WO2005034029A1 - Etiquette optique d’identifcation adressable par une unite de lecture - Google Patents

Etiquette optique d’identifcation adressable par une unite de lecture Download PDF

Info

Publication number
WO2005034029A1
WO2005034029A1 PCT/FR2004/002399 FR2004002399W WO2005034029A1 WO 2005034029 A1 WO2005034029 A1 WO 2005034029A1 FR 2004002399 W FR2004002399 W FR 2004002399W WO 2005034029 A1 WO2005034029 A1 WO 2005034029A1
Authority
WO
WIPO (PCT)
Prior art keywords
label
zone
optical
zones
reading unit
Prior art date
Application number
PCT/FR2004/002399
Other languages
English (en)
Inventor
Olivier Savry
François VACHERAND
Elisabeth Crochon
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2005034029A1 publication Critical patent/WO2005034029A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0702Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery
    • G06K19/0704Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery the battery being rechargeable, e.g. solar batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • G06K19/0728Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs the arrangement being an optical or sound-based communication interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07701Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction
    • G06K19/07703Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction the interface being visual
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/1097Optical sensing of electronic memory record carriers, such as interrogation of RFIDs with an additional optical interface

Definitions

  • the invention relates to an optical identification label addressable by a reading unit, the label comprising a logic circuit connected to means for receiving coded optical signals, optical transmission means, a memory containing an identification code. and to supply means comprising at least one photovoltaic cell.
  • RFID radio frequency identification
  • Identification systems by optical or infrared radiation (IR) have also been proposed and can, in principle, be used in any field where an identification of the RFID type is used and, in particular, in the field of logistics, mass distribution, home automation, distributed sensor networks, etc., with however the need for a direct view between the labels and the associated reading unit.
  • Labels using visible or IR wavelengths are generally produced using macro-components whose autonomy is ensured by a battery.
  • the document FR2701 142 describes an identification system making it possible to find labeled objects from a reading unit emitting an IR signal.
  • a label includes a light-emitting diode and an IR sensor allowing communication between the reading unit and the label.
  • the label includes two power sources, including a battery and a photovoltaic cell to amplify the signal from the IR sensor. The label is thus complex, relatively bulky and heavy.
  • Document US5825045 describes a label communicating with a reading unit.
  • the label comprises a RAM type memory and a photosensitive surface receiving ambient light for supplying the label and a laser beam coming from the reading unit.
  • the label includes a processor and a transmitter.
  • the memory, the processor and the transmitter can be integrated into an integrated device, which must then be assembled with the photosensitive surface, which is difficult to achieve.
  • Document WO9601473 describes a label comprising a control circuit connected to electro-optical cells receiving modulated optical signals.
  • the label also includes light-emitting diodes and a memory containing information corresponding to a bar code.
  • the electro-optical cells can serve as a receiver of modulated signals and a receiver of supply energy simultaneously.
  • Light emitting diodes are used as information transmitters.
  • the document proposes to group several of its distinct elements on the same substrate to limit the number of interconnections, for example in the form of a micro-assembly. However, such a micro-assembly is difficult to implement.
  • the object of the invention is to remedy these drawbacks and, in particular, to produce an optical identification label of simple construction and of low cost.
  • the label is constituted by a stack of layers arranged on a support and comprising first, second and third zones, the first zone forming the memory and the logic circuit, at least a second zone forming the optical transmission means and at least one photovoltaic cell constituting at least a third zone and simultaneously forming the means for receiving the coded optical signals and the supply means.
  • Another object of the invention is an identification system comprising at least one label according to the invention and a reading unit comprising an optical receiver, an optical transmitter, a control circuit, a memory and a man-machine interface.
  • FIG. 1 represents a particular embodiment of a label according to the invention.
  • FIG. 2 represents a particular embodiment of a reading unit of the identification system according to the invention.
  • Figures 3 and 4 show two particular embodiments of a label according to the invention, comprising a plurality of second zones and a plurality of third zones respectively associated.
  • FIG. 5 schematically illustrates a particular embodiment of a stack constituting the label according to the invention.
  • the optical identification label shown in FIG. 1 consists of a single stack of layers comprising a first zone 1, a second zone 2 and two third zones 3.
  • the stack of layers is placed on a support 4.
  • the first zone 1 forms a logic circuit 5 and a memory 6 (for example of the ROM, EEPROM type) containing an identification code ID and connected to the logic circuit 5.
  • the second zone 2 forms three light-emitting diodes 7 connected to the logic circuit 5 and emitting signals S1, possibly modulated.
  • the third zones 3 are constituted by photovoltaic cells 8 connected to the logic circuit 5 to which they transmit electrical signals S2.
  • the label is obtained by using the same stack of layers to produce an electronic component juxtaposed with an optical component, with a photovoltaic component and with supply means.
  • the photovoltaic cells 8 simultaneously allow the supply of the label by absorption of light L and the reception of coded optical signals S3, carrying energy and / or information.
  • the tag can be supplied by capturing ambient light if the ambient brightness is sufficient, or by receiving light emitted by a reading unit associated with the tag.
  • the logic circuit 5 manages the different functions of the label.
  • the integration of the power supply function and the signal reception function in the same element makes it possible to reduce the size of the label compared to optical labels according to the prior art.
  • the label according to the invention can be produced during a single manufacturing process, resulting in an entirely integrated device and of a very thin thickness, for example by using thin film techniques known from microelectronics. .
  • the second zone can comprise several light-emitting diodes 7 emitting light of different colors and, preferably, complementary.
  • the second zone can also include liquid crystal display elements by absorption ("LCD: liquid crystal display”).
  • the second zone 2 comprises three light-emitting diodes 7 emitting light of different colors, for example red, green and blue (RGB), and the logic circuit 5 comprises means for selective control of the light emitting diodes 7 as shown in FIG. 1.
  • the information emitted by the label can be coded by color modulation.
  • coding can be done by using linear combinations of the three RGB colors, each coded on three bytes.
  • information corresponding to 24 bits can be transmitted. If the information is larger than 24 bits, several sets of light-emitting diodes 7 each corresponding to 24 bits can be combined.
  • the proper color of the emission surface is superimposed on the colors of the signals S1 emitted by the light-emitting diodes 7, for example by organic light-emitting diodes (“OLED: organic light emitting diode”), or by the elements of the type LCD.
  • OLED organic light-emitting diode
  • each color red, green, blue, etc.
  • the information can, for example, be coded by a sequence of successive signals S1.
  • Each of the signals S1 can, for example, be coded by a superposition of several colors (red and green, blue and green, etc.) or by a single color (red, green, blue, etc.).
  • the emission of an overlay of all colors, i.e. white light, for a predetermined period of time can be used at the beginning and at the end of a message to calibrate system parameters , for example the maximum transmission power and a unit duration of the signals S1.
  • the coding can also take into account the durations of the signals S1 and the intervals between the signals S1.
  • Manchester coding can also be used to synchronize the received data.
  • An identification system comprises at least one optical identification label and an optical reading unit.
  • the labels of the identification system communicate with the reading unit by emission and reception of light.
  • the reading unit represented in FIG. 2 comprises an optical receiver 9 constituted by a camera, an optical transmitter 10, a control circuit 11, a memory 12 (for example of the ROM type) and a man-machine interface 13, by example a keyboard or a touch screen.
  • the control circuit 11 manages the various functions of the reading unit.
  • the optical transmitter 10 is constituted by a plurality of light-emitting diodes.
  • the optical transmitter 10 emits light L powerful enough to be able to supply the label with light from the photovoltaic cells 8.
  • the optical receiver 9 of the reading unit can also be constituted by optical sensors, for example by photodiodes, capable of receiving the optical signals S1, possibly modulated, coming from the label.
  • the label receives, via the photovoltaic cells 8, coded optical signals S3 emitted by the optical transmitter 10 of the reading unit.
  • the photovoltaic cells transmit electrical signals S2 (FIG. 1) to the logic circuit 5.
  • the interpretation of the electrical signals S2 can give rise to a reading or a writing in the memory 6 of the label.
  • the label can also respond to the reading unit by sending the signal S1, modulated by means of light-emitting diodes 7.
  • the label comprises a plurality of second zones 2 associated respectively with a plurality of third zones 3 and arranged in a matrix.
  • the second zones 2a, 2b, etc. are made up of elements of the LCD or OLED type and send signals S1a, S1 b, etc. respectively.
  • each second zone 2 corresponds to its own transmission channel, which makes it possible to increase the rate of transfer of information from the label to the reading unit.
  • Each third zone 3a, 3b can also receive coded optical signals S3a, S3b and thus corresponds to an own channel for transmitting information from the reading unit to the label.
  • the second zones 2 emit signals S1 of different colors.
  • information is transmitted by color modulation coding and via a plurality of channels, which corresponds to a series of color images, each third area 3 corresponding to a pixel of the image.
  • the optical receiver 9 of the reading unit preferably comprises a camera, making it possible to distinguish the different transmission channels, for example, by image processing.
  • FIG. 5 illustrates a stack of thin layers placed on a transparent support 4, for example made of glass, and comprising the first zone 1, the second zone 2 and a third zone 3.
  • the first zone 1 is illustrated by a single transistor 14, of the thin film transistor type (“TFT: thin film transistor”), which can, for example, be made of poly-silicon.
  • the second zone 2 comprises an organic light-emitting diode 15 constituted by several organic layers 16 (16a, 16b, 16c).
  • the third zone 3 comprises a photovoltaic cell 8 constituted by a PIN type photovoltaic diode, comprising a first semiconductor layer 17 with N-type dopants, a second non-doped semiconductor layer 18 and a third semiconductor layer 19 with P-type dopants.
  • the semiconductor layers 17 to 19 can, for example, be produced by growth and etching of hydrogenated amorphous silicon.
  • the photovoltaic cell 8 and the OLED diode 15 are arranged on transparent conductive layers 20, for example made of a material comprising tin (Sn), indium (In) and oxygen (O) ("ITO: indium tin oxide").
  • Contacts 21 are respectively arranged on the photovoltaic cell 8 and on the OLED diode 15.
  • the second zone 2 of the label can include any kind of optical radiation emitter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Optical Communication System (AREA)

Abstract

L'étiquette comporte un circuit logique (5) connecté à au moins une cellule photovoltaïque (8), à un émetteur optique (7) et à une mémoire (6) contenant un code d'identification (ID). La cellule photovoltaïque (8) permet d'alimenter l'étiquette et de recevoir des signaux optiques codés (S3). L'étiquette est constituée par un empilement de couches disposé sur un support (4) et comportant des première (1), deuxième (2) et troisième zones (3). La première zone (1) forme la mémoire (6) et le circuit logique (5). La deuxième zone (2) forme l'émetteur optique (7). La troisième zone (3) est constituée par la cellule photovoltaïque (8). La deuxième zone (2) peut comporter plusieurs diodes (7) émettant de la lumière de couleurs différentes et le codage des informations peut, ainsi, être effectué par modulation de couleur. L'unité de lecture peut comporter une source de lumière permettant l'alimentation de l'étiquette par éclairement des cellules photovoltaïques (8). L'unité de lecture peut comporter une caméra.

Description

Etiquette optique d'identification adressable par une unité de lecture
Domaine technique de l'invention
L'invention concerne une étiquette optique d'identification adressable par une unité de lecture, l'étiquette comportant un circuit logique connecté à des moyens de réception de signaux optiques codés, des moyens d'émission optique, une mémoire contenant un code d'identification et à des moyens d'alimentation comportant au moins une cellule photovoltaïque.
État de la technique
Traditionnellement, les étiquettes d'identification sans contact télé-alimentées fonctionnent par transmission d'ondes radiofréquence (« RFID : radio frequency identification »). Actuellement, la technique employée pour transmettre des informations d'une étiquette de type RFID vers une unité de lecture repose sur l'utilisation d'ondes porteuses (typiquement à 125kHz, 13,56MHz, 860MHz et 2,45GHz) et une modulation d'amplitude ou d'impédance avec un codage de type « Manchester ». Les protocoles utilisés mettent en œuvre une liaison bidirectionnelle.
Des systèmes d'identification par rayonnement optique ou infrarouge (IR) ont également été proposés et peuvent, en principe, être utilisés dans tout domaine où une identification de type RFID est utilisée et, en particulier, dans le domaine de la logistique, de la grande distribution, de la domotique, des réseaux capteurs répartis, etc., avec cependant la nécessité de vue directe entre les étiquettes et l'unité de lecture associée. Les étiquettes utilisant des longueurs d'onde visible ou IR sont généralement réalisées en utilisant des macro-composants dont l'autonomie est assurée par une batterie.
Le document FR2701 142 décrit un système d'identification permettant de retrouver des objets étiquetés à partir d'une unité de lecture émettant un signal IR. Une étiquette comporte une diode électroluminescente et un capteur IR permettant la communication entre l'unité de lecture et l'étiquette. L'étiquette comporte deux sources d'alimentation, notamment une batterie et une cellule photovoltaïque permettant d'amplifier le signal issu du capteur IR. L'étiquette est ainsi complexe, relativement encombrante et lourde.
Le document US5825045 décrit une étiquette communiquant avec une unité de lecture. L'étiquette comporte une mémoire de type RAM et une surface photosensible recevant de la lumière ambiante pour l'alimentation de l'étiquette et un faisceau laser provenant de l'unité de lecture. L'étiquette comporte un processeur et un émetteur. La mémoire, le processeur et l'émetteur peuvent être intégrés dans un dispositif intégré, qui doit ensuite être assemblé avec la surface photosensible ce qui est difficile à réaliser.
Le document WO9601473 décrit une étiquette comportant un circuit de commande connecté à des cellules électro-optiques recevant des signaux optiques modulés. L'étiquette comporte également des diodes électroluminescentes et une mémoire contenant des informations correspondant à un code barre. Les cellules électro-optiques peuvent servir de récepteur de signaux modulés et de récepteur d'énergie d'alimentation simultanément. Les diodes électroluminescentes sont utilisées comme émetteurs d'informations. Le document propose de grouper plusieurs de ses éléments distincts sur un même substrat pour limiter le nombre d'interconnexions, par exemple sous forme d'un micro-montage. Cependant, un tel micro-montage est difficile à mettre en œuvre.
Objet de l'invention
L'invention a pour but de remédier à ces inconvénients et, en particulier, de réaliser une étiquette optique d'identification de construction simple et de faible coût.
Selon l'invention, ce but est atteint par les revendications annexées et, en particulier, par le fait que l'étiquette est constituée par un empilement de couches disposé sur un support et comportant des première, deuxième et troisième zones, la première zone formant la mémoire et le circuit logique, au moins une deuxième zone formant les moyens d'émission optique et au moins une cellule photovoltaïque constituant au moins une troisième zone et formant simultanément les moyens de réception des signaux optiques codés et les moyens d'alimentation.
L'invention a également pour but un système d'identification comportant au moins une étiquette selon l'invention et une unité de lecture comportant un récepteur optique, un émetteur optique, un circuit de contrôle, une mémoire et une interface homme-machine.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
La figure 1 représente un mode de réalisation particulier d'une étiquette selon l'invention.
La figure 2 représente un mode de réalisation particulier d'une unité de lecture du système d'identification selon l'invention.
Les figures 3 et 4 représentent deux modes de réalisation particuliers d'une étiquette selon l'invention, comportant une pluralité de deuxièmes zones et une pluralité de troisièmes zones respectivement associées.
La figure 5 illustre schématiquement un mode de réalisation particulier d'un empilement constituant l'étiquette selon l'invention.
Description de modes particuliers de réalisation
L'étiquette optique d'identification représentée à la figure 1 est constituée par un unique empilement de couches comportant une première zone 1 , une deuxième zone 2 et deux troisièmes zones 3. L'empilement de couches est disposé sur un support 4. La première zone 1 forme un circuit logique 5 et une mémoire 6 (par exemple de type ROM, EEPROM...) contenant un code d'identification ID et connectée au circuit logique 5. La deuxième zone 2 forme trois diodes électroluminescentes 7 connectées au circuit logique 5 et émettant des signaux S1 , éventuellement modulés. Les troisièmes zones 3 sont constituées par des cellules photovoltaïques 8 connectées au circuit logique 5 auquel elles transmettent des signaux électriques S2. Ainsi, l'étiquette est obtenue par utilisation d'un même empilement de couches pour réaliser un composant électronique juxtaposé à un composant optique, à un composant photovoltaïque et à des moyens d'alimentation.
Les cellules photovoltaïques 8 permettent simultanément l'alimentation de l'étiquette par absorption de lumière L et la réception de signaux optiques codés S3, portant de l'énergie et/ou de l'information. Ainsi, l'étiquette peut être alimentée par captage de la lumière ambiante si la luminosité ambiante est suffisante, ou par réception de lumière émise par une unité de lecture associé à l'étiquette. Le circuit logique 5 gère les différentes fonctions de I étiquette.
L'intégration de la fonction d'alimentation et de la fonction de réception de signaux dans le même élément permet de réduire la taille de l'étiquette par rapport aux étiquettes optiques selon l'art antérieur. Par ailleurs, l'étiquette selon l'invention peut être réalisée au cours d'un seul procédé de fabrication, aboutissant à un dispositif tout intégré et d'une épaisseur très fine, par exemple en utilisant des techniques de couches minces connues de la microélectronique.
La deuxième zone peut comporter plusieurs diodes électroluminescentes 7 émettant de la lumière de couleurs différentes et, de préférence, complémentaires. La deuxième zone peut également comporter des éléments d'affichage à cristaux liquides par absorption (« LCD : liquid crystal display »).
Dans un mode de réalisation particulier, la deuxième zone 2 comporte trois diodes électroluminescentes 7 émettant de la lumière de couleurs différentes, par exemple du rouge, du vert et du bleu (RVB), et le circuit logique 5 comporte des moyens de contrôle sélectif des diodes électroluminescentes 7 comme représenté à la figure 1. Ainsi, les informations émises par l'étiquette peuvent être codées par modulation de couleur. Par exemple, le codage peut être réalisé par utilisation de combinaisons linéaires des trois couleurs RVB, codées chacune sur trois octets. Ainsi, une information correspondant à 24 bits peut être transmise. Si l'information est d'une taille supérieure à 24 bits, plusieurs jeux de diodes électroluminescentes 7 correspondant chacun à 24 bits peuvent être combinés. Par ailleurs, la couleur propre de la surface d'émission se superpose aux couleurs des signaux S1 émis par les diodes électroluminescentes 7, par exemple par des diodes électroluminescentes organiques (« OLED : organic light emitting diode »), ou par les éléments de type LCD.
Si, pour des raisons de simplicité, chaque couleur (rouge, vert, bleu, etc ..) n'est codée que sur un seul bit, l'information peut, par exemple, être codée par une séquence de signaux S1 successifs. Chacun des signaux S1 peut, par exemple, être codé par une superposition de plusieurs couleurs (rouge et vert, bleu et vert, etc..) ou par une seule couleur (rouge, vert, bleu, etc.). L'émission d'une superposition de toutes les couleurs, c'est-à-dire d'une lumière de couleur blanche, pendant une durée prédéterminée peut être utilisée au début et à la fin d'un message pour étalonner des paramètres du système, par exemple la puissance maximale d'émission et une durée unitaire des signaux S1 . Ainsi, le codage peut également tenir compte des durées des signaux S1 et des intervalles entre les signaux S1. Un codage de type Manchester peut également être utilisé pour synchroniser les données reçues.
De préférence, la deuxième zone 2 et les troisièmes zones 3 constituées par les cellules photovoltaïques 8 sont adjacentes sur le support 4 comme représenté à la figure 1. Ainsi, une partie des composantes diffuses parasite de la lumière émise par la deuxième zone 2 est récupérée par les cellules photovoltaïques 8 des troisièmes zones 3, ce qui permet d'augmenter l'autonomie en énergie de l'étiquette. Un système d'identification selon l'invention comporte au moins une étiquette optique d'identification et une unité de lecture optique. Les étiquettes du système d'identification communiquent avec l'unité de lecture par émission et réception de lumière. L'unité de lecture représentée à la figure 2 comporte un récepteur optique 9 constitué par une caméra, un émetteur optique 10, un circuit de contrôle 11 , une mémoire 12 (par exemple de type ROM) et une interface homme-machine 13, par exemple un clavier ou un écran tactile. Le circuit de contrôle 11 gère les différentes fonctions de l'unité de lecture. Sur la figure 2, l'émetteur optique 10 est constitué par une pluralité de diodes électroluminescentes. Dans le mode réalisation représenté à la figure 2, l'émetteur optique 10 émet une lumière L suffisamment puissante pour pouvoir assurer l'alimentation de l'étiquette par éclairement des cellules photovoltaïques 8.
Le récepteur optique 9 de l'unité de lecture peut également être constitué par des capteurs optiques, par exemple par des photodiodes, capables de recevoir les signaux optiques S1 , éventuellement modulés, en provenance de l'étiquette.
La communication entre l'étiquette et l'unité de lecture peut être effectuée par modulation de lumière, soit par codage par symboles, soit par codage par différentes couleurs. Ainsi, l'étiquette reçoit, par l'intermédiaire des cellules photovoltaïques 8, des signaux optiques codés S3 émis par l'émetteur optique 10 de l'unité de lecture. En réponse, les cellules photovoltaïques transmettent des signaux électriques S2 (figure 1) au circuit logique 5. L'interprétation des signaux électriques S2 peut donner lieu à une lecture ou une écriture dans la mémoire 6 de l'étiquette. L'étiquette peut également répondre à l'unité de lecture en envoyant le signal S1 , modulé par l'intermédiaire des diodes électroluminescentes 7. Sur les figures 3 et 4, l'étiquette comporte une pluralité de deuxièmes zones 2 associées respectivement à une pluralité de troisièmes zones 3 et disposées selon une matrice. Sur les figures 3 et 4, les deuxièmes zones 2a, 2b, etc. sont constituées par des éléments de type LCD ou de type OLED et envoient respectivement des signaux S1a, S1 b, etc. Ainsi, chaque deuxième zone 2 correspond à un canal de transmission propre, ce qui permet d'augmenter le débit du transfert d'informations de l'étiquette vers l'unité de lecture. Chaque troisième zone 3a, 3b peut également recevoir des signaux optiques codés S3a, S3b et correspond, ainsi, à un canal de transmission propre d'informations de l'unité de lecture vers l'étiquette.
Sur la figure 4, les deuxième zones 2 émettent des signaux S1 de différentes couleurs. Ainsi, des informations sont transmises par codage de modulation de couleur et par l'intermédiaire d'une pluralité de canaux, ce qui correspond à une suite d'images en couleur, chaque troisième zone 3 correspondant à un pixel de l'image.
Dans le cas où l'étiquette comporte une pluralité de deuxièmes zones et une pluralité de troisièmes zones, comme représenté aux figures 3 et 4, le récepteur optique 9 de l'unité de lecture comporte, de préférence une caméra, permettant de distinguer les différents canaux de transmission, par exemple, par traitement d'image.
La figure 5 illustre un empilement de couches minces disposé sur un support 4 transparent, par exemple en verre, et comportant la première zone 1 , la deuxième zone 2 et une troisième zone 3. La première zone 1 est illustrée par un seul transistor 14, du type transistor à couche mince (« TFT : thin film transistor »), qui peut, par exemple, être réalisé en poly-silicium. La deuxième zone 2 comporte une diode électroluminescente organique 15 constituée par plusieurs couches organiques 16 (16a, 16b, 16c). La troisième zone 3 comporte une cellule photovoltaïque 8 constituée par une diode photovoltaïque de type PIN, comportant une première couche semi-conductrice 17 avec des dopants de type N, une deuxième couche semi-conductrice 18 non-dopée et une troisième couche semi-conductrice 19 avec des dopants de type P. Les couches semi- conductrices 17 à 19 peuvent, par exemple, être réalisées par croissance et gravure de silicium amorphe hydrogéné.
Sur Ja figure 5, la cellule photovoltaïque 8 et la diode OLED 15 sont disposées sur des couches transparentes conductrices 20, par exemple constituées par un matériau comportant de l'étain (Sn), de l'indium (In) et de l'oxygène (O) (« ITO : indium tin oxide »). Des contacts 21 sont respectivement disposés sur la cellule photovoltaïque 8 et sur la diode OLED 15.
L'invention n'est pas limitée aux modes de réalisation particuliers représentés. En particulier, (a deuxième zone 2 de l'étiquette peut comporter toute sorte d'émetteur de rayonnement optique.

Claims

Revendications
1. Etiquette optique d'identification adressable par une unité de lecture, l'étiquette comportant un circuit logique (5) connecté à des moyens de réception de signaux optiques codés (S3), des moyens d'émission optique (7), une mémoire (6) contenant un code d'identification (ID) et à des moyens d'alimentation comportant au moins une cellule photovoltaïque (8), étiquette caractérisée en ce qu'elle est constituée par un empilement de couches disposé sur un support (4) et comportant des première (1), deuxième (2) et troisième (3) zones, la première zone (1) formant la mémoire (6) et le circuit logique (5), au moins une deuxième zone (2) formant les moyens d'émission optique (7) et au moins une cellule photovoltaïque (8) constituant au moins une troisième zone (3) et formant simultanément les moyens de réception des signaux optiques codés et les moyens d'alimentation.
2. Etiquette selon la revendication 1 , caractérisée en ce que la deuxième zone (2) comporte au moins une diode (7) émettant de la lumière.
3. Etiquette selon la revendication 2, caractérisée en que la deuxième zone (2) comporte plusieurs diodes (7) émettant de la lumière de couleurs différentes.
4. Etiquette selon la revendication 1 , caractérisée en ce que la deuxième zone (2) comporte au moins un élément d'affichage à cristaux liquides par absorption.
5. Etiquette selon la revendication 3, caractérisée en ce que chaque deuxième zone (2) comporte trois diodes (7) émettant de la lumière de couleurs différentes, le circuit logique (5) comportant des moyens de contrôle sélectif des diodes (7), de manière à coder des informations par modulation de couleur.
6. Etiquette selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la deuxième zone (2) et la troisième zone (3) sont adjacentes.
7. Etiquette selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comporte une pluralité de deuxièmes zones (2) associées respectivement à une pluralité de troisièmes zones (3) et disposées selon une matrice.
8. Système d'identification comportant au moins une étiquette selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte une unité de lecture comportant un récepteur optique (9), un émetteur optique (10), un circuit de contrôle (11), une mémoire (12) et une interface homme-machine (13).
9. Système d'identification selon la revendication 8, caractérisé en ce que l'émetteur optique (10) de l'unité de lecture comporte une source de lumière de puissance permettant l'alimentation de l'étiquette par éclairement des cellules photovoltaïques (8).
10. Système d'identification selon l'une des revendications 8 et 9, caractérisé en ce que, l'étiquette comportant une pluralité de deuxièmes zones (2) et une pluralité de troisièmes zones (3), le récepteur optique (9) de l'unité de lecture comporte une caméra.
PCT/FR2004/002399 2003-10-01 2004-09-23 Etiquette optique d’identifcation adressable par une unite de lecture WO2005034029A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0311526 2003-10-01
FR0311526A FR2860625B1 (fr) 2003-10-01 2003-10-01 Etiquette optique d'identification adressable par une unite de lecture

Publications (1)

Publication Number Publication Date
WO2005034029A1 true WO2005034029A1 (fr) 2005-04-14

Family

ID=34307336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/002399 WO2005034029A1 (fr) 2003-10-01 2004-09-23 Etiquette optique d’identifcation adressable par une unite de lecture

Country Status (2)

Country Link
FR (1) FR2860625B1 (fr)
WO (1) WO2005034029A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110996443A (zh) * 2019-12-06 2020-04-10 吴苑 一种led灯珠地址码的烧录方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910990B1 (fr) * 2006-12-28 2009-06-12 Neopost Technologies Sa Enveloppe a slogan dynamique
CN105095947A (zh) * 2014-05-19 2015-11-25 中兴通讯股份有限公司 无源光学标签、光读写装置及智能光分配网络

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548803A1 (fr) * 1983-07-08 1985-01-11 Thomson Csf Etiquette optoelectronique
WO1996001473A1 (fr) * 1994-07-04 1996-01-18 Gay Frères S.A. Etiquette electronique a lecture/ecriture optique
US5825045A (en) * 1992-02-13 1998-10-20 Norand Corporation Extended range highly selective low power consuming data tag and information display system
US20030048449A1 (en) * 2001-05-16 2003-03-13 Vander Jagt Peter G. Color measurement instrument with modulated illumination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548803A1 (fr) * 1983-07-08 1985-01-11 Thomson Csf Etiquette optoelectronique
US5825045A (en) * 1992-02-13 1998-10-20 Norand Corporation Extended range highly selective low power consuming data tag and information display system
WO1996001473A1 (fr) * 1994-07-04 1996-01-18 Gay Frères S.A. Etiquette electronique a lecture/ecriture optique
US20030048449A1 (en) * 2001-05-16 2003-03-13 Vander Jagt Peter G. Color measurement instrument with modulated illumination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110996443A (zh) * 2019-12-06 2020-04-10 吴苑 一种led灯珠地址码的烧录方法及装置

Also Published As

Publication number Publication date
FR2860625A1 (fr) 2005-04-08
FR2860625B1 (fr) 2005-12-23

Similar Documents

Publication Publication Date Title
US11100861B2 (en) Light emitting diode display device
EP3649672B1 (fr) Dispositif d'affichage a leds
US12010866B2 (en) Display panel, including recess pattern in hole area, electronic apparatus including the same, and method for manufacturing display panel
US7601942B2 (en) Optoelectronic device having an array of smart pixels
CN110192219A (zh) 显示装置
CN106874866A (zh) 显示装置及其控制方法
Carreira et al. Direct integration of micro-LEDs and a SPAD detector on a silicon CMOS chip for data communications and time-of-flight ranging
CN111414795A (zh) 指纹传感器及包括其的显示装置
US20220086378A1 (en) Electronic device and imaging method thereof
US11569290B2 (en) Sensing device and display apparatus including the same
TW200926098A (en) Liquid-crystal display apparatus
US8451197B2 (en) Information display apparatus having a plurality of thin-film light-emitting diodes
US20240264697A1 (en) Touch sensor and a display device including the same
WO2005034029A1 (fr) Etiquette optique d’identifcation adressable par une unite de lecture
US10771157B2 (en) Mobile terminal and method for receiving and sending a LIFI signal thereof
CN1682260A (zh) 有源显示器
US20230368729A1 (en) Display, display fabrication method, and electronic device
Li et al. 66‐3: Micro‐LED Display with Simultaneous Visible Light Communication Function
FR2478849A1 (fr) Carte portative d'identification et systeme de traitement mettant en oeuvre une telle carte
CN108960196B (zh) 指纹识别结构和显示面板
US20230006120A1 (en) Light emitting diode module and light-emitting diode module inspection method
CN113224116A (zh) 显示设备
US12124656B2 (en) Tiled interactive photonic screen
US20240290765A1 (en) Light emitting modules with optical data transmission
CN115868035A (zh) 具有屏下传感器的计算设备

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase