WO2005035543A1 - Tricyclische phosphin-phosphinite und ihre verwendung in der katalyse - Google Patents

Tricyclische phosphin-phosphinite und ihre verwendung in der katalyse Download PDF

Info

Publication number
WO2005035543A1
WO2005035543A1 PCT/EP2004/009620 EP2004009620W WO2005035543A1 WO 2005035543 A1 WO2005035543 A1 WO 2005035543A1 EP 2004009620 W EP2004009620 W EP 2004009620W WO 2005035543 A1 WO2005035543 A1 WO 2005035543A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radicals
phosphine
alkyl
compound
Prior art date
Application number
PCT/EP2004/009620
Other languages
English (en)
French (fr)
Inventor
Igor Vladimirovich Komarov
Vitalii Andreevich Bilenko
Axel Monsees
Thomas Riermeier
Juan José ALMENA PEREA
Renat Kadyrov
Original Assignee
Degussa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Ag filed Critical Degussa Ag
Publication of WO2005035543A1 publication Critical patent/WO2005035543A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2495Ligands comprising a phosphine-P atom and one or more further complexing phosphorus atoms covered by groups B01J31/1845 - B01J31/1885, e.g. phosphine/phosphinate or phospholyl/phosphonate ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • C07C45/505Asymmetric hydroformylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/457Saturated compounds containing a keto group being part of a ring containing halogen
    • C07C49/467Saturated compounds containing a keto group being part of a ring containing halogen polycyclic
    • C07C49/473Saturated compounds containing a keto group being part of a ring containing halogen polycyclic a keto group being part of a condensed ring system
    • C07C49/477Saturated compounds containing a keto group being part of a ring containing halogen polycyclic a keto group being part of a condensed ring system having two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • C07F9/65517Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring condensed with carbocyclic rings or carbocyclic ring systems

Definitions

  • Tricyclic phosphine-phosphinites and their use in catalysis
  • the present invention includes new asymmetrical chiral phosphine-phosphinites and their synthesis as well as complexes of these compounds with metals of the groups Vllb Vlllb and Ib of the periodic table and their use as catalysts for enantioselective transformations, especially for hydrogenations.
  • Trisubstituted organophosphorus compounds are of great importance as ligands in homogeneous catalysis.
  • the electronic and steric properties of the phosphorus ligand can be influenced in a targeted manner by varying the substituents on the phosphorus in such compounds, so that selectivity and activity can be controlled in homogeneous catalytic processes.
  • Enantiomerically enriched chiral ligands are used in asymmetric synthesis or asymmetric catalysis. Here it is essential that the electronic and stereochemical properties of the ligand are optimally matched to the respective catalysis problem. There is therefore a great need for chiral ligands that differ stereochemically and electronically in order to find the “tailor-made” ligand that is optimal for a particular asymmetric catalysis.
  • the structural diversity of the phosphorus ligands known to date is very large. These ligands can be classified according to substance classes, for example, and examples of such substance classes are trialkylphosphines and triarylphosphines, phosphites, phosphinites, phosphonites, aminophosphanes, etc. This classification by substance classes is particularly useful for describing the electronic properties of the ligands. In addition, a classification of phosphorus ligands according to their symmetry properties or according to the denticity of the ligands is possible. This structuring takes into account in particular the stability, activity and stereoselectivity of metal complexes with phosphorus ligands as catalyst precursors or as catalysts.
  • unsymmetrical bidentate organophosphorus ligands are increasingly becoming the focus of asymmetric catalysis.
  • Important examples are the large class of versatile chiral ferrocenylphosphine ligands such as JOSIPHOS, DPPM, the bisphosphinite ligands such as CARBOPHOS, which are particularly successfully used in the asymmetric hydrogenation of olefins and imines, or the phosphine-phosphite ligands such as BINAPHOS, which are used in the asymmetric Hydroformylation of olefins can be used successfully.
  • EP 12 01 673 describes asymmetrical bidentate organophosphorus compounds whose electronic and steric properties can be varied within a wide range by the suitable choice of substituents.
  • a particularly important aspect of the success of these classes of compounds is attributed to the creation of a particularly asymmetrical environment of the metal center through these ligand systems. In order to use such an environment for an effective transfer of chirality, it is advantageous to reduce the flexibility of the ligand system, which limits the asymmetric induction.
  • the object of the present invention is to provide asymmetrical, bidentate and chiral phosphorus ligand systems which can be easily varied in their electronic properties and whose flexibility is also greatly restricted.
  • the present invention consequently relates to chiral, asymmetrical bidentate organophosphorus compounds of the formulas (I) and (II),
  • R, R, R, R independently of one another for a residue selected from the group CC 24 alkyl, C 3 -C 8 cycloalkyl, where the cycle can contain 1-2 heteroatoms selected from the group N, 0, S, C5-C14 aryl, in particular phenyl, naphthyl, fluorenyl, C 2 -C 3 heteroaryl, where the number of heteroatoms selected from the group can be N, 0, S, 1-4.
  • the cyclic aliphatic or aromatic radicals are preferably 5 to 6-membered rings.
  • substituents can be independently selected from the group of hydrogen, C 1 -C 2 0 alkyl, C2-C20 alkenyl, C C ⁇ o haloalkyl, C 3 -C 8 cycloalkyl, C 2 -C 9 heteroalkyl, C 5 -C 12 aryl, in particular phenyl, Naphthyl, fluorenyl, C -d 1 heteroaryl, where the number of heteroatoms, in particular from the group N, O, S, 1-4, can be hydroxy, C 1 -C 10 alkoxy, benzyloxy, d-Cg trihalomethylalkyl, trihalomethyl, halogeno , Trifluoromethylsulfonato, oxo, amino, dC 8 substituted amino of the forms NH- (alkyl-dC 8 ), NH- (aryl-C 5 -C 6 ), N (
  • R may be bridged to one another, a 4-8 membered cycle preferably being formed.
  • the radical R 3 can be selected from the group for a radical
  • radicals R 4 , R 4 ' , R 5 , R 5 , R 6 , R 7 , R 8 , R 8' can be selected independently of one another for a radical selected from the group
  • the cyclic aliphatic or aromatic radicals are preferably 5 to 6-membered rings.
  • radicals R 4 to R 8 can each be substituted one or more times independently of one another.
  • Preferred substituents can independently of one another be hydrogen, C 1 -C 20 alkyl, C 3 -C 8 cycloalkyl, C 5 -C 12 aryl, in particular phenyl, naphthyl, fluorenyl.
  • two of the radicals R 4 to R 8 can also be linked to one another be, so that preferably a 4- to 6-membered cycle is formed.
  • P represents a trivalent phosphorus
  • radicals R 1 , R 1 , R 2 , R 2 ' are, independently of one another, a radical selected from the group C 1 -C 3 alkyl, C 5 -C 6 cycloalkyl, Cs-C aryl, phenyl, naphthyl.
  • methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 1, 1-dimethylethyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl are particularly preferred , 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 1-dimethylbutyl, 1 , 2-dimethylbutyl, 1, 3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1, 1, 2-trimethylpropyl, 1, 2.2 -Trimethylpropyl, 1-
  • cyclic alkyl radicals substituted and unsubstituted cyclopentyl, cyclohexyl and cycloheptyl radicals are particularly preferred.
  • aryl radicals are phenyl, naphthyl, 2-alkylphenyl, 3-alkylphenyl, 4-alkylphenyl, 2,6-dialkylphenyl, 3,5-dialkylphenyl, 3,4,5-trialkylphenyl, 2-alkoxyphenyl, 3-alkoxyphenyl, 4-alkoxyphenyl, 2,6-dialkoxylphenyl, 3,5-dialkoxyphenyl, 3,4,5-triialkoxyphenyl, 3,5-dialkyl-4-alkoxyphenyl, 3,5-dialkyl-4-dialkylaminophenyl, 4-dialkylamino, where the The aforementioned alkyl and alkoxy groups each preferably contain 1 to 6 carbon atoms, 3,5-trifluoromethyl, 4-trifluoromethyl, 2-sulfonyl, 3-sulfonyl, 4-sulfonyl, mono- to tetra-halogenated phenyl and naphthyl.
  • ligand systems of the formulas (I) and (II) are preferred as optically active ligand systems in which a diastereomer is enriched.
  • the class of bidentate organophosphorus compounds according to the invention has a chiral ligand backbone which can be modified in a variety of ways and which, with regard to its electronic properties, can easily be varied due to the ease with which a wide variety of substituents can be introduced.
  • Organophosphorus compounds of the formulas (I) and (II) are sterically strongly hindered by their tricyclic backbone, as a result of which a highly asymmetrical coordination sphere is created in organometallic complexes at the metal center.
  • the flexibility of the coordination sphere of the complex can be varied further by the simple introduction of further different substituents into the organophosphorus ligands.
  • the compounds of the formulas (I) and (II) can provide a broad spectrum of bidentate phosphine-phosphinite ligands which are sterically severely hindered in their flexibility in the metal complex but can nevertheless be easily varied in their electronic properties.
  • the compounds according to the invention are distinguished by particularly simple synthetic access starting from simple starting materials, in particular starting from camphor. This makes the ligands of the present invention easily accessible and thus industrially producible.
  • the 8-halogeno-camphor product obtained is converted into the 2,3-di-keto compound by oxidation.
  • MPR 1 R 1 alkali metal phosphide
  • the remaining keto function can then be selectively reduced endo or exo by a suitable choice of a reducing agent.
  • the phosphine-phosphinite is then formed in the presence of a strong base.
  • the used starting product 8-bromo-camphor is according to a literature-known regulation (WM Dadson, M. Lam, T. Money, SE Piper. Can. J. Chem., 1983, 67, 343; P. Cachia, N. Darby, CR Eck, T. Money. J. Chem. Soc, Perkin 1, 1976, 359).
  • the endo I exo selectivity of the reduction can be controlled by the choice of the reducing agent.
  • lithium aluminum hydride z. B. get an exo: endo ratio of 21: 1.
  • Is used to reduce z. B. sodium borohydride used the e ⁇ cfo product is created in Ratio 1.3: 1
  • the invention also relates to a process for the preparation of binding organophosphorus compounds according to formulas (I) and (II) comprising the process steps:
  • a preferred process is characterized by a selective cyclization, starting materials starting from which R 3 and R 6 are different, particularly preferred are processes in which the cyclization takes place selectively with the KKeettoo-GGrruuppppee amamm CC33-AAttoonm of the basic structure, where R 6 preferably represents a hydrogen radical.
  • the invention further relates to complex compounds which contain at least one chiral bidentate organophosphorus ligand selected from the group of the phosphine-phosphinites of the formula (I) and (II) with at least one metal.
  • metal-ligand complex compounds can be prepared in situ by reacting a metal salt or a corresponding pre-complex with the ligands of the general formulas (I) and (II).
  • a metal-ligand complex compound can be obtained by reacting a metal salt or a corresponding pre-complex with the ligands of the general formulas (I) and (II) and subsequent isolation.
  • Such a complex compound is preferably produced in a one-pot reaction with stirring at elevated temperature.
  • Catalytically active complex compounds can also be generated directly in the reaction batch of the planned catalytic conversion.
  • metal salts are metal chlorides, bromides, iodides, cyanides, nitrates, acetates, acetylacetonates, hexafluoroacetylacetonates, tetrafluoroborates, perfluoroacetates or triflates, in particular of palladium, platinum, rhodium, ruthenium, osmium, irid Cobalt, nickel and / or copper.
  • Preferred complex compounds can be described by the general formula (III) which contain compounds of the formulas (I) and (II) according to the invention as ligands
  • M represents a transition metal center
  • L identical or different coordinating organic or inorganic ligands and P bidentate organophosphorus ligands according to the invention of the formulas (I) and (II)
  • S represents coordinating solvent molecules and A equivalents from non-coordinating anions, where x is 1 or 2, y is an integer greater than or equal to 1 and z, q and r are independently integers greater than or equal to 0.
  • the sum of y + z + q is capped by the coordination centers available at the metal centers, although not all coordination positions have to be occupied.
  • Complex compounds with octahedral, pseudo-octahedral, tetrahedral, pseudo-tetrahedral, square-planar coordination sphere, which can also be distorted, around the respective transition metal center are preferred.
  • the sum y + z + q in such complex compounds is less than or equal to 6x.
  • the complex compounds according to the invention contain at least one metal atom or ion, preferably a transition metal atom or ion, in particular from palladium, platinum, rhodium, ruthenium, osmium, iridium, cobalt, nickel and / or copper.
  • Complex compounds with fewer than four metal centers are preferred, those with one or two metal centers being particularly preferred.
  • the metal centers can be populated with different metal atoms and / or ions.
  • Preferred ligands L of such complex compounds are halide, especially Cl, Br and I, diene, especially cyclooctadiene, norbomadiene, olefin, especially ethylene and cyclooctene, acetato, trifluoroacetato, acetylacetonato, allyl, methallyl, alkyl, especially methyl and ethyl, nitrile, especially acetonitrile and benzonitrile, as well as carbonyl and hydrido ligands.
  • Preferred coordinating solvents S are amines, especially triethylamine, alcohols, especially methanol and aromatics, especially benzene and cumene.
  • Preferred non-coordinating anions A are trifluoroacetate, trifluoromethanesulfonate, BF 4 ; CI0 4 , PF 6 , SbF 6 , and BAr 4 .
  • Preferred among the ionically structured complex compounds are compounds of the type [RhP (diene)] + A " , where P represents a ligand of the formulas (I) and (II) according to the invention.
  • the ligands and complex compounds described can be used in catalytic asymmetric polymerizations and reactions, such as. B. in asymmetric hydrogenations, hydroformylations, rearrangements, allylic alkylations, cyclopropanations, hydrosilylations, hydride transfer reactions, hydroborations, hydrocyanations, hydrocarboxylations, aldol reactions, Pauson-Khand reactions or Heck reactions can be used. Examples:
  • a solution of 20g (86.5 mmol) of 9-bromo-camphor and 20g (180.2 mmol) of selenium dioxide in 150 ml of acetic acid is heated under reflux for 12 h and then cooled to room temperature.
  • the solution is filtered through Celite and washed with methanol. All volatile compounds are removed in vacuo and the residue is then taken up in 200 ml of ether and saturated twice with 50 ml of water and once with 50 ml. Washed sodium bicarbonate solution. The solvent is removed and the crude product is recrystallized from heptane. The product is obtained in yellow crystals in a yield of 19.69 g (93%).
  • Example 7 (1 R, 2R, 3S, 6S, 7S) -3-diphenylphosphanyl-1, 6-dimethyl-4-oxatricyclo [4.3.0.0] nonane-2yl-dicyclohexylphosphinite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

Die Erfindung betrifft tricyclische bidentate Organophosphorverbindungen der Formeln (I) und (II) sowie ein Verfahren zu deren Herstellung und deren Verwendung in der Katalyse.

Description

Tricyclische Phosphin-Phosphinite und ihre Verwendung in der Katalyse
Beschreibung:
Die vorliegende Erfindung beinhaltet neue unsymmetrische chirale Phosphin- Phosphinite und deren Synthese sowie Komplexe dieser Verbindungen mit Metallen der Gruppen Vllb Vlllb und Ib des Periodensystems und deren Verwendung als Katalysatoren für enantioselektive Transformationen, insbesondere für Hydrierungen.
Trisubstituierte Organophosphorverbindungen haben große Bedeutung als Liganden in der homogenen Katalyse. Durch Variation der Substituenten am Phosphor in solchen Verbindungen lassen sich die elektronischen und sterischen Eigenschaften des Phosphorliganden gezielt beeinflussen, so daß Selektivität und Aktivität bei homogen-katalytischen Prozessen gesteuert werden können.
Enantiomerenangereicherte chirale Liganden werden in der asymmetrischen Synthese bzw. asymmetrischen Katalyse eingesetzt, hier kommt es wesentlich darauf an, daß die elektronischen und die stereochemischen Eigenschaften des Liganden auf das jeweilige Katalyseproblem optimal abgestimmt sind. Es besteht somit ein großer Bedarf an chiralen Liganden, die sich stereochemisch und elektronisch unterscheiden, um den für eine bestimmte asymmetrische Katalyse optimalen „maßgeschneiderten" Liganden aufzufinden.
Die Strukturvielfalt der bisher bekannten Phosphorliganden ist sehr groß. Die Gliederung dieser Liganden kann beispielsweise nach Stoffklassen erfolgen, und Beispiele für solche Stoffklassen sind Trialkyl- und Triarylphosphine, Phosphite, Phosphinite, Phosphonite, Aminophosphane usw. Diese Einteilung nach Stoffklassen ist insbesondere nützlich, um die elektronischen Eigenschaften der Liganden zu beschreiben. Darüber hinaus ist eine Klassifizierung von Phosphorliganden nach ihren Symmetrieeigenschaften oder nach der Zähnigkeit der Liganden möglich. Diese Strukturierung trägt insbesondere der Stabilität, Aktivität und Stereoselektivität von Metallkomplexen mit Phosphorliganden als Katalysatorvorstufen oder als Katalysatoren Rechnung. Neben den weit verbreiteten C2-symmetrischen bidentaten Ligandsystemen wie DUPHOS, DIPAMP, BINAP oder DEGUPHOS rücken unsymmetrische bidentate Organophosphorliganden immer mehr in den Fokus in der asymmetrischen Katalyse. Wichtige Beispiele sind die große Klasse der vielseitig einsetzbaren chiralen Ferrocenylphosphinliganden wie z.B. JOSIPHOS, DPPM, die Bisphosphinitliganden wie CARBOPHOS, die besonders in der asymmetrischen Hydrierung von Olefinen und Iminen erfolgreich eingesetzt werden, oder die Phosphin-Phosphit-Liganden wie BINAPHOS, die in der asymmetrischen Hydroformylierung von Olefinen erfolgreich eingesetzt werden.
Figure imgf000004_0001
DIPAMP BINAP DUPHOS DEGUPHOS CHIRAPHOS
Figure imgf000004_0002
In EP 12 01 673 sind darüber hinaus unsymmetrische bidentate Organophosphorverbindungen beschrieben, deren elektronische und sterischen Eigenschaften durch die geeignete Wahl von Substitueπten in weiten Bereichen variiert werden können. Ein besonders wichtiger Aspekt des Erfolges dieser Verbindungsklassen wird der Schaffung einer besonders asymmetrischen Umgebung des Metallzentrums durch diese Ligandsysteme zugeschrieben. Um eine solche Umgebung für eine effektive Übertragung der Chiralität zu nutzen, ist es vorteilhaft, die Flexibilität des Ligandsystems, die die asymmetrische Induktion limitiert, zu senken.
In dieser Hinsicht haben sich bereits cyclische Ligandengerüste auf Campherbasis (Tetrahedron Asymmetry 1997, 8, 435; Eur. J. Org. Chem. 2000, 4119; Synlett 2002, 1011) bewährt, deren sterische Flexibilität stark eingeschränkt ist.
Davon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde unsymmetrische, bidentate und chirale Phosphorligandsystemen bereitzustellen, die sich in ihren elektronischen Eigenschaften einfach variieren lassen und deren Flexibilität darüber hinaus stark eingeschränkt ist.
Dies gelingt durch Phosphin-Phosphinite mit einem tricyclischen Ligandengerüst gemäß den Formeln (I) und (II).
Die vorliegende Erfingung betrifft folglich chirale, unsymmetrische bidentate Organophosphorverbindungen der Formeln (I) und (II),
Figure imgf000005_0001
wobei die Reste
R , R , R , R unabhängig voneinander für einen Rest ausgewählt aus der Gruppe C C24 Alkyl, C3-C8 Cycloalkyl, wobei der Cyclus 1-2 Heteroatome, ausgewählt aus der Gruppe N, 0, S enthalten kann, C5-C14 Aryl, insbesondere Phenyl, Naphthyl, Fluorenyl, C2-Cι3 Heteroaryl, wobei die Zahl der Heteroatome, ausgewählt aus der Gruppe N, 0, S, 1-4 betragen kann, stehen.
Die cyclischen aliphatischen oder aromatischen Reste sind bevorzugt 5 bis 6 gliedrige Ringe.
Die vorgenannten Reste selbst können jeweils ein- oder mehrfach substituiert sein. Bevorzugte Substituenten können unabhängig voneinander aus der Gruppe Wasserstoff, C1-C20 Alkyl, C2-C20 Alkenyl, C Cιo Haloalkyl, c3-C8 Cycloalkyl, C2-C9 Heteroalkyl, C5-C12Aryl, insbesondere Phenyl, Naphthyl, Fluorenyl, C -d 1 Heteroaryl, wobei die Zahl der Heteroatome, insbesondere aus der Gruppe N, O, S, 1-4 betragen kann, Hydroxy, Cι-C10 Alkoxy, Benzyloxy, d-Cg Trihalomethylalkyl, Trihalomethyl, Halogeno, Trifluormethylsulfonato, Oxo, Amino, d-C8 substituierte Amino der Formen NH-(Alkyl-d-C8), NH-(Aryl-C5-C6), N(Alkyl-C1-C8)2, N(Aryl-C5-C6)2, N(Aryl-C5-C6)(Alkyl- d-Cβ), N(Alkyl-C C8)3 +, N(Aryl-C5-C6)3 +, N(Aryl-C5-C6)(Alkyl-d-C8)2+, N(Aryl-C5-C6)2(Alkyl-CrCs)+, NH-CO-(Alkyl-C1-C8), NH-CO-(Aryl-C5-C6), Cyano, Carboxylato der Formen COOH und COOQ wobei Q entweder ein einwertiges Kation oder d-C8-Alkyl darstellt, d-Cβ-Acyloxy, Sulfinato, Sulfonato der Formen SO3H und SO3Q, wobei Q entweder ein einwertiges Kation, Cι-C8-Alkyl oder C5- Ci2-Aryl darstellt, Phosphato der Formen P03H2, PO3HQ und PO3Q2, wobei Q entweder ein einwertiges Kation, Cι-C8-Alkyl oder C5- Ci2-Aryl darstellt, Tri- C1- Cβ Alkylsilyl ausgewählt werden.
Darüber hinaus können unabhängig voneinander die Reste R1 und R1 sowie R2 und
R miteinander verbrückt sein, wobei bevorzugt ein 4-8 gliedriger Zyklus gebildet wird. Der Rest R3 kann für einen Rest ausgewählt aus der Gruppe
Cι-C24Alkyl, C3-C8 Cycloalkyl, stehen.
Die Reste R4, R4', R5, R5 , R6, R7, R8, R8' können unabhängig voneinander für einen Rest ausgewählt aus der Gruppe
Wasserstoff, d-C24Alkyl, C3-C12 Cycloalkyl, C5-C14 Aryl, insbesondere Phenyl, Naphthyl, Fluorenyl, stehen, wobei solche Verbindungen bevorzugt sind bei denen R4 gleich R4 , R5 gleich R5 und/oder R8 gleich R8 sind. Weiterhin bevorzugt sind Verbindungen in denen R6 für einen Wasserstoffrest und R3 für einen Cι-Cιo-Alkylrest, insbesondere einen Methylrest stehen. Bevorzugte Reste R4 bis R8 sind ausgewählt aus der Gruppe Wasserstoff und d- do-Alkyl.
Die cyclischen aliphatischen oder aromatischen Reste sind bevorzugt 5 bis 6 gliedrige Ringe.
Die vorgenannten Reste R4 bis R8 können unabhängig voneinander jeweils ein- oder mehrfach substituiert sein. Bevorzugte Substituenten können dabei unabhängig voneinander Wasserstoff, Cι-C20 Alkyl, C3- C8 Cycloalkyl, C5-C12 Aryl, insbesondere Phenyl, Naphthyl, Fluorenyl sein.
Darüber hinaus können auch jeweils zwei der Reste R4 bis R8 miteinander verknüpft sein, so dass bevorzugt ein 4- bis 6-gliedriger Cyclus entsteht.
In den Verbindungen der Formel (I) und (II) steht P für einen dreiwertiger Phosphor.
Besonders bevorzugt sind Verbindungen der Formeln (I a) und (II a), die sich vom leicht zugänglichen Campher-Grundgerüst ableiten,
Figure imgf000008_0001
(la) (Ha)
wobei die Reste R » 1 , e R>1 ' , n R2 , Γ R-,2 die oben genannte Bedeutung haben.
Bevorzugt stehen die Reste R1, R1 , R2, R2' unabhängig voneinander für einen Rest ausgewählt aus der Gruppe Cι-C3 Alkyl, C5-C6 Cycloalkyl, Cs-C Aryl, Phenyl, Naphthyl.
Die Reste R1, R1 , R2 und R2' können weitere Substituenten tragen, wobei Reste mit einem, zwei oder drei Substituenten bevorzugt sind. Besonders bevorzugte Substituenten sind dabei unabhängig voneinander Wasserstoff, C-ι-C6 Alkyl, d-C-6 Haloalkyl, C2-C6 Heteroalkyl, C6Aryl, Phenyl, Naphthyl, Fluorenyl, C3-C5 Heteroaryl, wobei die Zahl der Heteroatome aus der Gruppe N, 0, S, 1-2 betragen kann, Hydroxy, d-C6 Alkoxy, bevorzugt OMe, Benzyloxy, T fluormethyl und Trichlormethyl, Fluoro, Chloro, Bromo, Trifluormethylsulfonato, Oxo, Amino, d-Cβ substituierte Amino der Formen NH2, NH-(Alkyl-d-C6), NH-(Aryl-C6), N(Alkyl-d- C6)2l insbesondere NMe2, NEt2, N(Aryl-C6)2, N(Alkyl-d-C6)3+, N(Aryl-C6)3 +, NH-CO- (Alkyl-d-C6), NH-CO-(Aryl-C6), Cyano, Carboxylato der Formen COOH und COOQ wobei Q entweder ein einwertiges Kation oder C C -Alkyl darstellt, d-C6-Acyloxy, Sulfinato, Sulfonato der Formen S03H und SO3Q wobei Q entweder ein einwertiges Kation, d-C4-Alkyl oder C6-Aryl darstellt, Phosphato der Formen P03H2, PO3HQ und PO3Q2 wobei Q entweder ein einwertiges Kation, d-C4-Alkyl oder Ce-Aryl darstellt, SiMe3.
Aus der Gruppe der Alkylreste seien besonders bevorzugt genannt Methyl, Ethyl, n- Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 1 ,1-Dimethylethyl, n-Pentyl, 1- Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1 ,1-Dimethylpropyl, 1 ,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3- Methylpentyl, 4-Methylpentyl, 1 ,1-Dimethylbutyl, 1 ,2-Dimethylbutyl, 1 ,3- Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1 ,1 ,2-Trimethylpropyl, 1 ,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, n- Heptyl, n-Octyl, n-Nonyl, n-Decyl.
Unter den cyclischen Alkylresten sind besonders bevorzugt substituierte und unsubstituierte Cyclopentyl-, Cyclohexyl-, Cycloheptylreste.
Unter den Arylresten sind besonders bevorzugt Phenyl, Naphthyl, 2-Alkylphenyl, 3- Alkylphenyl, 4-Alkylphenyl, 2,6-Dialkylphenyl, 3,5-Dialkylphenyl, 3,4,5-Trialkylphenyl, 2-Alkoxyphenyl, 3-Alkoxyphenyl, 4-Alkoxyphenyl, 2,6-Dialkoxylphenyl, 3,5- Dialkoxyphenyl, 3,4,5-Triialkoxyphenyl, 3,5-Dialkyl-4-Alkoxyphenyl, 3,5-Dialkyl-4- dialkylaminophenyl, 4-Dialkylamino, wobei die vorgenannten Alkyl- und Alkoxygruppen jeweils vorzugsweise 1 bis 6 Kohlenstoffatome enthalten, 3,5- Trifluormethyl, 4-Trifluormethyl, 2-Sulfonyl, 3-Sulfonyl, 4-Sulfonyl, ein bis vierfach halogenierte Phenyl und Naphtyl.
Schließlich sind Ligandsysteme der Formeln (I) und (II) als optisch aktive Ligandsysteme bevorzugt, bei denen ein Diastereomer angereichert ist. Besonders bevorzugt sind Ligandsysteme, bei denen die Diastereomerenanreicherung 90 %, insbesondere 98 % übersteigt.
Die erfindungsgemäße Klasse von bidentaten Organophosphorverbindungen besitzt ein einfach vielseitig modifizierbares, chirales Liganden-Grundgerüst, das sich in Bezug auf seine elektronischen Eigenschaften durch die leichte Einführbarkeit unterschiedlichster Substituenten leicht variieren läßt. Darüber hinaus sind Organophosphorverbindungen der Formeln (I) und (II) durch ihr tricyclisches Grundgerüst sterisch stark gehindert, wodurch in Metallorganischen Komplexen am Metallzentrum eine hochasymmetrische Koordinationssphäre geschaffen wird. Zusätzlich können über die einfache Einführbarkeit weiterer unterschiedlicher Substituenten in die Organophosphorliganden die Flexibilität der Koordinationssphäre des Komplexes weiter variiert werden. Folglich kann mit den Verbindungen der Formeln (I) und (II) ein breites Spektrum von bidentaten Phosphin-Phosphinit-Liganden bereitgestellt werden, die in ihrer Flexibilität im Metallkomplex sterisch stark gehindert sind aber trotzdem in ihren elektronischen Eigenschaften einfach variiert werden können.
Gleichzeitig zeichnen sich die erfindungsgemäßen Verbindungen im Gegensatz zu vielen etablierten Ligandsystemen durch eine besonders einfache synthetische Zugänglichkeit ausgehend von einfachen Edukten, insbesondere ausgehend von Campher aus. Dies macht die Liganden der vorliegenden Erfindung leicht zugänglich und somit industriell herstellbar.
Im folgenden wird beispielhaft ein Verfahren angegeben, mit dem sich die erfindungsgemäße Phosphorverbindungen aus der Klasse der Phosphin- Phosphinite herstellbar sind.
Ausgehend von (R)-Campher wird in einer bekannten dreistufigen Synthese ein an Position 8 halogenierter Campher hergestellt (W. M. Dadson, M. Lam.T. Money, S. E. Piper. Can. J. Chem., 1983, 61, 343; P. Cachia, N. Darby, C. R. Eck, T. Money. J. Chem.Soc, Perkin 1, 1976, 359).
Durch eine Oxidation wird das erhaltene 8-Halogeno-Campher-Produkt in die 2,3-Di- Keto Verbindung überführt. Durch die Reaktion mit einem Alkaliphosphid (MPR1R1 , bevorzugt mit M = Li\ K+, Na+) wird unter Aufbau des tricyclischen Systems ein Keto-Phosphin gebildet. Durch die geeignete Wahl eines Reduktionsmittels kann die verbliebene Ketofunktion im Anschluss endo oder exo selektiv reduziert werden. In einem weiteren Reaktionsschritt wird dann in Gegenwart einer starken Base das Phosphin-Phosphinit gebildet. Die eben dargestellten Verfahren werden im folgenden anhand eines bevorzugten Verfahrens näher erläutert.
Das verwnedete Ausgangsprodukt 8-Bromo-Campher ist nach einer literaturbekannten Vorschrift (W. M. Dadson, M. Lam,T. Money, S. E. Piper. Can. J. Chem., 1983, 67, 343; P. Cachia, N. Darby, C. R. Eck, T. Money. J. Chem.Soc, Perkin 1, 1976, 359) erhältlich.
Zur Herstellung der erfindungsgemäßen Verbindungen der Formeln (I) und (II) wird zuerst 8-Bromo-Campher oder ein entsprechend substituiertes Derivat mit Selendioxid oxidiert
Figure imgf000011_0001
und in Gegenwart des Alkaliphosphids zum Keto-Phosphin cyclisiert Bemerkenswert ist hierbei, dass die Cyclisierung selektiv verläuft, im Falle des Campher-Grundgerüstes findet die Cyclisierung selektiv mit der Ketogruppe am C3 statt.
Figure imgf000011_0002
Die endo I exo Selektivität der Reduktion kann durch die Wahl des Reduktionsmittels gesteuert werden. Bei der Verwendung von Lithiumaluminiumhydrid wird z. B. ein exo : endo Verhältnis von 21 :1 erhalten. Wird zur Reduktion z. B. Natriumborhydrid eingesetzt entsteht das eπcfo-Produkt im Verhältnis 1.3:1
Reduktion PR1R1'
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
endo exo
Die Umsetzung der freien Hydroxygruppe zum Phosphinit gelingt dann glatt, z. B. in Gegenwart einer Lithiumbase.
Figure imgf000012_0004
Figure imgf000012_0005
Folglich betrifft die Erfindung auch ein Verfahren zur Herstellung von bindentaten Organophosphorverbindung gemäß den Formeln (I) und (II) umfassend die Verfahrensschritte:
a) Oxidation einer 8-Halogeno-Campher-Verbindung (III) in eine entsprechende 2,3-Di-Keto-Verbindung,
Figure imgf000013_0001
(III) b) Cyclisierung des aus a) erhaltenen Produktes unter Zugabe eines Alkaliphosphids c) Reduktion der aus b) erhaltenen tricyclischen Keto-Phosphins zu der entsprechenden Hydroxyverbindung und d) Umsetzung des Produktes aus c) mit einem Phosphinhalogenid in Gegenwart einer starken Base zu dem Phosphin-Phosphinit.
Ein bevorzugtes Verfahren ist durch eine selektive Cyclisierung gekennzeichnet, wobei von Edukten ausgegangen wird bei denen R3 und R6 verschieden sind, besonders bevorzugt sind Verfahren bei denen die Cyclisierung selektiv mit der KKeettoo--GGrruuppppee aamm CC33--AAttoonm des Grundgerüstes statt findet, wobei R6 bevorzugt einen Wasserstoffrest darstellt.
Die Erfindung betrifft ferner Komplexverbindungen, die mindestens einen chiralen bidentaten Organophosphorliganden ausgewählt aus der Gruppe der Phosphin- Phosphinite der Formel (I) und (II) mit mindestens einem Metall enthalten.
Die Herstellung dieser Metall-Ligand-Komplexverbindungen kann in situ durch Reaktion eines Metallsalzes oder eines entsprechenden Vorkomplexes mit den Liganden der allgemeinen Formeln (I) und (II) erfolgen. Darüber hinaus kann eine Metall-Ligand-Komplexverbindung durch Reaktion eines Metallsalzes oder eines entsprechenden Vorkomplexes mit den Liganden der allgemeinen Formeln (I) und (II) und anschließende Isolierung gewonnen werden. Die Erzeugung einer solchen Komplexverbindung erfolgt bevorzugt in einer Eintopfreaktion unter Rühren bei erhöhter Temperatur. Katalytisch aktive Komplexverbindungen können dabei auch direkt im Reaktionsansatz der geplanten katalytischen Umsetzung erzeugt werden werden.
Beispiele für die Metallsalze sind Metallchloride, -bromide, -iodide, -cyanide, -nitrate, -acetate, -acetylacetonate, -hexafluoracetylacetonate, tetrafluoroborate, -perfluoracetate oder -triflate, insbesondere des Palladium, Platins, Rhodium, Ruthenium, Osmium, Iridium, Kobalts, Nickels oder/und des Kupfers.
Beispiele für die Vorkomplexe sind:
Cyclooctadienpalladiumchlorid, Cyclooctadienpalladiumiodid, 1 ,5-Hexadienpalladiumchlorid, 1 ,5-Hexadienpalladiumiodid, Bis(dibenzylidenaceton)palladium, Bis(acetonitril)palladium(ll)chlorid, , Bis(acetonitril)palladium(ll)bromid, Bis(benzonitril)palladium(ll)chlohd, Bis(benzonitril)palladium(ll)bromid, Bis(benzonitril)palladium(ll)iodid, Bis(allyl)palladium, Bis(methallyl)palladium, Allylpalladiumchlorid-Dimer, Methallylpalladiumchlorid-Dimer, Tetramethylethylendiaminpalladiumdichlorid, Tetramethylethylendiaminpalladiumdibro id, Tetramethylethylendiaminpalladiumdiiodid, Tetramethylethylendiaminpalladiumdimethyl,
Cyclooctadienplatinchlorid, Cyclooctadienplatiniodid, 1 ,5-Hexadienplatinchlorid, 1 ,5-Hexadienplatiniodid, Bis(cyclooctadien)platin, Kalium(ethylentrichloroplatinat), Cyclooctadienrhodium(l)chlorid-Dimer, Norbornadienrhodium(l)chlorid-Dimer, 1 ,5-Hexadienrhodium(l)chlorid-Dimer, Tris(triphenylphosphan)rhodium(l)chlorid, Hydridocarbonyltris(triphenylphosphan)rhodium(l)chlorid,
Bis(cyclooctadien)rhodium(l)perchlorat, Bis(cyclooctadien)rhodium(l)tetrafluorborat, Bis(cyclooctadien)rhodium(l)triflat, Bis(acetonitrilcyclooctadien)rhodium(l)perchlorat, Bis(acetonitrilcyclooctadien)rhodium(l)tetrafluorborat, Bis(acetonitrilcyclooctadien)rhodium(l)triflat, Cyclopentadienrhodium(lll)chlorid-Dimer, Pentamethylcyclopentadienrhodium(lll)chlorid-Dimer, (cyclooctadien)Ru(η3-allyl)2, ((cyclooctadien)Ru)2(acetat) , ((Cyclooctadien)Ru)2(trifluoracetat) , RuCI2(Aren)-Dimer, Tris(triphenylphosphan)ruthenium(ll)chlorid, Cyclooctadienruthenium(ll)chlorid, OsCI2(Aren)-Dimer, Cyclooctadieniridium(l)chlorid-Dimer,
Bis(cycloocten)iridium(l)chlorid-Dimer,
Bis(cyclooctadien)nickel, (Cyclododecatrien)nickel, Tris(norbornen)nickel,
Nickeltetracarbonyl, Nickel(ll)acetylacetonat,
(Aren)kupfertriflat, (Aren)kupferperchlorat, (Aren)kupfertrifluoracetat, Kobaltcarbonyl.
Bevorzugte Komplexverbindungen können durch die allgemeinen Formel (III), die erfindungsgemäße Verbindungen der Formeln (I) und (II) als Liganden enthalten, beschrieben werden
[MxPyLzSq]Ar (III)
wobei in der allgemeinen Formel (III) M ein Übergangsmetallzentrum, L gleiche oder verschiedene koordinierende organische oder anorganische Liganden und P erfindungsgemäße bidentate Organophosphorliganden der Formeln (I) und (II) darstellen, S koordinierende Lösungsmittelmoleküle und A Äquivalente aus nicht koordinierenden Anionen repräsentiert, wobei x 1 oder 2 ist, y eine ganze Zahl größer oder gleich 1 ist und z, q und r unabhängig voneinander ganze Zahlen größer oder gleich 0 sind.
Die Summe y + z + q wird durch die an den Metallzentren zur Verfügung stehenden Koordinationszentren nach oben begrenzt, wobei nicht alle Koordinationsstellen besetzt sein müssen. Bevorzugt sind Komplexverbindungen mit oktaedrischer, pseudo-oktaedrischer, tetraedrischer, pseudo-tetraedrischer, quadratisch-planarer Koordinationssphäre, die auch verzerrt sein kann, um das jeweilige Übergangsmetallzentrum. Die Summe y + z + q ist in solchen Komplexverbindungen kleiner oder gleich 6x.
Die erfindungsgemäßen Komplexverbindungen enthalten mindestens ein Metallatom oder -ion, vorzugsweise ein Übergangsmetallatom oder -ion, insbesondere aus Palladium, Platin, Rhodium, Ruthenium, Osmium, Iridium, Kobalt, Nickel, oder/und Kupfer. Bevorzugt sind Komplexverbindungen mit weniger als vier Metallzentren, besonders bevorzugt solche mit ein oder zwei Metallzentren. Die Metallzentren können dabei mit verschiedenen Metallatomen und/oder -ionen besetzt sein.
Bevorzugte Liganden L solcher Komplexverbindungen sind Halogenid, besonders Cl, Br und I, Dien, besonders Cyclooctadien, Norbomadien, Olefin, besonders Ethylen und Cycloocten, Acetato, Trifluoracetato, Acetylacetonato, Allyl, Methallyl, Alkyl, besonders Methyl und Ethyl, Nitril, besonders Acetonitril und Benzonitril, sowie Carbonyl und Hydrido Liganden.
Bevorzugte koordinierende Lösungsmittel S sind Amine, besonders Triethylamin, Alkohole, besonders Methanol und Aromaten, besonders Benzol und Cumol.
Bevorzugte nichtkoordinierende Anionen A sind Trifluoracetat, Trifluormethan- sulfonat, BF4; CI04, PF6, SbF6, und BAr4.
In den einzelnen Komplexverbindungen können dabei unterschiedliche Moleküle, Atome oder Ionen der einzelnen Bestandteile M, P, L, S und A enthalten sein.
Bevorzugt unter den ionisch aufgebauten Komplexverbindungen sind Verbindungen des Typs [RhP(Dien)]+A", wobei P einen erfindungsgemäßen Liganden der Formeln (I) und (II) repräsentiert.
Die beschriebenen Liganden und Komplexverbindungen können bei katalytischen asymmetrischen Polymerisationen und Reaktionen, wie z. B. bei in asymmetrischen Hydrierungen, Hydroformylierungen, Umlagerungen, allylischen Alkylierungen, Cyclopropanierungen, Hydrosilylierungen, Hydridübertragungsreaktionen, Hydroborierungen, Hydrocyanierungen, Hydrocarboxylierungen, Aldol Reaktionen, Pauson-Khand Reaktionen oder Heck-Reaktionen, verwendet werden. Ausführungsbeispiele :
Die folgenden Beispiele dienen zur Erläuterung der Erfindung. Sie sollen in keiner Weise eine Beschränkung darstellen.
Beispiel 1: (1R,7S)-7-(Brommethyl)-1 ,7-dimethylbicyclo[2.2.1]heptan-2,3-dion
Eine Lösung von 20g (86.5 mmol) 9-Bromo-campher und 20g (180.2 mmol) Selendioxid in 150 ml Essigsäure wird 12h unter Rückfluß erhitzt und anschließend auf Raumtemperatur abgekühlt. Die Lösung wird über Celite filtriert und mit Methanol gewaschen. Alle flüchtigen Verbindungen werden im Vakuum entfernt und der Rückstand wird im Anschluß in 200ml Ether aufgenommen und zweimal mit 50 ml Wasser und einmal mit 50 ml ges. Natriumhydrogencarbonat Lösung gewaschen. Das Lösungsmittel wird entfernt und das Rohprodukt aus Heptan umkristallisiert. Das Produkt wird in gelben Kristallen in einer Ausbeute von 19.69 g (93%) erhalten.
1H-NMR (CDCI3): δ = 3.32 (1 H), 2.98 (1 H), 2.97 (1 H), 2.17 (1 H), 2.03 (1 H), 1.78 (1 H), 1.65 (1 H), 1.25
(3H), 1.14(3H) ppm.
Beispiel 2: (1R,3S,6S,7S)-3-diphenylphosphanyl-1 ,6-dimethyl-4-oxatricyclo[4.3.0.0]- nonan-2-on
Zu einer Lösung von 1.06 mmol Lithiumdiphenylphosphid in 15 ml THF werden tropfenweise bei -78°C 2.6g (1 mmol) (1R,7S)-7-(Brommethyl)-1 ,7-dimethyl- bicyclo[2.2.1]-heptan-2,3-dion (gelöst in 15 ml THF) zugetropft. Die Reaktionslösung wird über Nacht bei Raumtemperatur gerührt. Im Anschluß wird das Lösungsmittel im Vakuum entfernt, Der Rückstand in 100ml Ether aufgenommen und die organische Phase mit Wasser gewaschen. Der Ether wird im Vakuum entfernt und das Rohprodukt dann aus Aceton umkristallisiert. Das Produkt fällt in farblosen Kristallen mit einer Ausbeute von 53% an. 1H-NMR (C6D6): δ = 0.75 (3H), 1.05 (3H), 1.24 (3H), 1.62-1.92 (3H), 2.22 (1H), 2.27 (1H), 3.74 (1 H),
3.91 , 7.45-7.63 (6H), 8.29-8.34 (2H), 8.52-8.57 (2H) ppm.
31P- NMR (C6D5): δ = -19.3 ppm.
Beispiel 3: (1 R,2R,3S,6S,7S)-3-diphenylphosphanyl-1 ,6-dimethyl-4- oxatricyclo[4.3.0.0]nonan-2-ol
Zu einer Lösung von 5.3g (15mmol) des Keto-Phosphins (BeispieM) in 80 ml abs. Ether wird 1g Lithiumaluminiumhydrid unter Eiskühlungzugegeben. Im Anschluß wird die Reaktionslösung 1 h unter Rückfluß erhitzt. Die Reaktionslösung wird vorsichtig mit Wasser hydrolysiert und die wäßrige Phase dreimal mit Ether extrahiert. Nach dem Trocknen wird das Lösungsmittel entfernt und das Rohprodukt mittels Chormatographie gereinigt. Das eπ o-lsomer wird in einer Ausbeute von 66% erhalten.
1H-NMR (C6D6): δ = 0.67 (3H), 1.05 (3H), 1.23-1.32 (1 H), 1.50-1.67 (2H), 1.99-2.07 (1H), 2.19 (1 H),
2.44-2.49 (1H), 3.51 (1 H), 3.67 (1 H), 3.94-3.99 (1 H), 7.27-7.45 (6H), 8.17-8.22 (2H),
8.24-8.29 (2H) ppm.
3 P- NMR (C6D6): δ = -16.1 ppm.
Beispiel 4: (1 R,2S,3S,6S,7S)-3-diphenylphosphanyl-1 ,6-dimethyl-4- oxathcyclo[4.3.0.0]nonan-2-ol
Zu einer Lösung von 0.85g (2.43mmol) des Keto-Phosphins (BeispieM) in 80 ml 2- Propanol werden unte Eiskühlung 0.3g Natriumborhydrid gegeben. Die Reaktionslösung wird 1 h unter Rückfluß erhitzt. Im Anschluß wird das Lösungsmittel entfernt und der Rückstand in 70 ml Ether und 20 ml Wasser aufgenommen. Die organische Phase wird erneut mit Wasser gewaschen, getrocknet und das Lösungsmittel wird im Vakuum entfernt. Das Rohprodukt wird mittels Chromatographie gereinigt. Das exo-lsomer wird in einer Ausbeute von 46% erhalten.
1H-NMR (C5D6): δ = 0.76 (3H), 0.99 (3H), 1.40-1.50 (1 H), 1.67-1.73 (2H), 2.01 (1 H), 2.28-2.45 (2H),
3.44 (1 H), 3.74 (1 H), 3.82 (1 H), 7.28-7.43 (6H), 8.05-8.11 (2H), 8.36-8.42 (2H) ppm.
31P- NMR (C6D6): δ = -22.0 ppm.
Allgemeine Arbeitsvorschrift zur Phosphorylierung der Hydrxyphosphine:
Zu eine Lösung von 0.17ml n-Butyllithium (1.6M in Hexan) in 5ml abs. THF werden bei -75°C 93mg (0.26 mmol) des Hydroxyphosphins (in 5ml THF) zugegeben. Im Anschluß wird die Lösung auf Raumtemperatur erwärmt und 1 h gerührt. Zu dieser Lösung werden 0.26 mmol eine Chlorphosphans gegeben, die Lösung 3h bei Raumtemperatur gerührt und anschließend 3h unter Rückfluß erwärmt. Das Lösungsmittel wird entfernt und es werden 10ml Benzol zugegeben. Die Lösung wird filtriert und das Lösungsmittel entfernt.
Beispiel 5: (1 R,2S,3S,6S,7S)-3-diphenylphosphanyl-1 ,6-dimethyl-4- oxatricyclo[4.3.0.0]nonan-2yl-diphenylphosphinit
1H-NMR (C6D6): δ = 0.86 (3H), 0.87 (3H), 1.47-1.50 (1 H), 1.60-1.90 (2H), 2.20-2.24 (2H), 3.92 (1 H),
4.49 (1 H), 4.65-4.70 (1 H), 7.40-7.60 (12H), 7.85-8.05 (4H), 8.35-8.43 (2H), 8.60-
8.70 (2H) ppm.
31P- NMR (C6D6): δ = -13.2, 114.5 ppm.
Beispiel 6: (1 R,2R,3S,6S,7S)-3-diphenylρhosphanyl-1 ,6-dimethyl-4- oxatricyclo[4.3.0.0]nonan-2yl-diphenylphosphinit
1H-NMR (C6D6): δ = 0.32 (3H), 0.63 (3H), 1.08-1.18 (1 H), 1.40-1.52 (1H). 1.64 (1H), 1.92-2.02 (1 H), 2.30-2.40 (1H), 3.05 (1 H), 3.40 (1H), 4.13 (1H), 6.82-7.06 (12H), 7.42 (2H), 7.59 (2H), 7.74 (2H), 8.00 (2H) 31P- NMR (C6D6): δ = -17.7, 116.8 ppm.
Beispiel 7: (1 R,2R,3S,6S,7S)-3-diphenylphosphanyl-1 ,6-dimethyl-4- oxatricyclo[4.3.0.0]nonan-2yl-dicyclohexylphosphinit
1H-NMR (C6D6): δ = 0.95 (3H), 1.31-2.77 (30H), 3.63 (1H), 4.05 (1 H), 4.52 (1H), 7.45-7.70 (6H), 8.24
(2H), 8.71 (2H) ppm.
31P- NMR (CDCI3): δ = -19.6, 143.1 ppm.

Claims

Patentansprüche:
1. Bidentate Organophosphorliganden der allgemeinen Formeln (I) und (II),
Figure imgf000021_0001
wobei die Reste
R1, R1 , R2, R2' unabhängig voneinander für einen Rest ausgewählt aus der Gruppe d-C-24 Alkyl. C3-C8 Cycloalkyl, wobei der Cyclus 1-2 Heteroatome, ausgewählt aus der Gruppe N, O, S enthalten kann, C5-C14 Aryl, C2-C13 Heteroaryl, wobei die Zahl der Heteroatome, ausgewählt aus der Gruppe N, O, S, 1-4 betragen kann, stehen, wobei die vorgenannten Reste selbst jeweils ein oder mehrere Substituenten tragen können und wobei die Reste R1 und R1 sowie R2 und R2 unabhängig voneinander miteinander verbrückt sein können und worin der Rest
R 53 f f.ü-.r einen Rest ausgewählt aus der Gruppe d-C24 Alkyl, C3-C12 Cycloalkyl stehen kann und worin die Reste
R4, R4 , R5, R5', Rs, R7, R8, R8' unabhängig voneinander für einen Rest ausgewählt aus der Gruppe
Wasserstoff, C1-C24 Alkyl, C3-C12 Cycloalkyl, C5-C14 Aryl, stehen können, wobei die vorgenannten Reste R4 bis R8 unabhängig voneinander auch jeweils einen oder mehrere weitere Substituenten tragen können und wobei auch zwei der Reste R4 bis R8 miteinander verknüpft sein können und worin
P für einen dreiwertigen Phosphor steht.
2. Bidentate Organophosphorliganden gemäß Anspruch 1 mit der allgemeinen Formeln (la) und (lla),
Figure imgf000022_0001
wobei die Reste R )1', r R_ 11' , r R->2*. R)2' die oben genannte Bedeutung haben.
3. Verbindungen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verbindungen der Formeln (I) und (II) diastereomerenangereichert sind.
4. Komplexverbindungen enthaltend mindestens einen bidentaten Organophosphorliganden ausgewählt aus der Gruppe der Phosphin- Phosphinite der Formeln (I) und (II) gemäß Anspruch 1.
5. Komplexverbindungen gemäß Anspruch 4 entahltend mindestens ein Metall oder Metallion ausgewählt aus der Gruppe Palladium, Platin, Rhodium, Ruthenium, Osmium, Iridium, Kobalt, Nickel und Kupfer.
6. Verwendung einer bindentaten Organophosphorverbindung nach einem der Ansprüche 1 bis 3 oder einer Komplexverbindung nach einem der Ansprüche 4 oder 5 für asymmetrische katalytische Reaktionen oder Polymerisationen.
7. Verwendung einer bindentaten Organophosphorverbindung oder einer Komplexverbindung gemäß Anspruch 6 für asymmetrische Hydrierung, Hydroformylierung, Umlagerung, allylischen Alkylierung, Cyclopropanierung, Hydrosilylierung, Hydridübertragungsreaktionen, Hydroborierungen, Hydrocyanierungen, Hydrocarboxylierungen, Aldol Reaktionen, Pauson- Khand Reaktionen oder Heck-Reaktionen.
8. Verfahren zur Herstellung von bindentaten Organophosphorverbindung gemäß einem der Ansprüche 1 bis 3 umfassend die Verfahrensschritte a) Oxidation einer 8-Halogeno-Campher-Verbindung (III) in eine entsprechende 2, 3-Di-Keto- Verbindung,
Figure imgf000024_0001
(III) b) Cyclisierung des aus a) erhaltenen Produktes unter Zugabe eines Alkaliphosphids c) Reduktion der aus b) erhaltenen tricyclischen Keto-Phosphins zu der entsprechenden Hydroxyverbindung und d) Versetzung des Produktes aus c) mit einem Phosphinhalogenid in Gegenwart einer starken Base zu dem Phosphin-Phosphinit.
Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass als Edukt eine Verbindung gemäß Formel (III) mit R6 gleich Wasserstoff eingesetzt wird, wobei in Schritt b) selektiv die C3-Ketogruppe cyclisiert wird.
PCT/EP2004/009620 2003-09-17 2004-08-28 Tricyclische phosphin-phosphinite und ihre verwendung in der katalyse WO2005035543A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003143266 DE10343266A1 (de) 2003-09-17 2003-09-17 Tricyclische Phosphin-Phosphinite und ihre Verwendung in der Katalyse
DE10343266.3 2003-09-17

Publications (1)

Publication Number Publication Date
WO2005035543A1 true WO2005035543A1 (de) 2005-04-21

Family

ID=34352940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009620 WO2005035543A1 (de) 2003-09-17 2004-08-28 Tricyclische phosphin-phosphinite und ihre verwendung in der katalyse

Country Status (2)

Country Link
DE (1) DE10343266A1 (de)
WO (1) WO2005035543A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476246B2 (en) * 2000-10-25 2002-11-05 Degussa Ag Bidentate phosphorus ligands and their use in catalysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476246B2 (en) * 2000-10-25 2002-11-05 Degussa Ag Bidentate phosphorus ligands and their use in catalysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOMAROV I V ET AL: "Synthesis of chiral functionalized phosphine ligands based on camphor skeleton", TETRAHEDRON: ASYMMETRY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 8, no. 3, 6 February 1997 (1997-02-06), pages 435 - 445, XP004050114, ISSN: 0957-4166 *
SELL T ET AL: "A Concise Ex Chiral Pool Approach to Novel Bidentate Camphane Phosphane Ligands", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, WILEY-VCH VERLAG, WEINHEIM, DE, no. 24, 4 December 2000 (2000-12-04), pages 4119 - 4124, XP002183402, ISSN: 1434-193X *

Also Published As

Publication number Publication date
DE10343266A1 (de) 2005-04-21

Similar Documents

Publication Publication Date Title
EP0398132B1 (de) Phosphorverbindungen
EP0582692B1 (de) Diphosphinliganden
EP1507783B1 (de) Hydroxydiphosphine und deren verwendung in der katalyse
DE69114986T2 (de) Eine Phosphino-Binapthyl-Verbindung und Übergangsmetall-Komplexe davon.
EP0579797B1 (de) Diphosphinliganden
EP1175426B1 (de) Bidentate organophosphorliganden und ihre verwendung
DE60203193T2 (de) Neue diphosphine, deren komplexe mit übergangsmetallen und deren verwendung in der asymmetrischen synthese
DE60004759T2 (de) Optisch aktive Diphosphinverbindung, Zwischenprodukte für seine Herstellung, Übergangsmetallkomplex enthaltend die Verbindung als Ligand und Katalysator für asymmetrische Hydrierungen, welcher den Komplex enthält
EP1311517B1 (de) Cycloaliphatisch-aromatische diphosphine und ihre verwendung in der katalyse
EP1201673B1 (de) Bidentate Organophosphorliganden und ihre Verwendung in der Katalyse
EP1394168B1 (de) Verfahren zur Herstellung von Phosphiten und Übergangsmetallkomplexen
EP1483276B1 (de) Ferrocenylliganden und ihre verwendung in der katalyse
DE10219490A1 (de) Ferrocenylliganden und ein Verfahren zur Herstellung solcher Liganden
WO2005035543A1 (de) Tricyclische phosphin-phosphinite und ihre verwendung in der katalyse
EP1119574B1 (de) Substituierte isophosphindoline und ihre verwendung
DE102004022900A1 (de) Chirale Diphosphorverbindungen und deren Übergangsmetallkomplexe
EP1595886A1 (de) Chirale Diphosphinoterpene und deren Übergangsmetallkomplexe
DE102004022397A1 (de) Chirale C2-symmetrische Biphenyle, deren Herstellung sowie Metallkomplexe enthaltend diese Liganden und deren Verwendung als Katalysatoren in chirogenen Synthesen
EP1636243B1 (de) Chirale liganden zur anwendung in asymmetrischen synthesen
DE102006055716A1 (de) Imidazo(1,5-b)pyridazin-amido-Liganden und deren Komplexverbindungen
DE10052391A1 (de) Bidentate Organophosphorliganden
DE19544448A1 (de) Verfahren zur Herstellung methylenverbrückter Heteroverbindungen sowie neue Bis(diorganylphosphino)methane
EP1256570A1 (de) Mehrzähnige unsymmetrische Liganden auf Binaphthylbasis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase