WO2005038438A1 - Method of evaluating inside of object by transmitted light - Google Patents

Method of evaluating inside of object by transmitted light Download PDF

Info

Publication number
WO2005038438A1
WO2005038438A1 PCT/JP2004/003078 JP2004003078W WO2005038438A1 WO 2005038438 A1 WO2005038438 A1 WO 2005038438A1 JP 2004003078 W JP2004003078 W JP 2004003078W WO 2005038438 A1 WO2005038438 A1 WO 2005038438A1
Authority
WO
WIPO (PCT)
Prior art keywords
target object
light
intensity
transmitted light
evaluating
Prior art date
Application number
PCT/JP2004/003078
Other languages
French (fr)
Japanese (ja)
Inventor
Ken-Ichi Tanaka
Yutaka Tango
Koichi Shimmoto
Original Assignee
Kose Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kose Corporation filed Critical Kose Corporation
Priority to JP2005514703A priority Critical patent/JP4575296B2/en
Publication of WO2005038438A1 publication Critical patent/WO2005038438A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • G01N2021/214Variangle incidence arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8444Fibrous material

Definitions

  • the present invention illuminates a target object with light, and detects light passing through the target object.
  • the present invention relates to a method for evaluating the inside of a target object. More specifically, it relates to a method for extracting transmitted light from which the effect of scattered light has been removed by a specific method and obtaining information focusing on a specific substance contained in the target object.
  • the present invention relates to a method for measuring the intensity of transmitted light while rotating an object and finding out the three-dimensional structure inside the object without destroying the object.
  • X-ray CT X-ray tomography
  • the inventor of the present invention has conducted intensive studies to solve the above-mentioned problems, and found that the target object is irradiated with linearly polarized light, and the light passing through the target object has a transmission axis parallel to the polarization of the irradiation light. I learned that scattered light and linearly transmitted light can be efficiently separated by measuring with a polarizer or by measuring the intensity of light passing through the target object by changing the wavelength of the light.
  • the present invention irradiates the target object with linearly polarized light, applies a light having passed through the target object to a polarizer whose transmission axis is parallel to the polarization of the irradiation light, and sets c on the optical axis of the irradiation light.
  • FIG. 1 is a schematic diagram of an apparatus used in the evaluation method of the present invention.
  • Figure 2 is a top view of the holder for setting the target object (sample).
  • FIG. 3 is a sectional view taken along line AA ′ of FIG.
  • FIG. 4 is a diagram illustrating an example of the wavelength dependence of the extinction coefficient of three types of specific substances in a target object.
  • Fig. 5 is an explanatory diagram of the algorithm that obtains three-dimensional information by measuring while rotating the target object.
  • Figure 6 is an explanatory diagram of the algorithm for obtaining three-dimensional information by measuring while rotating the target object.
  • FIG. 7 is a diagram illustrating an imaging result for each bleach time in the first embodiment.
  • FIG. 9 is a diagram showing the distribution of melanin pigment for each bleaching time in Example 1.
  • FIG. 10 is a diagram showing the distribution of melanin pigments in the hair, of which the extinction coefficient has changed due to the decolorization reaction, at each bleaching time in Example 2.
  • FIG. 11 is a diagram illustrating the hair rotating device used in the third embodiment.
  • FIG. 12 is a diagram showing a three-dimensional coordinate system and poxel division used in the description of the third embodiment. It is.
  • the present invention is directed to irradiating a target object with linearly polarized light, and detecting light passing through the target object by applying a polarizer having a transmission axis parallel to the polarization of the irradiation light on the optical axis of the irradiation light.
  • This measures the intensity of the transmitted light which excludes the effects of the scattered light by removing the scattered light from the target object.
  • the scattered light changes slowly in a wavelength-dependent manner, the wavelength dependence of the transmitted light from which the influence of the scattered light is removed sometimes changes greatly. Therefore, measure the intensity of the transmitted light from which the influence of the scattered light is removed.
  • the presence of a specific substance in the target object can be enhanced and obtained as an image.
  • light emitted from the light source (2) passes through the polarizer (1a). It becomes linearly polarized light and irradiates the target object (3).
  • the irradiation light is scattered and absorbed inside the target object, passes through the polarizer (1b) provided on the rear optical axis, and is detected by the CCD camera (4).
  • the CCD camera (4) will transmit Therefore, an image can be obtained by transmitted light in which the influence of scattered light is eliminated.
  • the target object is sandwiched between two polarizers (Id) and (1e) whose transmission axes are parallel to each other, and the target object is also irradiated with light. It is particularly preferable when the hair is small.
  • the intensity of scattered light generally has small wavelength dependence
  • the transmitted light other than scattered light has a large wavelength dependence depending on the substance.
  • the data of the transmitted light from which the influence of the scattered light is removed can be obtained.
  • the latter method is preferable because the light intensity can be measured at once for three channels of red, green, and blue.
  • the wavelength of the irradiation light is preferably from 200 nm to 2000 nm. Particularly preferred is a wavelength in the visible light range.
  • the light that has passed through the target object is detected by a CCD camera, and a result that mainly depends on transmitted light from which the influence of scattered light has been removed is displayed as a two-dimensional image. It is preferable to install an objective lens on the surface because the transmittance of a small target object can be measured.
  • the magnification of the objective lens is not particularly limited, but is preferably 5 to 800 times.
  • Two wavelengths i.e., either respectively irradiated at the wavelength lambda, and lambda 2 of light in FIG. 4, or by irradiation with white light, and detects only the light of wavelength lambda and lambda 2, lambda, and lambda 2 respectively
  • By measuring the intensity of the transmitted light and calculating the value it is possible to obtain information that emphasizes only the substance (a).
  • the present invention can be measured nondestructively, it is possible to measure the intensity of transmitted light of a specific wavelength over time and monitor the time change of the amount of one substance contained in the target object. At this time, it is preferable to select a wavelength at which the difference in absorbance of the substance whose time change is to be obtained is the largest.
  • the intensity of the transmitted light is measured while rotating the target object, and information on the three-dimensional structure inside the target object can be obtained.
  • equation (2) holds for all elements.
  • Equation (1) can be expressed by equation (3).
  • Equation (3) X (1-(j)-f a (j))... (3)
  • Equation (4) is calculated for all the elements where each ray intersects (see Fig. 6) As a result, a simultaneous equation such as equation (5) is calculated.
  • the condition is set so that j ⁇ m is larger than n 2, the Moore-Peni'ose general inverse matrix is calculated, and the solution X is obtained.
  • the method for evaluating the inside of a target object according to the present invention includes measuring the intensity of transmitted light excluding the influence of scattered light. Since measurement can be performed, image information with high resolution can be obtained. In addition, by changing the wavelength of transmitted light from which the effects of scattered light have been removed and measuring it, information can be obtained that focuses on specific substances. 1 blue report is obtained. In addition, three-dimensional information inside the target object can be obtained by rotating and measuring the target object.
  • the method for evaluating the inside of a target object according to the present invention is particularly suitable for measuring minute parts, and it is possible to know in real time the effects of a coloring agent and a hair treatment agent on the inside of hair. it can.
  • Example 1
  • Untreated black hair was used as the target object using the target object set holder (10) shown in Figs.
  • the target object set holder (10) is placed on the slide (11), which is commonly used for optical microscopy, with a gap of about 1 mm using fixing glasses (13a) and (13b). It consists of two fixed polarizers (1 d) and (1 e). A gap (14) of about 2 mm (width) x about 25 mm (depth) x about 1 mm (height) is formed between the two polarizers.
  • the two polarizers have transmission axes parallel to each other.
  • the hair was set in the holder for setting the object.
  • a CCD camera (DP12, manufactured by Sai-Linpass Optical Industry Co., Ltd.) equipped with an optical microscope (BX5 ⁇ , manufactured by Olympus Optical Industrial Co., Ltd.) was used.
  • the magnification of the objective lens was ⁇ 0. Filled voids (1 4) to bleach solution (4% H 2 0 2, 4% NH 3 aq), set 3078
  • Example 1 The same holder as in Example 1 was used for the sample and the target object setting holder. After the hair was set in the holder for setting the target object, imaging was performed under the same conditions as in Example 1.
  • D t (xy) is calculated for all (xy) (Equation (9)), and the maximum value is set as D max .
  • D t (xy) is less than 0, the value of D t (xy) is 0.
  • M t (x, y) normalized to 8 bits is obtained (Equation (1 0)) where M t (xy) is smaller than 0. Is set to 0.
  • the target object setting holder (10) shown in FIGS. 2 and 3 was used, and the same light intensity measuring device as that in Example 1 was used.
  • the target object is hair.
  • the hair rotation device (20) shown in Fig. 11 was used to rotate the sample hair. After setting the sample hair (21) in the holder (10) for setting the object, fill the void (14) with water and fix both ends of the hair to the center of the rotating part (22). The image was taken while rotating the hair using a rotating device (20). Rotating device supports rotating part (23) was fixed on the microscope stage.
  • the 8-bit luminance distribution of each channel (RGB) in the image is obtained, and R (x, y, ⁇ ), G (x, y, 0) and B (x, y, 0), where (x, y) is the pixel position in the image and 0 is the hair rotation angle ( ⁇ 0 ⁇ 2 ⁇ ).
  • D (x, y) is calculated for all (x, y) (Equation (11)), and the maximum value is defined as D max .
  • the three-dimensional area including the hair is divided by a poxel having an appropriate resolution, for example, a resolution of 50 ⁇ 50 pixels in cross section and 200 pixels in length, and the set of the poxels is Q.
  • the position of the poxel in Q is represented by (x, y, z), and the light transmission coefficient of each poxel in Q is represented by T (x, y, z) (see Fig. 12 for the coordinate system). It is assumed that each poxel is homogeneous.
  • ⁇ ogM ⁇ x, ySi ⁇ T ⁇ x, y, z)... (1 3)
  • the present invention it is possible to measure and image the intensity of light transmitted linearly, excluding light scattered inside the object, so that light can be used to obtain information on minute parts or to emphasize specific substances. Once the image information is obtained, the intensity of the transmitted light is measured while rotating the target object, and the internal three-dimensional structure can be known without destroying the target object. Also, since it is non-destructive, changes in the target object can be known in real time. Furthermore, by using hair as the target object, it is possible to clarify the decolorization and dyeing status of the coloring agent that actually occurs inside the hair, and the repair process by hair removal, which is widely used in developing such products. Available.

Abstract

A method of evaluating the inside of an object, wherein a linearly polarized light is applied to an object, and the light passed through the object is admitted to a polarizer having a transmission axis parallel to the polarization of the applied light to detect it on the optical axis of the applied light and thereby remove a scattered light from the object, thereby obtaining an image dependent on the intensity of a transmitted light free from the effect of a scattered light. Further, a method of evaluating the inside of an object, wherein the intensity of a transmitted light is measured and computed by a plurality of wavelengths of a material contained in an object and having different absorption coefficients to thereby obtain an image emphasizing that material only, or the intensity of a transmitted light is measured with the object kept rotated to thereby obtain a 3-D light image inside the object.

Description

透過光による対象物体内部の評価方法  Evaluation method of inside of target object by transmitted light
技術分野 Technical field
本発明は、 対象物体に光を照射し、 それを通過した光を検出することによって 明  The present invention illuminates a target object with light, and detects light passing through the target object.
対象物体内部を評価する方法に関する。 詳細には、 特定の方法で散乱光の影響を 除いた透過光を抽出し、 対象物体内部に細含まれる特定の物質に着目した情報を得 ることができる方法に関し、 更に詳細には、 対象物体を回転させながら透過光の 強度を測定し、 対象物体を破壊することなしに、 その内部の 3次元構造を知るこ とができる方法に関する。 The present invention relates to a method for evaluating the inside of a target object. More specifically, it relates to a method for extracting transmitted light from which the effect of scattered light has been removed by a specific method and obtaining information focusing on a specific substance contained in the target object. The present invention relates to a method for measuring the intensity of transmitted light while rotating an object and finding out the three-dimensional structure inside the object without destroying the object.
背景技術 Background art
従来より、 物体内部の情報を得る手段としては、 物体を薄く切断し透過型電子 顕微鏡 (T E M) を用いて観察したり、 切断面を光学顕微鏡や走査型電子顕微鏡 ( S E M) を用いて観察する方法が用いられてきた。 しかし、 これらの方法は対 象物体を破壊することが必要であり、 対象物体を元に戻せないだけでなく、 畤間 とともに対象物体の変化を追うこともできなかった。  Conventionally, as a means to obtain information on the inside of an object, slice the object and observe it using a transmission electron microscope (TEM), or observe the cut surface using an optical microscope or a scanning electron microscope (SEM) Methods have been used. However, these methods required destruction of the target object, and not only could not restore the target object, but also could not follow the change of the target object with the rubble.
これを解決するものとして、 X線断層撮影法 (X線 C T) を用いる方法が知ら れているが、 やはり対象物体を侵襲するものであり、 装置としても大きくならざ るを得なかった。  To solve this problem, a method using X-ray tomography (X-ray CT) is known, but it also invades the target object, and the device must be large.
一方、 微小部分の対象物体内部の情報を非破壊で、 すなわちリアルタイムで得 たいという要望が高まっており、 特に対象物体が毛髪である場合にその要望が顕 著である。  On the other hand, there is an increasing demand for nondestructive information in the target object in a minute part, that is, in real time, and this request is particularly prominent when the target object is hair.
すなわち、 近年ヘアカラーに対する関心が高まり、 多彩な色を備えたカラーリ ング剤や、 カラ一リングの際に毛髪が受けるダメージを少なくしたカラーリング 8 In recent years, interest in hair coloring has increased, and coloring agents with a wide variety of colors and coloring that reduces the damage to hair during coloring 8
2 剤や、 毛髪内部を修復するへアトリー卜メン卜剤等の開発の重要性が高まってい る。 そのため、 実際に毛髮内部で起こっているカラーリング剤の脱色'染色や、 ヘアートリートメントによる補修プロセスを明らかにすることは、 製品を開発す る上で重要な技術である。  The importance of developing two agents and hair treatment agents for repairing the inside of hair is increasing. Therefore, it is an important technology in developing products to clarify the decolorization 'dyeing of the coloring agent actually occurring inside the hair and the repair process by hair treatment.
そして通常、 カラーリング剤やへアートリー卜メン卜剤が毛髪に与える影響は 時間依存性があるため、 その影響をリアルタイムに測定する必要があった。 そこ で、 非破壊、 非侵襲でこれを実現するものとして、 通常の光を光源として用いた ものが原理的には考えられるが、 物体内部で散乱する光と、 直線的に透過する光 とを効率よく分離する方法が確立されていないために、 分解能が低く問題点のあ るものであった。  Normally, the effects of coloring agents and hair treatments on hair depend on time, so it was necessary to measure the effects in real time. In order to achieve this in a non-destructive and non-invasive manner, light using ordinary light as a light source can be considered in principle, but light scattered inside the object and light transmitted linearly are considered. Since a method for efficient separation has not been established, the resolution was low and there was a problem.
従って、 物体内部で散乱する光を除き、 直線的に透過する光の強度を測定して 画像化する方法の開発が望まれていた。 さらにはこれにより、 光を利用して微小 部分の情報を得たり、 特定物質を強調した画像情報を得たり、 光 C Tによる対象 物体内部の 3次元構造を得る方法の開発が望まれていた。 発明 の 開 示  Therefore, it has been desired to develop a method for measuring the intensity of light transmitted linearly and imaging it, excluding light scattered inside the object. In addition, there has been a demand for the development of a method for obtaining information on minute parts using light, obtaining image information emphasizing a specific substance, and obtaining a three-dimensional structure inside a target object using light CT. Disclosure of invention
本発明者は、 上記課題を解決するために、 鋭意研究を行ったところ、 対象物体 に直線偏光を照射し、 対象物体を通過した光を、 透過軸が照射光の偏光と平行で あるような偏光子をかけて測定したり、 光の波長を変化させて対象物体を通過し た光の強度を測定することによって、 散乱光と直線透過光を効率よく分離できる ことを知った。  The inventor of the present invention has conducted intensive studies to solve the above-mentioned problems, and found that the target object is irradiated with linearly polarized light, and the light passing through the target object has a transmission axis parallel to the polarization of the irradiation light. I learned that scattered light and linearly transmitted light can be efficiently separated by measuring with a polarizer or by measuring the intensity of light passing through the target object by changing the wavelength of the light.
そして、 散乱光の影響が除かれた透過光の強度を、 波長を変えて測定したり、 時間を追って測定したリ、 対象物体を回転させて測定したりすることによって、 それぞれ特定物質に着目した情報が得られたり、 リアルタイムの情報が得られた リ、 3次元のすなわち対象物体内部の情報を非破壊で得られることを見出し本発 明に至った。 すなわち、 本発明は、 対象物体に直線偏光を照射し、 対象物体を通過した光を、 透過軸が、 照射光の偏光と平行であるような偏光子をかけて照射光の光軸上で cWe focused on specific substances by measuring the intensity of transmitted light from which the effects of scattered light were removed, by changing the wavelength, measuring over time, or rotating the target object. The present invention was found that information was obtained or real-time information was obtained, and that three-dimensional information, that is, information inside the target object, could be obtained in a non-destructive manner. That is, the present invention irradiates the target object with linearly polarized light, applies a light having passed through the target object to a polarizer whose transmission axis is parallel to the polarization of the irradiation light, and sets c on the optical axis of the irradiation light.
C Dカメラを用いて検出することによって、 対象物体からの散乱光が除かれた透 過光の強度に依存した画像を得る対象物体内部の評価方法を提供するものである。 また、 対象物体を回転させながら散乱光の影響が除かれた透過光の強度を C C Dカメラで測定し、 対象物体内部の 3次元構造を得る対象物体内部の評価方法を 提供するものである。 図面の簡単な説明 It is an object of the present invention to provide a method for evaluating the inside of a target object, wherein an image dependent on the intensity of transmitted light from which the scattered light from the target object is removed by detecting using a CD camera. Another object of the present invention is to provide a method for evaluating the inside of a target object by measuring the intensity of transmitted light from which the influence of scattered light is removed while rotating the target object using a CCD camera and obtaining a three-dimensional structure inside the target object. Brief Description of Drawings
図 1は、 本発明の評価方法に用いられる装置の概略図である。  FIG. 1 is a schematic diagram of an apparatus used in the evaluation method of the present invention.
図 2は、 対象物体 (試料) セット用ホルダーを上から見た図面である。  Figure 2 is a top view of the holder for setting the target object (sample).
図 3は、 図 2の A— A ' 断面図である。  FIG. 3 is a sectional view taken along line AA ′ of FIG.
図 4は、 対象物体中の特定物質 3種の吸光係数波長依存性の例を示す図である。 図 5は、 対象物体を回転させながら測定し、 3次元情報を得るアルゴリズム説 明図である。  FIG. 4 is a diagram illustrating an example of the wavelength dependence of the extinction coefficient of three types of specific substances in a target object. Fig. 5 is an explanatory diagram of the algorithm that obtains three-dimensional information by measuring while rotating the target object.
図 6は、 対象物体を回転させながら測定し、 3次元情報を得るアルゴリズム説 明図である。  Figure 6 is an explanatory diagram of the algorithm for obtaining three-dimensional information by measuring while rotating the target object.
図 7は、 実施例 1における、 各ブリーチ時間毎の撮像結果を示す図である。 図 8は、 実施例 1における、 ブリーチ時間 = 0分の R G Bの輝度分布 (透過光 強度) を示す図である。  FIG. 7 is a diagram illustrating an imaging result for each bleach time in the first embodiment. FIG. 8 is a diagram illustrating a luminance distribution (transmitted light intensity) of RGB in the bleaching time = 0 minute in the first embodiment.
図 9は、 実施例 1における、 各ブリーチ時間毎のメラニン色素の分布を示す図 である。  FIG. 9 is a diagram showing the distribution of melanin pigment for each bleaching time in Example 1.
図 1 0は、 実施例 2における、 各ブリーチ時間毎の、 毛髪内部のメラニン色素 のうち、 脱色反応によって吸光係数が変化したものの分布を示す図である。  FIG. 10 is a diagram showing the distribution of melanin pigments in the hair, of which the extinction coefficient has changed due to the decolorization reaction, at each bleaching time in Example 2.
図 1 1は、 実施例 3で使用された毛髪回転装置を示す図である。  FIG. 11 is a diagram illustrating the hair rotating device used in the third embodiment.
図 1 2は、 実施例 3の説明で使用される 3次元座標系とポクセル分割を示す図 である。 FIG. 12 is a diagram showing a three-dimensional coordinate system and poxel division used in the description of the third embodiment. It is.
なお、 図面中の符号は以下の通りである。  The reference numerals in the drawings are as follows.
a 照射光側偏光板  a Irradiation light side polarizing plate
b C C Dカメラ側偏光板  b C C D Camera side polarizing plate
d、 1 e 互いに透過軸を平行にした偏  d, 1 e Polarization with transmission axes parallel to each other
光源  Light source
対象物体  Target object
透過光用 C C Dカメラ  CCD camera for transmitted light
対象物体セッ卜用ホルダー  Holder for target object set
プレパラー卜  Preparation
a、 1 3 b · · ■ ■固定用ガラス  a 、 1 3 b · · ■ ■ Fixing glass
空隙  Void
毛髪回転装置 回転部  Hair rotating device rotating part
回転部受け 発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 対象物体に直線偏光を照射し、 対象物体を通過した光を、 透過軸が、 照射光の偏光と平行であるような偏光子をかけて照射光の光軸上で検出すること によって、 対象物体からの散乱光を除くことによって、 散乱光の影響が除かれた 透過光の強度を測定するものである。 散乱光は波長依存的に緩やかに変化するが、 散乱光の影響が除かれた透過光の波長依存性は時に大きく変化するので、 散乱光 の影響が除かれた透過光の強度を測定することで、 対象物体内の特定の物質の存 在を画像として強調して得ることもできる。  The present invention is directed to irradiating a target object with linearly polarized light, and detecting light passing through the target object by applying a polarizer having a transmission axis parallel to the polarization of the irradiation light on the optical axis of the irradiation light. This measures the intensity of the transmitted light, which excludes the effects of the scattered light by removing the scattered light from the target object. Although the scattered light changes slowly in a wavelength-dependent manner, the wavelength dependence of the transmitted light from which the influence of the scattered light is removed sometimes changes greatly. Therefore, measure the intensity of the transmitted light from which the influence of the scattered light is removed. Thus, the presence of a specific substance in the target object can be enhanced and obtained as an image.
図 1において詳述すると、 光源 (2 ) から出た光は偏光子 (1 a ) を通過して 直線偏光となり、 対象物体 (3) に照射される。 照射光は、 対象物体内部で散乱、 吸収を受けて、 後部の光軸上に設けた偏光子 (1 b) を通り CCDカメラ (4) で検出される。 このとき、 偏光子 (1 a) と偏光子 (1 b) を、 透過軸が平行に なるように設置すると、 CCDカメラ (4) には対象物体内部での散乱光が除か れた透過光が主に入射することになリ、 散乱光の影響が除かれた透過光による画 像を得ることができる。 More specifically, referring to FIG. 1, light emitted from the light source (2) passes through the polarizer (1a). It becomes linearly polarized light and irradiates the target object (3). The irradiation light is scattered and absorbed inside the target object, passes through the polarizer (1b) provided on the rear optical axis, and is detected by the CCD camera (4). At this time, if the polarizer (1a) and the polarizer (1b) are installed so that their transmission axes are parallel, the CCD camera (4) will transmit Therefore, an image can be obtained by transmitted light in which the influence of scattered light is eliminated.
さらに、 図 2及び図 3に示したように、 互いの透過軸が平行な 2枚の偏光子 (I d) , (1 e) で対象物体を挟み、 そこに光照射する方法も対象物体が毛髪 等の小さいものの場合に特に好ましい。  Furthermore, as shown in Figs. 2 and 3, the target object is sandwiched between two polarizers (Id) and (1e) whose transmission axes are parallel to each other, and the target object is also irradiated with light. It is particularly preferable when the hair is small.
また、 散乱光の強度は一般に波長依存性が小さく、 散乱光以外の透過光は物質 により、 その波長依存性が大きいことを利用して、 波長を変化させて対象物体を 通過した光強度を測定し、 さらに散乱光を演算で除くことで散乱光の影響が除か れた透過光のデータとすることもできる。 波長を変化させて対象物体を通過した 光強度を測定する方法としては、 対象物体に照射する光の波長を変化させる方法 と白色光を照射して検出する方の光の波長を変化させる方法があり、 何れも好適 に用いられる。 ここで、 CCDカメラを用いる場合には、 赤、 綠、 青の 3チャン ネルで一度に光強度を測定できるので後者の方法が好ましい。  In addition, the intensity of scattered light generally has small wavelength dependence, and the transmitted light other than scattered light has a large wavelength dependence depending on the substance. Further, by removing the scattered light by calculation, the data of the transmitted light from which the influence of the scattered light is removed can be obtained. There are two methods for measuring the intensity of light that has passed through the target object by changing the wavelength: a method that changes the wavelength of the light irradiated to the target object and a method that changes the wavelength of the light that is detected by irradiating white light. Yes, both are suitably used. Here, when a CCD camera is used, the latter method is preferable because the light intensity can be measured at once for three channels of red, green, and blue.
照射光として X線を用いることはすでに知られておリ、 本発明は X線よリ長波 長の光を用いることを特徴とする。 照射光の波長としては、 200 nm〜200 0 nmであることが好ましい。 特に好ましくは、 可視光領域の波長である。  It is already known to use X-rays as irradiation light, and the present invention is characterized by using light having a longer wavelength than X-rays. The wavelength of the irradiation light is preferably from 200 nm to 2000 nm. Particularly preferred is a wavelength in the visible light range.
本発明では、 対象物体を通過した光を CCDカメラで検出し、 主に散乱光の影 響が除かれた透過光に依存した結果を 2次元イメージとして表示するが、 その際 C C D力メラの前に対物レンズを設置することが、 小さい対象物体の透過率を測 定できるために好ましい。 対物レンズの倍率には、 特に限定はないが 5倍〜 80 0倍とすることが好ましい。  In the present invention, the light that has passed through the target object is detected by a CCD camera, and a result that mainly depends on transmitted light from which the influence of scattered light has been removed is displayed as a two-dimensional image. It is preferable to install an objective lens on the surface because the transmittance of a small target object can be measured. The magnification of the objective lens is not particularly limited, but is preferably 5 to 800 times.
本発明においては、 さらに、 対象物体内部に含まれる物質の吸光係数が異なる 4003078 In the present invention, furthermore, the extinction coefficient of the substance contained in the target 4003078
6  6
2種類の波長、 すなわち図 4において波長 λ ,と λ 2の光でそれぞれ照射するか、 又は白色光を照射して、 波長 λ と λ2の光のみ検知して、 λ,と λ2それぞれの 透過光の強度を測定し、 その値を演算することにより、 その物質 (a) のみを強 調した情報を得ることができる。 このとき、 物質 (b) や物質 (c) のように波 長 λ,と λ 2の光の吸光係数に差が小さい物質が対象物体内部に含まれていても、 2種の波長での透過光の強度差が小さいため、 物質 (b) や物質 (c) の存在を 強鶬させない画像を得ることができる。 Two wavelengths, i.e., either respectively irradiated at the wavelength lambda, and lambda 2 of light in FIG. 4, or by irradiation with white light, and detects only the light of wavelength lambda and lambda 2, lambda, and lambda 2 respectively By measuring the intensity of the transmitted light and calculating the value, it is possible to obtain information that emphasizes only the substance (a). At this time, even if a substance such as substance (b) or substance (c), which has a small difference in the absorption coefficient of light of wavelengths λ and λ 2 , is included in the target object, the transmission at two wavelengths Since the difference in light intensity is small, it is possible to obtain an image that does not enhance the presence of the substance (b) or the substance (c).
さらに、 本発明は非破壊で測定できるため、 時間を追って特定の波長の透過光 の強度を測定し、 対象物体内部に含まれる一の物質の量の時間変化をモニターす ることができる。 このとき、 時間変化を求めようとする物質の吸光度の差が最も 大きい波長を選ぶことが好ましい。  Furthermore, since the present invention can be measured nondestructively, it is possible to measure the intensity of transmitted light of a specific wavelength over time and monitor the time change of the amount of one substance contained in the target object. At this time, it is preferable to select a wavelength at which the difference in absorbance of the substance whose time change is to be obtained is the largest.
本発明においては、 対象物体を回転させながら透過光の強度を測定し、 対象物 体内部の 3次元構造に関する情報を得ることもできる。  In the present invention, the intensity of the transmitted light is measured while rotating the target object, and information on the three-dimensional structure inside the target object can be obtained.
すなわち、 対象物体の 1断面を n X nの有限要素に分割し、 それぞれの要素 ( i, j ) の散乱定数を f d ( i, j ) 、 吸収定数を f a ( i, j ) とすると、 要素 ( i, j ) を j方向に平行に透過する前の光強度 I i n (し j ) と透過後 の光強度 I。ut ( i, j ) の関係は、 式 (1 ) で示される (図 5参照) 。 That is, if one section of the object is divided into n X n finite elements, the scattering constant of each element (i, j) is f d (i, j) and the absorption constant is f a (i, j). , element (i, j) the light intensity I i n (and j) before the parallel transmits the j direction and the light intensity after transmission I. The relationship between ut (i, j) is expressed by equation (1) (see FIG. 5).
( j) = (/, j) x(i-fd (i, j) - fa (/, j))…ひ) (j) = (/, j) x (if d (i, j)-f a (/, j))… h)
ここで、 すべての要素において、 式 (2) が成り立つ。Here, equation (2) holds for all elements.
" ', ) - ,ゾ - 1)···(2)  "',)-, ZO-1) ... (2)
従って、 対象物体に入射する光強度を、 I i n 、 iに対応する透過光強度を、 I。ut ( i ) とすると、 式 (1 ) は式 (3) で表すことができる。 (0 = X (1 - ( j) - fa ( j))… (3) さらに、 各要素の透過定数を f t ( i, j ) = 1 - f d ( i , j ) — f a ( i, j ) とすると、 l0^oUt (0 = log + log ft (, j) この計算をすベての iについて行う。 また、 入射角度を変化させる場合は、 入 射光線の幅を変化させずに回転させ、 1本 1本の光線が交差するすべての要素に ついて式 (4 ) を計算する (図 6参照) 。 その結果、 式 (5 ) のような連立方程 式が算出される。 Therefore, the light intensity incident on the target object is represented by I in , and the transmitted light intensity corresponding to i is represented by I. Assuming that ut (i), equation (1) can be expressed by equation (3). (0 = X (1-(j)-f a (j))… (3) Furthermore, let the transmission constant of each element be f t (i, j) = 1-f d (i, j) — f a ( i, j) l0 ^ o Ut (0 = log + log f t (, j) This calculation is performed for all i. When the angle of incidence is changed, rotate without changing the width of the incident light, Equation (4) is calculated for all the elements where each ray intersects (see Fig. 6) As a result, a simultaneous equation such as equation (5) is calculated.
Figure imgf000009_0001
Figure imgf000009_0001
(ここで、 Aは、 (j ' m) X n 2の行列 (mは、 入射角のパターン数) 、 Xお よび Bは、 n 2次の縦ベクトルである) (Where A is a matrix of (j 'm) X n 2 (m is the number of patterns of incidence angle), and X and B are n 2 order vertical vectors)
j · mが n 2より大きくなるように条件を設定し、 Moore-Peni'ose 型の一般 逆行列を算出して、 解 Xを得る。  The condition is set so that j · m is larger than n 2, the Moore-Peni'ose general inverse matrix is calculated, and the solution X is obtained.
このような一連の作業を異なる波長に対して行い、 それぞれの Xの値 (X A = a, X A = b) を算出する。 このとき、 吸収の波長依存性に比較して、 散乱の波長依存 性が充分小さい λを選択すると、 (X A = a, X , = b) から、 各要素における、 吸 収に依存したパラメーターを算出し、 対象物体内部の 3次元吸収係数分布を可視 化できる。 This series of operations is performed for different wavelengths, and the values of X (XA = a , XA = b ) are calculated. At this time, if λ whose scattering wavelength dependence is sufficiently small compared to the wavelength dependence of absorption is selected, the absorption-dependent parameter of each element can be calculated from (X A = a , X, = b ). Calculate and visualize the three-dimensional absorption coefficient distribution inside the target object.
このようにして得られた対象物体内の各微小部分 (各要素) の光透過係数の値 から、 対象物体の特定断面上の光透過係数を抽出することによって、 対象物体を 破壊することなくその断面の画像を得ることもできる。  By extracting the light transmission coefficient on a specific cross section of the target object from the value of the light transmission coefficient of each minute portion (each element) in the target object obtained in this way, the target object can be obtained without destruction. Cross-sectional images can also be obtained.
本発明の対象物体内部の評価方法は、 散乱光の影響が除かれた透過光の強度を 測定できるため、 分解能が高い画像情報を得ることができる。 また、 散乱光の影 響が除かれた透過光を波長を変えて測定することによって、 特定物質に着目した 情報が得られたり、 さらには非破壊であるため時間を追って測定することでリア ルタイムの 1青報が得られる。 また、 対象物体を回転させて測定することによって、 対象物体内部の 3次元情報を得ることができる。 The method for evaluating the inside of a target object according to the present invention includes measuring the intensity of transmitted light excluding the influence of scattered light. Since measurement can be performed, image information with high resolution can be obtained. In addition, by changing the wavelength of transmitted light from which the effects of scattered light have been removed and measuring it, information can be obtained that focuses on specific substances. 1 blue report is obtained. In addition, three-dimensional information inside the target object can be obtained by rotating and measuring the target object.
そして、 本発明の対象物体内部の評価方法は特に微小部分の測定に適しておリ、 毛髪内部に与えるカラ一リング剤やヘア一卜リー卜メン卜剤の影響をリアルタイ 厶で知ることができる。 実 施 例  The method for evaluating the inside of a target object according to the present invention is particularly suitable for measuring minute parts, and it is possible to know in real time the effects of a coloring agent and a hair treatment agent on the inside of hair. it can. Example
以下に実施例を挙げて本発明を更に詳しく説明するが、 本発明はこれら実施例 に何ら制約されるものではない。 実施例 1  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1
<毛髪の脱色過程の 2次元動的解析 >  <Dynamic analysis of hair bleaching process>
図 2及び図 3に示す対象物体セッ卜用ホルダー (1 0) を用い、 対象物体とし て未処理の黒髪を用いた。 対象物体セット用ホルダー (1 0) は光学顕微鏡観察 に汎用されるプレパラート (1 1 ) の上に、 固定用ガラス (1 3 a) 、 (1 3 b) を用いて約 1 mmの隙間を空けて固定された 2枚の偏光子 (1 d ) 、 (1 e) から構成されており。 2枚の偏光子間には、 約 2mm (幅) X約 25mm (奥行き) X約 1 mm (高さ) の空隙 (1 4) ができている。 ここで、 2枚の偏 光子は互いに透過軸を平行とした。  Untreated black hair was used as the target object using the target object set holder (10) shown in Figs. The target object set holder (10) is placed on the slide (11), which is commonly used for optical microscopy, with a gap of about 1 mm using fixing glasses (13a) and (13b). It consists of two fixed polarizers (1 d) and (1 e). A gap (14) of about 2 mm (width) x about 25 mm (depth) x about 1 mm (height) is formed between the two polarizers. Here, the two polarizers have transmission axes parallel to each other.
対象物体セット用ホルダーに毛髪をセットした。 撮像には、 光学顕微鏡 (オリ ンパス光学工業株式会社製、 BX5〗) を取り付けた CCDカメラ (才リンパス 光学工業株式会社製、 DP 1 2) を用いた。 対物レンズの倍率は〗 0倍とした。 空隙 (1 4) にブリーチ溶液 (4%H202, 4 %NH3水溶液) を満たし、 セッ 3078 The hair was set in the holder for setting the object. For imaging, a CCD camera (DP12, manufactured by Sai-Linpass Optical Industry Co., Ltd.) equipped with an optical microscope (BX5〗, manufactured by Olympus Optical Industrial Co., Ltd.) was used. The magnification of the objective lens was〗 0. Filled voids (1 4) to bleach solution (4% H 2 0 2, 4% NH 3 aq), set 3078
9 ト直後、 3分後、 5分後、 1 0分後、 20分後に毛髪の同一箇所での撮像を行つ た。  Immediately after 3 minutes, 3 minutes, 5 minutes, 10 minutes, and 20 minutes, images were taken of the same part of the hair.
得られたカラー画像から、 毛髪の写っていない領域を取り除いた後 (図 7) 、 画像中の各チャネル (RGB) の 8ビット輝度分布 (図 8) を取得し、 それぞれ Rt (x, y) 、 Gt (x, y) 、 Bt (x, y) とした ( (x, y) は画像中の ピクセルの位置、 tはブリーチ時間を示す) 。 その後、 以下に示すアルゴリズム を用いて毛髪内部のメラニン色素の分布を示す画像 (図 9) を得た。 After removing the areas where hair is not visible from the obtained color image (Fig. 7), the 8-bit luminance distribution of each channel (RGB) in the image (Fig. 8) is obtained, and R t (x, y) is obtained, respectively. ), G t (x, y) and B t (x, y) (where (x, y) indicates the position of the pixel in the image and t indicates the bleach time). Then, an image (Fig. 9) showing the distribution of melanin pigment inside the hair was obtained using the algorithm described below.
(アルゴリズム)  (Algorithm)
t = 0の時、 全ての (x, y) について D。 (x, y) を算出し (式 (7) ) 、 その最大値を Dmaxとする。 When t = 0, D for all (x, y). (X, y) is calculated (Equation (7)), and the maximum value is set as Dmax .
Dt(x,y) = Rt(x,y)/Gt(x,y) · . · (?) D t (x, y) = R t (x, y) / G t (x, y)
次に、 全ての t、 (x, y) について Dtを算出した後、 8ビットに規格化し た Mt (x, y) を得る (式 (8) ) 。 Next, after calculating D t for all t and (x, y), M t (x, y) normalized to 8 bits is obtained (Equation (8)).
^ -^1^ x255 . . .(8)^-^ 1 ^ x255... (8 )
max  max
黒色毛髪が時間と共に、 脱色していく様子が明確に評価できた。 この方法を用 いると、 カラーリング剤やヘアー卜リートメン卜剤が毛髪に与える影響をリアル タイムで知ることができる。 実施例 2  It was possible to clearly evaluate how the black hair bleached over time. By using this method, it is possible to know in real time the effects of coloring agents and hair treatment agents on hair. Example 2
<毛髪の脱色過程の 2次元動的解析 >  <Dynamic analysis of hair bleaching process>
試料及び対象物体セット用ホルダーは実施例 1と同様のものを用いた。 毛髪を 対象物体セット用ホルダ一にセットしたのち、 実施例 1と同様の条件で撮像を行 つた。  The same holder as in Example 1 was used for the sample and the target object setting holder. After the hair was set in the holder for setting the target object, imaging was performed under the same conditions as in Example 1.
得られたカラー画像から、 毛髪の写っていない領域を取り除いた後、 画像中の 各チャネル (RGB) の 8ビット輝度分布を取得し、 それぞれ Rt (x, y) 、 Gt (x, y) 、 Bt (x y) とした ( (x y) は画像中のピクセルの位置、 tはブリーチ時間を示す) 。 その後、 以下に示すアルゴリズムを用いて、 毛髪内 部のメラニン色素のうち、 脱色反応によって吸光特性が変化したものの分布を示 す画像 (図 1 0) を得た。 After removing the area where hair is not reflected from the obtained color image, the 8-bit luminance distribution of each channel (RGB) in the image is obtained, and R t (x, y), G t (x, y) and B t (xy) (where (xy) indicates the position of a pixel in the image and t indicates the bleach time). Then, using the algorithm described below, an image (Fig. 10) showing the distribution of melanin pigments inside the hair whose absorption characteristics changed due to the decolorization reaction was obtained.
(アルゴリズム)  (Algorithm)
t = 20の時、 全ての (x y ) について Dt (x y ) を算出し (式 (9) ) 、 その最大値を Dmaxとする。 Dt (x y) の値が 0より小さい時は、 Dt (x y) の値は 0とする。 When t = 20, D t (xy) is calculated for all (xy) (Equation (9)), and the maximum value is set as D max . When the value of D t (xy) is less than 0, the value of D t (xy) is 0.
Dt(x,y)=Rt(x,y)/R0(x,y) · · .(9) D t (x, y) = R t (x, y) / R 0 (x, y)
次に、 全ての t (x y) について Dtを算出した後、 8ビットに規格化し た Mt (x, y) を得る (式 (1 0) ) M t (x y) が 0よりも小さい畤は 0とする。 Next, after calculating D t for all t (xy), M t (x, y) normalized to 8 bits is obtained (Equation (1 0)) where M t (xy) is smaller than 0. Is set to 0.
Mt(x,y) = ^^-x255 . . . ( 1 0) M t (x, y) = ^^-x255... (1 0)
max  max
毛髪が時間と共に、 変化していく様子が明確に評価できた。 この方法を用いる と、 カラーリング剤やヘア一トリー卜メン卜剤が毛髪に与える影響をリアルタイ 厶で知ることができる。 実施例 3  It was clear that the hair changed over time. By using this method, it is possible to know in real time the effects of a coloring agent and a hair treatment agent on hair. Example 3
<毛髪中のメラニン色素の 3次元分布の可視化 >  <Visualization of three-dimensional distribution of melanin pigment in hair>
図 2及び図 3に示す対象物体セット用ホルダー (1 0) を用い、 光強度測定装 置も実施例 1と同様のものを用いた。 対象物体は毛髪である。 また、 試料毛髪を 回転させるために図 1 1に示す毛髪回転装置 (20) を用いた。 試料毛髪 (2 1 ) を対象物体セッ卜用ホルダー (1 0) にセッ卜したのち、 空隙 (1 4) に水 を満たし、 毛髪の両端を回転部 (22) の中心に固定した後、 毛髪回転装置 (2 0) を用いて毛髪を回転させながら撮像を行った。 回転装置は回転部受 (23) の部分を顕微鏡のステージ上に固定した。 The target object setting holder (10) shown in FIGS. 2 and 3 was used, and the same light intensity measuring device as that in Example 1 was used. The target object is hair. The hair rotation device (20) shown in Fig. 11 was used to rotate the sample hair. After setting the sample hair (21) in the holder (10) for setting the object, fill the void (14) with water and fix both ends of the hair to the center of the rotating part (22). The image was taken while rotating the hair using a rotating device (20). Rotating device supports rotating part (23) Was fixed on the microscope stage.
得られたカラ一画像から、 毛髪の写っていない領域を取り除いた後、 画像中の 各チャネル (RGB) の 8ビット輝度分布を取得し、 それぞれ R (x, y, θ) , G (x, y, 0) 、 B (x, y, 0) とする ( (x, y) は画像中のピクセルの 位置、 0は毛髪の回転角度 (Ο≤0≤2 π) を示す) 。 その後、 以下に示すアル ゴリズ厶を用いて毛髪内部のメラニン色素の 3次元分布を示す画像を得ることが できた。  After removing the area where the hair is not reflected from the obtained color image, the 8-bit luminance distribution of each channel (RGB) in the image is obtained, and R (x, y, θ), G (x, y, 0) and B (x, y, 0), where (x, y) is the pixel position in the image and 0 is the hair rotation angle (Ο≤0≤2π). After that, an image showing the three-dimensional distribution of melanin pigment in the hair could be obtained using the following algorithm.
(アルゴリズム)  (Algorithm)
全ての (x, y) について D (x, y) を算出し (式 (1 1 ) ) 、 その最大値 を Dmaxとする。 D (x, y) is calculated for all (x, y) (Equation (11)), and the maximum value is defined as D max .
D(x,y) = R(x,y)/G(x,y) . . . (1 1 )  D (x, y) = R (x, y) / G (x, y)... (1 1)
次に、 Dを 8ビットに規格化した M (x, y) を得る (式 (1 2) ) 。
Figure imgf000013_0001
Next, M (x, y) obtained by normalizing D to 8 bits is obtained (Equation (12)).
Figure imgf000013_0001
その後、 毛髪を含む 3次元領域を適当な解像度、 例えば断面 50 X 50ピクセ ル、 長さ 200ピクセルの解像度を持つポクセルで分割し、 そのポクセルの集合 を Qとする。 Q内のポクセルの位置を (x, y, z) 、 Q内の各ポクセルの光透 過係数を T (x, y, z) で表す (座標系は図 1 2参照) 。 各ポクセル内は均質 であると仮定する。 このとき、 M (x, y, 0) の対数は、 画像中の点 (x, y) に結像した光が、 試料内を透過する際に通過した Q内の全ての点における T (x, y, z) の積分値とみなせる。 例えば 0 = 0の時は、 式 (1 3) のように 表せる。  Then, the three-dimensional area including the hair is divided by a poxel having an appropriate resolution, for example, a resolution of 50 × 50 pixels in cross section and 200 pixels in length, and the set of the poxels is Q. The position of the poxel in Q is represented by (x, y, z), and the light transmission coefficient of each poxel in Q is represented by T (x, y, z) (see Fig. 12 for the coordinate system). It is assumed that each poxel is homogeneous. At this time, the logarithm of M (x, y, 0) is defined as T (x, y) at all points in Q that pass when the light imaged at point (x, y) in the image passes through the sample. , Y, z). For example, when 0 = 0, it can be expressed as equation (13).
\ogM{x,ySi) = ^T{x,y,z) . . . (1 3)  \ ogM {x, ySi) = ^ T {x, y, z)... (1 3)
z  z
同様に全ての χ, y, 0において計算し、 得られた Tの連立方程式を適当な手 法 (例えば、 ムーア—ペンローズ (Moore-Pem'ose) の一般逆行列を求める手 法) を用いて解くことで、 Q内の Tの値を推定する。 また、 y = y。とすれば Q を平面 y == y。で切断した時の断面の Tを得ることができる 産業上の利用可能性 Similarly, for all χ, y, and 0, the obtained simultaneous equations of T are calculated using an appropriate method (eg, a method for obtaining the general inverse matrix of Moore-Pem'ose). Solve to estimate the value of T in Q. Also, y = y. Then Q The plane y == y. It is possible to obtain the T of the cross section when cut at
本発明によれば、 物体内部で散乱する光を除き、 直線的に透過する光の強度を 測定して画像化できるので、 光を利用して微小部分の情報を得たり、 特定物質を 強調した画像情報を得たリ、 対象物体を回転させながら透過光の強度を測定し、 対象物体を破壊することなしに、 その内部の 3次元構造を知ることができる。 また、 非破壊であるため対象物体の変化をリアルタイムで知ることができる。 さらに、 対象物体を毛髪にすることで、 実際に毛髪内部で起こっているカラーリ ング剤の脱色 ·染色状況や、 ヘアートリ一卜メン卜による補修プロセスを明らか にでき、 かかる製品を開発する上で広く利用できる。  According to the present invention, it is possible to measure and image the intensity of light transmitted linearly, excluding light scattered inside the object, so that light can be used to obtain information on minute parts or to emphasize specific substances. Once the image information is obtained, the intensity of the transmitted light is measured while rotating the target object, and the internal three-dimensional structure can be known without destroying the target object. Also, since it is non-destructive, changes in the target object can be known in real time. Furthermore, by using hair as the target object, it is possible to clarify the decolorization and dyeing status of the coloring agent that actually occurs inside the hair, and the repair process by hair removal, which is widely used in developing such products. Available.

Claims

請 求 の 範 囲 The scope of the claims
1 . 対象物体に直線偏光を照射し、 対象物体を通過した光を、 照射光の偏光面 に平行な透過軸を有する偏光子をかけて照射光の光軸上で C C Dカメラを用いて 検出することによって、 対象物体からの散乱光が除かれた透過光の強度に依存し た画像を得ることを特徴とする対象物体内部の評価方法。 1. Irradiate the target object with linearly polarized light, apply a polarizer having a transmission axis parallel to the polarization plane of the irradiation light, and detect the light passing through the target object using a CCD camera on the optical axis of the irradiation light. A method for obtaining an image dependent on the intensity of transmitted light from which scattered light from the target object has been removed.
2 . 対象物体に光を照射し、 対象物体を通過した光を検出する方法において、 対象物体に照射する光の波長を変化させるか又は検出する光の波長を変化させて 対象物体を通過した光の強度を測定することによつて散乱光の強度を推定し、 対 象物体からの散乱光を演算で除いた透過光の強度を得る対象物体内部の評価方法。 2. In the method of irradiating the target object with light and detecting the light that has passed through the target object, changing the wavelength of the light irradiating the target object or changing the wavelength of the light to be detected changes the light passing through the target object. Method for estimating the intensity of scattered light by measuring the intensity of transmitted light, and obtaining the intensity of transmitted light by calculating the scattered light from the target object.
3 . 照射光が、 波長 2 0 0 n m〜 2 0 0 0 n mの範囲を含む光である請求項 1 又は請求項 2に記載の対象物体内部の評価方法。 3. The method for evaluating the inside of a target object according to claim 1 or 2, wherein the irradiation light is light having a wavelength in a range of 200 nm to 200 nm.
4 . 対象物体を互いの透過軸が平行である 2枚の偏光子で挟み、 偏光子に垂直 方向から光を照射する請求項 1又は請求項 3記載の対象物体内部の評価方法。 4. The evaluation method according to claim 1, wherein the target object is sandwiched between two polarizers whose transmission axes are parallel to each other, and the polarizer is irradiated with light from a perpendicular direction.
5 . 対象物体が毛髪である請求項 1 ないし請求項 4の何れかの請求項記載の 対象物体内部の評価方法。 5. The method for evaluating the inside of a target object according to any one of claims 1 to 4, wherein the target object is hair.
6 . 対象物体内部に含まれる物質の吸光係数が異なる複数の波長によって、 透 過光の強度を測定し、 演算を行うことにより、 その物質のみを強調した画像を得 る請求項 1ないし請求項 5の何れかの請求項記載の対象物体内部の評価方法。 6. An image in which only the substance is emphasized by measuring and calculating the intensity of the transmitted light at a plurality of wavelengths at which the absorption coefficient of the substance contained in the target object is different from each other. 6. The method for evaluating the inside of a target object according to claim 5.
7 . 吸光係数が異なる複数の波長が、 吸光係数が異なる 2種の波長である請求 項 6記載の対象物体内部の評価方法。 7. A plurality of wavelengths with different extinction coefficients are two kinds of wavelengths with different extinction coefficients Item 6. The evaluation method inside the target object according to item 6.
8 . 時間を追って特定の波長の透過光の強度を測定し、 対象物体内部に含まれ る特定物質の量の時間変化を画像でモニターする請求項 1 ないし請求項 7の何 れかの請求項記載の対象物体内部の評価方法。 8. The method according to any one of claims 1 to 7, wherein the intensity of transmitted light of a specific wavelength is measured over time, and a temporal change in an amount of the specific substance contained in the target object is monitored with an image. The evaluation method inside the target object described.
9 . 対象物体を回転させながら透過光の強度を測定し、 対象物体内部の 3次元 構造を得る請求項 1 ないし請求項 8の何れかの請求項記載の対象物体内部の評 価方法。 9. The method for evaluating the inside of a target object according to any one of claims 1 to 8, wherein the intensity of transmitted light is measured while rotating the target object to obtain a three-dimensional structure inside the target object.
1 0 . 対象物体を回転させながら測定して得た透過光の複数の強度データからな る連立方程式を、 ムーア一ペンローズ (Moore-Penrose) 型一般逆行列を用いて 解き、 対象物体内の各微小部分の光透過係数を得る請求項 9記載の対象物体内部 の評価方法。 10. A simultaneous equation consisting of multiple intensity data of transmitted light obtained by rotating the target object and measuring it is solved using a Moore-Penrose generalized inverse matrix, and each object in the target object is solved. 10. The method according to claim 9, wherein the light transmission coefficient of the minute part is obtained.
1 1 . 対象物体内の各微小部分の光透過係数の値から、 対象物体の特定断面上の 微小部分の光透過係数を抽出することによつて、 対象物体を破壊することなくそ の断面の画像を得る請求項 9又は請求項 1 0記載の対象物体内部の評価方法。 1 1. By extracting the light transmission coefficient of the minute part on the specific cross section of the target object from the value of the light transmission coefficient of each minute part in the target object, the image of the cross section without destroying the target object 10. The method for evaluating the inside of a target object according to claim 9 or claim 10, wherein:
PCT/JP2004/003078 2003-10-15 2004-03-10 Method of evaluating inside of object by transmitted light WO2005038438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514703A JP4575296B2 (en) 2003-10-15 2004-03-10 Evaluation method inside the target object by transmitted light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-355588 2003-10-15
JP2003355588 2003-10-15

Publications (1)

Publication Number Publication Date
WO2005038438A1 true WO2005038438A1 (en) 2005-04-28

Family

ID=34463173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003078 WO2005038438A1 (en) 2003-10-15 2004-03-10 Method of evaluating inside of object by transmitted light

Country Status (3)

Country Link
JP (1) JP4575296B2 (en)
TW (1) TW200513641A (en)
WO (1) WO2005038438A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066176A (en) * 2008-09-12 2010-03-25 Kao Corp Method of evaluating internal state and device for evaluating internal state of hair
JP2010512532A (en) * 2006-12-12 2010-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device to suppress hair growth
JP2011512543A (en) * 2008-02-18 2011-04-21 ヴィジョンゲイト,インコーポレーテッド Three-dimensional imaging of living cells using ultraviolet radiation
WO2012174182A1 (en) * 2011-06-15 2012-12-20 The Procter & Gamble Company Device for analyzing hair fibers and methods of using the device
JP2014510099A (en) * 2011-03-21 2014-04-24 コロライト エルティーディー. System for custom coloring
JP2017522563A (en) * 2014-07-22 2017-08-10 オリンパス株式会社 Optical composition analysis of mixtures
JP2018119832A (en) * 2017-01-24 2018-08-02 株式会社日清製粉グループ本社 Method for determining hair-like foreign substance
JP2018189623A (en) * 2017-05-08 2018-11-29 国立大学法人横浜国立大学 Three-dimensional shape estimation system, three-dimensional shape estimation device, method for estimating three-dimensional shape, and program
JPWO2018198908A1 (en) * 2017-04-24 2020-03-12 国立研究開発法人理化学研究所 Hair observation method, phase contrast microscope system and preparation
CN114062319A (en) * 2021-09-30 2022-02-18 深圳汝原科技有限公司 Glossiness test evaluation method and glossiness test evaluation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108681057A (en) * 2018-07-26 2018-10-19 中国科学院苏州生物医学工程技术研究所 A kind of devices and methods therefor for high-throughput zebra fish polarization imaging
KR102256139B1 (en) * 2020-11-17 2021-05-25 파이 주식회사 Apparatus for rating hair damage degree using cross-polarization light

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269135A (en) * 1992-03-24 1993-10-19 Olympus Optical Co Ltd Optical ct device
JPH0650727A (en) * 1992-07-31 1994-02-25 Fuji Photo Film Co Ltd Three-dimensional information measuring method and device for specimen
JPH0698891A (en) * 1992-09-21 1994-04-12 Toshiba Corp Optical diagnostic apparatus
JPH06129984A (en) * 1992-07-20 1994-05-13 Hamamatsu Photonics Kk Method and device for absorption information measurement within scatterer-absorber
JPH06169915A (en) * 1992-12-08 1994-06-21 Hitachi Ltd Image processing method for computer aided tomography
JPH0919408A (en) * 1995-07-05 1997-01-21 Hitachi Ltd Living body light measuring device and image forming method in the device
JP2001174403A (en) * 1999-12-17 2001-06-29 Shimadzu Corp Optical living body measuring apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109254B2 (en) * 1992-06-30 2000-11-13 東レ株式会社 Pinhole inspection equipment
JPH1130591A (en) * 1997-07-11 1999-02-02 Asahi Chem Ind Co Ltd Method and device for inspecting film sheet defect

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269135A (en) * 1992-03-24 1993-10-19 Olympus Optical Co Ltd Optical ct device
JPH06129984A (en) * 1992-07-20 1994-05-13 Hamamatsu Photonics Kk Method and device for absorption information measurement within scatterer-absorber
JPH0650727A (en) * 1992-07-31 1994-02-25 Fuji Photo Film Co Ltd Three-dimensional information measuring method and device for specimen
JPH0698891A (en) * 1992-09-21 1994-04-12 Toshiba Corp Optical diagnostic apparatus
JPH06169915A (en) * 1992-12-08 1994-06-21 Hitachi Ltd Image processing method for computer aided tomography
JPH0919408A (en) * 1995-07-05 1997-01-21 Hitachi Ltd Living body light measuring device and image forming method in the device
JP2001174403A (en) * 1999-12-17 2001-06-29 Shimadzu Corp Optical living body measuring apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512532A (en) * 2006-12-12 2010-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device to suppress hair growth
JP2011512543A (en) * 2008-02-18 2011-04-21 ヴィジョンゲイト,インコーポレーテッド Three-dimensional imaging of living cells using ultraviolet radiation
JP2010066176A (en) * 2008-09-12 2010-03-25 Kao Corp Method of evaluating internal state and device for evaluating internal state of hair
JP2014510099A (en) * 2011-03-21 2014-04-24 コロライト エルティーディー. System for custom coloring
JP2014522500A (en) * 2011-06-15 2014-09-04 ザ プロクター アンド ギャンブル カンパニー Hair fiber analyzer and method of using the device
CN103608666A (en) * 2011-06-15 2014-02-26 宝洁公司 Device for analyzing hair fibers and methods of using the device
WO2012174182A1 (en) * 2011-06-15 2012-12-20 The Procter & Gamble Company Device for analyzing hair fibers and methods of using the device
JP2017522563A (en) * 2014-07-22 2017-08-10 オリンパス株式会社 Optical composition analysis of mixtures
JP2018119832A (en) * 2017-01-24 2018-08-02 株式会社日清製粉グループ本社 Method for determining hair-like foreign substance
JPWO2018198908A1 (en) * 2017-04-24 2020-03-12 国立研究開発法人理化学研究所 Hair observation method, phase contrast microscope system and preparation
JP7297204B2 (en) 2017-04-24 2023-06-26 国立研究開発法人理化学研究所 HAIR OBSERVATION METHOD AND PHASE CONTRAST MICROSCOPE SYSTEM
JP2018189623A (en) * 2017-05-08 2018-11-29 国立大学法人横浜国立大学 Three-dimensional shape estimation system, three-dimensional shape estimation device, method for estimating three-dimensional shape, and program
CN114062319A (en) * 2021-09-30 2022-02-18 深圳汝原科技有限公司 Glossiness test evaluation method and glossiness test evaluation system

Also Published As

Publication number Publication date
JPWO2005038438A1 (en) 2007-01-18
TW200513641A (en) 2005-04-16
JP4575296B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
WO2005038438A1 (en) Method of evaluating inside of object by transmitted light
WO2020013325A1 (en) Image generation device and image generation method
US20060182323A1 (en) Device and method for demonstrating and quantifying skin texture
JP5538220B2 (en) Non-uniformity inspection method for polarizing plate using image analysis, and automatic non-uniformity inspection system for polarizing plate using the same
Tabatabaei et al. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth
JP2010502280A (en) Caries detection method
CN1419428A (en) Method and system for characterization and mapping of tissue lesions
US20130057873A1 (en) System and method for measuring the ratio of forward-propagating to back-propagating second harmonic-generation signal, and applications thereof
Lu et al. Structured-illumination reflectance imaging for the detection of defects in fruit: Analysis of resolution, contrast and depth-resolving features
JPS61159936A (en) Spectral image pick-up apparatus of biological tissue
JP4092037B2 (en) Substance identification device
US5610399A (en) Apparatus and process for the spatially resolved optical determination of density distributions in biological tissues
JP5590541B2 (en) Freshness evaluation apparatus and freshness evaluation method
US7024037B2 (en) Cross-polarized imaging method for measuring skin ashing
US9804088B2 (en) Spatial frequency spectrometer for and method of detection of spatial structures in materials
JPH1096696A (en) Method and apparatus for inspecting irregularity in object
KR20120122301A (en) Automatic inspection apparatus for stain in the polarizing plate using color difference analysis
JP2004230117A (en) Method for discriminating wrinkle by replica image
Qin et al. Measurement of the optical properties of apples using hyperspectral diffuse reflectance imaging
JP2010125288A (en) Method for creating image for melanoma diagnosis
JPH09164127A (en) Method for evaluating light transmissivity of skin and apparatus therefor
JP4617953B2 (en) Application unevenness detection method
DE19919020C1 (en) Analyzing light wave phase information for displaying three-dimensional images involves measuring light displacement in different absorber states
RU2694790C1 (en) Method of determining homogeneity of uniaxial crystals
JP3581596B2 (en) Stripe detection device, photoconductor drum inspection device using the same, liquid crystal panel inspection device using the same, stripe detection method, and medium recording stripe detection program

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514703

Country of ref document: JP

122 Ep: pct application non-entry in european phase