WO2005033332A2 - Verfahren zur methylierungsanalyse von dna - Google Patents

Verfahren zur methylierungsanalyse von dna Download PDF

Info

Publication number
WO2005033332A2
WO2005033332A2 PCT/DE2004/002178 DE2004002178W WO2005033332A2 WO 2005033332 A2 WO2005033332 A2 WO 2005033332A2 DE 2004002178 W DE2004002178 W DE 2004002178W WO 2005033332 A2 WO2005033332 A2 WO 2005033332A2
Authority
WO
WIPO (PCT)
Prior art keywords
dna
methylated
hemimethylated
unmethylated
converted
Prior art date
Application number
PCT/DE2004/002178
Other languages
English (en)
French (fr)
Other versions
WO2005033332A3 (de
Inventor
Jürgen Distler
Original Assignee
Epigenomics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epigenomics Ag filed Critical Epigenomics Ag
Priority to US10/573,939 priority Critical patent/US20070160991A1/en
Publication of WO2005033332A2 publication Critical patent/WO2005033332A2/de
Publication of WO2005033332A3 publication Critical patent/WO2005033332A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers

Definitions

  • the present invention relates to a method for analyzing cytosine methylations in DNA.
  • 5-Methylcytosine is the most common covalently modified base in the DNA of eukaryotic cells. 5-methylcytosine only occurs in the sequence context of CG dinucleotides, whereby the cytosines are usually methylated in both DNA strands. The specific methylation patterns of DNA are retained even during DNA replication. First, two hemimethylated DNA double strands are formed, which are then converted into the fully methylated form. This conversion takes place with the help of specific "maintenance" methyltransferases, such as DMNTl.
  • Cytosine methylation plays an important biological role, among other things in transcription regulation, in genetic imprinting and in tumorigenesis (for an overview: Millar et al .: Five not four: History and significance of the fifth base. In: S. Beck and A Olek, eds .: The Epigenome. Wiley-VCH Verlag Weinheim 2003, pp. 3-20).
  • the identification of 5-methylcytosine as a component of genetic information is therefore of considerable interest.
  • it is difficult to prove methylation because cytosine and 5-methylcytosine have the same base pairing behavior.
  • Many of the conventional detection methods based on hybridization are therefore unable to differentiate between cytosine and ethyl cytosine.
  • the methylation information is completely lost during PCR amplification.
  • methylation-specific restriction enzymes are used, and on the other hand there is a selective chemical conversion of unmethylated cytosines into uracil (so-called: bisulfite treatment, see for example: DE 101 54 317 AI; DE 100 29 915 Al).
  • bisulfite treatment see for example: DE 101 54 317 AI; DE 100 29 915 Al.
  • the enzymatically or chemically pretreated DNA is then mostly amplified and can be analyzed in different ways (for an overview: WO 02/072880 p. 1 ff; Fraga and Esteller:
  • the method according to the invention works on the following principle: there is a small amount of specifically methylated DNA in the sample to be examined. There is also a large amount of background DNA with the corresponding cytosine positions unmethylated. The DNA double strands are separated and then reassembled. Hybrid molecules are formed from methylated and unmethylated DNA. These hybrids serve as a substrate for a maintenance methyltransferase. The hemimethylated positions are thus converted into fully methylated positions. In the optimal case, the amount of methylated DNA has doubled. The proportion of methylated DNA can be increased further by repeating the process. •
  • the method according to the invention enables sensitive detection of methylated DNA against a background of unmethylated DNA.
  • the process according to the invention takes place in the following steps: a) the DNA double strands to be examined are separated and then reassociated to form hemi-ethylated double strands, b) the hemimethylated positions formed in step a) are converted into fully methylated positions with the aid of an enzyme, c ) the methylated DNA is analyzed.
  • Methylation state of DNA just the state. the individual CpG positions to be examined within the DNA. Methylated and fully methylated describe the case in which the positions to be examined are methylated in both DNA strands.
  • background DNA is understood to mean unmethylated DNA which has the same base sequence as the methylated DNA to be examined.
  • the methylated DNA must be present in the sample to be examined against a background of unmethylated DNA. This ensures that hemimethylated double strands are formed after the separation and reassociation of the DNA, which can then be transferred into fully methylated DNA.
  • the amount of background DNA is preferably at least 20 times, particularly preferably at least 50 times, higher than the amount of methylated DNA.
  • the DNA to be examined can come from different sources, depending on the diagnostic or scientific question.
  • Body fluids can be used as the starting material for diagnostic examinations, since in addition to the methylated DNA to be detected there is a large background of unmethylated DNA.
  • Serum is preferably used.
  • the DNA is preferably isolated from the biological samples. DNA extraction is carried out according to standard methods, for example from blood using the Qiagen UltraSens DNA extraction kit. Other methods of DNA isolation are known to those skilled in the art.
  • fragmented DNA is used.
  • the separation and reassociation of the DNA strands can thus be carried out more easily.
  • a fragment length of 0.2 to 8 kB is preferred.
  • the fragmentation can take place, for example, by conversion with restriction enzymes.
  • the reaction conditions and the. Enzymes in question belong to the state of the art and result, for example, from the protocols supplied by the manufacturers.
  • Other methods of fragmenting DNA are known to those skilled in the art.
  • DNA is already present in fragmented form, especially in plasma samples. Another 'Fragmentation is not required.
  • the DNA is preferably separated and reassociated by changes in temperature. Nevertheless, the use of other techniques for generating single-stranded DNA or for combining the single strands is also conceivable.
  • the enzymatic conversion of the hemimethylated to fully methylated DNA is preferably carried out using a maintenance methyl transferase and a methyl group donor, such as S-adenosyl methionine.
  • DNMT1 is preferably used as the enzyme.
  • the reaction conditions of DNMT1 belong to the state of the art and result from the protocols of commercial providers. It is known to the person skilled in the art that other enzymes which are able to convert hemimethylated positions into fully methylated positions can also be used.
  • the amount of methylated DNA can be doubled by separation, reassociation and enzyme conversion. By repeating this cycle, a further increase in the methylated DNA content can be achieved. How often these cycles make sense depends on the relationship between methylated DNA and background DNA. An optimal number of cycles can easily be determined experimentally.
  • the methylated DNA is analyzed. This is the specialist a variety of methods known (for an overview: WO 02/072880 p. 1 ff; Fraga and Esteller loc. cit.).
  • the DNA is preferably first reacted with a bisulfite reagent which converts unmethylated cytosine into uracil but leaves 5-methylcytosine unchanged (see, for example: DE 101 54 317 AI; DE 100 29 915 AI).
  • the converted DNA can be analyzed in different ways. It is particularly preferred to first amplify the DNA using a polymerase chain reaction. Selective amplification of the methylated DNA can be ensured using different methods, for example using the so-called “heavy methyl ⁇ method (for an overview: WO 02/072880) or the so-called“ methylation-sensitive PCR "MSP"; see: Her an et al. : Methylation-specific PCR: a novel PCR assay for methylation Status of CpG islands. Proc Natl Acad Sci US A. 1996 Sep 3; 93 (18): 9821-6).
  • the detection of the amplificates can be carried out using conventional methods, for example via primer extension reactions ("MsSNuPE”; see for example: DE 100 10 280) or via hybridization on oligomer arrays (see for example: Adorjan et al., Tu our class prediction and discovery by microarray-based DNA methylation analysis.Nucleic Acids Res. 2002 Mar 1; 30 (5): e21).
  • MsSNuPE primer extension reactions
  • the amplified products are analyzed using PCR real-time variants (cf. US Pat. No. 6,331,393 “methyl light ⁇ ).
  • OF PREFERRED te variants are the "Taqman" and the "Lightcycler v process”.
  • Another aspect of the invention is the use of all the embodiments according to the invention. If disease-specific cytosine positions are examined, the method according to the invention is particularly suitable for the diagnosis or prognosis of cancer diseases or other diseases associated with a change in the methylation status.
  • CNS malfunctions aggression symptoms or behavioral disorders; clinical, psychological and social consequences of brain damage; psychotic disorders and personality disorders; Dementia and / or associated syndromes; cardiovascular disease, malfunction and damage; Malfunction, damage or disease of the gastrointestinal tract; Malfunction, damage or disease of the respiratory system; Injury, inflammation, infection, immunity and / or convalescence; Malfunction, damage or illness of the body as a deviation in the development process; Malfunction, damage or disease of the skin, muscles, connective tissue or bones; endocrine and metabolic dysfunction, injury or illness; Headache or sexual malfunction.
  • the method according to the invention is also suitable for predicting undesirable drug effects, for determining a specific drug therapy (personalized medicine) and for monitoring the success of a drug therapy.
  • Another application is the differentiation of cell types or tissues and the investigation of cell differentiation.
  • the person skilled in the art recognizes that the method according to the invention can also be carried out in the opposite direction, provided that enzymes are available which convert specifically hemimethylated DNA into unmethylated DNA. This allows a small amount of unmethylated DNA to be detected against a large background of methylated DNA.
  • the DNA double strands to be investigated are first separated as described above and then reassociated to form homymethylated double strands.
  • the DNA is then reacted with an enzyme that specifically removes the methyl groups at the hemimethylated positions.
  • the amount of unmethylated DNA can be increased in this way.
  • the further analysis can be carried out as described above.
  • the DNA was isolated from 1 ml of plasma using the QIAa p UltraSens Virus Kit (Qiagen, Hilden) according to the manufacturer's instructions. 50 ⁇ l of the isolated DNA (approx. 100 pg) were incubated for 10 min at 96 ° C. and then cooled to 25 ° C. within 60 min. The DNA solution was then incubated with 2 units of human DNA (cytosine-5) methyltransferase (Dnmtl) from New England Biolabs according to the manufacturer's instructions for 2 h at 37 ° C. This was followed by another incubation at 96 ° C. for 10 min. The reaction solution was then again cooled to 25 ° C.
  • human DNA cytosine-5) methyltransferase
  • the methylated GSTPl exonl DNA fragments were then detected by a heavy methyl real-time PCR.
  • the GSTpl exonl fragment (nt 1183 to nt 1303 in Genbank Accession M24485.1) was amplified in a reaction volume of 20 ⁇ l in a LightCycler device (Röche Diagnostics).
  • the real-time PCR reaction mix consisted of 10 ⁇ l DNA, 2 ⁇ l FastStart-LightCycler reaction mix for hybridization probes (Röche Diagnostics, Penzberg), 0.30 ⁇ mol / 1 primer (SEQ ID NO: 1; GGGAttAtttTTATAAGGtT), 0 , 30 ⁇ mol / 1 primer (SEQ ID NO: 2; TaCTaaaAaCTCTaAaCCCCATC), 0.15 ⁇ mol / 1 fluorescein detection probe (SEQ ID NO: 3; TTCGtCGtCGtAGTtTTCGtt-fluorescein; TIB-MolBiol, Berlin), 0.15 ⁇ mol / 1 detecti - on probe (SEQ ID NO: 4; red640-tAGTGAGTACGCGCGGtt- phosphate; TIB-MolBiol, Berlin), 4 ⁇ mol / 1 blocker oligonucleotide (SEQ ID NO: 5; CC

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Nachweis methylierter DNA vor einem Hintergrund unmethylierter DNA. Dabei werden die zu untersuchenen DNA-Doppelstränge getrennt und anschließend unter Bildung hemimethylierter Doppelstränge reassoziiert. Danach wird die hemimethylierte DNA enzymatisch in vollmethylierte DNA umgewandelt. Die Menge an methylierter DNA wird so erhöht. Anschließend kann die methylierte DNA über unterschiedliche Verfahren analysiert werden. Das erfindungsgemäße Verfahren eignet sich insbesondere zur Diagnose und Prognose von Krebserkrankungen und anderer mit einer Veränderung des Methylierungsstatus assoziierter Krankheiten sowie zur Vorhersage unerwünschter Arzneimittelwirkungen.

Description

Verfahren zur Methylierungsanalyse von DNA
Hintergrund der Erfindung
Die vorliegende Erfindung betrifft ein Verfahren zur Analyse von Cytosin-Methylierungen in DNA. 5-Methylcytosin ist die häufigste kovalent modifizierte Base in der DNA eukaryontischer Zellen. 5-Methylcytosin tritt nur im Se- quenzkontext von CG-Dinukleotiden auf, wobei in der Regel die Cytosine in beiden DNA-Strängen methyliert sind. Die spezifischen Methylierungsmustex der DNA bleiben auch während einer DNA-Replikation erhalten. Dabei werden zunächst zwei hemimethylierte DNA-Doppelstränge gebildet, die anschließend in die vollmethylierte Form überführt werden. Diese Umwandlung erfolgt mit Hilfe von spezifischen „Erhaltungs"- (maintenance) —Methyltransferasen, etwa DMNTl. Diese Enzyme erkennen spezifisch hemimethylierte CG-Positionen und ethylieren diese mit Hilfe eines Me- thylgruppendonors, meist S-Adenosyl-L-Methionin. Die Reaktionsmechanismen von Erhaltungs-Methyltransferasen sind ausführlich beschrieben (siehe etwa für DNMT1 Pradhan et al.: Recombinant human DNA (cytosine-5) methyltransfera- se. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999 Nov 12;274(4β) :33002-10) .
Die Cytosinmethylierung spielt eine wichtige biologische Rolle, u.a. bei der Transkriptionsregulation, beim gene- tischen Imprinting und in der Tumorgenese (zur Übersicht: Millar et al.: Five not four: History and significance of the fifth base. In: S. Beck and A. Olek, eds.: The Epige- nome. Wiley-VCH Verlag Weinheim 2003, S. 3-20). Die Identifizierung von 5-Methylcytosin als Bestandteil geneti- scher Information ist daher von erheblichen Interesse. Ein Nachweis der Methylierung ist allerdings schwierig, da Cytosin und 5-Methylcytosin das gleiche Basenpaarungsverhalten aufweisen. Viele der herkömmlichen, auf Hybridisierung beruhenden Nachweisverfahren vermögen daher nicht zwischen Cytosin und ethylcytosin zu unterschei- den. Zudem geht die Methylierungsinformation bei einer PCR-Amplifikation vollständig verloren.
Die herkömmlichen Methoden zur Methylierungsanalyse arbeiten im wesentlichen nach zwei unterschiedlichen Prin- zipien. Zum einen werden methylierungsspezifische Restriktionsenzyme benutzt, zum anderen erfolgt eine selektive chemische Umwandlung von nicht-methylierten Cytosi- nen in Uracil (sog. : Bisulfit-Behandlung, siehe etwa: DE 101 54 317 AI; DE 100 29 915 Al) . Die enzymatisch oder chemisch vorbehandelte DNA wird dann meist amplifiziert und kann auf unterschiedliche Weise analysiert werden (zur Übersicht: WO 02/072880 S. 1 ff; Fraga and Esteller:
DNA Methylation: A Profile of Methods and Applications.
Biotechniques 33:632-649, Sept. 2002).
Wegen der Beteiligung der Cytosin-Methylierung in der Krankheitsentstehung, insbesondere in der Tumorgenese, sind diagnostische Anwendungen der Methylierungsanalyse von großem Interesse. Eine besondere Rolle spielen dabei Methoden, die es. erlauben, abweichende Methylierungs- muster in Körperflüssigkeiten, etwa in Serum, nachzuweisen. Denn anders als die instabile RNA ist DNA oft in Körperflüssigkeiten anzutreffen. Bei destruktiven pathologischen Prozessen wie Krebserkrankungen ist die -DNA- Konzentration im Blut sogar erhöht. Eine Krebsdiagnostik über eine Methylierungsanalyse von in Körperflüssigkeiten befindlicher Tumor-DNA ist also möglich und schon mehrfach beschrieben (siehe etwa: Palmisano et al.: Predic- ting lung cancer by detecting aberrant promoter ethyla- tion in sputum. Cancer Res . 2000 Nov 1; 60 (21) : 5954-8) . Ein Schwierigkeit besteht jedoch darin, dass sich in den Körperflüssigkeiten neben der DNA mit dem krankheitstypischen Methylierungsmuster eine große Menge an DNA der gleichen Sequenz aber eines anderen Methylierungsmusters befindet. Die Diagnoseverfahren stehen daher vor dem Problem, sehr geringe Mengen besonders methylierter DNA vor einem starken Hintergrund an DNA derselben Sequenz, aber eines anderen Methylierungsmusters, nachweisen zu müssen. Die Anwendbarkeit dieser Verfahren ist daher bisher begrenzt.
Es wurde nun ein Weg gefunden, wie die Menge der methy- lierten DNA vor der Analyse erhöht werden kann. Hierdurch wird ein sensitiverer Nachweis von Cytosinmethylierungen und somit eine frühere Diagnose von Krankheiten ermög- licht.
Das erfindungsgemäße Verfahren arbeitet nach folgendem Prinzip: In der zu untersuchenden Probe befindet sich eine geringe Menge spezifisch methylierter DNA. Außerdem ist eine große Menge an Hintergrund-DNA vorhanden, bei der die entsprechenden Cytosinpositionen unmethyliert vorliegt. Die DNA-Doppelstränge werden getrennt und anschließend neu zusammengefügt. Dabei bilden sich Hybridmoleküle aus methylierter und unmethylierter DNA. Diese Hybride dienen als Substrat für eine Erhaltungs- Methyltransferase. Die hemimethylierten Positionen werden so in vollmethylierte Positionen umgewandelt. Die Menge an methylierter DNA hat sich im optimalen Fall verdoppelt. Durch Wiederholung des Verfahrens lässt sich der Anteil der methylierter DNA weiter erhöhen. •
Ein ähnliches Verfahren zur Analyse von Cytosinmethylierungen ist in der Patentanmeldung DE 102 14 232 offenbart. Beschrieben ist dort eine Methode zu einer methy- lierungserhaltenden PCR. Auch hierin wird die zu untersuchende methylierte DNA in hemimethylierte DNA überführt, die anschließend mit Hilfe von Erhaltungs- Methyltransferasen in vollmethylierte DNA umgewandelt wird. Jedoch wird die hemimethylierte DNA in DE 102 14 232 durch Verlängerung eines an die zu untersuchende DNA hybridisierten Primer gebildet. Das erfindungegemäße Verfahren dagegen benutzt zur Hybridbildung allein die in der Probe vorhandene DNA. Der Einsatz von Primern ist daher nicht erforderlich. Beschreibung
Das erfindungsgemäße Verfahren ermöglicht einen sensitiven Nachweis methylierter DNA vor einem Hintergrund un- methylierter DNA. Das erfindungsgemäße Verfahren erfolgt in folgenden Schritten: a) die zu untersuchenen DNA-Doppelstränge werden getrennt und anschließend unter Bildung hemi ethy- lierter Doppelstränge reassoziiert, b) die in Schritt a) entstandenen hemimethylierten Positionen werden mit Hilfe eines Enzyms in vollmethylierte Positionen umgewandelt, c) die methylierte DNA wird analysiert.
Die Begriffe methyliert , unmethyliert, hemimethyliert und vO22-r.et.hy2i.ert beschreiben dabei nicht den Gesamt-
Methylierungszustand der DNA, sondern nur den Zustand an . den einzelnen zu untersuchenden CpG-Positionen innerhalb der DNA. Methyliert und vollmethyliert beschreiben synonym den Fall, in dem die zu untersuchenden Positionen in beiden DNA-Strängen methyliert sind. Unter Hintergrund- DNA wird im folgende unmethylierte DNA verstanden, die über die gleiche Basensequenz wie die zu untersuchende methylierte DNA verfügt. In der zu untersuchenden Probe muss die methylierte DNA vor einem Hintergrund unmethylierter DNA vorliegen. So ist gewährleistet, dass nach der Trennung und Reassoziie- rung der DNA hemimethylierte Doppelstränge gebildet wer- den, die anschließend in vollmethylierte DNA transferiert werden können. Bevorzugt ist die Menge an Hintergrund DNA mindestens um den Faktor 20, besonders bevorzugt mindestens um den Faktor 50 höher als die Menge der methylier- ten DNA. Die zu untersuchende DNA kann je nach diagnosti- scher oder wissenschaftlicher Fragestellung aus unterschiedlichen Quellen stammen. Für diagnostische Untersuchungen können als Ausgangsmaterial insbesondere Körperflüssigkeiten dienen, da in diesen neben der nachzuweisenden methylierten DNA ein großer Hintergrund an un- methylierter DNA vorhanden ist. Bevorzugt wird Serum verwendet. Es ist aber u.a. auch möglich, die DNA aus Spu- tum, Stuhl, Urin oder Gehirn-Rückenmarks-Flüssigkeit zu verwenden. Bevorzugt wird die DNA aus den biologischen Proben isoliert. Die DNA-Extraktion erfolgt nach Stan- dardmethoden, aus Blut etwa unter Verwendung des Qiagen UltraSens-DNA-Extraktions-Kits. Dem Fachmann sind weitere Verfahren zur DNA-Isolierung bekannt.
In einer bevorzugten Ausführungsform wird fragmentierte DNA verwendet. Die Trennung und Reassoziierung der DNA- Stränge kann so erleichtert erfolgen. Bevorzugt ist dabei eine Fragmentlänge von 0,2 bis 8 kB. Die Fragmentierung kann etwa durch Umsatz mit Restriktionsenzymen erfolgen. Die -Reaktionsbedingungen und die. in Frage kommenden Enzy- me gehören zum Stand der Technik und ergeben sich etwa aus den von den Herstellern mitgelieferten Protokollen. Dem Fachmann sind weitere Verfahren zur Fragmentierung von DNA bekannt. Insbesondere in Plasma-Proben liegt die DNA bereits in fragmentierter Form vor. Eine weitere ' Fragmentierung ist hier nicht erforderlich. Die Trennung und Reassoziierung der DNA erfolgt bevorzugt durch Temperaturveränderungen. Gleichwohl ist auch die Verwendung anderer Techniken zur Erzeugung einzelsträngiger DNA bzw. zur Zusammenführung der Einzelstränge denk- bar.
Die enzymatische Überführung der hemimethylierten in vollmethylierte DNA erfolgt bevorzugt unter Einsatz einer Erhaltungs-Methyltransferase und eines Methylgruppendo- nors, etwa S-Adenosyl-Methionin. Als Enzym wird bevorzugt DNMT1 verwendet. Die Reaktionsbedingungen von DNMT1 gehören zum Stand der Technik und ergeben sich etwa aus den Protokollen kommerzieller Anbieter. Dem Fachmann ist bekannt, dass auch anderer Enzyme eingesetzt werden können, die in der Lage sind, hemimethylierte Positionen in vollmethylierte Positionen zu überführen.
Im optimalen Fall lässt sich durch Trennung, Reassoziierung und Enzym-Umwandlung die Menge an methylierter DNA verdoppeln. Durch Wiederholung dieses Zyklus lässt sich, eine weitere Erhöhung des methylierten DNA-Anteils erreichen. Wie oft diese Zyklen Sinnvollerweise durchgeführt werden, hängt von dem Verhältnis zwischen methylierter DNA und Hintergrund-DNA ab. Eine optimale Zyklenzahl ist leicht experimentell zu bestimmen.
Bei wiederholten Zyklen muss darauf geachtet werden, dass eine thermischen Trennung der Doppelstränge zu einer Denaturierung der Methyltransferase führen kann. In diesem Fall muss das Enzym in jedem Zyklus neu hinzugegeben werden. Steht eine thermostabile Enzymvariante zur Verfügung, so ist eine wiederholte Zugabe jedoch nicht erforderlich. Im letzten Schritt des erfindungsgemäßen Verfahrens wird die methylierte DNA analysiert. Hierzu ist dem Fachmann eine Vielzahl von Methoden bekannt (zur Übersicht: WO 02/072880 S. 1 ff; Fraga and Esteller a.a.O.). Bevorzugt wird die DNA zunächst mit einem Bisulfitreagenz umgesetzt, das nicht-methyliertes Cytosin in Uracil über- führt, 5-Methylcytosin aber unverändert läßt (siehe etwa: DE 101 54 317 AI; DE 100 29 915 AI) . Eine entsprechende Konversion ist auch durch Einsatz methylierungsspezifi- scher Cytidin-Deaminasen denkbar (vgl. :Bransteitter et al . : Activation-induced cytidine deaminase deaminates de- oxycytidine on single-stranded DNA but requires the ac- tion of RNase. Proc Natl Acad Sei U S A. 2003 Apr ' 1;100(7) : 4102-7) .
Die umgewandelte DNA kann auf unterschiedliche Art und Weise analysiert werden. Besonders bevorzugt ist es, die DNA zunächst mittels einer Polymerasekettenreaktion zu amplifizieren. Über unterschiedliche Verfahren läßt sich dabei eine selektive Amplifikation der methylierten DNA sicherstellen, etwa über die sog. „Heavy-MethylΛλ-Methode (zur Übersicht: WO 02/072880) oder die sog. „me- thylierungssensitive PCR" MSP"; vgl.: Her an et al. : Methylation-specific PCR: a novel PCR assay for methylation Status of CpG islands. Proc Natl Acad Sei U S A. 1996 Sep 3;93 (18) :9821-6) . Die Detektion der Amplifikate kann über herkömmliche Verfahren erfolgen, etwa über Primer-Extension-Reaktionen ("MsSNuPE"; siehe etwa: DE 100 10 280) oder über Hybridisierung an Oligomer-Arrays (Siehe etwa: Adorjan et al., Tu our class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 2002 Mar 1; 30 (5) :e21) . In einer anderen besonders bevorzugten Ausführungsform werden die Amplifikate unter Verwendung von PCR-Real-Time-Varianten analysiert (vgl.: US 6,331,393 „Methyl-Lightλ) . Bevorzug- te Varianten sind dabei das „Taqman"- und das „Lightcyc- lerv-Verfahren) .
Ein weiterer Aspekt der Erfindung besteht in der Ver en- düng aller erfindungsgemäßen Ausführungsformen. Werden krankheitsspezifische Cytosinpositionen untersucht, so eignet sich das erfindungsgemäße Verfahren insbesondere zur Diagnose oder Prognose von Krebserkrankungen oder anderen mit einer Veränderung des Methylierungsstatus asso- ziierten Krankheiten. Hierzu gehören u.a. CNS- Fehlfunktionen, Aggressionssymptome oder Verhaltensstörungen; klinische, psychologische und soziale Konsequenzen von Gehirnschädigungen; psychotische Störungen und Persönlichkeitsstörungen; Demenz und/oder assoziierte Syndrome; kardiovaskuläre Krankheit, Fehlfunktion und Schädigung; Fehlfunktion, Schädigung oder Krankheit des gastrointestinalen Traktes; Fehlfunktion, Schädigung oder Krankheit des AtmungsSystems; Verletzung, Entzündung, Infektion, Immunität und/oder Rekonvaleszenz; Fehlfunktion, Schädigung oder Krankheit des Körpers als Abweichung im Entwicklungsprozess; Fehlfunktion, Schädigung oder Krankheit der Haut, der Muskeln, des Bindegewebes oder der Knochen; endokrine und metabolische Fehlfunktion, Schädigung oder Krankheit; Kopfschmerzen oder sexuelle Fehl- funktion. Das erfindungsgemäße Verfahren eignet sich außerdem zur Vorhersage von unerwünschten Arzneimittelwir- kungen, zur Festlegung einer spezifischen Arzneimitteltherapie (personalisierte Medizin) und zur Überwachung des Erfolges einer Arzneimitteltherapie. Eine weitere An- Wendung ist die Unterscheidung von Zelltypen oder Geweben und die Untersuchung der Zelldifferenzierung. Der Fachmann erkennt, dass das erfindungsgemäße Verfahren auch in der umgekehrten Richtung erfolgen kann, sofern Enzyme zur Verfügung stehen, die spezifisch hemimethylierte DNA in unmethylierte DNA umwandeln. Hiermit kann eine geringe Menge unmethylierter DNA vor einem großen Hintergrund methylierter DNA nachgewiesen werden . Die zu untersuchenen DNA-Doppelstränge werden wie oben beschrieben zunächst getrennt und anschließend unter Bildung he- mimethylierter Doppelstränge reassoziert. Die DNA wird dann mit einem Enzym umgesetzt, das spezifisch die Methylgruppen an den hemimethylierten Positionen entfernt. Die Menge an unmethylierter DNA läßt sich so erhöhen. Die weitere Analyse kann wie oben beschrieben erfolgen.
Ausführungsbeispiel
Identifizierung methylierter GSTPl-Exonl-DNA im Plasma von Prostata-Tumor Patienten.
Die DNA wurde aus 1 ml Plasma mit dem QIAa p UltraSens Virus Kit (Qiagen, Hilden) nach Herstellerangaben isoliert. 50 μl der iolierten DNA (ca. 100 pg) wurden für 10 min bei 96 °C inkubiert und anschließend innerhalb von 60 min auf 25 °C abgekühlt. Die DNA-Lösung wurde dann mit 2 Units menschlicher DNA- (cytosine-5) -Methyltransferase (Dnmtl) von New England Biolabs nach Herstellerangaben für 2 h bei 37 °C inkubiert. Danach erfolgte eine erneute Inkubation für 10 min bei 96 °C. Anschließend wurde die Reaktionslösung wiederum innerhalb von 60 min auf 25 °C abgekühlt und nach Zugabe von 2 Units Dnmtl für weitere 2 h bei 37 °C nach Herstellerangaben inkubiert. Im Anschluß wurde die DNA-Lösung einer Bisulfit-Behandlung unterzogen (Olek et al . Nucleic Acids Res. 1996 Dec 15;24 (24) : 5064-
6) . Durch diese Reaktion werden unmethylierte Cytosine in
Uracile umgewandelt, wogegen methylierte Cytosine nicht verändert werden. Die methylierten GSTPl-Exonl-DNA-Fragmente wurden anschließend durch eine HeavyMethyl-Real-Time-PCR nachgewiesen. Hierzu wurde das GSTpl-Exonl-Fragment (nt 1183 to nt 1303 in Genbank Accession M24485.1) in einem Reakti- onsvolumen von 20 μl in einem LightCycler Gerät (Röche Diagnostics) amplifiziert. Der Real-Time-PCR-Reaktionsmix bestand aus 10 μl DNA, 2 μl FastStart-LightCycler- Reaktions-Mix für Hybridisierungssonden (Röche Diagnostics, Penzberg) , 0,30 μmol/1 Primer (SEQ ID NO: 1; GGGAttAtttTTATAAGGtT) , 0,30 μmol/1 Primer (SEQ ID NO: 2; TaCTaaaAaCTCTaAaCCCCATC) , 0,15 μmol/1 Fluorescein- Detektionssonde (SEQ ID NO: 3; TTCGtCGtCGtAGTtTTCGtt- fluorescein; TIB-MolBiol, Berlin), 0,15 μmol/1 Detekti- onssonde (SEQ ID NO: 4; red640-tAGTGAGTACGCGCGGtt- phosphate; TIB-MolBiol, Berlin) , 4 μmol/1 Blocker- Oligonukleotid (SEQ ID NO: 5; CCCATCCCCaAAAACaCaAACCaCa- phosphat, TIB-MolBiol, Berlin) und 3,5 mmol/1 MgCl2. In den Oligonukleotidsequenzen wurden diejenigen Positionen, die den umgewandelten, ursprünglich nicht methylierten Cytosinen entsprechen, mit einem kleinen „t" gekennzeichnet (bzw. kleines „aλ im komplementären Strang) . Dagegen stehen das große „TλX (bzw. „AλΛ im komplementären Strang) für die bereits vor der Bisulfit-Behandlung vorhandenen Thymine . Die PCR-Bedingungen waren wie folgt: eine Inkubation für 10 min bei 95 °C, anschließend 55 Zyklen mit folgenden Schritten: 95 °C für 10 s, 56°C für 30 s, und 72 °C für 10 s. Die Fluoreszenz wurde nach der Annealingphase bei 56 °C in jedem Zyklus gemessen.
Vergleichende GSTpl-PCRs von Dmntl-behandelten und nicht- behandelten Proben zeigten, dass methylierte GSTP1 DNA- Fragmente in Dmntl-behandelten Proben um 0,5-1,5 Zyklen früher detektiert werden konnten. Dies entspricht einer Vermehrung der methylierten DNA um 50-150%.

Claims

Patentansprüche
1) Verfahren zum Nachweis methylierter DNA vor einem Hintergrund unmethylierter DNA, dadurch gekennzeichnet, dass a) die zu un e suchenen DNA-Doppelst änge getrennt und anschließend unter Bildung hemimethylierter Doppelstränge reassoziiert werden, b) die in Schritt a) entstandenen hemimethylierten Positionen mit Hilfe eines Enzyms in vollmethylierte Positionen umgewandelt werden, c) die methylierte DNA analysiert wird.
2) Verfahren nach Anspruc 1, dadurch gekennzeichnet, dass DNA aus Körperflüssigkeiten untersucht wird.
3 ) Verfahren nach Anspruch 2 , dadurch gekennzeichnet , dass DNA aus Serum untersucht wird.
4) Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeictinet, dass die DNA vor Schritt a) fragmentiert wird.
5) Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Schritt b) eine Erhaltungs-Methyltransferase verwendet wird.
6) Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Erhaltungs-Methyltransferase DNMT1 verwendet wird.
7) Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schritte a) und b) einmal oder mehrfach wiederholt werden. 8) Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine thermostabile Methyltransferase verwendet wird.
9) Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet dass die DNA in Schritt c) zunächst mittels eines Bisulfitreagenz oder enzy a- tisch umgewandelt wird.
10) Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die umgewandelte DNA mittels einer der folgenden Methoden analysiert wird: MSP, Heavy Methyl, MsSNuPE, Methyl-Light .
11) Verwendung eines der Verfahren nach mindestens einem der Ansprüche 1 bis 10 zur Diagnose oder Prognose von Krebserkrankungen oder anderen mit einer Veränderung des Cytosin-Methylierungsstatus assoziierten Krankheiten, zur Vorhersage von unerwünschten Arzneimit- telwirkungen, zur Festlegung einer spezifischen Arz- neimitteltherapie, zur Überwachung des Erfolges einer Arzneimitteltϊierapie, zur Unterscheidung von Zeiltypen oder Geweben und zur Untersuchung der Zelldifferenzierung.
12) Verfahren zum Nachweis unmethylierter DNA vor einem Hintergrund methylierter DNA, dadurch gekennzeichnet, dass a) die zu untersuchenden DNA-Doppelstränge ge- trennt und anschließend unter Bildung hemimethy- lierter Doppelstränge reassoziiert werden, b) die in Schritt a) entstandenen hemimethylierten Positionen mit Hilfe eines Enzyms in unmethylierte Positionen umgewandelt werden, c) die unmethylierte DNA analysiert wird.
PCT/DE2004/002178 2003-09-30 2004-09-27 Verfahren zur methylierungsanalyse von dna WO2005033332A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/573,939 US20070160991A1 (en) 2003-09-30 2004-09-27 Method for the methylation analysis of dna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10346363.1 2003-09-30
DE10346363A DE10346363B4 (de) 2003-09-30 2003-09-30 Verfahren zur Methylierungsanalyse von DNA

Publications (2)

Publication Number Publication Date
WO2005033332A2 true WO2005033332A2 (de) 2005-04-14
WO2005033332A3 WO2005033332A3 (de) 2005-06-16

Family

ID=34399295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002178 WO2005033332A2 (de) 2003-09-30 2004-09-27 Verfahren zur methylierungsanalyse von dna

Country Status (3)

Country Link
US (1) US20070160991A1 (de)
DE (1) DE10346363B4 (de)
WO (1) WO2005033332A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568786A2 (de) * 2004-02-13 2005-08-31 Affymetrix, Inc. (A US Entity) Analyse der Methylierung mittels Nukleinsäurearrays
WO2009006543A1 (en) * 2007-07-02 2009-01-08 Euclid Diagnostics Llc Methods for evaluating the methylation status of a polynucleotide
US9828640B2 (en) 2006-03-31 2017-11-28 Affymetrix, Inc. Analysis of methylation using nucleic acid arrays
CN108445221A (zh) * 2017-02-16 2018-08-24 中国科学院大连化学物理研究所 一种蛋白质甲基化的鉴定方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130991B2 (en) * 2017-03-08 2021-09-28 The University Of Chicago Method for highly sensitive DNA methylation analysis
RU2689727C2 (ru) * 2017-10-27 2019-05-28 Федеральное государственное бюджетное научное учреждение "Медико-генетический научный центр" Способ анализа дифференциально метилированных геномных участков в биологических образцах костного мозга и крови детей с острым миелоидным лейкозом

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786146A (en) * 1996-06-03 1998-07-28 The Johns Hopkins University School Of Medicine Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids
WO2002038811A2 (en) * 2000-11-08 2002-05-16 University Of Southern California Assay for the detection and quantitation of hemimethylation
WO2002072880A2 (de) * 2001-03-09 2002-09-19 Epigenomics Ag Verfahren zum nachweis von cytosin-methylierungsmustern mit hoher sensitivität
WO2003080862A1 (en) * 2002-03-25 2003-10-02 Epigenomics Ag Method and devices for dna methylation analysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1009865A1 (de) * 1997-08-29 2000-06-21 Osvaldo J. Lopez Gentypisierung mittels dna methyltransferase
DE10253068A1 (de) * 2002-11-07 2004-05-27 Epigenomics Ag Verfahren zur Analyse von Methylierungsmustern in Nukleinsäuren mittels Massenspektrometrie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786146A (en) * 1996-06-03 1998-07-28 The Johns Hopkins University School Of Medicine Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids
WO2002038811A2 (en) * 2000-11-08 2002-05-16 University Of Southern California Assay for the detection and quantitation of hemimethylation
WO2002072880A2 (de) * 2001-03-09 2002-09-19 Epigenomics Ag Verfahren zum nachweis von cytosin-methylierungsmustern mit hoher sensitivität
WO2003080862A1 (en) * 2002-03-25 2003-10-02 Epigenomics Ag Method and devices for dna methylation analysis

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568786A2 (de) * 2004-02-13 2005-08-31 Affymetrix, Inc. (A US Entity) Analyse der Methylierung mittels Nukleinsäurearrays
EP1568786A3 (de) * 2004-02-13 2007-08-29 Affymetrix, Inc. (A US Entity) Analyse der Methylierung mittels Nukleinsäurearrays
US9828640B2 (en) 2006-03-31 2017-11-28 Affymetrix, Inc. Analysis of methylation using nucleic acid arrays
US10822659B2 (en) 2006-03-31 2020-11-03 Affymetrix, Inc. Analysis of methylation using nucleic acid arrays
WO2009006543A1 (en) * 2007-07-02 2009-01-08 Euclid Diagnostics Llc Methods for evaluating the methylation status of a polynucleotide
US8361724B2 (en) 2007-07-02 2013-01-29 Euclid Diagnostics Llc Methods for evaluating the methylation status of a polynucleotide
US8658369B2 (en) 2007-07-02 2014-02-25 Euclid Diagnostics Llc Methods for evaluating the methylation status of a polynucleotide
CN108445221A (zh) * 2017-02-16 2018-08-24 中国科学院大连化学物理研究所 一种蛋白质甲基化的鉴定方法
CN108445221B (zh) * 2017-02-16 2020-06-02 中国科学院大连化学物理研究所 一种蛋白质甲基化的鉴定方法

Also Published As

Publication number Publication date
WO2005033332A3 (de) 2005-06-16
US20070160991A1 (en) 2007-07-12
DE10346363B4 (de) 2005-09-29
DE10346363A1 (de) 2005-04-28

Similar Documents

Publication Publication Date Title
EP1423533B1 (de) Verfahren zum nachweis von cytosin-methylierung mit hoher sensitivität
EP1370691B1 (de) Verfahren zum nachweis von cytosinmethylierungsmustern mit hoher sensitivität
DE102005034628B4 (de) Verfahren zur Untersuchung von Cytosin-Methylierungen in DNA
DE10331107B3 (de) Verfahren zum Nachweis von Cytosin-Methylierungen in DNA mittels Cytidin-Deaminasen
EP2049684B1 (de) Verfahren zur methylierungsanalyse von nukleinsäure
US20070292866A1 (en) Diagnosing human diseases by detecting DNA methylation changes
US9863001B2 (en) Method for the detection of cytosine methylations in DNA
US20090004646A1 (en) Method for Quantifying Methylated Dna
EP1853724B1 (de) Verfahren zur untersuchung von cytosin-methylierungen in dna
EP1746169B1 (de) Verfahren zur Quantifizierung methylierter DNA
DE10346363B4 (de) Verfahren zur Methylierungsanalyse von DNA
DE10304219B3 (de) Verfahren zum Nachweis von Cytosin-Methylierungsmustern mit hoher Sensitivität
EP2044214A2 (de) Verfahren zur bestimmung der methylierungsrate einer nukleinsäure
EP1711628B1 (de) Verfahren zur kalibrierung und kontrolle von methylierungsanalyse-methoden mit hilfe von nicht-methylierter dna
WO2005093095A1 (de) Verfahren zur analyse von cytosinmethylierungen
EP1882747A1 (de) Verfahren zur Analyse des Methylierungsstatus einer Nukleinsäure
DE102006035600B3 (de) Verfahren zum Nachweis eines Methylierungsmusters
DE102004002257B4 (de) Verfahren zur Untersuchung von Cytosin-Methylierungen in DNA mit Hilfe von DNA-Reparaturenzymen
EP1432827B1 (de) Verfahren zum nachweis von dna-methylierung mittels markierten s-adenosylmethioninanaloga
US20080176758A1 (en) Method for the analysis of the methylation status of a nucleic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007160991

Country of ref document: US

Ref document number: 10573939

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10573939

Country of ref document: US