WO2005033774A1 - Method for correcting for the distortion of a liquid crystal imager - Google Patents

Method for correcting for the distortion of a liquid crystal imager Download PDF

Info

Publication number
WO2005033774A1
WO2005033774A1 PCT/EP2004/052422 EP2004052422W WO2005033774A1 WO 2005033774 A1 WO2005033774 A1 WO 2005033774A1 EP 2004052422 W EP2004052422 W EP 2004052422W WO 2005033774 A1 WO2005033774 A1 WO 2005033774A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
correction method
distortion
bitter
display
Prior art date
Application number
PCT/EP2004/052422
Other languages
French (fr)
Inventor
Olivier Rols
Jean-René Verbeque
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2005033774A1 publication Critical patent/WO2005033774A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G06T5/80
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/16Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by deflecting electron beam in cathode-ray tube, e.g. scanning corrections
    • H04N3/22Circuits for controlling dimensions, shape or centering of picture on screen
    • H04N3/23Distortion correction, e.g. for pincushion distortion correction, S-correction
    • H04N3/233Distortion correction, e.g. for pincushion distortion correction, S-correction using active elements
    • H04N3/2335Distortion correction, e.g. for pincushion distortion correction, S-correction using active elements with calculating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7408Direct viewing projectors, e.g. an image displayed on a video CRT or LCD display being projected on a screen

Definitions

  • the field of the invention is that of systems for presenting collimated images, and more precisely that of so-called head-up viewfinders used on aircraft.
  • a collimated head-up display system comprises a display 1 and a collimation and superimposition optic making it possible to present to a user 4 the image 51 supplied. by the display in the form of an aerial image 52 collimated at infinity and superimposed on the exterior landscape, this image coming from image sources not shown in the figure.
  • the collimation and supe ⁇ osition optics comprise a relay optics 2 and a semi-transparent optical combiner 3. These systems are particularly used on military aircraft. These devices are fundamental for assistance with piloting and navigation. The superimposed image must be of excellent optical quality to avoid any piloting error and not to cause significant eyestrain.
  • FIG. 2a presents the effect of the distortion on the final image 52.
  • F the distortion function which, at a point M (x, y) of the two-dimensional image 51 presented by the display unit, corresponds to a point '( ⁇ , ⁇ ), ⁇ , ⁇ representing the angular coordinates of the point M', image of M through the collimated optics.
  • the image 51 comes from an electronic image 50 coming either from an optronic sensor or from a symbol or mapping generator.
  • the method conventionally employed consists in applying to the electronic image 50 a distortion opposite to that of the optics, this distortion function being denoted F "1 as indicated in FIG. 2b. A distorted image 51 is then obtained.
  • the image 52 After passing through the collimation and superposition optics, the image 52 is undeformed and identical to the original electronic image 50.
  • the image 51 In the case of matrix displays composed of 'a matrix of pixels, it is also possible to construct the image 51 by making the pixel or pixels of the corresponding electronic image 50 correspond to each pixel of the image.
  • the function is directly applied of distortion on each pixel of the image to find the pixel of the corresponding electronic image, which makes it possible to simplify the calculations and to obtain a corrected image of better quality (French request 02 06 721 entitled "electronic device for correcting optical distortions of a collimated display obtained from a matrix display").
  • the calculation of the optical combinations makes it possible to know the theoretical distortion perfectly.
  • the optics of collimation and superposition are never perfect and on the other hand, a Head-up viewfinder is placed in front of a transparent cockpit canopy which introduces a slight distortion which it is necessary to compensate .
  • the displays are cathode ray tubes
  • the image 51 is obtained by the modulation and the deflection of an electronic brush which scans the electroluminescent surface of the display.
  • polynomial distortion coefficients are applied to the deflection members of the cathode ray tube. The coefficients are determined by successive iterations.
  • the object of the invention is to propose a method making it possible to carry out the distortion correction on Heads-up viewfinders with a matrix display.
  • the invention relates to a method for correcting the distortion aberration of the optical assembly of a viewfinder
  • Head Up comprising a matrix display giving a visible image from an electronic image, an optical assembly essentially comprising a relay optics and an optical combiner, said optical assembly forming the image of the display a collimated image intended for a observer, characterized in that said method comprises the following steps: • Generation of an image on the display comprising a plurality of marks also called landmarks arranged according to a known geometric pattern by means of a device for generating graphic images; • Estimation of the angular position of the collimated image of each bitter by means of an opto-mechanical measuring device comprising video means; • Calculation of approximation distortion polynomials from previous measurements using a first electronic device; • Application of the polynomial corrections to the electronic image by means of a second electronic device so that the final collimated image is without geometric distortions.
  • the geometric pattern is a regular grid covering the entire surface of the image of the display, the number of bitters is approximately one hundred, the distribution of the light energy of each bitter is radially symmetrical and of Gaussian form, each bitter covers at most fifty pixels of the matrix and preferably each bitter covers a single pixel.
  • Figure 1 represents the block diagram of a head-up viewfinder.
  • Figures 2a and 2b show the shapes of electronic images, displayed and collimated before and after correction of the distortion.
  • Figure 3 shows a diagram of the equipment necessary to carry out the correction method according to the invention.
  • Figure 4 shows a principle view of the distribution of bitters according to the invention.
  • Figures 5a, 5b and 5c show three possible geometries of the landmarks according to the invention.
  • FIG. 3 represents a diagram of the equipment necessary to carry out the correction method according to the invention. This includes: • The viewfinder itself which can be installed either on a measurement bench dedicated to this distortion correction operation or in the aircraft so as to make a correction which takes into account all the distortion parameters; • A device for generating graphic images 7; • A video measuring device 6; • A first electronic device 8 for calculating distortion corrections coupled to the video measurement device 6.
  • the method for correcting the distortion aberration of the Head Up viewfinder comprises the following steps: First step: Generation of images on the display comprising a plurality of marks also called bitters 53 arranged in a pattern known geometric by means of a graphical image generation device.
  • This pattern is advantageously a regular grid as indicated in FIG. 4.
  • This arrangement can be modified if the distortion is very large for certain areas of the image.
  • the number of bitters needed to ensure correct correction of the distortion depends on the size of the distortion. It is possible to determine this number by successive iterations as we will see in the rest of the text. A number of bitters of the order of one hundred is generally sufficient to ensure correct correction of the distortion.
  • Bitter forms can be varied.
  • each square of the grid represents a pixel.
  • a bitter consisting of a single pixel as shown in Figure 5b.
  • this distribution can be of Gaussian shape as illustrated in FIG. 5c where the patterns of each pixel represent the variations in luminance pixels. The darker the pattern, the stronger the luminance.
  • the generation of all the landmarks can be done either in a single image, or in a series of successive images each comprising at most a few landmarks so as to avoid any recognition error.
  • the bitter generator has been shown externally to the viewfinder. It can also, insofar as the figuration is simple, be integrated into the main symbol generator of the viewfinder.
  • Second step Estimation of the angular position of the collimated image of each bitter by means of an opto-mechanical measuring device comprising video means.
  • the observer looks at the collimated image comprising the image of the landmarks in a particular area which is generally called the eye box and which is located in the vicinity of the optical pupil of the viewfinder.
  • the optics of the video means must be positioned as close as possible to this area to make correct measurements. It is also essential that the angular position of the video means relative to the optical axis of the viewfinder is perfectly known. This positioning can be obtained by mechanical positioning and adjustment means linked to the measurement bench.
  • the optical means comprise an optical objective and a photosensitive sensor which can be, for example, a CCD (English acronym for Charge Coupled Device) matrix.
  • the optical objective forms the collimated image of the landmarks on the photosensitive sensor. If the angular field of view of the optical objective is greater than the angular field of view of the collimated image which typically is of the order of 30 degrees, then it is possible to capture the entire image of the landmarks without moving the optical means. Otherwise, the opto-mechanical measuring device must include means for rotating the optical means making it possible to carry out a complete mapping of the collimated image. Said displacement means can be controlled by digital control means so that the measurement bench can be completely computerized. The resolution of the photosensitive sensor must be adapted to the size of the pixels of the matrix of the display.
  • the precision of the measurements be greater than the resolution of the collimated image so as to obtain a precision of correction of the distortion less than the size of the pixels of the matrix of the display. Consequently, the image of a pixel on the photosensitive sensor through the optics of the viewfinder and the objective of the optical means must be at least twice the resolution of the sensor.
  • the actual estimation of the angular position of the collimated image of each bitter is done in two successive sub-steps: • A first sub-step of locating the image of the bitter. This locating step is carried out by convolving the points of the image with a filter adapted to detect the presence of the image of the bitter.
  • the second step makes it possible to know the deformation F of the angular image at precise points identified by the images of the landmarks.
  • the distortion introduced by the different optics is a continuous two-dimensional function which can be approximated with very good precision by polynomial functions.
  • a first digital processing device calculates the different values of the coefficients of the correction polynomials.
  • Fourth step Application of the polynomial corrections to the electronic image by means of a second electronic device so that the final collimated image is without geometric distortions.
  • This device is not shown in FIG. 3. It can be either integrated into the viewfinder or into an on-board electronic computer.
  • Electronic correction can be implemented in an electronic component comprising matrices of logic gates (AND or OR). These components can be of the non-programmable type such as, for example, the ASIC (Application Specifies Integrated Circuit) or programmable such as, for example, the FPGA (Field Programmable Gate Array) or EPLD (Erasable Programmable Logic Device). These electronic components are widely used in professional electronics and in particular for aeronautical applications.
  • ASIC Application Specifies Integrated Circuit
  • FPGA Field Programmable Gate Array
  • EPLD Erasable Programmable Logic Device

Abstract

The invention concerns the field of collimated image presentation systems and, in particular, that of head-up displays used in aircraft. One of the principle technical difficulties for obtaining a good-quality image (51) consists of correcting for the geometric distortion essentially introduced by the collimating and superposition optics (2, 3) of the display. This difficulty is further increased with matrix-type displays (1) in which analogous corrections are excluded. To this end, the invention provides a simple method that enables distortion to be determined and then corrected for.

Description

PROCEDE DE CORRECTION DE DISTORSION D'UN IMAGEUR A CRISTAUX LIQUIDES METHOD FOR CORRECTING THE DISTORTION OF A LIQUID CRYSTAL IMAGER
Le domaine de l'invention est celui des systèmes de présentation d'images collimatées, et plus précisément celui des viseurs dits Tête Haute utilisés sur aéronefs.The field of the invention is that of systems for presenting collimated images, and more precisely that of so-called head-up viewfinders used on aircraft.
D'une façon générale, comme il est indiqué de façon schématique sur la figure 1, un système de visualisation dit Tête Haute collimatée comprend un afficheur 1 et une optique de collimation et de superposition permettant de présenter à un utilisateur 4 l'image 51 fournie par l'afficheur sous la forme d'une image aérienne 52 collimatée à l'infini et en superposition sur le paysage extérieur, cette image provenant de sources d'images non représentées sur la figure. Généralement, l'optique de collimation et de supeφosition comporte une optique-relais 2 et un combineur optique semi-transparent 3. Ces systèmes sont particulièrement utilisés sur aéronefs militaires. Ces dispositifs sont fondamentaux pour l'aide au pilotage et à la navigation. L'image superposée doit être d'excellente qualité optique pour éviter toute erreur de pilotage et ne pas entraîner de fatigue oculaire importante. Une des principales difficultés techniques pour obtenir une image de bonne qualité est la correction de la distorsion géométrique introduite d'une part par l'optique de collimation et de superposition et d'autre part, et dans une plus faible mesure, par la verrière transparente du cockpit de l'aéronef. Il est démontré, que compte-tenu des contraintes géométriques imposées par l'utilisation du système dans un cockpit et en particulier par le fort hors d'axe du combineur optique, la distorsion géométrique est importante et ne peut être corrigée simplement par des moyens optiques classiques. La figure 2a présente l'effet de la distorsion sur l'image finale 52. On appelle F la fonction de distorsion qui, à un point M(x,y) de l'image bidimensionnelle 51 présentée par l'afficheur fait correspondre un point '(α,β), α,β représentant les coordonnées angulaires du point M', image de M à travers l'optique collimatée. L'image 51 est issue d'une image électronique 50 provenant soit d'un capteur optronique soit d'un générateur de symboles ou de cartographie. Pour obtenir une image collimatée non déformée 52, la méthode classiquement employée consiste à appliquer à l'image électronique 50 une distorsion inverse de celle de l'optique, cette fonction de distorsion étant notée F"1 comme il est indiqué sur la figure 2b. On obtient alors une image 51 déformée. Après passage à travers l'optique de collimation et de superposition, on obtient l'image 52 non déformée et identique à l'image électronique 50 d'origine. Dans le cas d'afficheurs matriciels composés d'une matrice de pixels, il est également possible de construire l'image 51 en faisant correspondre à chaque pixel de l'image le ou les pixels de l'image électronique 50 correspondant. Dans ce cas, bien entendu, on applique directement la fonction de distorsion sur chaque pixel de l'image pour retrouver le pixel de l'image électronique correspondant, ce qui permet de simplifier les calculs et d'obtenir une image corrigée de meilleure qualité (demande française 02 06721 intitulée "dispositif de correction électronique des distorsions optiques d'une visualisation collimatée obtenue à partir d'un afficheur matriciel"). Le calcul des combinaisons optiques permet de connaître parfaitement la distorsion théorique. Cependant, d'une part, l'optique de collimation et de superposition n'est jamais parfaite et d'autre part, un viseur Tête Haute est placé devant une verrière transparente de cockpit qui introduit une légère distorsion qu'il est nécessaire de compenser. Ainsi, il est impossible de corriger parfaitement la distorsion réelle par le calcul de la distorsion théorique. Il est donc nécessaire de corriger la distorsion de façon personnalisée pour chaque viseur. Actuellement, les afficheurs sont des tubes à rayon cathodique, l'image 51 est obtenue par la modulation et la déflexion d'un pinceau électronique qui balaie la surface électroluminescente de l'afficheur. Dans ce cas, pour corriger la distorsion, on applique sur les organes de déflexion du tube cathodique des coefficients polynomiaux de distorsion. La détermination des coefficients se fait par itérations successives. On projette dans le viseur l'image d'un quadrillage régulier, on ajuste les coefficients polynomiaux jusqu'à ce que l'image projetée soit également un quadrilatère régulier. Cependant, progressivement, les afficheurs actuels sont remplacés par des afficheurs matriciels, notamment à cristaux liquides qui présentent de nombreux avantages en terme de compacité et de fiabilité. Avec des afficheurs de ce type, la méthode précédente n'est plus applicable, les pixels de la matrice étant pilotés par un adressage matriciel. L'objet de l'invention est de proposer un procédé permettant de réaliser la correction de distorsion sur des viseurs Tête Haute à afficheur matriciel.In general, as shown schematically in FIG. 1, a collimated head-up display system comprises a display 1 and a collimation and superimposition optic making it possible to present to a user 4 the image 51 supplied. by the display in the form of an aerial image 52 collimated at infinity and superimposed on the exterior landscape, this image coming from image sources not shown in the figure. Generally, the collimation and supeφosition optics comprise a relay optics 2 and a semi-transparent optical combiner 3. These systems are particularly used on military aircraft. These devices are fundamental for assistance with piloting and navigation. The superimposed image must be of excellent optical quality to avoid any piloting error and not to cause significant eyestrain. One of the main technical difficulties in obtaining a good quality image is the correction of the geometric distortion introduced on the one hand by the collimation and superposition optics and on the other hand, and to a lesser extent, by the transparent canopy. from the aircraft cockpit. It has been shown that, taking into account the geometric constraints imposed by the use of the system in a cockpit and in particular by the off-axis fort of the optical combiner, the geometric distortion is significant and cannot be corrected simply by optical means classics. FIG. 2a presents the effect of the distortion on the final image 52. We call F the distortion function which, at a point M (x, y) of the two-dimensional image 51 presented by the display unit, corresponds to a point '(α, β), α, β representing the angular coordinates of the point M', image of M through the collimated optics. The image 51 comes from an electronic image 50 coming either from an optronic sensor or from a symbol or mapping generator. To obtain a non-deformed collimated image 52, the method conventionally employed consists in applying to the electronic image 50 a distortion opposite to that of the optics, this distortion function being denoted F "1 as indicated in FIG. 2b. A distorted image 51 is then obtained. After passing through the collimation and superposition optics, the image 52 is undeformed and identical to the original electronic image 50. In the case of matrix displays composed of 'a matrix of pixels, it is also possible to construct the image 51 by making the pixel or pixels of the corresponding electronic image 50 correspond to each pixel of the image. In this case, of course, the function is directly applied of distortion on each pixel of the image to find the pixel of the corresponding electronic image, which makes it possible to simplify the calculations and to obtain a corrected image of better quality (French request 02 06 721 entitled "electronic device for correcting optical distortions of a collimated display obtained from a matrix display"). The calculation of the optical combinations makes it possible to know the theoretical distortion perfectly. However, on the one hand, the optics of collimation and superposition are never perfect and on the other hand, a Head-up viewfinder is placed in front of a transparent cockpit canopy which introduces a slight distortion which it is necessary to compensate . Thus, it is impossible to perfectly correct the real distortion by calculating the theoretical distortion. It is therefore necessary to correct the distortion in a personalized way for each viewfinder. Currently, the displays are cathode ray tubes, the image 51 is obtained by the modulation and the deflection of an electronic brush which scans the electroluminescent surface of the display. In this case, to correct the distortion, polynomial distortion coefficients are applied to the deflection members of the cathode ray tube. The coefficients are determined by successive iterations. We project the image of a regular grid in the viewfinder, adjusts the polynomial coefficients until the projected image is also a regular quadrilateral. However, gradually, current displays are being replaced by matrix displays, in particular with liquid crystal displays which have numerous advantages in terms of compactness and reliability. With displays of this type, the above method is no longer applicable, the pixels of the matrix being controlled by matrix addressing. The object of the invention is to propose a method making it possible to carry out the distortion correction on Heads-up viewfinders with a matrix display.
Plus précisément, l'invention a pour objet un procédé de correction de l'aberration de distorsion de l'ensemble optique d'un viseurMore specifically, the invention relates to a method for correcting the distortion aberration of the optical assembly of a viewfinder
Tête Haute comportant un afficheur matriciel donnant une image visible à partir d'une image électronique, un ensemble optique comprenant essentiellement une optique-relais et un combineur optique, ledit ensemble optique formant de l'image de l'afficheur une image collimatée destinée à un observateur, caractérisé en ce que ledit procédé comporte les étapes suivantes : • Génération d'une image sur l'afficheur comportant une pluralité de marques encore appelés amers disposées selon un motif géométrique connu au moyen d'un dispositif de génération d'images graphiques ; • Estimation de la position angulaire de l'image collimatée de chaque amer au moyen d'un dispositif de mesure opto- mécanique comportant des moyens vidéo ; • Calcul de polynômes d'approximation de la distorsion à partir des mesures précédentes au moyen d'un premier dispositif électronique ; • Application des corrections polynomiales à l'image électronique au moyen d'un second dispositif électronique de façon que l'image finale collimatée soit sans distorsions géométriques. Avantageusement, le motif géométrique est un quadrillage régulier couvrant la totalité de la surface de l'image de l'afficheur, le nombre d'amers est environ cent, la répartition de l'énergie lumineuse de chaque amer est à symétrie radiale et de forme gaussienne, chaque amer couvre au plus cinquante pixels de la matrice et préférentiellement chaque amer couvre un seul pixel.Head Up comprising a matrix display giving a visible image from an electronic image, an optical assembly essentially comprising a relay optics and an optical combiner, said optical assembly forming the image of the display a collimated image intended for a observer, characterized in that said method comprises the following steps: • Generation of an image on the display comprising a plurality of marks also called landmarks arranged according to a known geometric pattern by means of a device for generating graphic images; • Estimation of the angular position of the collimated image of each bitter by means of an opto-mechanical measuring device comprising video means; • Calculation of approximation distortion polynomials from previous measurements using a first electronic device; • Application of the polynomial corrections to the electronic image by means of a second electronic device so that the final collimated image is without geometric distortions. Advantageously, the geometric pattern is a regular grid covering the entire surface of the image of the display, the number of bitters is approximately one hundred, the distribution of the light energy of each bitter is radially symmetrical and of Gaussian form, each bitter covers at most fifty pixels of the matrix and preferably each bitter covers a single pixel.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : • La figure 1 représente le schéma de principe d'un viseur tête Haute. • Les figures 2a et 2b représentent les formes des images électronique, affichée et collimatée avant et après correction de la distorsion. • La figure 3 représente un schéma du matériel nécessaire pour réaliser le procédé de correction selon l'invention. • La figure 4 représente une vue de principe de la répartition des amers selon l'invention. • Les figures 5a, 5b et 5c représentent trois géométries possibles des amers selon l'invention.The invention will be better understood and other advantages will appear on reading the description which follows given without limitation and thanks to the appended figures among which: • Figure 1 represents the block diagram of a head-up viewfinder. • Figures 2a and 2b show the shapes of electronic images, displayed and collimated before and after correction of the distortion. • Figure 3 shows a diagram of the equipment necessary to carry out the correction method according to the invention. • Figure 4 shows a principle view of the distribution of bitters according to the invention. • Figures 5a, 5b and 5c show three possible geometries of the landmarks according to the invention.
La figure 3 représente un schéma du matériel nécessaire pour réaliser le procédé de correction selon l'invention. Celui-ci comprend : • Le viseur proprement dit qui peut être installé soit sur un banc de mesure dédié à cette opération de correction de distorsion soit dans l'aéronef de façon à faire une correction qui prenne en compte tous les paramètres de distorsion ; • Un dispositif de génération d'images graphiques 7 ; • Un dispositif vidéo de mesure 6 ; • Un premier dispositif électronique 8 de calcul des corrections de distorsion couplée au dispositif vidéo de mesure 6.FIG. 3 represents a diagram of the equipment necessary to carry out the correction method according to the invention. This includes: • The viewfinder itself which can be installed either on a measurement bench dedicated to this distortion correction operation or in the aircraft so as to make a correction which takes into account all the distortion parameters; • A device for generating graphic images 7; • A video measuring device 6; • A first electronic device 8 for calculating distortion corrections coupled to the video measurement device 6.
Le procédé de correction de l'aberration de distorsion du viseur Tête Haute comporte les étapes suivantes : Première étape : Génération d'images sur l'afficheur comportant une pluralité de marques encore appelés amers 53 disposées selon un motif géométrique connu au moyen d'un dispositif de génération d'images graphiques. Ce motif est avantageusement un quadrillage régulier comme indiqué sur la figure 4. Cette disposition peur être modifiée si la distorsion est très importante pour certaines zones de l'image. Le nombre d'amers nécessaire pour assurer une bonne correction de la distorsion dépend de l'importance de celle-ci. Il est possible de déterminer ce nombre par itérations successives comme on le verra dans la suite du texte. Un nombre d'amers de l'ordre de la centaine est généralement suffisant pour assurer une bonne correction de la distorsion. Les formes d'amers peuvent être variées. Cependant, il est important de prendre une taille d'amer suffisamment petite, typiquement inférieure à 50 pixels de façon que son image ne soit pas trop déformée par la distorsion. Il est possible d'utiliser des amers à répartition lumineuse constante, par exemple en forme de croix comme indiqué sur la figure 5a. Sur les figures 5a, 5b et 5c, chaque carré du quadrillage représente un pixel. Il est également possible de prendre un amer constitué d'un seul pixel comme indiqué sur la figure 5b. Il est également possible d'utiliser un amer à symétrie radiale et dont la répartition d'énergie varie continûment du centre vers les bords, cette répartition pouvant être de forme gaussienne comme illustré en figure 5c où les motifs de chaque pixel représentent les variations de luminance des pixels. Plus le motif est foncé, plus la luminance est forte. On peut alors obtenir une précision de mesure inférieure à la taille du pixel. La génération de tous les amers peut se faire soit dans une seule image, soit dans une série d'images successives comportant chacune au plus quelques amers de façon à éviter toute erreur de reconnaissance. Pour des raisons de clarté, le générateur d'amers a été représenté extérieurement au viseur. Il peut également, dans la mesure où la figuration est simple, être intégré au générateur principal de symboles du viseur.The method for correcting the distortion aberration of the Head Up viewfinder comprises the following steps: First step: Generation of images on the display comprising a plurality of marks also called bitters 53 arranged in a pattern known geometric by means of a graphical image generation device. This pattern is advantageously a regular grid as indicated in FIG. 4. This arrangement can be modified if the distortion is very large for certain areas of the image. The number of bitters needed to ensure correct correction of the distortion depends on the size of the distortion. It is possible to determine this number by successive iterations as we will see in the rest of the text. A number of bitters of the order of one hundred is generally sufficient to ensure correct correction of the distortion. Bitter forms can be varied. However, it is important to take a sufficiently small bitter size, typically less than 50 pixels, so that its image is not too distorted by the distortion. It is possible to use bitters with constant light distribution, for example in the form of a cross as shown in FIG. 5a. In FIGS. 5a, 5b and 5c, each square of the grid represents a pixel. It is also possible to take a bitter consisting of a single pixel as shown in Figure 5b. It is also possible to use a bitter with radial symmetry and whose energy distribution varies continuously from the center to the edges, this distribution can be of Gaussian shape as illustrated in FIG. 5c where the patterns of each pixel represent the variations in luminance pixels. The darker the pattern, the stronger the luminance. We can then obtain a measurement accuracy lower than the pixel size. The generation of all the landmarks can be done either in a single image, or in a series of successive images each comprising at most a few landmarks so as to avoid any recognition error. For reasons of clarity, the bitter generator has been shown externally to the viewfinder. It can also, insofar as the figuration is simple, be integrated into the main symbol generator of the viewfinder.
Deuxième étape : Estimation de la position angulaire de l'image collimatée de chaque amer au moyen d'un dispositif de mesure opto- mécanique comportant des moyens vidéo. L'observateur regarde l'image collimatée comportant l'image des amers dans une zone particulière que l'on appelle généralement boîte à œil et qui est située au voisinage de la pupille optique du viseur. L'optique des moyens vidéo doit être positionnée au plus près de cette zone pour réaliser des mesures correctes. Il est également essentiel que la position angulaire des moyens vidéo par rapport à l'axe optique du viseur soit parfaitement connue. Ce positionnement peut être obtenu par des moyens mécaniques de positionnement et de réglage liés au banc de mesure. Les moyens optiques comportent un objectif optique et un capteur photosensible qui peut être, par exemple, une matrice CCD (acronyme anglo-saxon de Charge Coupled Device). L'objectif optique forme l'image collimatée des amers sur le capteur photosensible. Si le champ angulaire de l'objectif optique est supérieur au champ angulaire de l'image collimatée qui fait typiquement de l'ordre de 30 degrés, alors il est possible de capter la totalité de l'image des amers sans déplacer les moyens optiques. Dans le cas contraire, le dispositif de mesure opto-mécanique doit comporter des moyens de déplacement en rotation des moyens optiques permettant de réaliser une cartographie complète de l'image collimatée. Lesdits moyens de déplacement peuvent être pilotés par des moyens de commande numériques afin que le banc de mesure puisse être complètement informatisé. La résolution du capteur photosensible doit être adaptée à la taille des pixels de la matrice de l'afficheur. Il est, en effet, important que la précision des mesures soit supérieure à la résolution de l'image collimatée de façon à obtenir une précision de correction de la distorsion inférieure à la taille des pixels de la matrice de l'afficheur. Par conséquent, l'image d'un pixel sur le capteur photosensible à travers l'optique du viseur et l'objectif des moyens optiques doit être au moins deux fois supérieure à la résolution du capteur. L'estimation proprement dit de la position angulaire de l'image collimatée de chaque amer se fait en deux sous-étapes successives : • Une première sous-étape de repérage de l'image de l'amer. Cette étape de repérage est réalisée en faisant une convolution des points de l'image avec un filtre adapté pour détecter la présence de l'image de l'amer. Il existe deux cas possibles : soit la totalité de l'image des amers se forme sur la surface photosensible du capteur et dans ce cas l'exploration de l'image pour détecter les amers est effectuée informatiquement ; soit seule une portion de l'image de l'afficheur se forme sur la surface photosensible du capteur et dans ce cas, le parcours complet de l'image se fait mécaniquement à partir des moyens de déplacement en rotation. Lorsque la présence de l'amer dans l'image est détectée, la seconde sous-étape peut commencer. • Une seconde sous-étape d'estimation fine de la position de l'image de l'amer. Il est possible d'utiliser, pour cette estimation, une méthode mathématique des moindres carrés permettant d'estimer la position angulaire de l'amer avec une grande précision. Troisième étape : Calcul de polynômes d'approximation de la distorsion à partir des mesures précédentes au moyen du premier dispositif électronique. La deuxième étape permet de connaître la déformation F de l'image angulaire en des points précis repérés par les images des amers. La distorsion introduite par les différentes optiques est une fonction bidimensionnelle continue qui peut être approximée avec une très bonne précision par des fonctions polynomiales. Un premier dispositif de traitement numérique calcule les différentes valeurs des coefficients des polynômes de correction.Second step: Estimation of the angular position of the collimated image of each bitter by means of an opto-mechanical measuring device comprising video means. The observer looks at the collimated image comprising the image of the landmarks in a particular area which is generally called the eye box and which is located in the vicinity of the optical pupil of the viewfinder. The optics of the video means must be positioned as close as possible to this area to make correct measurements. It is also essential that the angular position of the video means relative to the optical axis of the viewfinder is perfectly known. This positioning can be obtained by mechanical positioning and adjustment means linked to the measurement bench. The optical means comprise an optical objective and a photosensitive sensor which can be, for example, a CCD (English acronym for Charge Coupled Device) matrix. The optical objective forms the collimated image of the landmarks on the photosensitive sensor. If the angular field of view of the optical objective is greater than the angular field of view of the collimated image which typically is of the order of 30 degrees, then it is possible to capture the entire image of the landmarks without moving the optical means. Otherwise, the opto-mechanical measuring device must include means for rotating the optical means making it possible to carry out a complete mapping of the collimated image. Said displacement means can be controlled by digital control means so that the measurement bench can be completely computerized. The resolution of the photosensitive sensor must be adapted to the size of the pixels of the matrix of the display. It is, in fact, important that the precision of the measurements be greater than the resolution of the collimated image so as to obtain a precision of correction of the distortion less than the size of the pixels of the matrix of the display. Consequently, the image of a pixel on the photosensitive sensor through the optics of the viewfinder and the objective of the optical means must be at least twice the resolution of the sensor. The actual estimation of the angular position of the collimated image of each bitter is done in two successive sub-steps: • A first sub-step of locating the image of the bitter. This locating step is carried out by convolving the points of the image with a filter adapted to detect the presence of the image of the bitter. There are two possible cases: either the entire image of the landmarks is formed on the photosensitive surface of the sensor and in this case the exploration of the image to detect landmarks is carried out by computer; either only a portion of the display image is formed on the photosensitive surface of the sensor and in this case, the complete path of the image is done mechanically from the means of displacement in rotation. When the presence of the bitter in the image is detected, the second substep can begin. • A second sub-step of fine estimation of the position of the bitter image. It is possible to use, for this estimation, a mathematical method of least squares making it possible to estimate the angular position of the landmark with great precision. Third step: Calculation of distortion approximation polynomials from previous measurements using the first electronic device. The second step makes it possible to know the deformation F of the angular image at precise points identified by the images of the landmarks. The distortion introduced by the different optics is a continuous two-dimensional function which can be approximated with very good precision by polynomial functions. A first digital processing device calculates the different values of the coefficients of the correction polynomials.
Quatrième étape : Application des corrections polynomiales à l'image électronique au moyen d'un second dispositif électronique de façon que l'image finale collimatée soit sans distorsions géométriques. Ce dispositif n'est pas représenté sur la figure 3. Il peut être soit intégré au viseur soit dans un calculateur électronique de bord. Pour corriger l'image, il existe deux grands choix possibles : • Connaissant les polynômes permettant de déterminer la fonction de distorsion F, calculer la fonction inverse F"1 et l'appliquer à l'image électronique pour obtenir une image affichée possédant la fonction de distorsion inverse de celle de l'optique. • Appliquer la fonction de distorsion F sur les pixels de l'image affichée pour calculer les coordonnées des pixels de l'image électronique correspondants. Ces coordonnées n'étant généralement pas entières, la valeur photométrique appliquée à chaque pixel de l'image est estimée en fonction des valeurs photométriques des pixels voisins du pixel calculé de l'image électronique.Fourth step: Application of the polynomial corrections to the electronic image by means of a second electronic device so that the final collimated image is without geometric distortions. This device is not shown in FIG. 3. It can be either integrated into the viewfinder or into an on-board electronic computer. To correct the image, there are two main choices: • Knowing the polynomials used to determine the distortion function F, calculate the inverse function F "1 and apply it to the electronic image to obtain a displayed image having the function distortion inverse to that of the optics • Apply the distortion function F on the pixels of the displayed image to calculate the coordinates of the pixels of the corresponding electronic image, these coordinates not generally being whole, the photometric value applied to each pixel of the image is estimated in function of the photometric values of the pixels neighboring the calculated pixel of the electronic image.
Il est possible d'utiliser l'ensemble des étapes du procédé de correction pour optimiser le nombre d'amers à afficher de façon à limiter les calculs. On procède alors de la façon suivante sur un premier viseur Tête Haute servant de référence: • On réalise les trois premières étapes du procédé avec un premier taux d'amers assez faible. On obtient alors des premiers coefficients de polynômes de correction. • On recommence plusieurs fois l'opération avec des nombres d'amers de plus en plus importants. On obtient de nouveau pour chaque nombre d'amers des coefficients de polynômes de correction. • On compare les différents coefficients de correction obtenus pour chaque nombre d'amers. On constate qu'à partir d'un certain nombre d'amers, on n'observe plus de variations sensibles desdits coefficients. Le nombre optimal d'amers permettant de minimiser les calculs est celui à partir duquel les coefficients de correction restent sensiblement constants. Une fois le nombre d'amers optimal déterminé, il est appliqué dans le procédé de correction de distorsion de viseurs Tête Haute sensiblement équivalents au viseur Tête Haute servant de référence. La correction électronique peut être implémentée dans un composant électronique comportant des matrices de portes logiques (ET ou OU). Ces composants peuvent être de type non programmables comme, par exemple, les ASIC (Application Spécifie Integrated Circuit) ou programmables comme, par exemple, les FPGA (Field Programmable Gâte Array) ou EPLD (Erasable Programmable Logic Device). Ces composants électroniques sont largement utilisés en électronique professionnelle et en particulier pour les applications aéronautiques. It is possible to use all the steps of the correction process to optimize the number of bitters to display so as to limit the calculations. We then proceed as follows on a first Head-Up viewfinder serving as a reference: • We carry out the first three stages of the process with a first rate of bitters fairly low. First coefficients of correction polynomials are then obtained. • We repeat the operation several times with more and more bitter numbers. Again, for each number of landmarks, coefficients of correction polynomials are obtained. • We compare the different correction coefficients obtained for each number of landmarks. It can be seen that from a certain number of landmarks, there are no longer significant variations of said coefficients. The optimal number of landmarks to minimize the calculations is the one from which the correction coefficients remain substantially constant. Once the optimal number of landmarks has been determined, it is applied in the process of correcting the distortion of head-up sights substantially equivalent to the head-up sight used as a reference. Electronic correction can be implemented in an electronic component comprising matrices of logic gates (AND or OR). These components can be of the non-programmable type such as, for example, the ASIC (Application Specifies Integrated Circuit) or programmable such as, for example, the FPGA (Field Programmable Gate Array) or EPLD (Erasable Programmable Logic Device). These electronic components are widely used in professional electronics and in particular for aeronautical applications.

Claims

REVENDICATIONS
1. Procédé de correction de l'aberration de distorsion d'un ensemble optique (2, 3) d'un viseur Tête Haute comportant un afficheur matriciel (1) donnant une image visible (51) à partir d'une image électronique (50), l'ensemble optique comprenant essentiellement une optique-relais (2) et un combineur optique (3), ledit ensemble optique (2, 3) formant de l'image de l'afficheur une image collimatée (52) destinée à un observateur (4), caractérisé en ce que ledit procédé comporte les étapes suivantes : • Génération d' images sur l'afficheur comportant une pluralité de marques encore appelés amers (53) disposées selon un motif géométrique connu au moyen d'un dispositif de génération d'images graphiques (7); • Estimation de la position angulaire de l'image collimatée de chaque amer au moyen d'un dispositif de mesure opto- mécanique (6) comportant des moyens vidéo ; • Calcul de polynômes d'approximation de la distorsion à partir des mesures précédentes au moyen d'un premier dispositif électronique (8) ; • Application des corrections polynomiales à l'image électronique au moyen d'un second dispositif électronique de façon que l'image finale collimatée soit sans distorsions géométriques.1. Method for correcting the distortion aberration of an optical assembly (2, 3) of a head-up viewfinder comprising a matrix display (1) giving a visible image (51) from an electronic image (50 ), the optical assembly essentially comprising a relay optic (2) and an optical combiner (3), said optical assembly (2, 3) forming from the image of the display a collimated image (52) intended for an observer (4), characterized in that said method comprises the following steps: • Generation of images on the display comprising a plurality of marks also called bitters (53) arranged according to a known geometric pattern by means of a device for generating d 'graphic images (7); • Estimation of the angular position of the collimated image of each bitter by means of an opto-mechanical measuring device (6) comprising video means; • Calculation of distortion approximation polynomials from previous measurements using a first electronic device (8); • Application of the polynomial corrections to the electronic image by means of a second electronic device so that the final collimated image is without geometric distortions.
2. Procédé de correction selon la revendication 1 , caractérisé en ce que chaque image affichée comporte la totalité des amers (53). 2. Correction method according to claim 1, characterized in that each displayed image comprises all of the landmarks (53).
3. Procédé de correction selon la revendication 1 , caractérisé en ce que chaque image affichée comporte une partie de la totalité des amers (53). 3. Correction method according to claim 1, characterized in that each displayed image comprises a part of all the bitters (53).
4. Procédé de correction selon l'une des revendications précédentes, caractérisé en ce que le motif géométrique est un quadrillage régulier couvrant la totalité de la surface de l'image de l'afficheur. 4. Correction method according to one of the preceding claims, characterized in that the geometric pattern is a regular grid covering the entire surface of the image of the display.
5. Procédé de correction selon l'une des revendications précédentes, caractérisé en ce que le nombre d'amers (53) est déterminé en réalisant les étapes préliminaires suivantes sur un premier viseur Tête Haute dit de référence : • Réalisant des trois premières étapes du procédé selon la revendication 1 avec plusieurs nombres d'amers ; • Détermination du nombre d'amers nécessaire au-dessus duquel les coefficients des polynômes sont sensiblement constants, ce nombre d'amers étant ensuite appliqué dans la première étape du procédé de correction de distorsion de viseurs Tête Haute sensiblement équivalents au premier viseur Tête Haute dit de référence5. Correction method according to one of the preceding claims, characterized in that the number of bitters (53) is determined by carrying out the following preliminary steps on a first Head Up viewfinder called reference: • Carrying out the first three steps of the method according to claim 1 with several numbers of bitters; • Determination of the number of landmarks required above which the coefficients of the polynomials are substantially constant, this number of landmarks is then applied in the first step of the head-up viewfinder distortion correction process substantially equivalent to the first so-called Head-up viewfinder reference
6. Procédé de correction selon l'une des revendications précédentes, caractérisé en ce que le nombre d'amers (53) est environ 100.6. Correction method according to one of the preceding claims, characterized in that the number of bitters (53) is approximately 100.
7. Procédé de correction selon l'une des revendications précédentes, caractérisé en ce que la répartition de l'énergie lumineuse de chaque amer (53) est à symétrie radiale et de forme gaussienne. 7. Correction method according to one of the preceding claims, characterized in that the distribution of the light energy of each bitter (53) is radially symmetrical and of Gaussian shape.
8. Procédé de correction selon l'une des revendications précédentes, caractérisé en ce que l'afficheur (1 ) est une matrice à cristaux liquides composée de pixels élémentaires.8. Correction method according to one of the preceding claims, characterized in that the display (1) is a liquid crystal matrix composed of elementary pixels.
9. Procédé de correction selon la revendication 8, caractérisé en ce que chaque amer (53) couvre au plus cinquante pixels de la matrice.9. A correction method according to claim 8, characterized in that each bitter (53) covers at most fifty pixels of the matrix.
10. Procédé de correction selon la revendication 8, caractérisé en ce que chaque amer (53) couvre un seul pixel. 10. Correction method according to claim 8, characterized in that each bitter (53) covers a single pixel.
11. Procédé de correction selon l'une des revendications précédentes, caractérisé en ce que la résolution angulaire des moyens vidéo du dispositif de mesure opto-mécanique (6) est inférieure à la taille de l'image collimatée de l'amer.11. Correction method according to one of the preceding claims, characterized in that the angular resolution of the video means of the opto-mechanical measuring device (6) is less than the size of the collimated image of the bitter.
12. Procédé de correction selon l'une des revendications précédentes, caractérisé en ce que le champ optique des moyens vidéo du dispositif de mesure opto-mécanique (6) est au moins égal au champ du viseur Tête Haute.12. Correction method according to one of the preceding claims, characterized in that the optical field of the video means of the opto-mechanical measuring device (6) is at least equal to the field of the head-up viewfinder.
13. Procédé de correction selon l'une des revendications 1 à 11 , caractérisé en ce que le dispositif de mesure opto-mécanique (6) comporte un ensemble mécanique permettant d'orienter angulairement les moyens vidéo d'un angle connu. 13. Correction method according to one of claims 1 to 11, characterized in that the opto-mechanical measuring device (6) comprises a mechanical assembly for angularly orienting the video means of a known angle.
PCT/EP2004/052422 2003-10-07 2004-10-04 Method for correcting for the distortion of a liquid crystal imager WO2005033774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0311727 2003-10-07
FR0311727A FR2860601B1 (en) 2003-10-07 2003-10-07 METHOD FOR CORRECTING DISTORTION OF A LIQUID CRYSTAL IMAGER

Publications (1)

Publication Number Publication Date
WO2005033774A1 true WO2005033774A1 (en) 2005-04-14

Family

ID=34307491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052422 WO2005033774A1 (en) 2003-10-07 2004-10-04 Method for correcting for the distortion of a liquid crystal imager

Country Status (2)

Country Link
FR (1) FR2860601B1 (en)
WO (1) WO2005033774A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083215A2 (en) * 2006-01-17 2007-07-26 Ferrari S.P.A. Method of controlling a road vehicle hud system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012010120A1 (en) * 2012-05-23 2013-11-28 Audi Ag Method for calibrating a head-up display
DE102013219556A1 (en) * 2013-09-27 2015-04-02 Continental Automotive Gmbh Method and device for controlling an image generation device of a head-up display
US9229228B2 (en) 2013-12-11 2016-01-05 Honeywell International Inc. Conformal capable head-up display
US10459224B2 (en) 2014-09-29 2019-10-29 Honeywell International Inc. High transmittance eyewear for head-up displays
US9606355B2 (en) 2014-09-29 2017-03-28 Honeywell International Inc. Apparatus and method for suppressing double images on a combiner head-up display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675380A (en) * 1994-12-29 1997-10-07 U.S. Philips Corporation Device for forming an image and method of correcting geometrical optical distortions in an image
US6288689B1 (en) * 1997-05-26 2001-09-11 Mitsubishi Denki Kabushiki Kaisha Eyepiece image display apparatus
US20030085909A1 (en) * 2001-11-08 2003-05-08 James Deppe Method for aligning a lens train assembly within a head-up display unit
US20030095188A1 (en) * 2001-11-21 2003-05-22 Tsai Yau-Liang Method and apparatus for adjusting image distortion
WO2003102904A1 (en) * 2002-05-31 2003-12-11 Thales Electronic correction device for optical distortions in a collimated imaging obtained from a matrix display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675380A (en) * 1994-12-29 1997-10-07 U.S. Philips Corporation Device for forming an image and method of correcting geometrical optical distortions in an image
US6288689B1 (en) * 1997-05-26 2001-09-11 Mitsubishi Denki Kabushiki Kaisha Eyepiece image display apparatus
US20030085909A1 (en) * 2001-11-08 2003-05-08 James Deppe Method for aligning a lens train assembly within a head-up display unit
US20030095188A1 (en) * 2001-11-21 2003-05-22 Tsai Yau-Liang Method and apparatus for adjusting image distortion
WO2003102904A1 (en) * 2002-05-31 2003-12-11 Thales Electronic correction device for optical distortions in a collimated imaging obtained from a matrix display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083215A2 (en) * 2006-01-17 2007-07-26 Ferrari S.P.A. Method of controlling a road vehicle hud system
WO2007083215A3 (en) * 2006-01-17 2007-12-13 Ferrari Spa Method of controlling a road vehicle hud system

Also Published As

Publication number Publication date
FR2860601A1 (en) 2005-04-08
FR2860601B1 (en) 2005-12-30

Similar Documents

Publication Publication Date Title
EP3171589B1 (en) Drone equipped with a video camera sending sequences of images corrected for the wobble effect
EP1828992B1 (en) Method for processing images using automatic georeferencing of images derived from a pair of images captured in the same focal plane
EP1843295B1 (en) Method of recreating the movements of the line of sight of an optical instrument
EP2567537B1 (en) Polychromatic imaging method
EP3076258B1 (en) Drone provided with a video camera with compensated vertical focussing of instantaneous rotations for estimating horizontal speeds
FR2633476A1 (en) VISUALIZATION SYSTEMS THAT CAN BE WATCHED WITHOUT DUCTING THE HEAD
EP0650299A1 (en) Image processing system comprising fixed cameras and a system simulating a moving camera
EP3355277A1 (en) Method for displaying on a screen at least one representation of an object, related computer program, electronic display device and apparatus
FR3075984A1 (en) METHOD AND SYSTEM FOR REPRESENTING AN AIRCRAFT DRIVING SYMBOLOGY ON A HIGH-DOOR HEAD DISPLAY THAT COMPLIES WITH THE REAL WORLD OUTSIDE VIA A SVS SYNTHETIC VISION SYSTEM
FR3069690A1 (en) ELECTRONIC DEVICE AND METHOD OF GENERATING FROM AT LEAST ONE PAIR OF SUCCESSIVE IMAGES OF A SCENE, A SCENE DEPTH CARD, DRONE AND COMPUTER PROGRAM
WO2005033774A1 (en) Method for correcting for the distortion of a liquid crystal imager
EP3502842B1 (en) Method and system for dual harmonisation of a worn head-up display system to ensure compliance of the display of information for piloting an aircraft with the real world outside
WO2003102904A1 (en) Electronic correction device for optical distortions in a collimated imaging obtained from a matrix display
EP4205406B1 (en) Process for the acquisition of images of a space object in terrestrial orbit by a spacecraft in terrestrial orbit
FR3081590A1 (en) METHOD FOR INCREASING THE SPATIAL RESOLUTION OF A MULTI-SPECTRAL IMAGE FROM A PANCHROMATIC IMAGE
EP2746830A1 (en) Optical focussing of an image-capturing instrument
EP3465321A1 (en) Drone designed for viewing a distant scene
FR3045015A1 (en) METHOD FOR DISPLAYING "ATTITUDE DIRECTOR INDICATOR" IN A HEADSET VISUALIZATION SYSTEM FOR AIRCRAFT
EP2703298A1 (en) Device and method for stimulating an optoelectronic sensor
FR3073655B1 (en) METHOD FOR DETERMINING A VISUAL SPEED VECTOR OF A MOBILE MACHINE, COMPUTER PROGRAM PRODUCT, AND DETERMINING SYSTEM THEREOF
EP0542607B1 (en) Method for correcting errors in a scanning optomechanical camera and a camera utilising this method
EP2113460A1 (en) Method for characterising vibrations for an observation satellite.
EP1990618B1 (en) Method and device for measuring at least one deformation of a wave front
FR3083305A1 (en) OPTRONIC SIGHT AND ASSOCIATED PLATFORM
WO2023037066A1 (en) Method for acquiring images of a terrestrial zone using a spacecraft comprising a laser transmission module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase