前記ウェブのシヮ伸ばし用ローラが 、前記ウェブ卷取装置において形成されるウェブロールの表面に圧接可能に配置さ れていることが好ましい。  [0022] In the web roll manufacturing apparatus of the present invention, it is preferable that the web stretching roller is arranged so as to be able to press against the surface of the web roll formed in the web winding device.
[0023] 本発明のウェブロールの製造方法は、ウェブを連続して供給するウェブ供給工程 と、該供給工程力 連続して供給されるゥ ブを連続して搬送するゥ ブ搬送工程と 、該搬送工程にて連続して搬送されるウェブを連続してロール形態に巻き取るウェブ 卷取工程とからなるウェブロールの製造方法において、少なくとも前記ウェブ搬送ェ 程の少なくとも 1力所に、本発明のウェブのシヮ伸ばし用ローラが設けられてなる。  [0023] The method for producing a web roll according to the present invention includes: a web supply step of continuously supplying web; a web transport step of continuously transporting webs continuously supplied by the supply step; In a method for manufacturing a web roll, comprising: a web winding step of continuously winding a web conveyed continuously in a conveying step into a roll form, at least one point of the web conveying step includes the present invention. A roller for stretching the web is provided.
[0024] 本発明のゥヱブロールの製造方法におけるウェブを連続して供給するウェブ供給 工程は、ウェブを連続して成形する製膜工程、あるいは、ウェブロールからウェブを連 続して巻き出すウェブ巻き出し工程を意味する。  [0024] In the method for producing a web roll of the present invention, the web supply step of continuously feeding the web is a film forming step of continuously forming the web, or a web unwinding process of continuously winding the web from the web roll. Means a process.
[0025] 本発明のウェブロールの製造方法において、前記ウェブが、ポリエステルフィルム であることが好ましい。  [0025] In the web roll manufacturing method of the present invention, the web is preferably a polyester film.
[0026] 本発明における繊維構造体の伸縮性は、次のように定義される。繊維構造体を、長 さ 120mm X幅 120mmの正方形に裁断して伸縮性を評価するサンプルシートを作 製する。得られたサンプルシートを水平に置き、サンプルシートに張力が作用しない 状態 (無張力状態)で、サンプルシートの対向する 2辺を全幅にわたってそれぞれ万 力で均一に、かつ、実験中に滑らないように把持する。この際、万力で把持されない 部分の長さが 100mmになるように万力で把持する。この状態で、 2辺の対向する方 向(張力方向)に、速度が結果に影響しない程度に十分ゆっくりと、万力を移動させ、 サンプルシートに張力をかける。その結果、サンプルシートが、破断されることなく 11 Omm以上に伸ばされ、かつ、 11 Ommまで伸ばした後に、 ImmZ秒の速度で張力 方向の反対方向に万力を移動させて、サンプルシートに作用して 、る張力を解放さ せて、再び無張力の状態に戻した場合に、万力で把持されていない部分の張力をか けた方向における間隔が 100mm乃至 105mmの範囲に復元する場合、当該繊維 構造体は、当該張力方向において、伸縮性を有すると評価する。 [0026] The elasticity of the fiber structure in the present invention is defined as follows. The fiber structure is cut into a square with a length of 120 mm and a width of 120 mm to make a sample sheet for evaluating the elasticity. Place the obtained sample sheet horizontally, and in a state where tension is not applied to the sample sheet (no tension state), the two opposite sides of the sample sheet are evenly spread across the entire width with a vise, and do not slip during the experiment. To grip. At this time, it is not gripped with a vise Hold with a vice so that the length of the part becomes 100mm. In this state, apply tension to the sample sheet by moving the vise in the two opposite directions (tension direction) slowly enough that the speed does not affect the result. As a result, the sample sheet is stretched to 11 Omm or more without breaking, and after stretching to 11 Omm, the vise is moved in the direction opposite to the tension direction at a speed of ImmZ seconds to act on the sample sheet. Then, when the tension is released and the tension is returned to the non-tension state again, when the interval in the direction in which the tension is applied to the portion not gripped by a vice in the direction in which the tension is applied is restored to the range of 100 mm to 105 mm, The fibrous structure is evaluated as having elasticity in the tension direction.
[0027] サンプルシートは、回転ローラ本体の外周面を被覆する際に、回転ローラ本体の 回転中心軸に沿った方向がサンプルシートの長さ方向、回転ローラ本体の回転方向 に沿った方向がサンプルシートの幅方向となるように作製される。長さ方向において 伸縮性が認められたときに、当該繊維構造体は伸縮性を有すると評価する。  When the sample sheet covers the outer peripheral surface of the rotating roller body, the direction along the rotation center axis of the rotating roller body is the length direction of the sample sheet, and the direction along the rotating direction of the rotating roller body is the sample. It is manufactured so as to be in the width direction of the sheet. When elasticity is observed in the length direction, the fiber structure is evaluated as having elasticity.
[0028] なお、上記実験は、温度 25°C、相対湿度 40%の大気中で行うのを原則とする。た だし、ローラの使用状態がこれとかけ離れていることが明らかな場合は、使用状態に おける温度、湿度その他の環境下において行うものとする。また、繊維構造体を上記 寸法に切断することができない場合など適切に実験できない場合は、実験可能な寸 法に切断し、張力方向の寸法に関して上記数値を比例させて評価する。  [0028] The above experiment is basically performed in the air at a temperature of 25 ° C and a relative humidity of 40%. However, if it is clear that the condition of use of the roller is far from this, the operation shall be performed under the temperature, humidity and other environment under the condition of use. If the experiment cannot be performed properly, such as when the fibrous structure cannot be cut into the above dimensions, the fiber structure is cut into experimental dimensions and the above values are evaluated in proportion to the dimensions in the tension direction.
[0029] 一方向にお ヽてのみ伸縮性が認められる繊維構造体を本発明に云う繊維構造体 として用いる場合は、伸縮性が認められる方向が回転ローラ本体の回転中心軸方向 に近い方向に向くようにして用いる。直交する 2方向において、ともに伸縮性が認めら れる繊維構造体がより好まし 、。  [0029] When a fiber structure having elasticity in only one direction is used as the fiber structure according to the present invention, the direction in which elasticity is recognized is a direction close to the rotation center axis direction of the rotary roller body. Use it to face. A fiber structure in which elasticity is recognized in both directions perpendicular to each other is more preferable.
[0030] 本発明にお ヽて、繊維構造体とは、天然繊維または化学繊維により構成された織 物、編み物、不織布等の布帛の総称である。編み物は多くの場合、本発明に云う伸 縮性を有する繊維構造体である。織物および不織布は、伸縮性を有しないものが多 い。しかし、伸縮性を有する弾性糸あるいはそれを含む糸条で形成された織物およ び不織布は、伸縮性を有し、本発明に云う伸縮性を有する繊維構造体として用いる ことが可能な場合がある。  [0030] In the present invention, a fiber structure is a general term for a fabric such as a woven fabric, a knitted fabric, or a nonwoven fabric made of natural fibers or chemical fibers. Knitting is often an extensible fibrous structure according to the present invention. Many woven and non-woven fabrics do not have elasticity. However, woven fabrics and nonwoven fabrics made of elastic yarns having elasticity or yarns containing the elastic yarns have elasticity and can be used as the fiber structure having elasticity according to the present invention. is there.
[0031] 本発明において、筒状の布帛とは、少なくとも両端を除いた内側部分が筒状である 布帛を云う。布帛として、編み物を例にとると、筒状の編み物として、シート状の編み 物を縫製その他の方法で筒状にしたものや、筒状に編み機で編成された筒状の編 み物、すなわち、シームレスな筒状の編み物がある。 [0031] In the present invention, the cylindrical fabric means that the inside portion excluding at least both ends is cylindrical. Refers to fabric. Taking a knitted fabric as an example, as a tubular knitted fabric, a sheet-shaped knitted fabric formed by sewing or other methods into a tubular shape, or a tubular knitted fabric knitted by a tubular knitting machine, that is, There is a seamless tubular knitting.
[0032] 本発明において、外包体とは、回転ローラ本体の少なくとも側面を概ね覆い囲う一 あるいは二以上の部材力 なる構造物を云う。  [0032] In the present invention, the outer package body refers to a structure having one or more member strengths that substantially covers at least a side surface of the rotating roller body.
[0033] 本発明における繊維構造体を形成する弾性糸は、次のように定義される。繊維構 造体に用いる糸条を長さ 120mmに切断し、サンプル糸条を作成する。得られたサン プル糸条を水平方向に置き、サンプル糸条に張力が作用しない状態 (無張力状態) で、サンプル糸条の両端を万力で把持する。この際、万力で把持されない部分の長 さが 100mmになるように万力で把持する。この状態で、サンプル糸条の長さ方向(張 力方向)に、速度が結果に影響しない程度に十分ゆっくりと、万力を移動させ、サン プル糸条に張力をかける。その結果、サンプル糸条が、破断されることなく 110mm 以上に伸ばされ、かつ、 110mmまで伸ばした後に、 ImmZ秒の速度で張力方向の 反対方向に万力を移動させて、サンプル糸条に作用している張力を解放させて、再 び無張力の状態に戻した場合に、万力で把持されていない部分の張力をかけた方 向における間隔が 100mm乃至 105mmの範囲に復元する場合、当該糸条は、弾性 糸であると評価する。  [0033] The elastic yarn forming the fibrous structure in the present invention is defined as follows. The yarn used for the fiber structure is cut to a length of 120 mm to prepare a sample yarn. The obtained sample yarn is placed in the horizontal direction, and both ends of the sample yarn are gripped with a vice in a state where no tension acts on the sample yarn (no tension). At this time, grip with a vice so that the length of the part that is not gripped with a vise is 100 mm. In this state, the vise is moved in the length direction (tensile direction) of the sample yarn slowly enough that the speed does not affect the result, and tension is applied to the sample yarn. As a result, the sample yarn is stretched to 110 mm or more without breaking, and after stretching to 110 mm, the vise is moved in the direction opposite to the tension direction at a speed of ImmZ seconds to act on the sample yarn. If the tension in the direction where tension is applied to the part that is not gripped by a vice is restored to the range of 100 mm to 105 mm when the tension applied is released and returned to the non-tension state again, The yarn is evaluated as an elastic yarn.
[0034] なお、上記実験は、温度 25°C、相対湿度 40%の大気中で行うのを原則とする。  [0034] The above experiment is basically performed in the air at a temperature of 25 ° C and a relative humidity of 40%.
ただし、ローラの使用状態がこれとかけ離れていることが明らかな場合は、使用状態 における温度、湿度その他の環境下において行うものとする。また、糸条を上記寸法 に切断することができない場合など適切に実験できない場合は、実験可能な長さに 切断し、張力方向の長さに関して上記数値を比例させて評価する。  However, if it is clear that the condition of use of the roller is far from this, the operation shall be performed under the temperature, humidity and other environment under the condition of use. If the experiment cannot be carried out properly, such as when the yarn cannot be cut to the above dimensions, cut it to a length that can be tested, and evaluate the above values in proportion to the length in the tension direction.
[0035] 本発明において、弾性糸からなる筒状編み物を繊維構造体として使用すれば、口 ーラ外周面の繊維構造体のローラ回転中心軸方向長さが最も短い部分と最も長い 部分との長さの差、すなわち、繊維構造体の拡幅量を大きくとっても、回転に必要な トルクを小さくすることが出来る。このため、ローラに接触して走行するウェブの摩擦力 のみで、回転ローラ本体を回転させることが可能となる場合もある。この場合、駆動設 備等の大が力りな設備のための多額の費用や作業工数を消費することなぐシヮ伸 ばし効果をより大きく発現させることが可能となる。 In the present invention, if a tubular knitted fabric made of elastic yarn is used as the fiber structure, the outermost peripheral surface of the roller has the shortest portion and the longest portion in the roller rotation center axis direction length of the fiber structure. Even if the difference in length, that is, the widening amount of the fibrous structure is increased, the torque required for rotation can be reduced. For this reason, in some cases, it is possible to rotate the rotating roller body only by the frictional force of the web running in contact with the roller. In this case, a large increase in cost and labor for large-scale equipment such as drive equipment is not required. This makes it possible to exhibit a greater effect.
[0036] 本発明においては、繊維構造体をローラ表面に用いるので、糸条の種類の自由 度が高い。また、繊維構造体の使用は、ウェブのキズ防止効果に加えて、従来のゴム の棒状体に比べ、経時劣化による摩擦係数の変化を少なくすることが出来ると云う効 果をもたらす。その結果、長期にわたって、ほぼ同等のシヮ伸ばし効果が維持される 発明の効果  [0036] In the present invention, since the fibrous structure is used on the roller surface, the degree of freedom in the type of yarn is high. Further, the use of the fibrous structure brings about an effect that, in addition to the effect of preventing scratches on the web, a change in friction coefficient due to aging can be reduced as compared with a conventional rubber rod. As a result, almost the same lengthening effect can be maintained for a long time.
[0037] 本発明のウェブのシヮ伸ばし用ローラにおいては、ウェブのシヮ伸ばし手段として、 伸縮性を有する繊維構造体が用いられる。繊維構造体により、これに接触して走行 するウェブの幅方向にウェブのシヮ伸ばし作用が付与される。このシヮ伸ばし作用は 、繊維構造体によるものであるため、シヮ伸ばしには十分である力 ウェブにキズを発 生させることが実質的にない。  [0037] In the web stretching roller of the present invention, a stretchable fiber structure is used as the web stretching means. The fibrous structure provides a web stretching action in the width direction of the web running in contact with the web. Since this stretching action is due to the fibrous structure, there is substantially no scratch on the force web, which is sufficient for stretching.
図面の簡単な説明  Brief Description of Drawings
[0038] [図 1]図 1は、本発明のウェブのシヮ伸ばし用ローラの一態様の概略斜視図である。  FIG. 1 is a schematic perspective view of one embodiment of a web stretching roller of the present invention.
[図 2]図 2は、一般的なプラスチックフィルムの製造工程を説明するためのフロー図で ある。  FIG. 2 is a flowchart for explaining a general plastic film manufacturing process.
[図 3]図 3は、本発明のシヮ伸ばし用ローラを圧接ローラとして用いた場合のフィルム 巻き取り装置の概略横断面図である。  [FIG. 3] FIG. 3 is a schematic cross-sectional view of a film winding device in a case where the roller for stretching in accordance with the present invention is used as a pressing roller.
[図 4]図 4は、図 1に示した本発明のシヮ伸ばし用ローラの縦断面図である。  [FIG. 4] FIG. 4 is a longitudinal sectional view of the roller for stretching the paper of the present invention shown in FIG. 1.
[図 5]図 5は、最大拡幅位置とウェブ抱きつけ角との関係を説明するための横断面図 である。  FIG. 5 is a cross-sectional view for explaining the relationship between the maximum widening position and the web embracing angle.
[図 6]図 6は、繊維構造体の長さ方向の伸縮性評価方法を説明するための平面図で ある。  FIG. 6 is a plan view for explaining a method of evaluating elasticity in the length direction of a fiber structure.
[図 7]図 7は、繊維構造体の幅方向の伸縮性評価方法を説明するための平面図であ る。  FIG. 7 is a plan view for explaining a method for evaluating the elasticity of the fiber structure in the width direction.
[図 8]図 8は、摩擦係数測定用サンプルシートの作成方法を説明するための平面図 である。  FIG. 8 is a plan view for explaining a method for preparing a sample sheet for friction coefficient measurement.
[図 9]図 9は、繊維構造体とローラシェルとの間の摩擦係数測定方法を説明するため の横断面図である。 [FIG. 9] FIG. 9 is a view for explaining a method of measuring a friction coefficient between a fiber structure and a roller shell. FIG.
[図 10]図 10は、繊維構造体とシヮ伸ばし対象となるウェブとの間の摩擦係数測定方 法を説明するための横断面図である。  FIG. 10 is a cross-sectional view for explaining a method of measuring a friction coefficient between a fiber structure and a web to be stretched.
[図 11]図 11は、繊維構造体の伸縮をモデル化した加速試験に用いるサンプル片の 平面図である。  FIG. 11 is a plan view of a sample piece used for an acceleration test that models expansion and contraction of a fiber structure.
符号の説明 Explanation of symbols
1 シヮ伸ばし用ローラ  1 Roller for sheet extension
11 軸  11 axes
12 回転ローラ本体  12 Rotary roller body
13 外周面  13 Outer surface
14 繊維構造体  14 Fiber structure
15 伸縮手段  15 Telescopic means
21 シート成形口金  21 Sheet forming die
22 冷却ドラム  22 Cooling drum
23 フィルム  23 films
24 延伸装置  24 Stretching equipment
25 フィルム  25 films
26a、 26b 搬送ローラ  26a, 26b Transport rollers
27 卷取装置  27 Winding device
28 フイノレムローノレ (ウェブローノレ)  28 Huinolem Lonore (Web Lonole)
29 圧接ローラ  29 Pressure roller
30 中間製品  30 Intermediate products
31 フィルム  31 films
32a, 32b 搬送ロール  32a, 32b transport roll
33 スリツター  33 Slitter
34 卷取装置  34 Winding device
35 フイノレムローノレ (ウェブローノレ)  35 Huinolem Lonore (Web Lonole)
36 圧接ローラ プラスチックフィルム フイノレムローノレ (ウェブロ -ル) ロ一ラシェル 36 Pressure roller Plastic film Huinolemuranore (Webrole)
環状部材  Annular member
ボールベアリング  ball bearing
ポリエステルフィルム(ゥ; rブ) 傾斜カラー  Polyester film (ゥ; r) Slant color
ボールベアリング  ball bearing
傾斜カラー支持部材 最大拡幅位置  Inclined collar support member Maximum widening position
最大収縮位置  Maximum contraction position
ウェブ  Web
サンプノレシート Sampno Receipt
a, 62b 両端部a, 62b Both ends
a, 63b 矢印 a, 63b arrow
矢印  Arrow
サンプルシート Sample sheet
a, 72b 両端部a, 72b Both ends
a, 73b 矢印 a, 73b arrow
矢印  Arrow
サンプノレシート Sampno Receipt
a, 82b 孔a, 82b hole
a, 83b 固定板 a, 83b Fixed plate
テストピース  Test piece
測定装置  measuring device
 Weight
パネばかり Just a panel
1 測定装置 103 パネばかり 1 Measuring device 103 Panel only
104 テストピース  104 test pieces
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 本発明の一実施形態を用いて本発明を更に詳細に説明する。なお、本発明は、こ の実施形態に限定されるものではない。  [0040] The present invention will be described in more detail using an embodiment of the present invention. Note that the present invention is not limited to this embodiment.
[0041] この実施形態は、本発明のシヮ伸ばし用ローラ用いたプラスチックフィルムロールの 製造装置に関するもので、図 1乃至図 3を参照しながら説明される。  This embodiment relates to an apparatus for manufacturing a plastic film roll using a roller for stretching in accordance with the present invention, and will be described with reference to FIGS. 1 to 3.
[0042] 図 1は、本発明のシヮ伸ばし用ローラの概略斜視図である。図 1において、シヮ伸ば し用ローラ 1は、軸 11に支持された回転ローラ本体 12と、回転ローラ本体 12の外周 面 13を被覆する繊維構造体 14と、繊維構造体 14を回転ローラ本体 12の回転中心 軸方向に伸縮させる伸縮手段 15とからなる。なお、回転ローラ本体 12は、軸 11に対 し回転自在に支持されていても良いし、あるいは、軸 11に固定されて支持され、軸 1 1が回転軸とされていても良い。いずれにしても、この実施態様では、軸 11の中心軸 力 回転中心軸となる。  FIG. 1 is a schematic perspective view of a roller for stretching the paper of the present invention. In FIG. 1, the roller 1 for stretching is composed of a rotating roller body 12 supported on a shaft 11, a fiber structure 14 covering an outer peripheral surface 13 of the rotating roller body 12, and a fiber roller 14 rotating the fiber structure 14. The center of rotation of the main body 12 comprises expansion / contraction means 15 for expanding / contracting in the axial direction. The rotating roller body 12 may be rotatably supported on the shaft 11, or may be fixed and supported on the shaft 11, and the shaft 11 may be a rotating shaft. In any case, in this embodiment, the central axis of the shaft 11 is the rotation central axis.
[0043] 回転ローラ本体 12の外周面 13と繊維構造体 14とは、実質的に同速で回転可能 に接触している。図 1に示されるシヮ伸ばし用ローラ 1の下側位置 16で、繊維構造体 14が、伸縮手段 15により伸ばされ、上側位置 17で、繊維構造体 14が、伸縮手段 15 により収縮される。伸縮手段 15により、繊維構造体 14が、回転ローラ本体 12の回転 中心軸方向に伸縮せしめられること〖こより、繊維構造体 14に接触して移動するウェブ (図示せず)に幅方向の張力が付与される。これにより、ウェブへのシヮの発生が防止 され、あるいは、ウェブに発生したシヮが伸ばされる。  [0043] The outer peripheral surface 13 of the rotating roller body 12 and the fiber structure 14 are rotatably contacted at substantially the same speed. At the lower position 16 of the roller 1 shown in FIG. 1, the fibrous structure 14 is stretched by the stretching means 15, and at the upper position 17, the fibrous structure 14 is contracted by the stretching means 15. The fiber structure 14 is expanded and contracted in the direction of the central axis of rotation of the rotating roller body 12 by the expansion and contraction means 15, whereby tension in the width direction is applied to a web (not shown) that moves in contact with the fiber structure 14. Granted. As a result, the occurrence of a sheet on the web is prevented, or the sheet generated on the web is extended.
[0044] 繊維構造体 14としては、天然繊維や化学合成繊維からなる織物、編み物、不織布 等の布帛うち、伸縮性を有するものが使用される。平編み、リブ編み、パール編み等 の編み物は、編み目自体の変形により伸縮性を発現する。平織り、綾織り等の織物 および不織布は、伸縮性に乏しいものが多いが、弾性糸あるいはこれを含む糸条か らなる織物および不織布は、伸縮性を有する。  As the fibrous structure 14, a fabric having elasticity, such as a woven fabric, a knitted fabric, or a nonwoven fabric made of a natural fiber or a chemically synthesized fiber is used. Knitting such as flat knitting, rib knitting, and pearl knitting exhibits elasticity due to deformation of the stitch itself. Many woven fabrics and non-woven fabrics such as plain weave and twill weave have poor elasticity, but woven fabrics and non-woven fabrics made of elastic yarns or yarns containing the same have elasticity.
[0045] 繊維構造体 14は、回転ローラ本体 12の外周面 13を被覆する状態、すなわち、筒 状の状態で、シヮ伸ばし用ローラ 1を形成する。この筒状の繊維構造体 14は、一枚あ るいは複数枚の布帛の一辺とその対辺同士を、接着、または縫製などで、つなぎ合 わせることにより作成される。この筒状の繊維構造体 14は、回転ローラ本体 12および 伸縮手段 15に被せられ、繊維構造体 14の両端部は、左右の伸縮手段 15に固定さ れる。 [0045] The fibrous structure 14 covers the outer peripheral surface 13 of the rotating roller main body 12, that is, the cylindrical structure. In this state, the roller 1 is formed. The tubular fiber structure 14 is formed by joining one side of one or a plurality of fabrics and their opposite sides by bonding, sewing, or the like. The tubular fiber structure 14 is covered by the rotating roller body 12 and the expansion / contraction means 15, and both ends of the fiber structure 14 are fixed to the left and right expansion / contraction means 15.
[0046] 筒状の繊維構造体 14の布帛のつなぎ目部分が、ウェブ品質ゃシヮ伸ばし効果に 悪影響を与える場合がある。その場合は、つなぎ目なし、すなわち、シームレスの筒 状の布帛を繊維構造体 14として用いることが好ましい。このような繊維構造体として は、シームレスの筒状の編み物が特に好ましい。  [0046] The seam portion of the fabric of the tubular fiber structure 14 may have an adverse effect on the web quality / stretching effect. In that case, it is preferable to use a seamless tubular fabric, that is, a seamless tubular fabric as the fibrous structure 14. As such a fiber structure, a seamless tubular knitted fabric is particularly preferable.
[0047] ポリアミド、ポリエステル、アクリル等の伸縮性に乏しい繊維力 なる編み物は、編み 目自体の変形による伸縮性を有するので、繊維構造体 14として用いられる。しかしな がら、弾性糸あるいはこれを含む糸条力 なる編み物は、小さな力で大きく変形させ ることが可能で、回転に必要なトルクが大幅に増加することなく拡幅量をより大きく設 定することが出来るため、繊維構造体 14として、より好ましく用いられる。また、この編 み物は、より大きな柔軟性を有するので、繊維構造体 14として、より好ましく用いられ る。  [0047] A knitted fabric having poor elasticity, such as polyamide, polyester, or acrylic, is used as the fibrous structure 14 because it has elasticity due to deformation of the stitch itself. However, elastic yarns or knitted fabrics containing yarn can be deformed significantly with a small force, and the amount of widening must be set larger without significantly increasing the torque required for rotation. Therefore, it is more preferably used as the fiber structure 14. Further, the knitted fabric has greater flexibility, and is therefore more preferably used as the fibrous structure 14.
[0048] 弹¾糸としては、例えば、ポリトリメチレングリコーノレ力卩ェ糸やポリウレタン繊維が用 いられる。中でも、伸びや復元性に優れたポリウレタン繊維力 好適に用いられる。ポ リウレタン繊維は、摩耗に弱いため、シングルカバードヤーン、ダブルカバードヤーン 、コアスパンヤーン等の多層構造糸の形態で用いられることが好ましい。中でも、最 表層のカバー糸が、製造するウェブとの帯電相性の良い材料 (摩擦帯電が発生しに くい材料)からなる糸であることが好ましい。芯糸にポリウレタン繊維が用いられ、カバ 一糸がウェブとの摩擦帯電が発生しにくい材料力もなるカバードヤーンは、帯電によ る静電気力 Sもたらすウェブの欠点を防止することを可能とする。例えば、ウェブがポリ エステルフィルムである場合には、ポリエステル糸をカバー糸として使用するのが好 ましい。  [0048] As the 弹 ¾ yarn, for example, a polytrimethylene glycolone yarn or a polyurethane fiber is used. Among them, polyurethane fiber having excellent elongation and resilience is suitably used. Polyurethane fibers are preferably used in the form of a multilayered yarn such as a single covered yarn, a double covered yarn, and a core spun yarn, because they are vulnerable to wear. In particular, it is preferable that the cover yarn of the outermost layer is a yarn made of a material having good charge compatibility with the web to be produced (a material that is unlikely to generate triboelectric charging). Covered yarn in which polyurethane fiber is used for the core yarn and the cover yarn also has a material strength in which frictional electrification with the web is unlikely to be generated makes it possible to prevent defects of the web caused by electrostatic force S due to electrification. For example, if the web is a polyester film, it is preferable to use polyester yarn as the cover yarn.
[0049] 繊維構造体 14を形成する繊維の繊度は、 30デニール(33デシテックス)乃至 450 デニール(500デシテックス)が好適である。本発明者らの知見では、細い繊維を用 いた方力 ウェブに発生するキズを防止する効果が高くなることが分力 ている。しか し、細い繊維を用いた繊維構造体 14は、破れやすいなど強度面の問題が有る。強 度をも考慮すると、繊維構造体 14を形成する繊維の繊度は、 100デニール(111デ シテックス)乃至 250デニール(278デシテックス)であることがより好まし!/、。前述した カバードヤーンを用いる場合、芯糸が、 60デニール(66デシテックス)乃至 200デニ ール(222デシテックス)、カバー糸力 30デニール(33デシテックス)乃至 100デニ ール(111デシテックス)であることが好ましい。この場合、糸強度とウェブのキズ防止 効果を両立させることが出来る。 [0049] The fineness of the fibers forming the fiber structure 14 is preferably 30 denier (33 dtex) to 450 denier (500 dtex). According to the findings of the present inventors, thin fibers are used. It is a component that increases the effect of preventing scratches on the web. However, the fibrous structure 14 using thin fibers has a problem in strength, such as easy tearing. In consideration of the strength, the fineness of the fibers forming the fiber structure 14 is more preferably 100 denier (111 decitex) to 250 denier (278 decitex)! When the above-described covered yarn is used, the core yarn may be 60 denier (66 dtex) to 200 denier (222 dtex), and the cover yarn strength may be 30 denier (33 dtex) to 100 denier (111 dtex). preferable. In this case, both the yarn strength and the effect of preventing the web from being damaged can be achieved.
[0050] シヮ伸ばし効果をより高めるためには、対象となるウェブと繊維構造体 14との間の 静止摩擦係数は、高い方が好ましい。しかし、静止摩擦係数があまり高すぎると、必 要以上にウェブが幅方向への張力を受ける状態になり、ウェブにキズをもたらす場合 がある。このため、本発明者らの知見によれば、静止摩擦係数は、 0. 3乃至 0. 7であ ることがより好まし!/、。 [0050] In order to further enhance the stretching effect, the coefficient of static friction between the target web and the fibrous structure 14 is preferably higher. However, if the coefficient of static friction is too high, the web may be unnecessarily subjected to tension in the width direction, which may cause scratches on the web. Therefore, according to the findings of the present inventors, the static friction coefficient is more preferably 0.3 to 0.7!
[0051] 回転ローラ本体 12の外周面 13の材質は、特に限定はされない。例えば、金属であ つても良いし、榭脂であっても良いし、ゴムであっても良い。ただし、繊維構造体 14が 、回転ローラ本体 12の回転中心軸方向にスムーズに伸縮するためには、繊維構造 体 14と外周面 13との間の静止摩擦係数が低いことが好ましい。通常、この静止摩擦 係数は、 0. 4以下であれば、問題なく目的の機能が達成される。静止摩擦係数が、 この範囲となるよう、外周面 13の材質、表面あらさが選択されることが好ましい。  [0051] The material of the outer peripheral surface 13 of the rotary roller body 12 is not particularly limited. For example, it may be metal, resin, or rubber. However, in order for the fiber structure 14 to expand and contract smoothly in the direction of the rotation center axis of the rotating roller body 12, it is preferable that the static friction coefficient between the fiber structure 14 and the outer peripheral surface 13 be low. Normally, if the static friction coefficient is 0.4 or less, the intended function can be achieved without any problem. It is preferable that the material and surface roughness of the outer peripheral surface 13 be selected so that the static friction coefficient falls within this range.
[0052] 繊維構造体 14とローラ外周面 13との間の静止摩擦係数の測定には、図 8に示され るサンプルシートが用いられ、測定は、図 9に示される測定装置により行われる。回転 ローラ本体 12の外周面 13を被覆する繊維構造体 14の回転ローラ本体 12の回転中 心軸方向が、繊維構造体 14の長さ方向と定義される。繊維構造体 14から、長さ 350 mm、幅 50mmのサンプルシート 81力 裁断され、作成される。サンプルシート 81の 長さ方向は、繊維構造体 14の長さ方向と一致する。サンプルシート 81の長さ方向の 両端部に、錘やパネば力りが取り付けられる孔 82a、 82bを有する固定板 83a、 83b 1S それぞれ取り付けられる。固定板 83a、 83bは、幅方向に均一に、かつ、滑らない ように、例えば、ボルト締めにより、サンプルシート 81に取り付けられる。これら固定板 83a、 83bが取り付けられたサンプルシート 81は、静止摩擦係数測定用のテストピー ス 84として、測定装置に供せられる。 A sample sheet shown in FIG. 8 is used to measure the static friction coefficient between the fibrous structure 14 and the outer peripheral surface 13 of the roller, and the measurement is performed by a measuring device shown in FIG. The direction of the rotation center axis of the rotating roller body 12 of the fibrous structure 14 covering the outer peripheral surface 13 of the rotating roller body 12 is defined as the length direction of the fibrous structure 14. From the fibrous structure 14, a sample sheet with a length of 350 mm and a width of 50 mm 81 is cut and made. The length direction of the sample sheet 81 matches the length direction of the fibrous structure 14. Fixing plates 83a and 83b 1S having holes 82a and 82b for attaching weights and panel springs are attached to both ends in the length direction of the sample sheet 81, respectively. The fixing plates 83a and 83b are attached to the sample sheet 81 evenly in the width direction and without slipping, for example, by bolting. These fixed plates The sample sheet 81 to which 83a and 83b are attached is provided to a measuring device as a test piece 84 for measuring static friction coefficient.
[0053] 測定装置 91は、図 9に示される。測定装置 91は、回転しないように支持された回 転ローラ本体 12、錘 92、および、パネばかり 93からなる。静止摩擦係数の測定は、 回転しないように支持されている回転ローラ本体 12の外周面 13に、その円周方向に 180° にわたつて、テストピース 84が巻き付けられる。このテストピース 84の一方の 固定板 83bの孔 82bに、錘 92が取り付けられる。錘 92の重さは、固定板 83bの重さと 錘 92の重さの合計が、 lOOgとなるように選定されている。テストピース 84の他方の固 定板 83aの孔 82aに、パネば力り 93が取り付けられる。  [0053] Fig. 9 shows a measuring apparatus 91. The measuring device 91 includes a rotating roller body 12 supported so as not to rotate, a weight 92, and a panel 93. In the measurement of the coefficient of static friction, a test piece 84 is wound around the outer peripheral surface 13 of the rotating roller body 12 which is supported so as not to rotate over a circumferential direction of 180 °. A weight 92 is attached to a hole 82b of one fixing plate 83b of the test piece 84. The weight of the weight 92 is selected so that the sum of the weight of the fixing plate 83b and the weight of the weight 92 becomes 100g. A panel force 93 is attached to the hole 82a of the other fixing plate 83a of the test piece 84.
[0054] 測定は、パネば力り 93の下部が把持されながら下方向に、速度が結果に影響し ない程度に十分ゆっくりと、矢印 94で示されるように移動せしめられることにより行わ れる。テストピース 84が動き始めるときの荷重力 パネば力り 93により測定される。次 の式 (i)により、静止摩擦係数が求められる。  [0054] The measurement is performed by moving the panel force 93 downward while grasping the lower portion of the panel force 93 slowly enough that the speed does not affect the result, as indicated by the arrow 94. Load force when test piece 84 begins to move. The coefficient of static friction is calculated by the following equation (i).
[0055] μ =1η (Τ2/Τ1) / (i)  [0055] μ = 1η (Τ2 / Τ1) / (i)
ここで、 は静止摩擦係数、 T1は錘 92により発生する張力(ここでは、 100gf (0. 9 8N) )、 T2はパネば力り 93で測定した荷重、 φはテストピース 84の巻き付け角度(こ こでは、 7u rad)、 Inは自然対数をあらわす。なお、測定は、回転ロール本体 12の外 周面の周長を 6分した長さごとに、回転ロール本体 12の回転中心軸方向の両端を除 く 5箇所で行われる。荷重 T2は、各測定により得られる荷重の平均値である。  Here, is the coefficient of static friction, T1 is the tension generated by the weight 92 (here, 100 gf (0.98N)), T2 is the load measured by the panel force 93, φ is the winding angle of the test piece 84 ( Here, 7u rad), In represents the natural logarithm. Note that the measurement is performed at five locations except for both ends in the direction of the rotation center axis of the rotating roll main body 12 for every six divided lengths of the outer peripheral surface of the rotating roll main body 12. Load T2 is the average value of the loads obtained by each measurement.
[0056] 回転ローラ本体 12に装着された状態における繊維構造体 14とウェブとの間の静止 摩擦係数の測定も、上記繊維構造体 14と回転ローラ本体 12の外周面 13との間の静 止摩擦係数の測定と類似の方法で行われる。前記テストピース 84における繊維構造 体 14力もなるサンプルシート 81に代わって、ウェブの搬送工程において繊維構造体 14に接触するウェブから、図 8のテストピース 84と同様なテストピース 104が作製され る。  [0056] The coefficient of static friction between the fibrous structure 14 and the web in a state where the fibrous structure 14 is mounted on the rotating roller body 12 is measured, and the static friction between the fibrous structure 14 and the outer peripheral surface 13 of the rotating roller body 12 is measured. It is performed in a manner similar to the measurement of the coefficient of friction. A test piece 104 similar to the test piece 84 of FIG. 8 is produced from the web that comes into contact with the fiber structure 14 in the web transporting step, instead of the sample sheet 81 having the fibrous structure 14 in the test piece 84.
[0057] 測定装置 101は、図 10に示される。測定装置 101は、回転しないように支持され た回転ローラ本体 12、この回転ローラ本体 12の外周面 13を被覆して装着された繊 維構造体 14、錘 102、および、パネば力り 103からなる。繊維構造体 14は、図 10に おいて、最大拡幅位置が回転ローラ本体 12の鉛直方向上方に位置するように回転 ローラ本体 12に装着される。 [0057] The measuring device 101 is shown in FIG. The measuring device 101 is composed of a rotating roller body 12 supported so as not to rotate, a fiber structure 14 mounted to cover the outer peripheral surface 13 of the rotating roller body 12, a weight 102, and a panel force 103. Become. The fibrous structure 14 is shown in FIG. In this case, the rotary roller main body 12 is mounted so that the maximum widening position is located vertically above the rotary roller main body 12.
[0058] 測定は、図 10において、繊維構造体 14に巻き付けられたテストピース 104により 行われる。テストピース 104の繊維構造体 14への巻き付け角度、および、それ以降 の測定手順は、図 9を用いて説明された上述巻き付け角度,および,測定手順と同じ である。なお、使用するウェブが明確でないときは、ポリエステルフィルムで厚み 30 mのものが用いられる。具体的には、東レ (株)製ポリエステルフィルム「ルミラー」 S 10 タイプで、厚み 30 μ mのものが用いられる。  The measurement is performed by a test piece 104 wound around the fibrous structure 14 in FIG. The winding angle of the test piece 104 around the fiber structure 14 and the subsequent measurement procedure are the same as the winding angle and the measurement procedure described above with reference to FIG. When the web to be used is not clear, a polyester film having a thickness of 30 m is used. Specifically, a polyester film “Lumirror” S10 type manufactured by Toray Industries, Inc. having a thickness of 30 μm is used.
[0059] 以上の静止摩擦係数の測定の説明においては、図 8に示されるように、長さ 350m mのサンプルシート 81が用 ヽられたが、回転ロール本体 12の直径が 150mmを超え る場合など、この長さでは測定が困難な場合は、適宜長さを変更してもよい。また、サ ンプルシート 81の重さが相対的に重いときは、その影響が無視できる程度に錘 92の 重さを修正してもよい。上記静止摩擦係数の測定は、温度 25°C、相対湿度 40%の 大気中で行われることを原則とする。しかし、回転ローラ本体 12の工程における使用 状態がこれとかけ離れていることが明らかな場合は、上記静止摩擦係数の測定は、 回転ローラ本体 12の使用状態における温度、湿度、その他の環境下において行わ れる。  In the above description of the measurement of the coefficient of static friction, a sample sheet 81 having a length of 350 mm was used as shown in FIG. 8, but when the diameter of the rotating roll body 12 exceeds 150 mm. For example, when the measurement is difficult with this length, the length may be appropriately changed. Further, when the weight of the sample sheet 81 is relatively heavy, the weight of the weight 92 may be corrected to such an extent that its influence can be ignored. In principle, the measurement of the coefficient of static friction is performed in air at a temperature of 25 ° C and a relative humidity of 40%. However, if it is clear that the use state of the rotating roller body 12 in the process is far from this, the measurement of the coefficient of static friction is performed under the temperature, humidity, and other environment in the use state of the rotating roller body 12. It is.
[0060] 伸縮手段 15は、繊維構造体 14を回転ローラ本体 12の回転中心軸方向に伸縮さ せることが可能な構造であれば、どのような手段であっても力まわない。例えば、円周 軌道上に複数のァクチユエータを配置し、そのァクチユエータが繊維構造体 14の両 端を把持し、ウェブ搬送速度と同期回転しながら繊維構造体 14を回転ローラ本体 12 の回転中心軸方向に伸縮させる機構力 なる伸縮手段であっても良い。また、回転 中心軸方向の両外側に配設された回転中心軸に対して傾斜した回転軸に関して回 転自在な傾斜カラー力 なる伸縮手段であっても良い。構造が単純であること、動力 が不要である力微小な動力で済むこと、回転同期が得やすいことなどから、伸縮手段 として、傾斜カラー方式が好ましく用いられる。  The expansion / contraction means 15 does not exert any force as long as it can expand and contract the fiber structure 14 in the direction of the rotation center axis of the rotary roller body 12. For example, a plurality of actuators are arranged on a circumferential orbit, and the actuators hold both ends of the fiber structure 14 and rotate the fiber structure 14 in the direction of the rotation center axis of the rotating roller body 12 while rotating in synchronization with the web transport speed. It is also possible to use an expanding / contracting means having a mechanical force for expanding / contracting. In addition, an expansion / contraction means having an inclined collar force rotatable with respect to a rotation axis inclined with respect to the rotation center axis disposed on both outer sides in the rotation center axis direction may be used. The inclined collar system is preferably used as the expansion and contraction means because of its simple structure, small power that requires no power, and easy synchronization of rotation.
[0061] 傾斜カラーの傾斜角は、その設定が任意に変更可能であることが好ましい。このよ うに構成することで、シヮ伸ばし対象であるウェブの厚みや幅、張力に応じて、傾斜 角が変更出来、シヮ伸ばし効果を適切に調整することが可能となる。 [0061] It is preferable that the setting of the tilt angle of the tilt collar can be arbitrarily changed. With this configuration, the inclination can be adjusted according to the thickness, width and tension of the web to be stretched. The angle can be changed, and the stretching effect can be adjusted appropriately.
[0062] 本発明においては、ウェブに接触する繊維構造体 14が使用される。この繊維構 造体 14は、その表面が伸縮性を有するため、ウェブへの接触がソフトで、工程途中 において異物が介在した場合、異物がウェブに強く押し付けられることことが防止さ れ、ウェブ表面への損傷が発生しにくい。繊維構造体 14は、他の手段に比べ軽量で あり、かつ、ウェブに対して適度な摩擦を有するように選定することが容易である。こ の場合、回転に要するトルクが小さぐウェブとの速度差が生じにくいことから、すべり によりウェブ表面への損傷を与えることも少ない。繊維構造体 14は、一般に、通気性 を有する。従って、プラスチックフィルム等のウェブとローラとの間に空気が入っても、 そのままとどまらずに逃げやすい。そのため、ウェブと繊維構造体 14との密着性が高 く維持出来、均一な、かつ、適度な摩擦が、両者間に安定して維持される。かかる特 性から、プラスチックフィルムの製造用の卷取工程に用いられる搬送ローラとして、本 発明のウェブのシヮ伸ばし用ローラが使用される場合、搬送ローラに従前力 設けら れて 、た空気逃がしのための溝が、不要となる場合がある。  [0062] In the present invention, a fibrous structure 14 that contacts the web is used. Since the surface of the fibrous structure 14 has elasticity, the contact with the web is soft, and when foreign matter is present during the process, the foreign matter is prevented from being strongly pressed against the web, and the surface of the web is prevented. Hardly damages The fibrous structure 14 is lighter than the other means, and can be easily selected so as to have appropriate friction against the web. In this case, the torque required for the rotation is small, and a speed difference from the web is hardly generated, so that the web surface is hardly damaged by the slip. The fibrous structure 14 generally has air permeability. Therefore, even if air enters between the web such as a plastic film and the roller, it is easy to escape without staying as it is. Therefore, high adhesion between the web and the fibrous structure 14 can be maintained, and uniform and appropriate friction can be stably maintained between the two. Due to such characteristics, when the web stretching roller of the present invention is used as the transport roller used in the winding step for producing a plastic film, the transport roller is provided with a preceding force to release air. May not be necessary.
[0063] 図 5は、シヮ伸ばし用ローラ 1における繊維構造体 14の最大拡幅位置とウェブ 53の 繊維構造体 14への抱きつけ角との関係を説明する横断面図である。図 5において、 最大拡幅位置 51は、伸縮手段 15によって繊維構造体 14が最大限伸ばされる回転 方向における位置であり、最大収縮位置 52は、伸縮手段 15によって繊維構造体 14 が最大限縮む回転方向における位置である。ウェブ 53の抱きつけ角 Θは、 30° 以 上であることが好ましい。シヮ伸ばし効果をより高く発現させるためには、抱きつけ角 Θは、 120° 以上、拡幅角度 β以下であることがより好ましい。ここで、拡幅角度 βは 、回転軸に直交する平面において、回転中心軸と最大拡幅位置 51と最大収縮位置 52とがなす角度である。伸縮手段 15に傾斜カラーが用いられる方式では、拡幅角度 βは、通常、 180° であり、伸縮手段 15にァクチユエータが用いられる方式では、拡 幅角度 βは、通常、任意の角度とすることが出来る。取り付け角度 OCは、回転中心軸 に直交する平面において、回転中心軸と最大拡幅位置 51とウェブ 53が繊維構造体 14から離れるポイントとがなす角度である。ー且拡幅されたウェブ 53が縮まないよう にするためには、取り付け角度 αは、 0° 以上であることが好ましいが、 45° 以上 であれば実用上問題な 、ことも多!、。 FIG. 5 is a cross-sectional view for explaining the relationship between the maximum widening position of the fiber structure 14 in the roller 1 and the angle of embedment of the web 53 to the fiber structure 14. In FIG. 5, the maximum widening position 51 is a position in the rotation direction in which the fiber structure 14 is maximally extended by the expansion / contraction means 15, and the maximum contraction position 52 is a rotation direction in which the fiber structure 14 is maximally contracted by the expansion / contraction means 15. At the position. The hugging angle Θ of the web 53 is preferably 30 ° or more. In order to achieve a higher stretching effect, the hugging angle 120 is more preferably 120 ° or more and the widening angle β or less. Here, the widening angle β is an angle formed by the rotation center axis, the maximum widening position 51, and the maximum contraction position 52 on a plane orthogonal to the rotation axis. In a method in which an inclined collar is used for the expansion and contraction means 15, the widening angle β is usually 180 °, and in a method in which an actuator is used in the expansion and contraction means 15, the expansion angle β is usually an arbitrary angle. I can do it. The attachment angle OC is an angle formed by the rotation center axis, the maximum widening position 51, and the point at which the web 53 separates from the fiber structure 14 in a plane orthogonal to the rotation center axis. In order to prevent the widened web 53 from shrinking, the attachment angle α is preferably 0 ° or more, but 45 ° or more. If so, there are many practical problems!
[0064] 本発明のウェブのシヮ伸ばし用ローラは、ウェブにおけるキズ発生防止効果が高い ので、キズに関して品質要求が厳しいウェブ、例えば、光学用途のプラスチックフィル ムの製造装置に好ましく用いられる。  [0064] The web stretching roller of the present invention has a high effect of preventing the occurrence of scratches in the web, and is therefore preferably used in an apparatus for producing webs with strict quality requirements regarding scratches, for example, plastic films for optical applications.
[0065] 図 2は、一般的なプラスチックフィルムの製造工程の概略図である。熱可塑性榭脂 の溶融ポリマーが、シート成形口金 21から連続的にシート状に押し出される。押し出 された溶融シートは、冷却ドラム 22に接触し、冷却されて固化したフィルム 23となる。 フィルム23は、延伸装置 24に連続して導入される。フィルム23は、延伸装置 24にお いて、長手方向と幅方向に延伸される。延伸されたフィルム 25は、搬送ローラ 26a、 2 6bにより卷取装置 27へと搬送され、卷取装置 27において、ロール状に巻き取られる 。ロール状に巻き取られたフィルムは、フィルムロール(ウェブロール) 28を形成する。 卷取装置 27には、フィルムロール 28の形成を良好にするために、形成中のフィルム ロール 28に対して所定の圧力で接触する回転接圧ローラ 29が装備されている。 FIG. 2 is a schematic view of a general plastic film manufacturing process. The molten polymer of the thermoplastic resin is continuously extruded from the sheet forming die 21 into a sheet. The extruded molten sheet comes into contact with the cooling drum 22 and is cooled to be a solidified film 23. The film 23 is continuously introduced into the stretching device 24. The film 23 is stretched in the stretching device 24 in the longitudinal direction and the width direction. The stretched film 25 is conveyed to the winding device 27 by the conveying rollers 26a and 26b, where the film 25 is wound into a roll. The film wound into a roll forms a film roll (web roll) 28. The winding device 27 is provided with a rotary pressure roller 29 that contacts the film roll 28 being formed with a predetermined pressure in order to improve the formation of the film roll 28.
[0066] 製造されたフィルムロール 28は、その状態で製品として出荷される場合もある力 製造されたフィルムロール 28の幅が長尺の場合は、通常、中間製品 30として、スリツ ト工程に供給される。  [0066] The manufactured film roll 28 may be shipped as a product in that state. When the width of the manufactured film roll 28 is long, it is usually supplied to the slitting process as an intermediate product 30. Is done.
[0067] スリット工程において、中間製品 30から連続して引き出されたフィルム 31は、搬送 口一ノレ 32a、 32bにより搬送され、スジッター 33に至る。スジッタ 33にお!/ヽて、フイノレム 31は、所定の幅にスリットされ、複数本のフィルムとなる。複数本のフィルムのそれぞ れは、それぞれの卷取装置 34により巻き取られ、最終製品としてのフィルムロール( ウェブロール) 35を形成する。卷取装置 34には、フィルムロール 35の形成を良好に するために、形成中のフィルムロール 35に対して所定の圧力で接触する回転接圧口 ーラ 36が装備されている。  In the slitting step, the film 31 continuously drawn from the intermediate product 30 is conveyed by the conveying openings 32a and 32b to reach the slitter 33. At the jitter 33, the finolem 31 is slit into a predetermined width to form a plurality of films. Each of the plurality of films is wound by a respective winding device 34 to form a film roll (web roll) 35 as a final product. The winding device 34 is provided with a rotary contact pressure roller 36 that contacts the film roll 35 being formed with a predetermined pressure in order to improve the formation of the film roll 35.
[0068] 図 2に示されるフィルムロールの製造工程における搬送ロール 26a、 26b、 32a, 3 2bとして、必要に応じて、本発明のウェブのシヮ伸ばし用ローラ力 使用される。更に 、回転接圧ローラ 29、 36として、必要に応じて、本発明のウェブのシヮ伸ばし用ロー ラが、使用される。  [0068] As the transport rolls 26a, 26b, 32a, and 32b in the film roll manufacturing process shown in Fig. 2, a roller for stretching the web of the present invention is used as necessary. Further, as the rotating contact pressure rollers 29 and 36, the roller for stretching the web of the present invention is used as necessary.
[0069] フィルムロール 28あるいはフィルムロール 35は、真空蒸着装置などの減圧された 雰囲気において、所定の処理を受ける工程に供給される場合がある。この工程にお いて、フィルムロール 28、 35から引き出されたフィルム力 搬送ロールにより搬送され 、所定の処理を受けた後、巻き取られる。この工程において、フィルムのシヮ伸ばしが 必要となる場合がある。この工程において、例えば、ベンディングタイプのエキスパン ダローラ力 なる従来のシヮ伸ばし手段が適用される場合、ローラ表面とフィルムとの 間に進入する随伴気流の影響が、大気中における場合に比べ非常に小さくなる。こ の場合、ローラとフィルムとの間の摩擦係数が大きくなる。この摩擦係数の増大が引き 起こすフィルムのキズの発生を防止するためには、ロールの回転速度を精密に調整 することが必要となる。また、フィルムの幅方向に過剰な張力が発現しやすぐそれが ため、フィルムが損傷を受けやすい。 [0069] The film roll 28 or the film roll 35 was decompressed by a vacuum evaporation device or the like. In some cases, the atmosphere is supplied to a step that undergoes a predetermined process. In this step, the film is drawn by the film rolls 28 and 35, conveyed by a conveyance roll, subjected to a predetermined process, and then wound up. In this step, the film may need to be stretched. In this process, for example, when a conventional sheet stretching means such as a bending-type expander roller force is applied, the effect of the accompanying airflow entering between the roller surface and the film is much more than that in the atmosphere. Become smaller. In this case, the coefficient of friction between the roller and the film increases. In order to prevent the occurrence of film scratches caused by the increase in the coefficient of friction, it is necessary to precisely adjust the rotation speed of the roll. In addition, the film is susceptible to damage because excessive tension develops in the width direction of the film immediately.
[0070] これに対し、減圧された雰囲気におかれる工程におけるシヮ伸ばし手段として、本 発明のウェブのシヮ伸ばし用ローラが使用される場合は、繊維構造体の伸縮性ゃ柔 軟性により、微小な速度差が吸収され相対速度差が生じにくぐまた、フィルムの幅方 向に生じる過剰な張力は繊維構造体の微小変形によって吸収されるため、上記の従 来のシヮ伸ばし手段におけるような不具合は、生じな!/、。  [0070] On the other hand, when the web stretching roller of the present invention is used as a web stretching means in the step of being placed in a reduced-pressure atmosphere, the stretch / flexibility of the fiber structure is A slight speed difference is absorbed and a relative speed difference is less likely to occur.Moreover, since the excessive tension generated in the width direction of the film is absorbed by the minute deformation of the fibrous structure, as in the above-described conventional sheet stretching means. No problem! / ,.
[0071] 図 3は、本発明のウェブのシヮ伸ばし用ローラを圧接ローラとして用いたフィルム卷 取装置の横断面図である。搬送されてくるプラスチックフィルム 37をロール状にフィル ムロール(ウェブロール) 38として巻き取る際、回転ローラ本体 12と回転ローラ本体 1 2の外周面 13を被覆する繊維構造体 14と伸縮手段 15からなる本発明のウェブのシ ヮ伸ばし用ローラ 1をフィルムロール 38に圧接して、フィルムロール 38が形成される。  FIG. 3 is a cross-sectional view of a film winding device using the web stretching roller of the present invention as a pressure roller. When the conveyed plastic film 37 is taken up as a film roll (web roll) 38 in a roll form, it is composed of a rotating roller body 12, a fiber structure 14 covering the outer peripheral surface 13 of the rotating roller body 12, and expansion / contraction means 15. The web stretching roller 1 of the present invention is pressed against the film roll 38 to form the film roll 38.
[0072] 図 2に示されるプラスチックフィルムの製造工程にお!/、て、卷取装置 27、ある!/、は 、卷取装置 34に、圧接ローラ 29、あるいは、接圧ローラ 36を装備し、圧接ローラ 29、 36によってフィルムロール 28、 35に接触圧力を付与しながらフィルム 25、 31を巻き 取るフィルム卷取装置にあっては、図 3に示される本発明のウェブのシヮ伸ばし用口 ーラを圧接ローラ 29、 36に用いることにより、シヮが伸ばされたフィルムが把持されず に走行するフリーパス長を短くすることができる。そのため、シヮが伸ばされたフィルム に再度たるみが発生して、これにより、再度フィルムにシヮが発生することが防止され る。 実施例 1 In the manufacturing process of the plastic film shown in FIG. 2, the winding device 27 is provided with a pressing roller 29 or a pressing roller 36 on the winding device 34. In the film winding device for winding the films 25 and 31 while applying the contact pressure to the film rolls 28 and 35 by the pressing rollers 29 and 36, a web stretching opening of the present invention shown in FIG. By using rollers for the pressure rollers 29 and 36, the free path length in which the stretched film travels without being gripped can be shortened. For this reason, the stretched film re-sags, thereby preventing the film from re-sealing. Example 1
[0073] 図 1に示される本発明のウェブのシヮ伸ばし用ローラ 1を製作した。詳細な構造は、 図 4に示される。図 4は、本発明のシヮ伸ばし用ローラ 1の一例の縦断面図である。  A web stretching roller 1 of the present invention shown in FIG. 1 was produced. The detailed structure is shown in FIG. FIG. 4 is a longitudinal sectional view of an example of the roller 1 of the present invention.
[0074] 回転ローラ本体 12は、長さ lm、外径 80mmの炭素繊維強化プラスチック製ローラ シェル 41と、シェル 41の内側の両端に取り付けられたシェル 41を支持する環状部材 42と、環状部材 42の内側に取り付けられたボールベアリング 43と、ボールベアリング 43が取り付けられた金属製の固定軸 11とからなる。ローラシェル 41の表面は、コンタ ミネーシヨン防止および易滑性向上の観点から、ウレタン系榭脂をベースとした塗料 にて塗装されている。  The rotating roller body 12 includes a roller shell 41 made of carbon fiber reinforced plastic having a length of lm and an outer diameter of 80 mm, an annular member 42 supporting shells 41 attached to both inner ends of the shell 41, and an annular member 42. And a metal fixed shaft 11 to which the ball bearing 43 is attached. The surface of the roller shell 41 is coated with a urethane resin-based paint from the viewpoint of preventing contamination and improving lubricity.
[0075] 70デニール(78デシテックス)のポリウレタン糸を芯糸に、 75デニール(83デシテツ タス)のポリエステル糸をカバー糸に用いたシングルカバードヤーンの弾性糸(オペ口 ンテックス (株)製「LYCRA」SCY S775D)を用いて、筒状に編んだシームレスの丸編 み生機を作成した。編み構造は、リブ編みを採用した。丸編み生機の単位面積当た りの重さは、 125gZm2とした。伸縮性をさらに上げるため、丸編み生機を 100°Cの 熱湯にて 30分間熱処理した。こうして製作した丸編み生機(以下、実施例 1の丸編み 生機と云う)を、繊維構造体 14として用いた。繊維構造体 14の両端を引っ張って、 1 50Nの張力をかけた状態で、ローラシェル 41の外周面 13に装着した。 [0075] Elastic yarn of single-covered yarn using 70 denier (78 decitex) polyurethane yarn as the core yarn and 75 denier (83 decitetus) polyester yarn as the cover yarn ("LYCRA" manufactured by Opeguchi Ntex Co., Ltd.) Using SCY S775D), a seamless circular knitting machine knitted in a tubular shape was created. The knitting structure adopted rib knitting. Unit area per Rino weight of circular knitting greige was a 125gZm 2. The circular knitting machine was heat-treated in hot water of 100 ° C for 30 minutes to further enhance the elasticity. The circular knitting machine thus manufactured (hereinafter referred to as the circular knitting machine of Example 1) was used as the fiber structure 14. The fiber structure 14 was attached to the outer peripheral surface 13 of the roller shell 41 while pulling both ends thereof and applying a tension of 150N.
[0076] 繊維構造体 14の長さ方向の伸縮性を測定するために、上記の熱処理をした丸編 み生機から、長さ 120mm、幅 100mmのサンプルシートを 3枚、裁断により作成した 。サンプルシート 61の平面図力 図 6に示される。サンプルシート 61を、幅に沿う方 向の両端部 62a、 62bにおいて万力により把持し、矢印 63a、 63bで示される方向に 張力をかけ、長さ方向(矢印 64で示される方向)についての前述の伸縮性の評価を 行った。すべてのサンプルシート 61について、張力解放後の寸法が 102mm乃至 1 04mmに復元し、伸縮性があることが確認された。  In order to measure the lengthwise elasticity of the fibrous structure 14, three sample sheets having a length of 120 mm and a width of 100 mm were cut from the heat-treated circular knitting machine. The plan view force of the sample sheet 61 is shown in FIG. The sample sheet 61 is gripped with a vice at both ends 62a and 62b in the direction along the width, and tension is applied in the directions indicated by arrows 63a and 63b, and the above-described lengthwise direction (direction indicated by arrow 64) is applied. Was evaluated for elasticity. With respect to all the sample sheets 61, the dimensions after releasing the tension were restored to 102 mm to 104 mm, and it was confirmed that they had elasticity.
[0077] 繊維構造体 14の幅方向の伸縮性を測定するために、上記の熱処理した丸編み生 機から、長さ 80mm、幅 100mmのサンプルシートを 3枚、裁断により作成した。サン プルシート 71の平面図力 図 7に示される。サンプルシート 71を、長さに沿う方向の 両端部 72a、 72bにおいて万力により把持し、矢印 73a、 73bで示される方向に張力 をかけ、幅方向(矢印 74で示される方向)についての前述の伸縮性の評価を行った 。この評価テストにおいて、水平に置いたサンプルシート 71を長さ方向の 2辺を幅方 向に 80mmの間隔を空けて全幅にわたってそれぞれ万力で均一に把持して、矢印 7 3a、 73bで示される幅方向に張力をかけて、 88mmに伸ばした後、 ImmZ秒の速度 で縮めたときに、いくらの長さに復元するかを、 1枚 1回ずつ用意した 3枚のサンプル シート 71について測定して評価した。すべてのサンプルシート 71について、張力解 放後の寸法が 82mm乃至 84mmに復元し、伸縮性があることが確認された。 [0077] In order to measure the elasticity in the width direction of the fibrous structure 14, three sample sheets of 80 mm in length and 100 mm in width were cut from the heat-treated circular knitting machine. The plan view force of the sample sheet 71 is shown in FIG. The sample sheet 71 is gripped with a vice at both ends 72a and 72b in the direction along the length, and tension is applied in the directions indicated by arrows 73a and 73b. , And the aforementioned elasticity was evaluated in the width direction (the direction indicated by the arrow 74). In this evaluation test, the sample sheet 71 placed horizontally was gripped uniformly with a vise over the entire width with two sides in the length direction spaced 80 mm in the width direction, and indicated by arrows 73a and 73b. After applying tension in the width direction and elongating to 88 mm, when shrinking at the speed of ImmZ seconds, the length of each sample was measured for three sample sheets 71 prepared one by one. Was evaluated. For all the sample sheets 71, the dimensions after releasing the tension were restored to 82 mm to 84 mm, and it was confirmed that they had elasticity.
[0078] 繊維構造体 14とローラシェル 41の表面との間の静止摩擦係数、および、繊維構造 体 14とポリエステルフィルム(ウェブ) 44との間の静止摩擦係数は、上記にお!、て、 図 8乃至図 10を用いて説明した方法で測定した。サンプルシートは、東レ (株)製ポリ エステルフィルム「ルミラー」 C21タイプで厚み 3 μ mのフィルムから裁断により、上記 両者の静止摩擦係数測定用として、それぞれ 3枚用意した。繊維構造体 14とローラ シェル 41の表面との間の静止摩擦係数を 3枚のサンプルシートについて測定した結 果は、 0. 15乃至 0. 24であった。繊維構造体 14とポリエステルフィルム 44との間の 摩擦係数を 3枚のサンプルシートについて測定した結果は、 0. 43乃至 0. 52であつ た。これらの値は、上述した好適な値の範囲に入っていることが確認された。  [0078] The coefficient of static friction between the fiber structure 14 and the surface of the roller shell 41 and the coefficient of static friction between the fiber structure 14 and the polyester film (web) 44 are as described above. The measurement was performed by the method described with reference to FIGS. Three sample sheets were prepared by cutting a 3 μm-thick polyester film “Lumirror” C21 type, manufactured by Toray Industries, Inc., for measuring the static friction coefficient of both. The coefficient of static friction between the fibrous structure 14 and the surface of the roller shell 41 was measured on three sample sheets, and was found to be 0.15 to 0.24. The results of measuring the coefficient of friction between the fibrous structure 14 and the polyester film 44 for the three sample sheets were 0.43 to 0.52. It was confirmed that these values were within the above-mentioned preferred values.
[0079] 伸縮手段 15は、回転ローラ本体 12の回転中心軸に対して傾斜した回転中心軸を 有する環状の傾斜カラー 45と、傾斜カラー 45の内側に取り付けられたボールべァリ ング 46と、外周にボールベアリング 46が取り付けられ、内周が軸 11に固定された傾 斜カラー支持部材 47とからなる。傾斜カラー 45は、回転ローラ本体 12の回転中心軸 方向外側において、回転ローラ本体 12の端部から 25mmのクリアランスを置いて、軸 11に、ボールベアリング 46と傾斜カラー支持部材 47を介して、取り付けられている。 このクリアランスとは、傾斜カラー 45の最もローラシェル 41の端部に近い位置とローラ シェル 41の端部との間の距離である。  [0079] The expansion / contraction means 15 includes an annular inclined collar 45 having a rotation center axis inclined with respect to the rotation center axis of the rotating roller body 12, a ball bearing 46 mounted inside the inclination collar 45, A ball bearing 46 is attached to the outer circumference, and the inner circumference is composed of an inclined collar support member 47 fixed to the shaft 11. The inclined collar 45 is attached to the shaft 11 via a ball bearing 46 and an inclined collar support member 47 with a clearance of 25 mm from the end of the rotating roller body 12 on the outer side in the rotation center axis direction of the rotating roller body 12. Have been. The clearance is the distance between the position of the inclined collar 45 closest to the end of the roller shell 41 and the end of the roller shell 41.
[0080] 回転ローラ本体 12に被せられた繊維構造体 14の両端部は、左右の傾斜カラー 4 5により、それぞれ把持される。傾斜カラー 45の回転中心軸の回転ローラ本体 12の 回転中心軸に対する傾斜角度 (以下、傾斜カラーの傾斜角度と云う)は、段階的に調 節可能な構造とされている。本実施例においては、傾斜カラーの傾斜角度は、 15° とした。 [0080] Both ends of the fiber structure 14 covered by the rotating roller body 12 are gripped by left and right inclined collars 45, respectively. The tilt angle of the rotation center axis of the tilt collar 45 with respect to the rotation center axis of the rotary roller body 12 (hereinafter, referred to as the tilt angle of the tilt collar) has a structure that can be adjusted stepwise. In the present embodiment, the inclination angle of the inclination collar is 15 °. And
[0081] ここに作成されたウェブのシヮ伸ばし用ローラ 1を、二軸延伸されたポリエステルフィ ルムのスリット工程における卷取装置 34の圧接ローラ 36の直前に設けたシヮ伸ばし 用ローラ(図示せず)として用いた。用いたシヮ伸ばしローラ 1は、軸 11が回転駆動さ れない形式、すなわち、フリーローラ形式とした。  [0081] The web stretching roller 1 formed here is used as a web stretching roller (FIG. 1) provided immediately before the pressing roller 36 of the winding device 34 in the slitting process of the biaxially stretched polyester film. (Not shown). The roller 1 used was a type in which the shaft 11 was not driven to rotate, that is, a free roller type.
[0082] 二軸延伸されたポリエステルフィルム 31が、繊維構造体 14に接触して搬送された とき、繊維構造体 14、傾斜カラー 45、および、回転ローラ本体 12 (ローラシェル 41) 1S ほぼ同期して従動回転する。この回転によって、繊維構造体 14が、回転ローラ本 体 12の回転中心軸方向に伸縮する。この伸縮により、ポリエステルフィルム 31に幅 方向の張力が付与される。フィルム 31の抱きつけ角 Θ力 140° になるようにフィル ムパスラインを構成し、取り付け角度 ocは 0° 、拡幅角度 βは 180° とした。  [0082] When the biaxially stretched polyester film 31 is conveyed in contact with the fibrous structure 14, the fibrous structure 14, the inclined collar 45, and the rotating roller body 12 (roller shell 41) 1S are substantially synchronized. To rotate. By this rotation, the fibrous structure 14 expands and contracts in the direction of the rotation center axis of the rotating roller body 12. Due to this expansion and contraction, tension in the width direction is applied to the polyester film 31. The film pass line was configured so that the embracing angle of the film 31 was 140 °, the mounting angle oc was 0 °, and the widening angle β was 180 °.
[0083] このように構成したスリット工程を用いて、厚さ 3 μ m、幅 600mmの二軸延伸された ポリエステルフィルム(東レ (株)製ポリエステルフィルム「ルミラー」 C21タイプ)の巻き 取りテストを実施した。  Using the slitting process configured as described above, a winding test of a biaxially stretched polyester film (polyester film “Lumirror” C21 type manufactured by Toray Industries, Inc.) having a thickness of 3 μm and a width of 600 mm was performed. did.
[0084] テスト方法は、スリット工程の搬送ローラ 32a、 32bに厚さ 0. 2mmのテープを貼り付 け、局部的に段差を設けることでフィルム 31にシヮを発生させ、巻き取り張力 30NZ m、巻き取り速度 200mZminにて巻き取り、本発明のウェブのシヮ伸ばし用ローラの 適用前後におけるフィルムロール 35へのシヮの混入を比較することとした。  [0084] In the test method, a tape having a thickness of 0.2 mm was attached to the transport rollers 32a and 32b in the slitting process, and a step was locally formed to generate a shear on the film 31 and a winding tension of 30NZm. The web was wound at a winding speed of 200 mZmin, and the mixing of the screen into the film roll 35 before and after the application of the web stretching roller of the present invention was compared.
[0085] テストの結果、シヮ伸ばし用ローラを用いない場合は、搬送ローラ 32a、 32bで発生 せしめたシヮがフィルムロール 35にそのまま巻き取られる力 本実施例のしわ伸ばし 用ローラが用いられている場合は、搬送ローラ 32a、 32bで発生せしめたシヮは除去 された状態でフィルムロール 35が形成されることが確認された。また、フィルムロール 35のフィルムにキズの発生がないことも確認された。  [0085] As a result of the test, in the case where the paper-stretching roller is not used, the force generated by the transport rollers 32a and 32b to be wound directly onto the film roll 35 is used as the wrinkle-stretching roller of this embodiment. In this case, it was confirmed that the film roll 35 was formed in a state where the shear generated by the transport rollers 32a and 32b was removed. It was also confirmed that the film of the film roll 35 had no scratches.
実施例 2  Example 2
[0086] 実施例 1と同様に、図 1に示される本発明のウェブのシヮ伸ばし用ローラ 1を製作し た。詳細な構造は、実施例 1と同様であり、図 4に示される通りである  [0086] In the same manner as in Example 1, the roller 1 for stretching a web of the present invention shown in Fig. 1 was produced. The detailed structure is the same as in Example 1, and is as shown in FIG.
実施例 1と同様のローラシェル 41の表面の塗装では、長期間の使用で、繊維構造 体 14と摺動するローラシェル 41の両端部分において、塗膜の摩耗が確認されたた め、本実施例では、ローラシェル 41の表面の塗装をノヽードクロムメツキに変更した。 ハードクロムメツキは、実施例 1の塗装に比して耐摩耗性が高ぐコンタミネーシヨン防 止効果および易滑性をより長期間維持することができる。 In the same coating of the surface of the roller shell 41 as in Example 1, abrasion of the coating film was confirmed at both end portions of the roller shell 41 sliding with the fibrous structure 14 over a long period of use. Therefore, in the present embodiment, the surface coating of the roller shell 41 was changed to a node chrome plating. The hard chrome plating has a higher abrasion resistance than the coating of Example 1 and can maintain the contamination prevention effect and the lubricity for a longer period of time.
[0087] 140デニール(156デシテックス)のポリウレタン糸を芯糸に、 75デニール(83デシ テックス)のポリエステル糸をカバー糸に用いたシングルカバードヤーンの弾性糸(ォ ペロンテックス(株)製「LYCRA」SCY S1475D)を用いて、筒状に編んだシームレスの 丸編み生機を作成した。編み構造は、リブ編みを採用した。丸編み生機の単位面積 の重さは、 130gZm2とした。伸縮性をさらに上げるため、丸編み生機を 100°Cの熱 湯にて 30分間熱処理した。こうして製作した丸編み生機(以下、実施例 2の丸編み生 機と云う)を、繊維構造体 14として用いた。繊維構造体 14の両端を引っ張って、 210 Nの張力をかけた状態で、ローラシェル 41の外周面 13に装着した。 [0087] Elastic yarn of single-covered yarn using polyurethane yarn of 140 denier (156 dtex) as the core yarn and polyester yarn of 75 denier (83 dtex) as the cover yarn ("LYCRA" manufactured by Operontex Co., Ltd.) Using SCY S1475D), a seamless circular knitting machine knitted in a tubular shape was created. The knitting structure adopted rib knitting. Weight per unit area of the circular knitting greige was a 130gZm 2. In order to further increase the elasticity, the circular knitting machine was heat-treated in hot water at 100 ° C for 30 minutes. The circular knitting machine thus manufactured (hereinafter, referred to as a circular knitting machine of Example 2) was used as the fiber structure 14. The fiber structure 14 was attached to the outer peripheral surface 13 of the roller shell 41 while pulling both ends of the fiber structure 14 and applying a tension of 210 N.
[0088] 実施例 2の丸編み生機は、ローラに装着した繊維構造体の伸縮をモデル化した 加速試験において、繊維が破断するまでの繰り返し伸縮回数が、実施例 1の生機に 比して、約 4倍であった。すなわち、繊維の破断点が 1個確認されるまでの繰り返し回 数力 実施例 1の丸編み生機では、約 15, 000回であったのに対し、実施例 2の丸 編み生機では、約 60, 000回であった。このことは、実施例 2の丸編み生機の方が、 実施例 1の丸編み生機より、使用寿命が長いことを意味する。  [0088] In the circular knitting machine of Example 2, in the acceleration test in which the expansion and contraction of the fiber structure attached to the roller was modeled, the number of times of repeated expansion and contraction until the fiber was broken was smaller than that of the greige machine of Example 1. It was about 4 times. That is, the number of repetitions until one break point of the fiber was confirmed. The circular knitting machine of Example 1 was about 15,000 times, while the circular knitting machine of Example 2 was about 60,000 times. , 000 times. This means that the circular knitting machine of the second embodiment has a longer service life than the circular knitting machine of the first embodiment.
[0089] この加速試験は、以下の方法で行った。丸編み生機の長手方向を長さ方向、円周 方向を幅方向として、無張力状態で、幅 20mm、長さ 70mmのサンプル片を切り出 す。次いで、図 11に示されるように、サンプル片 111の長さ方向の両端部 10mmと幅 方向の中央部の 10mmの正方形 112a、 112bの範囲をしつカゝり把持し、サンプル片 111の一方の側端部を固定して、サンプル片 111の他方の側端部を、周波数 10Hz で往復振動させた。振動のストローク範囲は、両端固定部分の間隔が 50mmから 19 Ommとなる範囲に設定した。すなわち、張力 0の自然長の 1倍乃至 3. 8倍の範囲で 伸縮させた。なお、本実施例のウェブのシヮ伸ばし用ローラ 1に装着された繊維構造 体 14においては、 2. 0倍乃至 2. 3倍の範囲で伸縮する。  [0089] This acceleration test was performed by the following method. With the length direction of the circular knitting machine as the length direction and the circumferential direction as the width direction, cut out a sample piece with a width of 20 mm and a length of 70 mm without tension. Next, as shown in FIG. 11, a range of squares 112a and 112b of 10 mm in both ends in the length direction and 10 mm in the center in the width direction of the sample piece 111 is gripped tightly, and one side of the sample piece 111 is gripped. Was fixed, and the other side end of the sample piece 111 was reciprocated at a frequency of 10 Hz. The stroke range of the vibration was set so that the distance between the fixed portions at both ends was 50 mm to 19 Omm. That is, it was expanded and contracted in the range of 1 to 3.8 times the natural length of tension 0. The fibrous structure 14 mounted on the web stretching roller 1 of the present embodiment expands and contracts in a range of 2.0 times to 2.3 times.
[0090] ここに作成されたウェブのシヮ伸ばし用ローラ 1を、二軸延伸されたポリエステルフィ ルムのスリット工程における卷取装置 34の圧接ローラ 36の直前に設けたシヮ伸ばし 用ローラ(図示せず)として用いた。用いたシヮ伸ばし用ローラ 1は、軸 11が回転駆動 されない形式、すなわち、フリーローラ形式とした。フィルム 31の抱きつけ角 Θ力 14 0° になるようにフィルムパスラインを構成し、取り付け角度 aは 0° 、拡幅角度 j8は 1 80° とした。傾斜カラー 45の傾斜角度は 15° とした。 [0090] The web stretching roller 1 formed here is provided with a web stretching provided immediately before the pressing roller 36 of the winding device 34 in the slitting process of the biaxially stretched polyester film. Roller (not shown). The roller 1 used was a type in which the shaft 11 was not driven to rotate, that is, a free roller type. The film pass line was configured so that the hugging angle of the film 31 was 140 °, the mounting angle a was 0 °, and the widening angle j8 was 180 °. The inclination angle of the inclination collar 45 was set to 15 °.
[0091] このように構成したスリット工程を用いて、厚さ 3 μ m、幅 600mmの二軸延伸された ポリエステルフィルム(東レ (株)製ポリエステルフィルム「ルミラー」 C21タイプ)の巻き 取りテストを、実施例 1の場合と同様にして、実施した。  [0091] Using the slitting process configured as described above, a winding test of a biaxially stretched polyester film (C21 type, polyester film "Lumirror", manufactured by Toray Industries, Inc.) having a thickness of 3 µm and a width of 600 mm was performed. The operation was performed in the same manner as in Example 1.
[0092] テストの結果、シヮ伸ばし用ローラを用いない場合は、搬送ローラ 32a、 32bで発生 せしめたシヮがフィルムロール 35にそのまま巻き取られる力 本実施例のシヮ伸ばし 用ローラが用いられている場合は、搬送ローラ 32a、 32bで発生せしめたシヮは除去 された状態でフィルムロール 35が形成されることが確認された。また、フィルムロール 35のフィルムにキズの発生がないことも確認された。  [0092] As a result of the test, when the sheet stretching roller was not used, the force generated by the transport rollers 32a and 32b so that the sheet could be wound directly on the film roll 35 was used. In this case, it was confirmed that the film roll 35 was formed in a state where the shear generated by the transport rollers 32a and 32b was removed. It was also confirmed that the film of the film roll 35 had no scratches.
実施例 3  Example 3
[0093] 実施例 1と同一構成のウェブのシヮ伸ばし用ローラ 1を、二軸延伸されたポリプロピ レンフィルムのスリット工程における卷取装置 34の圧接ローラ 36の直前に設けたシヮ 伸ばし用ローラ(図示せず)として用いた。用いたシヮ伸ばし用ローラ 1は、軸 11が回 転駆動されない形式、すなわち、フリーローラ形式とした。フィルム 31の抱きつけ角 Θ 1S 140° になるようにフィルムパスラインを構成し、取り付け角度 αは 0° 、拡幅 角度 j8は 180° とした。傾斜カラー 45の傾斜角度は 8° とした。  [0093] The web stretching roller 1 having the same configuration as that of the first embodiment is provided with a web stretching roller provided immediately before the pressing roller 36 of the winding device 34 in the slitting process of the biaxially stretched polypropylene film. (Not shown). The roller 1 used was a type in which the shaft 11 was not driven to rotate, that is, a free roller type. The film pass line was configured so that the hugging angle of the film 31 was 1S 140 °, the mounting angle α was 0 °, and the widening angle j8 was 180 °. The inclination angle of the inclination collar 45 was 8 °.
[0094] このように構成したスリット工程を用いて、厚さ 3 μ m、幅 600mmの二軸延伸された ポリプロピレンフィルム (東レ (株)製ポリプロピレンフィルム「トレファン」 # 2172タイプ) の巻き取りテストを、実施例 1の場合と同様にして、実施した。  [0094] A winding test of a biaxially stretched polypropylene film having a thickness of 3 µm and a width of 600 mm (Toray Co., Ltd. polypropylene film "Trefane # 2172 type") using the slit process configured as described above. Was carried out in the same manner as in Example 1.
[0095] テストの結果、シヮ伸ばし用ローラを用いない場合は、搬送ローラ 32a、 32bで発生 せしめたシヮがフィルムロール 35にそのまま巻き取られる力 本実施例のシヮ伸ばし 用ローラが用いられている場合は、搬送ローラ 32a、 32bで発生せしめたシヮは除去 された状態でフィルムロール 35が形成されることが確認された。また、フィルムロール 35のフィルムにキズの発生がないことも確認された。  [0095] As a result of the test, when the sheet stretching roller is not used, the force generated by the transport rollers 32a and 32b to be wound directly on the film roll 35 is used as the sheet stretching roller of this embodiment. In this case, it was confirmed that the film roll 35 was formed in a state where the shear generated by the transport rollers 32a and 32b was removed. It was also confirmed that the film of the film roll 35 had no scratches.
実施例 4 [0096] 実施例 1と同様に、図 1に示される本発明のウェブのシヮ伸ばし用ローラ 1を製作し た。詳細な構造は、実施例 1と同様であり、図 4に示される通りである。回転ローラ本 体 12は、長さ 2, 800mm,外径 110mmの炭素繊維強化プラスチック製ローラシェ ル 41と、シェル 41の内側の両端に取り付けられたシェル 41を支持する環状部材 42 と、環状部材 42の内側に取り付けられたボールベアリング 43と、ボールベアリング 43 が取り付けられた金属製の固定軸 11と力もなる。ローラシェル 41の表面には、表面 の耐摩耗性、易滑性向上、コンタミネーシヨン防止等の観点から、ハードクロムメツキ を施した。 Example 4 [0096] In the same manner as in Example 1, the roller 1 for stretching a web of the present invention shown in Fig. 1 was produced. The detailed structure is the same as that of the first embodiment, and is as shown in FIG. The rotating roller body 12 includes a roller shell 41 made of carbon fiber reinforced plastic having a length of 2,800 mm and an outer diameter of 110 mm, an annular member 42 for supporting shells 41 attached to both inner ends of the shell 41, and an annular member 42. The ball bearing 43 mounted inside the inside and the metal fixed shaft 11 to which the ball bearing 43 is mounted also have a force. The surface of the roller shell 41 was subjected to hard chrome plating from the viewpoints of improving the wear resistance and the lubricity of the surface and preventing contamination.
[0097] 繊維構造体 14は、実施例 1で用いたものとした。繊維構造体 14の両端を、 150N の張力で引っ張って、ローラシェル 41の外周面 13に装着した。  [0097] The fibrous structure 14 was the one used in Example 1. Both ends of the fibrous structure 14 were pulled with a tension of 150 N and attached to the outer peripheral surface 13 of the roller shell 41.
[0098] 伸縮手段 15として、実施例 1と同様の傾斜カラー 45を用いた。傾斜カラー 45は、 回転ローラ本体 12の回転中心軸方向外側において、回転ローラ本体 12の端部から 25mmのクリアランスを置いて、軸 11に、ボールベアリング 46と傾斜カラー支持部材 47を介して、取り付けられている。このクリアランスとは、傾斜カラー 45の最もローラシ エル 41の端部に近い位置とローラシェル 41の端部との間の距離である。  [0098] As the expansion / contraction means 15, the same inclined collar 45 as in Example 1 was used. The inclined collar 45 is attached to the shaft 11 via a ball bearing 46 and an inclined collar support member 47, with a clearance of 25 mm from the end of the rotating roller body 12 outside the rotation center axis direction of the rotating roller body 12. Have been. The clearance is the distance between the position of the inclined collar 45 closest to the end of the roller shell 41 and the end of the roller shell 41.
[0099] 回転ローラ本体 12に被せられた繊維構造体 14の両端部は、左右の傾斜カラー 4 5により、それぞれ把持される。傾斜カラー 45の回転中心軸の回転ローラ本体 12の 回転中心軸に対する傾斜角度 (以下、傾斜カラーの傾斜角度と云う)は、段階的に調 節可能な構造とされている。本実施例においては、傾斜カラーの傾斜角度は、 15° とした。  [0099] Both end portions of the fibrous structure 14 covered by the rotary roller body 12 are gripped by left and right inclined collars 45, respectively. The tilt angle of the rotation center axis of the tilt collar 45 with respect to the rotation center axis of the rotary roller body 12 (hereinafter, referred to as the tilt angle of the tilt collar) has a structure that can be adjusted stepwise. In the present embodiment, the inclination angle of the inclination collar is set to 15 °.
[0100] このように構成したウェブのシヮ伸ばし用ローラ 1おいては、両端の伸縮手段 15に よって与えられる繊維構造体 14の変位力 繊維構造体 14の全体には及ばず、繊維 構造体 14の両端部の 700mm程度範囲のみにおいて伸縮するに過ぎないが、実験 の結果、中央部のシヮ伸ばし効果もあることが確認された。すなわち、中央部をあえ て伸縮させなくても、ウェブをその両端部において充分に引っ張り伸ばすことができ れば、所望のシヮ伸ばし効果が得られることが判明した。  [0100] In the web stretching roller 1 configured as described above, the displacement force of the fibrous structure 14 provided by the elastic means 15 at both ends does not reach the entire fibrous structure 14, but the fibrous structure Although it expands and contracts only in the range of about 700 mm at both ends of 14, the results of the experiment confirm that there is also an effect of stretching the center. That is, it has been found that the desired web stretching effect can be obtained if the web can be sufficiently stretched at both ends without expanding and contracting the central portion.
[0101] このように構成したウェブのシヮ伸ばし用ローラ 1を、二軸延伸ポリエステルフィルム 製造装置における卷取装置 27の圧接ローラ 29の直前に設けたシヮ伸ばし用ローラ( 図示せず)として用いた。用いたシヮ伸ばし用ローラ 1は、軸 11が回転駆動されない 形式、すなわち、フリーローラ形式とした。 [0101] The web stretching roller 1 configured as described above is provided with a web stretching roller (just before the pressing roller 29 of the winding device 27 in the biaxially stretched polyester film manufacturing apparatus). (Not shown). The roller 1 used was a type in which the shaft 11 was not driven to rotate, that is, a free roller type.
[0102] 二軸延伸されたポリエステルフィルム 25が、繊維構造体 14に接触して搬送された とき、繊維構造体 14、傾斜カラー 45、および、回転ローラ本体 12 (ローラシェル 41) 1S ほぼ同期して従動回転する。この回転によって、繊維構造体 14が、回転ローラ本 体 12の回転中心軸方向に伸縮する。この伸縮により、二軸延伸されたポリエステル フィルム 25に幅方向の張力が付与される。フィルム 25の抱きつけ角 Θ力 120° に なるようにフィルムノ スラインを構成し、取り付け角度 aは 0° 、拡幅角度 βは 180° とした。  [0102] When the biaxially stretched polyester film 25 is conveyed in contact with the fiber structure 14, the fiber structure 14, the inclined collar 45, and the rotating roller body 12 (roller shell 41) 1S are substantially synchronized. To rotate. By this rotation, the fibrous structure 14 expands and contracts in the direction of the rotation center axis of the rotating roller body 12. Due to the expansion and contraction, tension in the width direction is applied to the biaxially stretched polyester film 25. The film nosline was constructed so that the hugging angle of the film 25 was 120 °, the mounting angle a was 0 °, and the widening angle β was 180 °.
[0103] このように構成したフィルムの卷取工程を用いて、厚さ 3 μ m、幅 2, 400mmの二軸 延伸されたポリエステルフィルム(東レ (株)製ポリエステルフィルム「ルミラー」 C10タイ プ)の巻き取りテストを実施した。巻き取り条件として、巻き取り張力 30NZm、巻き取 り速度 200mZminを採用した。  [0103] A biaxially stretched polyester film having a thickness of 3 µm and a width of 2,400 mm (a polyester film "Lumirror" C10 type manufactured by Toray Industries, Inc.) was formed by using the film winding process thus configured. Was carried out a winding test. As winding conditions, a winding tension of 30 NZm and a winding speed of 200 mZmin were adopted.
[0104] 本実施例のシヮ伸ばし用ローラ 1を用いない場合は、シヮが発生して不合格となる フィルムロール 28が 30%程度発生した。本実施例のシヮ伸ばし用ローラを用いた場 合は、シヮによる不合格率力0%となった。また、フィルムロール 28のフィルムにキズ の発生がな ヽことも確認された。  In the case where the roller 1 for stretching in the present example was not used, about 30% of the film rolls 28 were rejected due to the occurrence of shear. In the case where the roller for stretching the paper of this example was used, the rejection rate due to the shear was 0%. It was also confirmed that the film of the film roll 28 was not scratched.
産業上の利用可能性  Industrial applicability
[0105] 本発明のウェブのシヮ伸ばし用ローラにおいては、ウェブのシヮ伸ばし手段として、 伸縮性を有する繊維構造体が用いられる。繊維構造体により、これに接触して走行 するウェブの幅方向にウェブのシヮ伸ばし作用が付与される。このシヮ伸ばし作用は 、繊維構造体によるものであるため、シヮ伸ばしには十分である力 ウェブにキズを発 生させることが実質的にない。これがため、本発明のウェブのシヮ伸ばし用ローラは、 プラスチックフィルムの製造工程におけるシヮ伸ばし用ローラとして、好ましく用いられ る。とりわけ、キズの発生を嫌うウェブ、例えば、光学用途のプラスチックフィルムの製 造工程にぉ 、て用いられるシヮ伸ばし用ローラとして、最適である。 In the web stretching roller of the present invention, a stretchable fiber structure is used as the web stretching means. The fibrous structure provides a web stretching action in the width direction of the web running in contact with the web. Since this stretching action is due to the fibrous structure, there is substantially no scratch on the force web, which is sufficient for stretching. For this reason, the web stretching roller of the present invention is preferably used as a web stretching roller in a plastic film manufacturing process. In particular, it is most suitable as a sheet stretching roller used in the process of producing a web that is resistant to scratches, for example, a plastic film for optical use.

Claims

請求の範囲 The scope of the claims
[1] 回転ローラ本体と、該回転ローラ本体の外周面を被覆する伸縮性を有する繊維構 造体と、該繊維構造体を前記回転ローラ本体の回転中心軸方向に伸縮させる伸縮 手段とを備えたウェブのシヮ伸ばし用ローラ。  [1] A rotating roller main body, a stretchable fiber structure covering the outer peripheral surface of the rotating roller body, and an expansion / contraction means for expanding and contracting the fiber structure in a rotation center axis direction of the rotating roller body. Roller for web stretching.
[2] 前記繊維構造体が、筒状の布帛である請求の範囲第 1項に記載のウェブのシヮ伸 ばし用ローラ。  2. The web stretching roller according to claim 1, wherein the fibrous structure is a tubular fabric.
[3] 前記筒状の布帛が、シームレスである請求の範囲第 2項に記載のウェブのシヮ伸ば し用ローラ。  [3] The web stretching roller according to claim 2, wherein the tubular fabric is seamless.
[4] 前記筒状の布帛が、弾性糸あるいはそれを含む糸条カもなる請求の範囲第 2項に 記載のウェブのシヮ伸ばし用ローラ。  4. The web stretching roller according to claim 2, wherein the tubular fabric is an elastic yarn or a yarn containing the elastic yarn.
[5] 前記筒状の布帛が、編み物である請求の範囲第 2項に記載のウェブのシヮ伸ばし 用ローラ。 5. The web stretching roller according to claim 2, wherein the tubular fabric is a knitted fabric.
[6] 前記編み物が、弾性糸あるいはそれを含む糸条カ なる請求の範囲第 5項に記載 のウェブのシヮ伸ばし用ローラ。  [6] The web stretching roller according to claim 5, wherein the knitted fabric is an elastic yarn or a yarn containing the elastic yarn.
[7] 前記編み物が、シームレスである請求の範囲第 5項に記載のウェブのシヮ伸ばし用 ローラ。 [7] The roller for stretching a web according to claim 5, wherein the knitting is seamless.
[8] 前記伸縮手段が、前記回転ローラ本体の回転中心軸方向両外側に配設され、該 回転中心軸に対して傾斜した回転中心軸に関して回転自在な傾斜カラー力 なり、 該傾斜カラーに、前記繊維構造体の端部が把持され、前記繊維構造体と前記傾斜 カラーとにより前記回転ローラ本体を包囲する外包体が形成されてなる請求の範囲 第 1項に記載のウェブのシヮ伸ばし用ローラ。  [8] The expansion / contraction means is disposed on both outer sides in the rotation center axis direction of the rotary roller body, and has a tilt collar force rotatable about a rotation center axis tilted with respect to the rotation center axis. 2. The web stretcher according to claim 1, wherein an end of the fiber structure is gripped, and an outer package surrounding the rotary roller body is formed by the fiber structure and the inclined collar. roller.
[9] 前記繊維構造体と前記ウェブとの間の静止摩擦係数が、 0. 3乃至 0. 7であり、前 記繊維構造体と前記回転ローラ本体との間の静止摩擦係数が、 0. 4以下である請 求の範囲第 8項に記載のウェブのシヮ伸ばし用ローラ。  [9] The coefficient of static friction between the fibrous structure and the web is 0.3 to 0.7, and the coefficient of static friction between the fibrous structure and the rotating roller body is 0.3. The roller for stretching a web according to claim 8, wherein the roller is 4 or less.
[10] ウェブを連続して供給するウェブ供給装置と該供給装置から連続して供給されるゥ エブを搬送するウェブ搬送装置と該搬送装置にて連続して搬送されるウェブを連続し てロール形態に巻き取るウェブ卷取装置力 なるウェブロールの製造装置において、 少なくとも前記搬送装置の少なくとも 1力所に、請求の範囲第 1項に記載のウェブのシ ヮ伸ばし用ローラが配設されてなるウェブロールの製造装置。 [10] A web supply device that continuously supplies the web, a web transport device that transports webs continuously supplied from the supply device, and a web that continuously transports the web continuously transported by the transport device 2. A web roll manufacturing apparatus comprising: a web take-up device configured to wind a web in a form; ウ ェ ブ A web roll manufacturing apparatus provided with a stretching roller.
[11] 前記ウェブのシヮ伸ばし用ローラ力 前記ウェブ卷取装置において形成されるゥェ ブロールの表面に圧接可能に配置されている請求の範囲第 10項に記載のウェブ口 ールの製造装置。  [11] The apparatus for manufacturing a web roll according to claim 10, wherein the web stretching roller force is arranged so as to be able to press against a surface of a web roll formed in the web winding device. .
[12] ゥ ブを連続して供給するゥ ブ供給工程、該供給工程から連続して供給されるゥ エブを連続して搬送するゥ ブ搬送工程、該搬送工程にて連続して搬送されるウェブ を連続してロール形態に巻き取るウェブ卷取工程とからなるウェブロールの製造方法 において、少なくとも前記ウェブ搬送工程の少なくとも 1力所に、請求の範囲第 1項に 記載のウェブのシヮ伸ばし用ローラが設けられてなるウェブロールの製造方法。  [12] Continuously supplying the tube, the tube supply process, the tube continuously supplied from the supply process, the tube continuously transported, and the tube continuously transported in the transport process. A method for manufacturing a web roll, comprising: a web winding step of continuously winding a web into a roll form, wherein the web is stretched at least at one point in the web transporting step according to claim 1. Of manufacturing a web roll provided with a roller for use.
[13] 前記ウェブが、ポリエステルフィルムである請求の範囲第 12項に記載のウェブロー ルの製造方法。  13. The method for producing a web roll according to claim 12, wherein the web is a polyester film.
PCT/JP2004/015391 2003-10-28 2004-10-19 Web smoothing roller, and web roll producing device and method WO2005040018A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04792560A EP1679275A4 (en) 2003-10-28 2004-10-19 Web smoothing roller, and web roll producing device and method
US10/577,454 US20070131809A1 (en) 2003-10-28 2004-10-19 Web smoothing roller, and web roll producing device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003367172 2003-10-28
JP2003-367172 2003-10-28

Publications (1)

Publication Number Publication Date
WO2005040018A1 true WO2005040018A1 (en) 2005-05-06

Family

ID=34510285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015391 WO2005040018A1 (en) 2003-10-28 2004-10-19 Web smoothing roller, and web roll producing device and method

Country Status (5)

Country Link
US (1) US20070131809A1 (en)
EP (1) EP1679275A4 (en)
KR (1) KR20060093333A (en)
CN (1) CN1874945A (en)
WO (1) WO2005040018A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE546400T1 (en) 2009-09-18 2012-03-15 Reifenhaeuser Masch WINDER DEVICE
KR101132478B1 (en) 2010-10-29 2012-03-30 엘지엔시스(주) Apparatus for transfering media
US9138031B2 (en) 2011-02-16 2015-09-22 3M Innovative Properties Company Method of making a mechanical fastening strip and reticulated mechanical fastening strip therefrom
DE102012001832B4 (en) * 2012-02-01 2013-08-08 Hochland Se Process for processing a flowable food mass
BR112014028553B1 (en) 2012-05-16 2021-09-21 3M Innovative Properties Company METHOD FOR MANUFACTURING A MECHANICAL LOCK USING A CROWN SURFACE
EP2849601B1 (en) 2012-05-16 2017-08-02 3M Innovative Properties Company Method of making a mechanical fastener using diverging disks
US9314962B2 (en) 2013-05-10 2016-04-19 3M Innovative Properties Company Method of separating strands on a stretching surface
KR101627190B1 (en) * 2013-09-30 2016-06-03 가부시키가이샤 무라타 세이사쿠쇼 Guide roller, film conveyance apparatus, and sheet forming machine
JP6017010B1 (en) 2015-12-22 2016-10-26 住友化学株式会社 Method for producing separator film for lithium ion secondary battery and apparatus for producing separator film for lithium ion secondary battery
CA3026223A1 (en) * 2016-06-03 2017-12-07 Magna Exteriors Inc. Method to uniformly debundle and evenly distribute high fiber count carbon tow
KR102616738B1 (en) * 2018-05-17 2023-12-21 주식회사 엘지화학 Roller for removing wrinkles of film
CN113148737B (en) * 2021-05-18 2023-10-31 安徽双盈纺织有限公司 Accurate guiding device and guiding method for textile material winding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4420877B1 (en) * 1965-02-19 1969-09-06
JPS6152662U (en) * 1984-09-07 1986-04-09
JPH02152858A (en) * 1988-12-05 1990-06-12 Sumitomo Bakelite Co Ltd Film running roller
JPH06329309A (en) * 1993-05-19 1994-11-29 Mitsubishi Heavy Ind Ltd Pressing roll of winder
JPH08269802A (en) * 1994-04-07 1996-10-15 Pretty Polly Ltd Knitted fabric and its preparation
JPH1151041A (en) * 1997-08-01 1999-02-23 Matsushita Electric Ind Co Ltd Film carrying roller
JP2000118815A (en) * 1998-10-16 2000-04-25 Kokusai Gijutsu Kaihatsu Kk Film transferring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344493A (en) * 1965-02-19 1967-10-03 Henry E Telgheider Spreader roll
DE9314568U1 (en) * 1993-09-27 1995-02-02 Kuesters Eduard Maschf roller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4420877B1 (en) * 1965-02-19 1969-09-06
JPS6152662U (en) * 1984-09-07 1986-04-09
JPH02152858A (en) * 1988-12-05 1990-06-12 Sumitomo Bakelite Co Ltd Film running roller
JPH06329309A (en) * 1993-05-19 1994-11-29 Mitsubishi Heavy Ind Ltd Pressing roll of winder
JPH08269802A (en) * 1994-04-07 1996-10-15 Pretty Polly Ltd Knitted fabric and its preparation
JPH1151041A (en) * 1997-08-01 1999-02-23 Matsushita Electric Ind Co Ltd Film carrying roller
JP2000118815A (en) * 1998-10-16 2000-04-25 Kokusai Gijutsu Kaihatsu Kk Film transferring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1679275A4 *

Also Published As

Publication number Publication date
KR20060093333A (en) 2006-08-24
CN1874945A (en) 2006-12-06
US20070131809A1 (en) 2007-06-14
EP1679275A1 (en) 2006-07-12
EP1679275A4 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
WO2005040018A1 (en) Web smoothing roller, and web roll producing device and method
EP1270786A1 (en) Thermoplastic elastomer nonwoven fabric roll, and method and device for producing the same
KR100324167B1 (en) Method and apparatus for joining an elongated elastic member to a moving substrate web
JP5902806B2 (en) Roller coated with woven fabric coating and apparatus using the same
US20110277941A1 (en) Tape removal apparatus and process
US5908680A (en) Replaceable roll covers with repositionable pressure sensitive adhesive
JP2010052872A (en) Web conveyance method and system
JP2015530335A (en) Loop pile film roll core
JP2004027433A (en) Width-spreading apparatus of web
US20080237390A1 (en) Web guide roller, web guide device, and method for guiding web
WO2014035850A1 (en) Adaptable web spreading device
EP3188994B1 (en) Method for conveying adhesive-sided articles and apparatus for doing so
JP6507223B1 (en) Metal surface rubber roll for film
JP2005154145A (en) Wrinkle smoothing-out roller of web, manufacturing device and manufacturing method of film roll body using this roller
JP6551237B2 (en) Grooved roller, and apparatus and method for manufacturing plastic film using the same
JPS594321B2 (en) Conveyor belt and its manufacturing method
US7182722B2 (en) Film roll holder for laminators
JPH08134645A (en) Vacuum treating device for plastic film
JPS6021232A (en) Manufacturing apparatus of plastic film
JP2019156510A (en) Method of forming wound body of glass chopped strand mat and wound body of glass chopped strand mat
JP2005219847A (en) Roller for web manufacturing device, manufacturing device and manufacturing method for film roll by use of it, and film roll
JP3045884B2 (en) Manufacturing method of adhesive tape
JPH0737706B2 (en) Web wrinkle stretcher
CA1299331C (en) Method and apparatus for line-stretching an elastomer film
JPH08133538A (en) Expander device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032090.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067007615

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007131809

Country of ref document: US

Ref document number: 10577454

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004792560

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067007615

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 10577454

Country of ref document: US