WO2005037538A1 - Copper-clad laminate - Google Patents

Copper-clad laminate Download PDF

Info

Publication number
WO2005037538A1
WO2005037538A1 PCT/JP2004/015135 JP2004015135W WO2005037538A1 WO 2005037538 A1 WO2005037538 A1 WO 2005037538A1 JP 2004015135 W JP2004015135 W JP 2004015135W WO 2005037538 A1 WO2005037538 A1 WO 2005037538A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper foil
clad laminate
insulating layer
liquid crystal
Prior art date
Application number
PCT/JP2004/015135
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Ueda
Katsumi Takata
Katsufumi Hiraishi
Isamu Takarabe
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to JP2005514768A priority Critical patent/JP4545688B2/en
Publication of WO2005037538A1 publication Critical patent/WO2005037538A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Definitions

  • the present invention relates to a copper-clad laminate having a liquid crystal polymer used for an electronic circuit board as an insulating layer.
  • Liquid crystal polymer films are excellent in high heat resistance, moisture absorption dimensional stability, high-frequency electrical characteristics, etc.
  • a laminate of a liquid crystal polymer film and a metal foil represented by a copper foil is suitable as a laminate for a wiring board.
  • Patent Document 1 JP-A-5-345387
  • Patent Document 1 Under recent demands for lightness, small size, high speed transmission, and the like of electronic devices, the roughness shown in Patent Document 1 Even if a copper foil with a large surface roughness is used, there are problems such as the inability to process the conductor layer at a fine pitch and poor signal transmission characteristics in the high frequency range. Thus, a laminate having good delamination strength with a liquid crystal polymer film is required. However, there is a problem that it is extremely difficult to obtain the adhesion strength by the anchor effect with the copper foil having a small roughness, and there is a problem that the roughness is small with the liquid crystal polymer film by the conventional technology. Disclosure of the Invention There was a problem that a sufficient adhesion strength could not be obtained even as a laminate.
  • the present invention relates to a copper-clad laminate in which a copper foil is provided on one or both sides of an insulating layer made of a liquid crystal polymer, the surface roughness (Rz) of the surface of the copper foil in contact with the insulating layer is 0.2
  • a copper-clad laminate having a 180 ° delamination strength of at least 0.5 kN / m between the copper foil and the insulating layer at room temperature.
  • the present invention superimposes a copper foil having a surface roughness (Rz) force of 3.0 ⁇ m on a surface in contact with the insulating layer of the copper foil on one or both sides of the insulating layer which also has a liquid crystal polymer force,
  • Rz surface roughness
  • the laminate of the present invention has at least one layer in which an insulating layer having liquid crystal polymer strength and a copper foil layer having a surface roughness of 0.2 to 3.0 m are bonded, and the 180 ° delamination strength of the bonded portion is provided. Is more than 0.5 kN / m.
  • the liquid crystal polymer used in the present invention is any liquid crystal polymer capable of forming an optically anisotropic molten phase, and is also called a thermopick liquid crystal polymer.
  • a polymer capable of forming an optically anisotropic molten phase is well known to those skilled in the art, and is obtained by observing a sample in a molten state under a polarizing microscope equipped with a heating device. Transmission of polarized light High quality polymer.
  • the liquid crystal polymer is not particularly limited, but for example, aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, aromatic hydroxyamine, aromatic diamine, aromatic aminocarboxylic acid, and the like.
  • Selected monomers particularly aromatic dicarboxylic acids, aromatic diols, and aromatic hydroxycarboxylic acids. Examples include liquid crystalline polyester resins or polyesteramides that form an anisotropic molten phase having structural units derived from the selected monomers.
  • aromatic hydroxycarboxylic acid examples include, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 3-hydroxy-2-naphthoic acid.
  • Acid 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4-hydroxyphenyl-3-benzoic acid and alkyl, alkoxy or halogen-substituted products thereof.
  • these ester-forming derivatives may be mentioned.
  • 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid are preferred because they can easily adjust the properties and melting point of the polymer obtained.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 4,4′-dicarboxylic acid Carboxybiphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenyl) butane, bis (4-carboxyphenyl) ethane, bis (3-carboxyphenyl) ether
  • aromatic dicarboxylic acids such as bis (3-carboxyphenyl) ethane and the like, alkyl, alkoxy and halogen-substituted derivatives thereof, and ester-forming derivatives thereof.
  • aromatic diol examples include 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 3,4'-dihydroxybiphenyl, and 4,4'-dihydroxydiphenylethanol.
  • these ester-forming derivatives can be mentioned.
  • an ester-forming derivative is a compound having the ability to react to form an ester.
  • aromatic hydroxyamine, aromatic diamine, and aromatic aminocarboxylic acid include the following compounds.
  • aromatic hydroxyamines include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4 -Amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, 4-amino-4'-hydroxybiphenyl sulfide And aromatic hydroxyamines.
  • aromatic diamines examples include 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, ⁇ , ⁇ '-dimethyl-1,4-phenylenediamine, and 4,4'-diaminodiphene.
  • -Rusulfide also known as thiodiarin
  • 2,5-diaminotoluene 4,4'-ethylenedianiline
  • 4,4'-diaminodiphenylmethane also known as methylenediarin
  • 4,4'-diaminodiphenyl ether alias: oxidiarin
  • aromatic aminocarboxylic acid examples include 4-aminobenzoic acid, 2-amino-6-naphthoic acid, 2-amino-7-naphthoic acid, and the like.
  • aromatic hydroxyamine, aromatic diamine and aromatic aminocarboxylic acid described above include their ester-forming derivatives or imide-forming derivatives.
  • the raw material monomers for the liquid crystal polymer used in the present invention include, in addition to the monomers exemplified above, alicyclic dicarboxylic acids, aliphatic diols, alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, aromatic dithiols, and aromatic dithiols. It is natural that group mercaptophenol and the like can be used in a range that does not hinder the formation of the liquid crystal polymer.
  • alicyclic dicarboxylic acid examples include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, and cis-1,4-cyclohexanediene.
  • trans-1,4-cyclohexanedimethanol cis-1,4-cyclohexanedimethanol
  • trans-1,3-cyclohexanediol cis-1,2-cyclohexanediol
  • trans-1 Linear or branched aliphatic diols such as 1,3-cyclohexanedimethanol, ethylene glycol, 1,3-propanediol, 1,4-butanediol, and neopentyldaricol, and their ester formation Sex derivatives.
  • aromatic mercaptocarboxylic acid, aromatic dithiol, and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene- 1,4-dithiol, benzene-1,3-dithiol, 2,6-naphthalenedithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercaptophenol, etc. Ester (including thioester) forming derivatives thereof may be mentioned.
  • liquid crystal polymer obtained from these starting compound (monomer) powers include polymers having the following structural units.
  • the liquid crystal polymer used in the present invention has a transition temperature to an optically anisotropic molten phase within the range of 200 to 400 ° C., particularly 250 to 350 ° C. in terms of heat resistance and processability. It is preferred to have one. In addition, lubricants, antioxidants, fillers, etc. should be added as long as the properties of the film are not impaired. May be combined.
  • the liquid crystal polymer used in the present invention is advantageously adhered to a copper foil in the form of a film or a force film that can be used by applying a solution.
  • the liquid crystal polymer film used in the present invention is obtained by a known method such as extrusion molding.
  • any extrusion molding method can be applied, but the well-known T-die method, laminate stretching method, inflation method and the like are industrially advantageous.
  • the stress is applied only in the machine axis direction (hereinafter, MD direction) of the film and in the direction perpendicular to this direction (hereinafter, TD direction).
  • MD direction machine axis direction
  • TD direction direction perpendicular to this direction
  • a preferred thickness range of the liquid crystal polymer film is 500 ⁇ m or less, more preferably 5 to 400 ⁇ m, and particularly preferably 10 to 300 ⁇ m. If the film thickness is less than 10 ⁇ m, the film will tear easily and handling will be difficult. If it exceeds 500 m, the film will become rigid and difficult to roll into a roll, making handling difficult.
  • any one produced by a rolling method or an electrolysis method can be used.
  • a physical surface treatment such as a roughening treatment or a chemical surface treatment such as an acid cleaning is performed within a range where the effect of the present invention is not impaired. You can give it!
  • the preferred thickness range of the copper foil is 5 to 150 ⁇ m, more preferably 10 to 70 ⁇ m, and particularly preferably 10 to 35 ⁇ m. Reducing the thickness of the copper foil is preferable from the viewpoint that a fine pattern can be formed.However, if the thickness is too small, the copper foil may be wrinkled in the manufacturing process, and a circuit may be formed as a wiring board. In this case, the wiring may be broken or the reliability of the circuit board may be reduced. On the other hand, when the thickness of the copper foil is increased, when etching the copper foil, the side surface of the circuit is tapered, which is not preferable in forming a fine pattern.
  • the surface roughness of the copper foil and the elemental components on the roughened surface are important.
  • the surface roughness is such that Rz measured according to JIS B 0601 is in the range of 0.2 to 3.0 ⁇ m, preferably 0.5 to 2.5 ⁇ m.
  • Rz is greater than 3.0 m, the adhesion strength between copper insulating layers is easily obtained, but the following problems occur.
  • Fine pitching of conductive layer by etching problems such as increased taper on the side of the circuit, making it impossible to ensure a uniform width between the conductor and the gap, and an increase in the residual copper component, resulting in poor insulation between the conductors, etc.
  • the surface of the copper foil in contact with the insulating layer is made of nickel, cobalt, chromium, in addition to copper. It is preferable to use a copper foil containing at least one element selected from sulfur and sulfur, since high adhesion strength is maintained, and peeling or swelling hardly occurs even in a subsequent circuit processing or soldering step.
  • the surface of the copper foil in contact with the insulating layer is formed of copper nickel cobalt, copper nickel-cobalt chromium, copper-nickel cobalt sulfur, copper nickel cobalt-chromium-sulfur, copper cobalt chromium, or copper-cobalt chromium sulfur. It is preferable to be constituted by a combination of the above elements for the same reason as described above.
  • the measurement of the material constituent elements on the surface of the copper foil in contact with the insulating layer is measured by an energy dispersive X-ray analyzer (EDX), and more specifically, according to the method described in Examples.
  • EDX energy dispersive X-ray analyzer
  • thermocompression bonding is performed between pressurizing rolls from the viewpoint of uniformity of the bonding state, and it is usually preferable to use a pair of metal pressurizing rolls or a rubber pressurized metal pressurizing roll. If the laminate of the present invention is thermocompression-bonded using a batch-type vacuum press device having a flat metal heat plate at the top and bottom, the resulting laminate has low adhesion strength and uniform bonding. The problem of having no state may occur.
  • the forms of the liquid crystal polymer film and the copper foil used here can be any from the viewpoint of productivity. Is also preferably in the form of a roll. These are continuously conveyed by a roll 'edge' roll, and are pressure-bonded in the process, thereby achieving a process with good productivity.
  • the surface of the metal pressure roll needs to be heated by some means. Although there is no particular limitation on the method, heating by a dielectric heating method ⁇ heating medium circulation method can be exemplified. In the present invention using a metal roll, it is convenient to provide a heating mechanism inside the metal roll, thereby heating the roll surface.
  • the surface temperature of the roll is preferably 5-100 ° C lower than the melting point of the liquid crystal polymer film, more preferably 20-80 ° C lower than the melting point! If the surface temperature of the heating roll is lower than the melting point of the film by more than 80 ° C, the film and the copper foil may not be sufficiently bonded. On the other hand, if the surface temperature of the heating roll exceeds 5 ° C. lower than the melting point of the film, the flow of the film at the time of press bonding becomes remarkable, resulting in a laminate having poor appearance.
  • the melting point of the liquid crystal polymer film is a melting peak temperature in differential scanning calorimetry (DSC) when the film to be subjected to thermocompression bonding is heated at a heating rate of 10 ° CZ. .
  • the pressure at the time of press bonding is not particularly limited as long as it can be uniformly pressed in the width direction, but is preferably 5 to 200 kN / m, more preferably 70 to 120 kN / m.
  • At least one bonding surface is a bonding surface between the liquid crystal polymer and the copper foil, and the 180 ° delamination strength of the bonding surface between the copper foil and the insulating layer at room temperature is normal.
  • a force that needs to be at least 0.5 kN / m should be in the range of 0.5—10 kN / m. Preferably, it is 0.5 to 5 kN / m, more preferably 0.5 to 2.5 kN / m, and still more preferably 0.7 to 2.0 kN / m.
  • the laminate of the present invention is not limited to a two-layer structure of a liquid crystal polymer film and a copper foil. That is, it is sufficient that the laminate contains at least one layer of a liquid crystal polymer film and at least one layer of copper foil.
  • the laminate contains at least one layer of a liquid crystal polymer film and at least one layer of copper foil.
  • the five-layer structure of V) can be exemplified.
  • I) -1 V in the case of a laminate having two or more films, at least one film in contact with the copper foil is a liquid crystal polymer film.
  • the present invention it is possible to simultaneously bond a film and a copper foil on two or more surfaces.
  • one copper foil is laminated on both surfaces of one film.
  • By performing pressure bonding in the bent state it is possible to manufacture a laminate having a three-layer structure of copper foil Z film Z copper foil.
  • the copper-clad laminate of the present invention uses a low-roughness copper foil having a small surface roughness and has a sufficient adhesive strength to a liquid crystal polymer film, so that fine pitch processability and signal in a high frequency region can be achieved. It has features such as low transmission loss and has reliability as a circuit board material.
  • the copper-clad laminate of the present invention is particularly useful as a material suitable for use in high-frequency circuit boards and high-density wiring boards.
  • the measurement was performed under the conditions of an acceleration voltage of 15 kV and a magnification of 1000 times using EMAX400). At this time, the composition ratio was calculated from the detected intensity ratio so that the total composition ratio of the elements detected other than copper was 100, and those having a composition ratio of the elements other than copper of 0.1% or more were defined as the element-containing components.
  • Fine pitch workability Laminate a dry film on a copper-clad laminate and create a circuit pattern by UV exposure using a pattern film with a resist width of 50 m and a circuit width of 50 ⁇ m. It was. Next, this was etched using a copper chloride etching solution. The resulting wiring pattern was observed with an optical microscope for peeling of the circuit and for the presence of residual copper between the circuits.
  • a copper-clad laminate was manufactured and evaluated in the same manner as in Example 1 except that an electrolytic copper foil having a thickness of 18 m and having an roughness Rz and an elemental component shown in Table 1 was used. did.
  • a copper-clad laminate was manufactured and evaluated in the same manner as in Example 1 except that an electrolytic copper foil having a thickness of 18 m and having an roughness Rz and an elemental component shown in Table 1 was used. did.
  • Table 1 shows the roughness Rz, the elemental components and the composition ratios of the copper foils used in the examples and comparative examples. Table 1 summarizes the evaluation results.
  • the copper-clad laminate of the present invention and the copper-clad laminate obtained by the production method of the present invention are particularly useful as materials suitable for use in high-frequency circuit boards and high-density wiring boards. Also, it has excellent fine pitch workability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

A copper-clad laminate having sufficient adhesion between a copper foil and a liquid crystal polymer film is disclosed which is suitably used for high-frequency circuit boards or high-density wiring boards. In a copper-clad laminate wherein a copper foil is formed on one side or both sides of an insulating layer composed of a liquid crystal polymer, a copper foil surface which is in contact with the insulating layer has a surface roughness (Rz) of 0.2-3.0 μm, the 180˚ peel strength between the copper foil and the insulating layer at room temperature is not less than 0.5 kN/m, and the insulating layer has a thickness of 10-300 μm. This copper-clad laminate can be obtained by continuously superposing a copper foil on one side or both sides of a liquid crystal polymer using pressure rolls.

Description

技術分野  Technical field
[0001] 本発明は、電子回路基板に用いられる液晶ポリマーを絶縁層とする銅張積層板に 関するものである。  The present invention relates to a copper-clad laminate having a liquid crystal polymer used for an electronic circuit board as an insulating layer.
背景技術  Background art
[0002] 液晶ポリマーフィルムは、高耐熱性、吸湿寸法安定性、高周波電気特性等に優れ 明  [0002] Liquid crystal polymer films are excellent in high heat resistance, moisture absorption dimensional stability, high-frequency electrical characteristics, etc.
た材料として知られている。液晶ポリマーフィルムのこのような特性に着目し、これを 田  It is known as a material. Focusing on these characteristics of liquid crystal polymer films,
電子回路基板の絶縁材料用途に用いることが検討されてきている。電子回路基板用 途に用いる場合、液晶ポリマーフィルムと銅箔に代表される金属箔との積層体が配線 基板用積層体として適して ヽる。  It has been studied for use as an insulating material for electronic circuit boards. When used for an electronic circuit board, a laminate of a liquid crystal polymer film and a metal foil represented by a copper foil is suitable as a laminate for a wiring board.
[0003] 従来、液晶ポリマーフィルムを用いてプリント配線板等に使用される銅張積層板を 製造する場合、液晶ポリマーフィルムと銅箔を積層し、その密着強度を十分に得るこ とは極めて困難であった。そこで、液晶ポリマーフィルムと銅箔の密着強度を高める ために、その積層体の製造方法について種々の検討がなされている(特開平 4-53739号公報、特開平 5-42603号公報、特開平 8-58024号公報)。また、本発明に 関連する先行文献として、次の文献がある。  [0003] Conventionally, when manufacturing a copper-clad laminate used for a printed wiring board or the like using a liquid crystal polymer film, it is extremely difficult to laminate the liquid crystal polymer film and the copper foil and sufficiently obtain the adhesion strength. Met. Therefore, in order to increase the adhesion strength between the liquid crystal polymer film and the copper foil, various studies have been made on a method for producing the laminate (JP-A-4-53739, JP-A-5-42603, JP-A-8-42603). -58024). The following documents are related documents related to the present invention.
特許文献 1:特開平 5 - 345387号公報  Patent Document 1: JP-A-5-345387
[0004] 銅箔と絶縁層からなる銅張積層板の、銅-絶縁層間の高い密着性、すなわち層間 剥離強さを向上させる手法として、粗度の大きい銅箔を用いることで、投錨効果によ る層間剥離強さ向上に効果があることは知られている。例えば、特許文献 1では、液 晶ポリマーフィルムと金属箔層力 なる積層体にぉ 、て、液晶ポリマーフィルムと接す る面には、表面粗さが 6 m以上の一次凹凸と、その一次凹凸に沿って形成された表 面粗さが 0.4— 1.4 /z mの二次凹凸力も構成される凹凸を有する金属箔を用いることで 通常の剥離強さだけでなく屈曲条件下においても剥離が生じにくい積層体が得られ ることが記載されている。  [0004] As a method of improving the high adhesion between the copper and the insulating layer, that is, the method of improving the delamination strength of the copper-clad laminate composed of the copper foil and the insulating layer, the use of the copper foil having a large roughness provides an anchor effect. It is known that this is effective in improving the delamination strength. For example, in Patent Document 1, for a laminate having a liquid crystal polymer film and a metal foil layer, a surface in contact with the liquid crystal polymer film has primary irregularities of 6 m or more and primary irregularities. The surface roughness along the surface is 0.4-1.4 / zm. The use of a metal foil with irregularities that also has a secondary uneven force makes it difficult for peeling to occur not only under normal peel strength but also under bending conditions. It is described that a laminate can be obtained.
[0005] 近年の電子機器の軽薄短小、高速伝送等の要求下、特許文献 1に示された粗度 の大きい銅箔を使用しても、導体層をファインピッチ加工できないことや、高周波域に おける信号伝送特性が劣るなどの問題があるため、粗度の小さい(平滑性の高い)銅 箔を用いて、液晶ポリマーフィルムとの層間剥離強さが良好な積層体が必要とされて いる。し力しながら、粗度が小さい銅箔では、投錨効果による密着強度を得ることは 極めて困難であるなどの問題があり、従来の技術によって液晶ポリマーフィルムと粗 度が小さ!/、銅箔を積層体としても、十分に密着強度が得られな 、と 、う問題があった 発明の開示 [0005] Under recent demands for lightness, small size, high speed transmission, and the like of electronic devices, the roughness shown in Patent Document 1 Even if a copper foil with a large surface roughness is used, there are problems such as the inability to process the conductor layer at a fine pitch and poor signal transmission characteristics in the high frequency range. Thus, a laminate having good delamination strength with a liquid crystal polymer film is required. However, there is a problem that it is extremely difficult to obtain the adhesion strength by the anchor effect with the copper foil having a small roughness, and there is a problem that the roughness is small with the liquid crystal polymer film by the conventional technology. Disclosure of the Invention There was a problem that a sufficient adhesion strength could not be obtained even as a laminate.
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の目的は、銅箔と液晶ポリマーフィルムと十分な接着力を有する銅張積層 板を提供することにある。また、本発明は、高周波回路基板や高密度配線基板に適 して使用される銅張積層板を提供することにある。 An object of the present invention is to provide a copper-clad laminate having a sufficient adhesive strength between a copper foil and a liquid crystal polymer film. Another object of the present invention is to provide a copper-clad laminate used suitably for a high-frequency circuit board or a high-density wiring board.
課題を解決するための手段  Means for solving the problem
[0007] すなわち、本発明は、液晶ポリマーからなる絶縁層の片面又は両面に銅箔が設け られた銅張積層板において、前記銅箔の絶縁層と接する表面の表面粗さ(Rz)が 0.2 一 3.0 mの範囲にあり、常温における銅箔と絶縁層との 180° 層間剥離強さが 0.5kN/m以上である銅張積層板である。また、本発明は、液晶ポリマー力もなる絶縁 層の片面又は両面に、銅箔の絶縁層と接する表面の表面粗さ(Rz)力 — 3.0 μ m の範囲にある銅箔を重ね合わせ、予め液晶ポリマーフィルム融点より 5— 100°Cの範 囲で低い温度に加熱された加圧ロールにより連続的に接着積層する前記銅張積層 板の製造方法である。 That is, the present invention relates to a copper-clad laminate in which a copper foil is provided on one or both sides of an insulating layer made of a liquid crystal polymer, the surface roughness (Rz) of the surface of the copper foil in contact with the insulating layer is 0.2 A copper-clad laminate having a 180 ° delamination strength of at least 0.5 kN / m between the copper foil and the insulating layer at room temperature. In addition, the present invention superimposes a copper foil having a surface roughness (Rz) force of 3.0 μm on a surface in contact with the insulating layer of the copper foil on one or both sides of the insulating layer which also has a liquid crystal polymer force, This is a method for producing the copper-clad laminate, which is continuously bonded and laminated by a pressure roll heated to a temperature lower than the melting point of the polymer film in the range of 5 to 100 ° C.
[0008] 本発明の積層板は、液晶ポリマー力もなる絶縁層と表面粗さが 0.2— 3.0 mの銅箔 層が接着した層を少なくとも 1層有し、その接着部分の 180° 層間剥離強さが 0.5kN/m以上であるちのである。  [0008] The laminate of the present invention has at least one layer in which an insulating layer having liquid crystal polymer strength and a copper foil layer having a surface roughness of 0.2 to 3.0 m are bonded, and the 180 ° delamination strength of the bonded portion is provided. Is more than 0.5 kN / m.
[0009] 本発明で使用する液晶ポリマーは、光学的異方性の溶融相を形成しうる任意の液 晶ポリマーであり、サーモト口ピック液晶高分子とも呼ばれている。光学的に異方性の 溶融相を形成しうる高分子とは、当業者にはよく知られて 、るように加熱装置を備え た偏光顕微鏡直行-コル下で溶融状態の試料を観察したときに偏光を透過する性 質を有する高分子である。 [0009] The liquid crystal polymer used in the present invention is any liquid crystal polymer capable of forming an optically anisotropic molten phase, and is also called a thermopick liquid crystal polymer. A polymer capable of forming an optically anisotropic molten phase is well known to those skilled in the art, and is obtained by observing a sample in a molten state under a polarizing microscope equipped with a heating device. Transmission of polarized light High quality polymer.
[0010] 液晶ポリマーとしては、特に限定されるものではないが、例えば、芳香族ヒドロキシ カルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシァミン、芳香 族ジァミン、芳香族ァミノカルボン酸など力も選ばれたモノマー、特には芳香族ジカ ルボン酸、芳香族ジオール、芳香族ヒドロキシカルボン酸力 選ばれたモノマーから 生じる構成単位を有する異方性溶融相を形成する液晶ポリエステル榭脂又はポリェ ステルアミドが挙げられる。  [0010] The liquid crystal polymer is not particularly limited, but for example, aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, aromatic hydroxyamine, aromatic diamine, aromatic aminocarboxylic acid, and the like. Selected monomers, particularly aromatic dicarboxylic acids, aromatic diols, and aromatic hydroxycarboxylic acids. Examples include liquid crystalline polyester resins or polyesteramides that form an anisotropic molten phase having structural units derived from the selected monomers. Can be
[0011] 芳香族ヒドロキシカルボン酸の具体例としては、例えば 4-ヒドロキシ安息香酸、 3-ヒ ドロキシ安息香酸、 2-ヒドロキシ安息香酸、 6-ヒドロキシ- 2-ナフトェ酸、 3-ヒドロキシ -2-ナフトェ酸、 4'-ヒドロキシフエ-ル- 4-安息香酸、 3'-ヒドロキシフエ-ル- 4-安息香 酸、 4しヒドロキシフエ-ル- 3-安息香酸及びそのアルキル、アルコキシ又はハロゲン 置換体などが挙げられる他、これらのエステル形成性誘導体が挙げられる。これらの 中では 4-ヒドロキシ安息香酸、 6-ヒドロキシ -2-ナフトェ酸が得られるポリマーの特性 や融点を調整しやす ヽと 、う点から好まし 、。  [0011] Specific examples of the aromatic hydroxycarboxylic acid include, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 3-hydroxy-2-naphthoic acid. Acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4-hydroxyphenyl-3-benzoic acid and alkyl, alkoxy or halogen-substituted products thereof. In addition, these ester-forming derivatives may be mentioned. Of these, 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid are preferred because they can easily adjust the properties and melting point of the polymer obtained.
[0012] 芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、 2,6-ナフタレ ンジカルボン酸、 1,6-ナフタレンジカルボン酸、 2, 7-ナフタレンジカルボン酸、 4,4'-ジ カルボキシビフエ-ル、ビス(4-カルボキシフエ-ル)エーテル、ビス(4-カルボキシフ エノキシ)ブタン、ビス(4-カルボキシフエ-ル)ェタン、ビス(3-カルボキシフエ-ル)ェ 一テル、ビス(3-カルボキシフエ-ル)ェタン等の芳香族ジカルボン酸及びそのアル キル、アルコキシ又はハロゲン置換体などの他、これらのエステル形成性誘導体が挙 げられる。  Specific examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 4,4′-dicarboxylic acid Carboxybiphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenyl) butane, bis (4-carboxyphenyl) ethane, bis (3-carboxyphenyl) ether And aromatic dicarboxylic acids such as bis (3-carboxyphenyl) ethane and the like, alkyl, alkoxy and halogen-substituted derivatives thereof, and ester-forming derivatives thereof.
[0013] 芳香族ジオールの具体例としては、 4,4'-ジヒドロキシビフエ-ル、 3,3'-ジヒドロキシ ビフエニル、 3,4'-ジヒドロキシビフエニル、 4,4'-ジヒドロキシジフエ二ノレエーテル、ビス (4-ヒドロキシフエニル)ェタン、ハイドロキノン、レゾルシン、 2,6-ジヒドロキシナフタレ ン、 2, 7-ジヒドロキシナフタレン、 1,6-ジヒドロキシナフタレン等の芳香族ジオール及び そのアルキル、アルコキシ又はハロゲン置換体などの他、これらのエステル形成性誘 導体が挙げられる。  [0013] Specific examples of the aromatic diol include 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 3,4'-dihydroxybiphenyl, and 4,4'-dihydroxydiphenylethanol. , Bis (4-hydroxyphenyl) ethane, hydroquinone, resorcinol, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene and other aromatic diols and their alkyl, alkoxy or halogen substitution In addition to the body, these ester-forming derivatives can be mentioned.
なお、エステル形成性誘導体とは、反応してエステルを形成する能力を有する化合 物をいう o Note that an ester-forming derivative is a compound having the ability to react to form an ester. O
[0014] 芳香族ヒドロキシァミン、芳香族ジァミン、芳香族ァミノカルボン酸の具体例としては 、次のような化合物が挙げられる。  [0014] Specific examples of aromatic hydroxyamine, aromatic diamine, and aromatic aminocarboxylic acid include the following compounds.
例えば、芳香族ヒドロキシァミンとしては、 4-ァミノフエノール、 N-メチル -4-ァミノフエ ノール、 3-ァミノフエノール、 3-メチル -4-ァミノフエノール、 4-ァミノ- 1-ナフトール、 4- ァミノ- 4'-ヒドロキシビフエ-ル、 4-ァミノ- 4'-ヒドロキシジフエ-ルエーテル、 4-ァミノ -4'-ヒドロキシジフエ-ルメタン、 4-ァミノ- 4'-ヒドロキシビフエ-ルスルフイドなどの芳 香族ヒドロキシァミンが挙げられる。  For example, aromatic hydroxyamines include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4 -Amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, 4-amino-4'-hydroxybiphenyl sulfide And aromatic hydroxyamines.
[0015] 芳香族ジァミンとしては、 1,4-フエ-レンジァミン、 N-メチル -1,4-フエ-レンジァミン 、 Ν,Ν'-ジメチル- 1,4-フエ-レンジァミン、 4,4'-ジアミノジフエ-ルスルフイド(別名:チ ォジァ二リン)、 2,5-ジァミノトルエン、 4,4'-エチレンジァニリン、 4,4'-ジアミノジフエノ キシェタン、 4,4'-ジアミノジフエ-ルメタン(別名:メチレンジァ-リン)、 4,4'-ジアミノジ フエニルエーテル (別名:ォキシジァ-リン)などが挙げられる。  [0015] Examples of aromatic diamines include 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, Ν, Ν'-dimethyl-1,4-phenylenediamine, and 4,4'-diaminodiphene. -Rusulfide (also known as thiodiarin), 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminodiphenoxetane, 4,4'-diaminodiphenylmethane (also known as methylenediarin) , 4,4'-diaminodiphenyl ether (alias: oxidiarin) and the like.
[0016] 芳香族ァミノカルボン酸としては、 4-ァミノ安息香酸、 2-ァミノ- 6-ナフトェ酸、 2-アミ ノ -7-ナフトェ酸などが挙げられる。  [0016] Examples of the aromatic aminocarboxylic acid include 4-aminobenzoic acid, 2-amino-6-naphthoic acid, 2-amino-7-naphthoic acid, and the like.
上記、芳香族ヒドロキシァミン、芳香族ジァミン、芳香族ァミノカルボン酸は、これら のエステル形成性誘導体又はイミド形成性誘導体を含む。  The aromatic hydroxyamine, aromatic diamine and aromatic aminocarboxylic acid described above include their ester-forming derivatives or imide-forming derivatives.
[0017] 本発明で使用する液晶ポリマの原料モノマーは、上記に例示したモノマーの他に、 脂環族ジカルボン酸、脂肪族ジオール、脂環族ジオール、芳香族メルカプトカルボン 酸、芳香族ジチオール、芳香族メルカプトフエノールなどを、液晶ポリマーの形成性 を阻害しない範囲で使用できることは当然である。  The raw material monomers for the liquid crystal polymer used in the present invention include, in addition to the monomers exemplified above, alicyclic dicarboxylic acids, aliphatic diols, alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, aromatic dithiols, and aromatic dithiols. It is natural that group mercaptophenol and the like can be used in a range that does not hinder the formation of the liquid crystal polymer.
[0018] 脂環族ジカルボン酸、脂肪族ジオール及び脂環族ジオールの具体例としては、へ キサヒドロテレフタル酸、トランス- 1,4-シクロへキサンジオール、シス- 1,4-シクロへキ サンジオール、トランス- 1,4-シクロへキサンジメタノール、シス- 1,4-シクロへキサンジ メタノール、トランス- 1,3-シクロへキサンジオール、シス- 1,2-シクロへキサンジオール 、トランス- 1,3-シクロへキサンジメタノール、エチレングリコール、 1,3-プロパンジォー ル、 1,4-ブタンジオール、ネオペンチルダリコールなどの直鎖状又は分鎖状脂肪族 ジオールなどの他、それらのエステル形成性誘導体が挙げられる。 [0019] 芳香族メルカプトカルボン酸、芳香族ジチオール、芳香族メルカプトフエノールの具 体例としては、 4-メルカプト安息香酸、 2-メルカプト- 6-ナフトェ酸、 2-メルカプト- 7-ナ フトェ酸、ベンゼン- 1,4-ジチオール、ベンゼン- 1,3-ジチオール、 2,6-ナフタレンージ チオール、 2, 7-ナフタレン-ジチオール、 4-メルカプトフエノール、 3-メルカプトフエノ ール、 6-メルカプトフエノールなどの他、それらのエステル(チォエステルを含む)形 成性誘導体が挙げられる。 [0018] Specific examples of the alicyclic dicarboxylic acid, the aliphatic diol and the alicyclic diol include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, and cis-1,4-cyclohexanediene. All, trans-1,4-cyclohexanedimethanol, cis-1,4-cyclohexanedimethanol, trans-1,3-cyclohexanediol, cis-1,2-cyclohexanediol, trans-1 Linear or branched aliphatic diols such as 1,3-cyclohexanedimethanol, ethylene glycol, 1,3-propanediol, 1,4-butanediol, and neopentyldaricol, and their ester formation Sex derivatives. [0019] Specific examples of aromatic mercaptocarboxylic acid, aromatic dithiol, and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene- 1,4-dithiol, benzene-1,3-dithiol, 2,6-naphthalenedithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercaptophenol, etc. Ester (including thioester) forming derivatives thereof may be mentioned.
[0020] なお、光学的な異方性の溶融相を形成しうるポリマーを得るためには、各々の原料 化合物の組み合わせに適当な範囲があることは言うまでもなぐこれらは公知でもあ る。  [0020] In order to obtain a polymer capable of forming an optically anisotropic molten phase, it is needless to say that there is an appropriate range for each combination of raw material compounds.
[0021] これらの原料化合物(モノマー)力 得られる液晶ポリマーの具体例として以下の構 造単位を有する重合体を挙げることができる。  [0021] Specific examples of the liquid crystal polymer obtained from these starting compound (monomer) powers include polymers having the following structural units.
4-ヒドロキシ安息香酸 Z6-ヒドロキシ -2-ナフトェ酸共重合体、  4-hydroxybenzoic acid Z6-hydroxy-2-naphthoic acid copolymer,
4-ヒドロキシ安息香酸 Zテレフタル酸 Ζ4,4'-ジヒドキシビフエ-ル共重合体、 4-ヒドロキシ安息香酸 Ζテレフタル酸 Ζイソフタル酸 Ζ4,4'-ジヒドキシビフエ-ル共 重合体、  4-hydroxybenzoic acid Z terephthalic acid Ζ4,4'-dihydroxybiphenyl copolymer, 4-hydroxybenzoic acid Ζterephthalic acid Ζisophthalic acid Ζ4,4'-dihydroxybiphenyl copolymer,
4-ヒドロキシ安息香酸 Ζ6-ヒドロキシ -2-ナフトェ酸 Ζテレフタル酸 Ζハイドロキノン共 重合体、  4-hydroxybenzoic acid Ζ6-hydroxy-2-naphthoic acid Ζterephthalic acid Ζhydroquinone copolymer,
4-ヒドロキシ安息香酸 Ζ6-ヒドロキシ- 2-ナフトェ酸 Ζ2,6-ナフタレンジカルボン酸 Ζ ハイドロキノン共重合体、  4-hydroxybenzoic acid Ζ6-hydroxy-2-naphthoic acid Ζ2,6-naphthalenedicarboxylic acid ハ イ ド ロ hydroquinone copolymer,
4-ヒドロキシ安息香酸 Ζテレフタル酸 Ζ4-アミノフヱノール共重合体、  4-hydroxybenzoic acid terephthalic acid 4-aminophenol copolymer,
4-ヒドロキシ安息香酸 Ζ6-ヒドロキシ -2-ナフトェ酸 Ζテレフタル酸 Ζ4-ァミノフエノー ル共重合体、  4-hydroxybenzoic acid Ζ6-hydroxy-2-naphthoic acid Ζterephthalic acid Ζ4-aminophenol copolymer,
4-ヒドロキシ安息香酸 Ζテレフタル酸 Ζ4,4'-ジヒドキシビフエ-ル Ζ4-ァミノフエノー ル共重合体、  4-hydroxybenzoic acid Ζterephthalic acid Ζ4,4'-dihydroxybiphenyl Ζ4-aminophenol copolymer,
4-ヒドロキシ安息香酸 Ζテレフタル酸 Ζエチレングリコール共重合体。  4-hydroxybenzoic acid 酸 terephthalic acid Ζethylene glycol copolymer.
[0022] 本発明で使用する液晶ポリマーは、耐熱性、加工性の点で 200— 400°C、特に 250 一 350°Cの範囲内に光学的に異方性の溶融相への転移温度を有するものが好まし い。また、フィルムの特性を損なわない範囲で、滑剤、酸化防止剤、充填剤などが配 合されていても良い。 The liquid crystal polymer used in the present invention has a transition temperature to an optically anisotropic molten phase within the range of 200 to 400 ° C., particularly 250 to 350 ° C. in terms of heat resistance and processability. It is preferred to have one. In addition, lubricants, antioxidants, fillers, etc. should be added as long as the properties of the film are not impaired. May be combined.
本発明で使用する液晶ポリマーは、フィルム状で又は溶液を塗布して使用すること ができる力 フィルム状として、銅箔に接着させることが有利である。  The liquid crystal polymer used in the present invention is advantageously adhered to a copper foil in the form of a film or a force film that can be used by applying a solution.
[0023] 本発明で使用する液晶ポリマーフィルムは、押出成形等の公知の方法で得られる。  [0023] The liquid crystal polymer film used in the present invention is obtained by a known method such as extrusion molding.
押出成形の場合、任意の押出成形法が適用できるが、周知の Tダイ法、ラミネート体 延伸法、インフレーション法などが工業的に有利である。特に、インフレーション法や ラミネート体延伸法では、フィルムの機械軸方向(以下、 MD方向)だけでなぐこれと 直行する方向(以下、 TD方向)〖こも応力が加えられるため、 MD方向と TD方向にお ける機械的性質のバランスのとれたフィルムが得られる。  In the case of extrusion molding, any extrusion molding method can be applied, but the well-known T-die method, laminate stretching method, inflation method and the like are industrially advantageous. In particular, in the inflation method and the laminate stretching method, the stress is applied only in the machine axis direction (hereinafter, MD direction) of the film and in the direction perpendicular to this direction (hereinafter, TD direction). The resulting film has a good balance of mechanical properties.
[0024] 液晶ポリマーフィルムの好ましい厚み範囲は、 500 μ m以下であり、より好ましくは 5 一 400 μ m、特に好ましくは 10— 300 μ mである。フィルム厚み力 10 μ mに満たないと 容易に裂けるため取り扱いが困難となり、 500 mを超えるとフィルムが剛直になり口 ール状に巻き取ることが困難になるなど取り扱いが困難となる。  [0024] A preferred thickness range of the liquid crystal polymer film is 500 µm or less, more preferably 5 to 400 µm, and particularly preferably 10 to 300 µm. If the film thickness is less than 10 μm, the film will tear easily and handling will be difficult. If it exceeds 500 m, the film will become rigid and difficult to roll into a roll, making handling difficult.
[0025] 本発明で使用する銅箔としては、圧延法や電気分解法によって製造されるいずれ のものでも使用することができる。銅箔には液晶ポリマーフィルムとの接着力を確保 することなどを目的として、粗化処理などの物理的表面処理あるいは酸洗浄などの化 学的表面処理を本発明の効果が損なわな 、範囲で施して 、ても良!、。  [0025] As the copper foil used in the present invention, any one produced by a rolling method or an electrolysis method can be used. For the purpose of securing the adhesive strength between the copper foil and the liquid crystal polymer film, a physical surface treatment such as a roughening treatment or a chemical surface treatment such as an acid cleaning is performed within a range where the effect of the present invention is not impaired. You can give it!
[0026] 銅箔の好ましい厚さ範囲は、 5— 150 μ mであり、より好ましくは 10— 70 μ m、特に好 ましくは 10— 35 μ mの範囲である。銅箔の厚みを薄くすることは、ファインパターンを 形成可能であるという点からは好ましいが、その厚さが薄くなりすぎると、製造工程上 銅箔にしわが生じたりする他、配線基板として回路形成した場合にも配線の破断が 生じたり回路基板の信頼性が低下する恐れがある。一方、銅箔の厚みが厚くなると、 銅箔をエッチングカ卩ェする際、回路側面にテーパーが生じ、ファインパターン形成上 好ましくなくなる。  [0026] The preferred thickness range of the copper foil is 5 to 150 µm, more preferably 10 to 70 µm, and particularly preferably 10 to 35 µm. Reducing the thickness of the copper foil is preferable from the viewpoint that a fine pattern can be formed.However, if the thickness is too small, the copper foil may be wrinkled in the manufacturing process, and a circuit may be formed as a wiring board. In this case, the wiring may be broken or the reliability of the circuit board may be reduced. On the other hand, when the thickness of the copper foil is increased, when etching the copper foil, the side surface of the circuit is tapered, which is not preferable in forming a fine pattern.
[0027] 本発明にお 、ては、銅箔の表面粗さと粗ィ匕処理面の元素成分が重要である。表面 粗さは、 JIS B 0601に準じて測定される Rzが 0.2— 3.0 μ m、好ましくは 0.5— 2.5 μ mの 範囲内である。 Rzが 3.0 mより大きい場合には、銅 絶縁層間の密着強度が得やす いが、以下のような問題が発生する。導体層をエッチングによりファインピッチ力卩ェし ようとしても、回路側面に生じるテーパーが大きくなり導体とギャップの幅を均一に確 保できないことや残銅成分が多くなり導体間の絶縁性が劣るなどの問題が発生する[0027] In the present invention, the surface roughness of the copper foil and the elemental components on the roughened surface are important. The surface roughness is such that Rz measured according to JIS B 0601 is in the range of 0.2 to 3.0 μm, preferably 0.5 to 2.5 μm. When Rz is greater than 3.0 m, the adhesion strength between copper insulating layers is easily obtained, but the following problems occur. Fine pitching of conductive layer by etching However, problems such as increased taper on the side of the circuit, making it impossible to ensure a uniform width between the conductor and the gap, and an increase in the residual copper component, resulting in poor insulation between the conductors, etc.
。また、周波数が GHz帯となるような高周波域における信号伝送をする場合には、表 皮効果と呼ばれる導体パターンの表面にしか電流が流れなくなる現象のため、粗度 の大きい銅箔では、凹凸により信号伝搬に問題が発生する。 . In the case of signal transmission in the high frequency range where the frequency is in the GHz band, current flows only on the surface of the conductor pattern called the skin effect. A problem occurs in signal propagation.
また、 Rzが 0.2 /z mよりも低い場合では、本発明の方法によっても高い密着強度を得 ることは極めて困難であり、導体を加工した際に回路の剥がれが生じたり、はんだ付 けなどの熱処理時に膨れや剥がれなどの問題が発生する。  Further, when Rz is lower than 0.2 / zm, it is extremely difficult to obtain high adhesion strength even by the method of the present invention, and when a conductor is processed, circuit peeling or soldering may occur. Problems such as swelling and peeling occur during heat treatment.
[0028] 更に、 Rzが 0.2— 3.0 mの範囲内の銅箔を用いて高い密着強度が得られる点にお いて、絶縁層と接する銅箔表面が、銅の他に、ニッケル、コバルト、クロム及び硫黄の うちから選ばれる少なくとも一種以上の元素を含む銅箔を用いることが、高い密着強 度を保持し、その後の回路加工やはんだ付け工程によっても剥がれや膨れが発生し 難いことから好ましい。  [0028] Further, in that high adhesion strength is obtained by using a copper foil having an Rz in the range of 0.2 to 3.0 m, the surface of the copper foil in contact with the insulating layer is made of nickel, cobalt, chromium, in addition to copper. It is preferable to use a copper foil containing at least one element selected from sulfur and sulfur, since high adhesion strength is maintained, and peeling or swelling hardly occurs even in a subsequent circuit processing or soldering step.
更に好ましくは、絶縁層と接する銅箔表面が、銅 ニッケル コバルト、銅 ニッケル —コバルト クロム、銅—ニッケル コバルト 硫黄、銅 ニッケル コバルト—クロムー硫 黄、銅 コバルト クロム及び銅—コバルト クロム 硫黄の 、ずれかの元素の組み合 わせによって構成されていることが上記と同様の理由力 好ましい。  More preferably, the surface of the copper foil in contact with the insulating layer is formed of copper nickel cobalt, copper nickel-cobalt chromium, copper-nickel cobalt sulfur, copper nickel cobalt-chromium-sulfur, copper cobalt chromium, or copper-cobalt chromium sulfur. It is preferable to be constituted by a combination of the above elements for the same reason as described above.
ここでいう、絶縁層と接する銅箔表面の材質構成元素の測定は、エネルギー分散 型 X線分析装置 (EDX)によって測定されるもので、詳しくは、実施例に記載の方法に よる。  The measurement of the material constituent elements on the surface of the copper foil in contact with the insulating layer is measured by an energy dispersive X-ray analyzer (EDX), and more specifically, according to the method described in Examples.
[0029] 本発明の積層体の製造方法においては、液晶ポリマーフィルムと銅箔とを重ね合 わせ、熱圧着して接着、積層する。熱圧着は、接合状態の均一性という観点から、加 圧ロール間で行われ、通常、一対の金属加圧ロールもしくはゴム被覆された金属加 圧ロールが使用されることが好ましい。もし、平坦な金属熱プレートを上下に有するバ ツチ式の真空プレス装置などを使用して、本発明における積層体を熱圧着しても、得 られた積層体の密着強度は低ぐ均一な接合状態を有さないという問題が発生する 恐れがある。  [0029] In the method for producing a laminate of the present invention, a liquid crystal polymer film and a copper foil are overlaid, bonded by thermocompression bonding, and laminated. The thermocompression bonding is performed between pressurizing rolls from the viewpoint of uniformity of the bonding state, and it is usually preferable to use a pair of metal pressurizing rolls or a rubber pressurized metal pressurizing roll. If the laminate of the present invention is thermocompression-bonded using a batch-type vacuum press device having a flat metal heat plate at the top and bottom, the resulting laminate has low adhesion strength and uniform bonding. The problem of having no state may occur.
[0030] ここで用いる液晶ポリマーフィルムと銅箔の形態は、生産性の観点力もしていずれ もロール状のものが好ましい。これらをロール'ッゥ 'ロールで連続的に搬送し、その 過程で圧着することで生産性の良 ヽプロセスとすることができる。 [0030] The forms of the liquid crystal polymer film and the copper foil used here can be any from the viewpoint of productivity. Is also preferably in the form of a roll. These are continuously conveyed by a roll 'edge' roll, and are pressure-bonded in the process, thereby achieving a process with good productivity.
[0031] 金属加圧ロールの表面は何らかの手段で加温されていることが必要である。その手 段は特に制限されないが、誘電加熱方式ゃ熱媒循環方式による加温を例示すること ができる。金属ロールを用いる本発明においては、金属ロール内部に加熱機構を備 え、これによりロール表面をも加温することが簡便である。ロールの表面温度は、液晶 ポリマーフィルムの融点より 5— 100°Cの範囲で低いことが好ましぐより好ましくは、融 点より 20— 80°C低!、温度とすることがよ!、。加熱ロールの表面温度が該フィルムの融 点より 80°Cを超えて低い温度である場合には、フィルムと銅箔が十分に接着しないこ とがある。また、加熱ロールの表面温度が該フィルムの融点より 5°C低い温度を超える 場合には、圧着時にフィルムの流動が著しくなり、外観の不良な積層体となる。  [0031] The surface of the metal pressure roll needs to be heated by some means. Although there is no particular limitation on the method, heating by a dielectric heating method ゃ heating medium circulation method can be exemplified. In the present invention using a metal roll, it is convenient to provide a heating mechanism inside the metal roll, thereby heating the roll surface. The surface temperature of the roll is preferably 5-100 ° C lower than the melting point of the liquid crystal polymer film, more preferably 20-80 ° C lower than the melting point! If the surface temperature of the heating roll is lower than the melting point of the film by more than 80 ° C, the film and the copper foil may not be sufficiently bonded. On the other hand, if the surface temperature of the heating roll exceeds 5 ° C. lower than the melting point of the film, the flow of the film at the time of press bonding becomes remarkable, resulting in a laminate having poor appearance.
[0032] なお、上記の液晶ポリマーフィルムの融点とは、熱圧着に供するフィルムを 10°CZ 分の昇温速度で加熱した時での示差走査熱量測定法 (DSC)における融解ピーク温 度である。  [0032] The melting point of the liquid crystal polymer film is a melting peak temperature in differential scanning calorimetry (DSC) when the film to be subjected to thermocompression bonding is heated at a heating rate of 10 ° CZ. .
圧着時の圧力は、幅方向に均一に加圧できる範囲であれば、特に限定されないが 、 5— 200kN/mであることが好ましぐ 70— 120kN/mであることがより好ましい。  The pressure at the time of press bonding is not particularly limited as long as it can be uniformly pressed in the width direction, but is preferably 5 to 200 kN / m, more preferably 70 to 120 kN / m.
[0033] 本発明の積層体は、少なくとも一つの接着面が、上記液晶ポリマーと銅箔との接着 面であり、その接着面の常温における銅箔と絶縁層との 180° 層間剥離強さが 0.5 kN/m以上であることが必要である力 0.5— lOkN/mの範囲がよい。好ましくは、 0.5 一 5kN/m、より好ましくは 0.5— 2.5kN/m、更に好ましくは 0.7— 2.0kN/mである。  [0033] In the laminate of the present invention, at least one bonding surface is a bonding surface between the liquid crystal polymer and the copper foil, and the 180 ° delamination strength of the bonding surface between the copper foil and the insulating layer at room temperature is normal. A force that needs to be at least 0.5 kN / m should be in the range of 0.5—10 kN / m. Preferably, it is 0.5 to 5 kN / m, more preferably 0.5 to 2.5 kN / m, and still more preferably 0.7 to 2.0 kN / m.
[0034] 本発明の積層体は、液晶ポリマーフィルムと銅箔との 2層構造に限られるものではな い。すなわち、積層体は、少なくとも 1層の液晶ポリマーフィルムと少なくとも 1層の銅 箔を含むものであればよぐ例えば、下記 I)一 III)に示した 3層構造、 IV)の 4層構造、 V)の 5層構造などを例示することができる。下記、 I)一 V)において、フィルムを 2層以 上有する積層体の場合、銅箔と接する少なくとも 1のフィルムは液晶ポリマーフィルム である。有利には、銅箔とフィルムの接着面の全てが、上記 Rz、層間剥離強さを満足 させること力よい。  [0034] The laminate of the present invention is not limited to a two-layer structure of a liquid crystal polymer film and a copper foil. That is, it is sufficient that the laminate contains at least one layer of a liquid crystal polymer film and at least one layer of copper foil.For example, a three-layer structure shown in I) -III) below, a four-layer structure of IV), The five-layer structure of V) can be exemplified. In the following I) -1 V), in the case of a laminate having two or more films, at least one film in contact with the copper foil is a liquid crystal polymer film. Advantageously, it is good that all the bonding surfaces of the copper foil and the film satisfy the above Rz and delamination strength.
[0035] I)銅箔 Zフィルム Z銅箔 in)フィルム Z銅箔 Zフィルム [0035] I) Copper foil Z film Z copper foil in) Film Z Copper foil Z film
iv)銅箔 Zフィルム Zフィルム Z銅箔  iv) Copper foil Z film Z film Z copper foil
v)銅箔 Zフィルム Z銅箔 Zフィルム Z銅箔  v) Copper foil Z film Z copper foil Z film Z copper foil
[0036] なお、本発明によれば、フィルムと銅箔との接着を 2箇所以上の面で同時に行うこと が可能であり、例えば 1枚のフィルムの両面にそれぞれ 1枚の銅箔を重ね合わせた状 態で圧着することにより、銅箔 Zフィルム Z銅箔の 3層構造の積層体を製造すること が可能である。  According to the present invention, it is possible to simultaneously bond a film and a copper foil on two or more surfaces. For example, one copper foil is laminated on both surfaces of one film. By performing pressure bonding in the bent state, it is possible to manufacture a laminate having a three-layer structure of copper foil Z film Z copper foil.
本発明の銅張積層板は、表面粗さが小さな低粗度銅箔を用いて、液晶ポリマーフィ ルムと十分な接着力を有していることから、ファインピッチ加工性や高周波領域おけ る信号伝送損失が小さいなどの特長を有しかつ回路基板材料としての信頼性を有す る。本発明の銅張積層板は、特に高周波回路基板や高密度配線基板に適して使用 される材料として有用である。  The copper-clad laminate of the present invention uses a low-roughness copper foil having a small surface roughness and has a sufficient adhesive strength to a liquid crystal polymer film, so that fine pitch processability and signal in a high frequency region can be achieved. It has features such as low transmission loss and has reliability as a circuit board material. The copper-clad laminate of the present invention is particularly useful as a material suitable for use in high-frequency circuit boards and high-density wiring boards.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、実施例によって本発明を具体的に説明する力 本発明はこれらの実施例に よって何ら限定されるものではない。なお、実施例及び比較例における銅張積層板 の評価は以下の方法により行った。  Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to these examples. The evaluation of the copper-clad laminates in Examples and Comparative Examples was performed by the following method.
[0038] 1) 銅箔表面粗さ(Rz) :JIS B 0601に準じて、触針式表面荒さ測定器 (TENCOR製 TENCOR P-10)を使用して、測定幅 200 mの条件にて Rzを測定した。  [0038] 1) Copper foil surface roughness (Rz): According to JIS B 0601, using a stylus type surface roughness measuring device (TENCOR P-10 manufactured by TENCOR) under the condition of a measuring width of 200 m Was measured.
2) 銅箔表面の元素分析:エネルギー分散型 X線分析装置 (堀場製作所製  2) Elemental analysis of copper foil surface: energy dispersive X-ray analyzer (Horiba, Ltd.)
EMAX400)を使用して、加速電圧 15kV、倍率 1000倍の条件にて測定した。このとき、 銅以外に検出された元素の全組成比が 100となるように、その検出強度比から算出し 、銅を除く元素の組成比として 0.1%以上となるものを含元素成分とした。  The measurement was performed under the conditions of an acceleration voltage of 15 kV and a magnification of 1000 times using EMAX400). At this time, the composition ratio was calculated from the detected intensity ratio so that the total composition ratio of the elements detected other than copper was 100, and those having a composition ratio of the elements other than copper of 0.1% or more were defined as the element-containing components.
3) 層間剥離強さ: JIS C 6471に準じて、幅 lmmの銅箔を銅箔除去面に対して 180° に引きはがす方法で、常温での層間剥離強さを測定した。層間剥離強さは、銅張積 層板から任意に採取した試験片 3個以上を測定し、その平均値を記録した。  3) Delamination strength: According to JIS C 6471, a copper foil having a width of lmm was peeled at 180 ° with respect to the copper foil removed surface, and the delamination strength at room temperature was measured. The delamination strength was measured on three or more test pieces arbitrarily collected from the copper-clad laminate, and the average value was recorded.
4) ファインピッチ加工性:銅張積層板にドライフィルムをラミネートし、レジスト幅 50 m、回路幅 50 μ mのパターンフィルムを使用して UV露光により回路パターンを作成し た。次に、これを塩化銅エッチング液を用いてエッチングした。得られた配線パターン を光学顕微鏡により回路の剥がれや回路間の残銅の有無を観察した。 4) Fine pitch workability: Laminate a dry film on a copper-clad laminate and create a circuit pattern by UV exposure using a pattern film with a resist width of 50 m and a circuit width of 50 μm. It was. Next, this was etched using a copper chloride etching solution. The resulting wiring pattern was observed with an optical microscope for peeling of the circuit and for the presence of residual copper between the circuits.
[0039] 実施例 1  Example 1
50 m厚みの液晶ポリマーフィルム(クラレネ土製、商品名べクスター、融点 280°C、 4 ーヒドロキシ安息香酸 Z6—ヒドロキシー 2—ナフトェ酸共重合体)の両面に 18 μ m厚み 電解銅箔(Rz=2.3 μ m、含元素成分; Ni 75.2%,Co 24.7%)を重ね合わせ、表面温度 を 210°Cに加熱した 1対の金属加圧ロール(直径 250mm)間に lmZ分で連続的に供 給し、圧力 150kN/mで加圧して、銅張積層板を製造した。液晶ポリマーフィルムと電 解銅箔は、ロール状のものを原料とした。得られた銅張積層板の評価結果を表 1〖こ 示す。  18 μm thick electrolytic copper foil (Rz = 2.3) on both sides of a 50 m thick liquid crystal polymer film (made of Kuraray clay, trade name Vexter, melting point 280 ° C, 4-hydroxybenzoic acid Z6-hydroxy-2-naphthoic acid copolymer) μm, elemental components: Ni 75.2%, Co 24.7%), and continuously supplied between a pair of metal press rolls (diameter 250mm) heated to 210 ° C at a surface temperature of lmZ. The pressure was increased to 150 kN / m to produce a copper-clad laminate. The liquid crystal polymer film and the electrolytic copper foil were made from rolls. Table 1 shows the evaluation results of the obtained copper-clad laminate.
[0040] 実施例 2— 5  Example 2—5
18 m厚みの電解銅箔であって、表 1に示す粗度 Rz及び含元素成分を有する電 解銅箔を使用した以外は、実施例 1と同様にして銅張積層板を製造し、評価した。  A copper-clad laminate was manufactured and evaluated in the same manner as in Example 1 except that an electrolytic copper foil having a thickness of 18 m and having an roughness Rz and an elemental component shown in Table 1 was used. did.
[0041] 比較例 1一 2  Comparative Example 1-1 2
18 m厚みの電解銅箔であって、表 1に示す粗度 Rz及び含元素成分を有する電 解銅箔を使用した以外は、実施例 1と同様にして銅張積層板を製造し、評価した。  A copper-clad laminate was manufactured and evaluated in the same manner as in Example 1 except that an electrolytic copper foil having a thickness of 18 m and having an roughness Rz and an elemental component shown in Table 1 was used. did.
[0042] 各実施例及び比較例で使用した銅箔の粗度 Rz及び含元素成分とその組成比を表 1に示す。また、評価結果をまとめて表 1に示す。  [0042] Table 1 shows the roughness Rz, the elemental components and the composition ratios of the copper foils used in the examples and comparative examples. Table 1 summarizes the evaluation results.
[0043] [表 1] [Table 1]
粗度 含元素成分 層間剥 ファインピ Rz 、 Zoノ 離強さ ツチ加工性Roughness Constituent element Delamination Fine pi Rz, Zo No.
( m) (N/mm) 実施例 1 2. 3 Ni (75. 2) , Co (24. 7) 1. 6 良好 実施例 2 0. 9 Cr ( 34. 0) , Co ( 60. 1 ) , S (5. 8) 1. 1 良好 実施例 3 2. 1 Cr (99. 9) 1. 4 良好 実施例 4 2. 3 Ni (95. 0) , Zn (5. 0) 1. 0 良好 実施例 5 0. 9 Ni (30. 4) , Co (67. 7) , Cr ( 1. 9) 0. 9 良好 比較例 1 6. 0 Zn (99. 9) 1. 5 残銅有り 比較例 2 0. 1 Sn ( 100. 0) 0. 2 剥がれ発生 (m) (N / mm) Example 1 2.3 Ni (75.2), Co (24.7) 1.6 Good Example 2 0.9 Cr (34.0), Co (60.1) , S (5.8) 1.1 Good Example 32.1 Cr (99.9) 1.4 Good Example 42.3 Ni (95.0), Zn (5.0) 1.0 Good Example 5 0.9 Ni (30.4), Co (67.7), Cr (1.9) 0.9 good Comparative Example 1 6.0 Zn (99.9) 1.5 Copper remaining Comparative Example 2 0.1 Sn (100. 0) 0.2 Exfoliation
産業上の利用可能性 Industrial applicability
本発明の銅張積層板及び本発明の製造方法により得られる銅張積層板は、特に 高周波回路基板や高密度配線基板に適して使用される材料として有用である。また 、ファインピッチ加工性にも優れる。  The copper-clad laminate of the present invention and the copper-clad laminate obtained by the production method of the present invention are particularly useful as materials suitable for use in high-frequency circuit boards and high-density wiring boards. Also, it has excellent fine pitch workability.

Claims

請求の範囲 The scope of the claims
[1] 液晶ポリマー力 なる絶縁層の片面又は両面に銅箔が設けられた銅張積層板にお いて、前記銅箔の絶縁層と接する表面の表面粗さ(Rz)が 0.2— 3.0 mの範囲にあり 、常温における銅箔と絶縁層との 180° 層間剥離強さが 0.5— 5kN/mであることを特 徴とする銅張積層板。  [1] In a copper-clad laminate in which a copper foil is provided on one or both surfaces of an insulating layer having a liquid crystal polymer, the surface roughness (Rz) of the surface of the copper foil in contact with the insulating layer is 0.2 to 3.0 m. A copper-clad laminate characterized by having a 180 ° delamination strength between the copper foil and the insulating layer at room temperature of 0.5 to 5 kN / m.
[2] 絶縁層の厚さが 10— 300 mの範囲にある請求項 1記載の銅張積層板。  [2] The copper-clad laminate according to claim 1, wherein the thickness of the insulating layer is in the range of 10 to 300 m.
[3] 絶縁層と接する銅箔表面材質が、エネルギー分散型 X線分析装置 (EDX)で測定し たとき、銅の他に、ニッケル、コバルト、クロム及び硫黄のうち力も選ばれる少なくとも 一種以上の元素を含む請求項 1又は 2記載の銅張積層板。  [3] When the surface material of the copper foil in contact with the insulating layer is measured by an energy dispersive X-ray analyzer (EDX), at least one or more of nickel, cobalt, chromium, and sulfur are selected in addition to copper. 3. The copper-clad laminate according to claim 1, containing an element.
[4] 銅箔表面材質が、銅 ニッケル コバルト、銅 ニッケル コバルト クロム、銅 -ッ ケルーコバルト 硫黄、銅 ニッケル コバルト クロム 硫黄、銅 コバルト クロム及び 銅 コバルト クロム 硫黄力 選ばれるいずれかの元素の組み合わせによって構成 されて 、る請求項 3に記載の銅張積層板。  [4] The copper foil surface material is composed of any combination of the following elements: copper nickel cobalt, copper nickel cobalt chromium, copper-nickel cobalt sulfur, copper nickel cobalt chromium sulfur, copper cobalt chromium, and copper cobalt chromium sulfur. 4. The copper-clad laminate according to claim 3, wherein:
[5] 請求項 1一 4のいずれかに記載の銅張積層板の製造方法において、液晶ポリマー 力 なる絶縁層の片面又は両面に、銅箔の絶縁層と接する表面の表面粗さ(Rz)が 0.2— 3.0 mの範囲にある銅箔を重ね合わせ、予め液晶ポリマーフィルム融点の 5— 100°Cの範囲で低い温度に加熱された加圧ロールにより連続的に接着積層すること を特徴とする銅張積層板の製造方法。 [5] The method for producing a copper-clad laminate according to any one of [14] to [14], wherein one or both surfaces of the liquid crystal polymer insulating layer have a surface roughness (Rz) of a surface in contact with the copper foil insulating layer. Copper foil with a range of 0.2-3.0 m is laminated and continuously bonded and laminated by a pressure roll pre-heated to a low temperature of 5-100 ° C, the melting point of the liquid crystal polymer film. A method for manufacturing a copper-clad laminate.
PCT/JP2004/015135 2003-10-15 2004-10-14 Copper-clad laminate WO2005037538A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514768A JP4545688B2 (en) 2003-10-15 2004-10-14 Copper clad laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003354777 2003-10-15
JP2003-354777 2003-10-15

Publications (1)

Publication Number Publication Date
WO2005037538A1 true WO2005037538A1 (en) 2005-04-28

Family

ID=34463150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015135 WO2005037538A1 (en) 2003-10-15 2004-10-14 Copper-clad laminate

Country Status (2)

Country Link
JP (1) JP4545688B2 (en)
WO (1) WO2005037538A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050576A (en) * 2005-08-17 2007-03-01 Sumitomo Chemical Co Ltd Liquid crystal thermoplastic polyester film laminate
JP2010221694A (en) * 2009-02-24 2010-10-07 Panasonic Electric Works Co Ltd Method for manufacturing laminate for flexible printed wiring board, laminate for flexible printed wiring board and flexible printed wiring board
WO2011093427A1 (en) * 2010-01-29 2011-08-04 新日鐵化学株式会社 Method for manufacturing a laminate with one metal-plated side
US20190001628A1 (en) * 2016-03-08 2019-01-03 Kuraray Co., Ltd. Method for producing metal-clad laminate, and metal-clad laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060866A (en) * 2000-08-17 2002-02-28 Nippon Mining & Metals Co Ltd Copper alloy foil for laminated board
JP2003013158A (en) * 2001-07-04 2003-01-15 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003133666A (en) * 2001-10-23 2003-05-09 Toray Ind Inc Flexible printed board and laminated board therefor
JP2003221456A (en) * 2002-01-29 2003-08-05 Japan Gore Tex Inc Highly adhesive liquid crystal polymer film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3245437B2 (en) * 1991-04-05 2002-01-15 株式会社クラレ Manufacturing method of laminate
US5529740A (en) * 1994-09-16 1996-06-25 Jester; Randy D. Process for treating liquid crystal polymer film
JP4255580B2 (en) * 1999-09-09 2009-04-15 株式会社クラレ Method for producing single-sided metal-clad laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060866A (en) * 2000-08-17 2002-02-28 Nippon Mining & Metals Co Ltd Copper alloy foil for laminated board
JP2003013158A (en) * 2001-07-04 2003-01-15 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003133666A (en) * 2001-10-23 2003-05-09 Toray Ind Inc Flexible printed board and laminated board therefor
JP2003221456A (en) * 2002-01-29 2003-08-05 Japan Gore Tex Inc Highly adhesive liquid crystal polymer film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050576A (en) * 2005-08-17 2007-03-01 Sumitomo Chemical Co Ltd Liquid crystal thermoplastic polyester film laminate
JP2010221694A (en) * 2009-02-24 2010-10-07 Panasonic Electric Works Co Ltd Method for manufacturing laminate for flexible printed wiring board, laminate for flexible printed wiring board and flexible printed wiring board
WO2011093427A1 (en) * 2010-01-29 2011-08-04 新日鐵化学株式会社 Method for manufacturing a laminate with one metal-plated side
CN102781661A (en) * 2010-01-29 2012-11-14 新日铁化学株式会社 Method for manufacturing a laminate with one metal-plated side
JP5661051B2 (en) * 2010-01-29 2015-01-28 新日鉄住金化学株式会社 Method for producing single-sided metal-clad laminate
TWI508852B (en) * 2010-01-29 2015-11-21 Nippon Steel & Sumikin Chem Co Method for manufacturing single side metal-clad laminate
US20190001628A1 (en) * 2016-03-08 2019-01-03 Kuraray Co., Ltd. Method for producing metal-clad laminate, and metal-clad laminate
US10807352B2 (en) * 2016-03-08 2020-10-20 Kuraray Co., Ltd. Method for producing metal-clad laminate, and metal-clad laminate
TWI729080B (en) * 2016-03-08 2021-06-01 日商可樂麗股份有限公司 Method of producing metal-clad laminate, and metal-clad laminate

Also Published As

Publication number Publication date
JP4545688B2 (en) 2010-09-15
JPWO2005037538A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
CN110290921B (en) Metal-clad laminate, circuit board, and multilayer circuit board
JP2019178326A (en) Production method of thermoplastic liquid crystal polymer film, circuit board and method for manufacturing the same
JP5661051B2 (en) Method for producing single-sided metal-clad laminate
EP0697278B1 (en) Liquid crystal polymer-metal laminate and a method of producing such a laminate
JP6031352B2 (en) Method for producing double-sided metal-clad laminate
EP3747648B1 (en) Metal-clad laminate and manufacturing method for same
JPWO2007013330A1 (en) Method for producing wiring board coated with thermoplastic liquid crystal polymer film
JP6019012B2 (en) High frequency circuit board
WO2016174868A1 (en) Thermoplastic liquid-crystal polymer film, and circuit board
JP5611355B2 (en) Metal-clad laminate
JP7312152B2 (en) Liquid crystal polymer film and laminate containing the liquid crystal polymer film
JP2016107507A (en) Metal-clad laminated sheet and method for producing the same
JP2024071437A (en) Insulating film, double-sided metal-clad laminate and electronic circuit board
JP4827446B2 (en) Electronic circuit board and manufacturing method thereof
WO2005037538A1 (en) Copper-clad laminate
JP2004358677A (en) Method for manufacturing laminate
JP2005105165A (en) Thermoplastic liquid crystalline polymer film laminatable at low temperature
JP2011216598A (en) High-frequency circuit board
KR102324897B1 (en) Method for manufacturing a metal-clad laminate
TWI697549B (en) Liquid crystal polymer film and laminate comprising the same
CN114007832B (en) Method for producing metal-clad laminate
JP7182030B2 (en) METHOD FOR MANUFACTURING METAL-CLAD LAMINATED BODY
JPH0598042A (en) Fibrous sheet impregnated with polyphenylene sulfide resin
KR20230121612A (en) Liquid crystal polymer composite, liquid crystal polymer composite film, and metal clad laminate including the same
CN116848216A (en) Liquid crystal polymer composite, liquid crystal polymer composite film, and metal-clad laminate including the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005514768

Country of ref document: JP

122 Ep: pct application non-entry in european phase