WO2005031338A1 - Composite member - Google Patents

Composite member Download PDF

Info

Publication number
WO2005031338A1
WO2005031338A1 PCT/JP2004/014429 JP2004014429W WO2005031338A1 WO 2005031338 A1 WO2005031338 A1 WO 2005031338A1 JP 2004014429 W JP2004014429 W JP 2004014429W WO 2005031338 A1 WO2005031338 A1 WO 2005031338A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall surface
gap
porous material
porous
sol
Prior art date
Application number
PCT/JP2004/014429
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuki Nakanishi
Shigeru Hanzawa
Yousuke Sato
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Publication of WO2005031338A1 publication Critical patent/WO2005031338A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica

Definitions

  • the present invention relates to a composite member provided with an inorganic porous material, which is generated by a sol-gel transition accompanied by a phase transition.
  • a three-dimensional network having an average diameter of 100 nm or more is formed by a sol-gel method in a gap of 1 mm or less of a chromatographic column. It discloses generating a continuous porous silica material. In this way, we are trying to provide a capillary column for chromatogram that shows high resolution.
  • Japanese Patent Application Laid-Open No. 2004-1151547 includes a porous skeleton of an inorganic material provided with open pores and dispersed particles exposed on a wall surface facing the open pores of the porous skeleton.
  • An inorganic porous body in which a porous skeleton is formed by a sol-gel transition accompanied by a phase transition is disclosed. Disclosure of the invention
  • the present inventor has studied production of such a column. However, during actual production, if a porous silica is generated by the sol-gel transition reaction in the gap between the columns, the porous body easily separates from the inner wall surface of the gap between the columns and falls off to the outside of the column There was something. If the porous body falls off in this way, it causes a decrease in yield.
  • An object of the present invention is to provide a holding member in which a gap having a width of 1 mm or less is formed, and a composite member including an inorganic porous material generated by a sol-gel transition accompanied by a phase transition in the gap. Separation or falling off of the porous material from the inner wall surface when the porous material is generated by the sol-gel transition It is to reduce.
  • the first invention includes a holding member having a gap of 1 mm or less in width, and an inorganic porous material generated by a sol-gel transition accompanied by a phase transition in the gap.
  • a composite member according to the present invention characterized in that the center line average surface roughness Ra of the facing inner wall surface is 0.05 / m or more.
  • a holding member having a gap having a width of 1 mm or less, and an inorganic porous material in the gap, wherein the inorganic porous material is an inorganic material having an open pore. And a dispersed particle exposed on a wall surface facing the open pores of the porous skeleton.
  • the porous skeleton is generated by a sol-gel transition accompanied by a phase transition, and a gap between the holding members is formed.
  • a center line average surface roughness Ra of the inner wall surface facing the metal member is 0.05 m or more.
  • the present inventor has found that when a porous material is generated in a minute gap by a sol-gel transition, the roughness of the inner wall face facing the gap reduces the separation of the porous material from the inner wall and the dropout from the gap. And found it important. That is, by setting the center line average surface roughness Ra of the inner wall surface facing the gap of the holding member to 0.05 ⁇ m or more, peeling of the porous material from the inner wall surface and dropping from the gap are reduced. The inventors have found that this is possible and arrived at the present invention. Since it is difficult to increase Ra of the inner wall surface facing the gap of the holding member to a certain degree or more, Ra is usually 20 / m or less, particularly preferably 10 m or less.
  • Ra of the inner wall surface facing the gap of the holding member cut the holding member to expose the inner wall surface facing the gap. Then, Ra of the inner wall surface is measured by a surface roughness meter.
  • FIG. 1 shows a photograph (magnification: 200 times) before forming a porous material in Example 1 of the present invention.
  • FIG. 2 shows a photograph (magnification: 1000) of the inner wall surface of the composite member of Example 1 after the porous material was peeled off from the inner wall surface of the holding member.
  • FIG. 3 shows a photograph (magnification: 200 times) before forming a porous material in Example 2 of the present invention.
  • FIG. 4 shows a photograph (magnification: 1000) of the inner wall surface of the composite member of Example 2 after the porous material was peeled off.
  • FIG. 5 shows a photograph (magnification: 200 times) of Comparative Example 1 before the porous material was formed.
  • FIG. 6 shows a photograph (magnification: 1000) of the inner wall surface after the porous material was peeled off from the composite member of Comparative Example 1.
  • the holding member used in the first invention and the second invention will be described.
  • the form of the holding member is not particularly limited.
  • the holding member may be a capillary, may be a plurality of flat plates, or may be a honeycomb structure. Also, a plurality of capillaries can be bundled.
  • the material of the holding member is not particularly limited, and may be a ceramic, a polymer, a metal, a glass, or a ceramics-metal composite material.
  • the following materials Particularly preferred.
  • Inorganic oxides such as silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, and cordierite, and ceramics such as silicon carbide and silicon nitride are preferable.
  • the holding member may be made of a material whose surface has been treated in order to adjust the adhesiveness with the porous silica formed inside the gap.
  • methods for treating the surface include a sol-gel method, a chemical vapor deposition method, a physical vapor deposition method, a sputtering method, a plating method, and various other methods.
  • the method of increasing the Ra of the inner wall surface facing the gap of the holding member is not particularly limited.
  • Ra of the inner wall surface can be increased by increasing the porosity of the material constituting the holding member.
  • the slurry containing the ceramic particles is caused to flow into the gap between the holding members, and the slurry is hardened by heat treatment, so that Ra on the inner wall surface facing the gap can be increased.
  • the inner wall surface Ra can be increased by preparing the holding member from a material having a large particle diameter.
  • a porous material generated by a sol-gel transition accompanied by a phase transition exists in a gap between the holding members.
  • a solution containing a precursor of the network-forming component is produced, and a sol is formed by reacting the precursor in the solution (for example, a hydrolysis reaction). (Solidification).
  • This is called the sol-gel transition.
  • phase separation occurs between a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase).
  • this gel forms a network structure, a porous body having open pores can be obtained by drying the solvent phase and removing the solvent.
  • the wet gel is washed or subjected to a solvent replacement treatment, and then the solvent is removed to obtain an inorganic porous composite. If necessary, the inorganic porous composite can be heat-treated at an appropriate temperature.
  • the pressure loss is small because the porous body has pores whose pore size and volume ratio are appropriately controlled.
  • the distribution of the analyte between the solution and the inner surface of the column does not vary from place to place because the fluid channel shape is highly uniform in size.
  • the pore diameter of the open pores of the porous material is preferably 100 nm or more in diameter.
  • Such macropores are formed as regions occupied by the solvent phase generated during phase separation. When the solvent phase and the gel phase are entangled with each other to form a continuous so-called interconnected structure, an extremely sharp size distribution can be obtained.
  • the inorganic substance constituting the porous material is not particularly limited.
  • metal oxides are particularly preferred.
  • Examples of the metal oxide include silicon oxide, titanium oxide, zirconium oxide, and alumina. Two or more metal oxides may be used.
  • Examples of the precursor of the network-forming component that causes gel formation used in the sol-gel reaction include the following.
  • Metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, alkyl-substituted organometallic alkoxides (2) Partial hydrolysis products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, or alkyl group-substituted organometallic alkoxides
  • Multimers that are partial polymerization products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides or alkyl-substituted organic metal alkoxides
  • a water-soluble polymer is dissolved in an acidic aqueous solution, and the precursor (particularly preferably a metal compound having a hydrolyzable functional group) is added to carry out a hydrolysis reaction.
  • the degree of polymerization of the precursor of the network forming component gradually increases, and the compatibility with the solvent phase mainly composed of water or the solvent phase mainly composed of the water-soluble polymer decreases.
  • spinodal decomposition occurs in the solution, and at the same time, gelation occurs due to hydrolysis and polymerization of the network-forming component.
  • the product is then dried and heated.
  • each dispersed particle is exposed from the open pore wall surface of the porous body.
  • 1 vol.% Or more, more preferably 5 vol.% Or more of the volume of each dispersed particle is raised from the wall surface of the open pores of the porous skeleton.
  • the porous skeleton is formed by a sol-gel transition accompanied by a phase transition.
  • a solution containing a precursor of the network-forming component is produced, and the precursor is reacted in the solution, for example, a hydrolysis reaction is performed to form a sol, and the sol is gelled ( Solidification). This is called a sol-gel transition.
  • phase separation occurs between a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase).
  • gel phase a phase rich in a network-forming component causing gel formation
  • solvent phase is dried to remove the solvent, whereby a porous body having open pores is obtained.
  • a slurry containing dispersed particles is filled from the open pores of the porous body, and then the porous body is subjected to a heat treatment so that the dispersed particles are exposed in the open pores of the porous body. Is also possible.
  • dispersed particles coexist in the sol-gel reaction solution in advance. After the sol-gel reaction proceeds, a large number of these dispersed particles are exposed on the wall surface of the open pores of the network structure. In this case, the dispersed particles can be more uniformly dispersed on the walls of the open pores of the porous body.
  • dispersed particles are allowed to coexist in a sol-gel reaction solution, and a sol-gel transition accompanied by a phase transition is caused to form a porous skeleton including open pores. To disperse the dispersed particles.
  • phase separation into a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase) is performed.
  • gel phase a phase rich in a network-forming component causing gel formation
  • solvent phase a phase rich in a solvent component not causing gel formation
  • the wet gel is washed or subjected to a solvent replacement treatment, and then the solvent is removed to obtain an inorganic porous composite. If necessary, the inorganic porous composite can be heat-treated at an appropriate temperature.
  • the pore diameter of the open pores of the porous skeleton is preferably 100 nm or more, more preferably 200 nm or more, from the viewpoint of improving the air permeability of the open pores.
  • Such macropores are formed as regions occupied by the solvent phase generated during phase separation.
  • the pore diameter (diameter) of the open pores There is no particular upper limit on the pore diameter (diameter) of the open pores. However, from the viewpoint of easiness of manufacture, it is preferably at most 1000 nm.
  • the inorganic substance constituting the porous skeleton is not particularly limited.
  • metal oxides are particularly preferred.
  • the metal oxide include silicon oxide, titanium oxide, zirconium oxide, and alumina. Two or more metal oxides may be used.
  • dispersed particles are mainly composed of organic polymers, metal oxides or metals, and their particle diameters (average diameter) are extremely wide from about 5 nm to about 100 m. Range. It is known that the chemical affinity between these fine particles and the network-forming component causing gel formation can be freely controlled in many cases by chemical modification of the particle surface. Therefore, particles that meet the conditions that do not cause aggregation or sedimentation during the sol-gel reaction Then, it can be applied to the present production method regardless of the chemical composition. Therefore, in the present invention, as the dispersed particles, metal oxides, metals, organic polymers, and composites thereof can be used.
  • silicon oxide, titanium oxide, zirconium oxide, aluminum oxide, calcium oxide, magnesium oxide, iron oxide, transition metal oxides, lithium oxide, lanthanum oxide, rare earth oxides, and the like are preferable.
  • carbonates, nitrates, sulfates, phosphates, halides, inorganic salts, and the like that are stable in the reaction solution can also be used.
  • Organic salts, complexes, protected metal colloids, polymer latexes, and even finely divided organic polymers can be used to produce the inorganic porous composite of the present invention by controlling the dispersibility in the reaction solution. Can be.
  • the average diameter of the dispersed particles is not particularly limited. Since the dispersed particles must be sized to fit within the open pores of the porous skeleton, the average diameter of the dispersed particles must be smaller than the pore diameter (diameter) of the open pores of the porous skeleton. In particular, from the viewpoint of exerting some function in the open pores, it is preferable that the average diameter of the dispersed particles is somewhat smaller than the diameter of the open pores. From such a viewpoint, the diameter of the dispersed particles is preferably 500 nm or less.
  • the average diameter of the dispersed particles is preferably 5 nm or more from the viewpoint of suppressing aggregation during dispersion. Also, if the average diameter of the dispersed particles is too small compared to the diameter of the open pores, the fluid passing through the open pores will be less likely to come into contact with the dispersed particles, and the function may not be exerted. . Therefore, if the material on which the present application is based is specified, the diameter D of the open pores of the porous body without the addition of the dispersed particles / the diameter d of the dispersed particles is preferably 600 or less, and 100 or less. Is more preferable.
  • the average aspect ratio (major axis / minor axis) of the dispersed particles is preferably set to 1.5 or less.
  • the weight ratio of the dispersed particles is preferably 90% by weight or less, more preferably 80% by weight or less, based on the whole inorganic porous composite material.
  • the weight ratio of the dispersed particles is preferably 0.01% by weight or more based on the whole inorganic porous composite, and more preferably 0.1% by weight. More preferably, it is more than 1% by weight.
  • the effect of supporting the dispersed particles in the open pores is not particularly limited. For example, it may have a surface roughness forming function of increasing the surface roughness of the open pores and increasing the contact area between the fluid and the inner wall surface of the porous skeleton. Further, it may have a catalytic function of a chemical reaction.
  • Examples of the precursor of the network-forming component that causes gel formation used in the sol-gel reaction include the following.
  • Metal alkoxides metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, alkyl-substituted organometallic alkoxides
  • Multimers that are partial polymerization products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides or alkyl-substituted organic metal alkoxides
  • a water-soluble polymer is dissolved in an acidic aqueous solution, The dispersion particles are added thereto, and the mixture is dispersed by stirring and ultrasonic treatment. Then, the precursor, particularly preferably a metal compound having a hydrolyzable functional group, is added to carry out a hydrolysis reaction.
  • the precursor of the network-forming component gradually increases its degree of polymerization, and the compatibility with the solvent phase mainly composed of water or the solvent phase mainly composed of the water-soluble polymer decreases. At this time, spinodal decomposition occurs in the solution, and at the same time, gelation occurs due to hydrolysis and polymerization of the network-forming component. The product is then dried and heated.
  • the water-soluble polymer is a water-soluble organic polymer that can be converted into an aqueous solution having an appropriate concentration, and is uniformly dissolved in a reaction system containing an alcohol generated by a metal compound having a hydrolyzable functional group. Anything can be obtained.
  • sodium or potassium salts of polystyrene sulfonic acid which is a polymer metal salt
  • polyacrylic acid which is a polymer acid and dissociates to form a polyanion
  • a polymer base which forms a polycation in an aqueous solution.
  • polyallylamine and polyethyleneimine or a neutral polymer which is a polyethylene oxide having an ether bond in the main chain, or polyvinylpyrrolidone is preferred.
  • Formamides, polyhydric alcohols and surfactants may be used in place of the organic polymer, in which case glycerin is the best polyhydric alcohol and polyoxyethylene alkyl ethers are the best surfactants. It is.
  • a metal alkoxide or an oligomer thereof can be used as the metal compound having a hydrolyzable functional group.
  • those having a small number of carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group are preferable.
  • a metal of an oxide to be finally formed for example, Si, Ti, Zr, or A1 is used as the metal.
  • the metal may be one kind or two or more kinds.
  • Oligomer Any substance that has been dissolved and dispersed may be used, and specifically, up to about 10-mers can be used.
  • Alkoxyalkoxysilanes in which some of the alkoxy groups of these silicon alkoxides are substituted with alkyl groups, and oligomers up to about 10-mers thereof are preferably used.
  • Alkyl-substituted metal alkoxides in which the central metal element is replaced with titanium, zirconium, aluminum or the like instead of silicon can also be used.
  • the acidic aqueous solution is preferably one having a mineral acid such as hydrochloric acid or nitric acid of 0.01 N or more, or one having an organic acid such as formic acid or acetic acid of 0.01 N or more.
  • the hydrolysis and polymerization reaction can be achieved by storing the solution at room temperature of 40 to 80 ° C for 0.5 to 5 hours. During this process, gelation and phase separation proceed.
  • the porous material of the present invention can carry an enzyme such as glucose isomerase, a catalyst such as platinum and palladium, and a functional group such as an octadecyl group.
  • the composite member of the present invention can be suitably used, for example, for a column for chromatography in liquid chromatography.
  • FIG. 1 shows a photograph (magnification: 200 times) of a porous material on the inner wall surface of the honeycomb substrate before a porous material was generated. Fine irregularities can be seen on the inner wall.
  • FIG. 2 shows a photograph (magnification: 10000) of the inner wall surface after the porous material was peeled off.
  • the white protrusions are a porous silica material. That is, it was confirmed that the porous material remained on the inner wall surface of the void after the silica porous material was forcibly peeled off from the inner wall surface. This indicates that the porous material was caught on the inner wall surface of the void and was strongly held by the honeycomb substrate.
  • a composite member was produced in the same manner as in Example 1. However, the interplanar spacing of the gaps of the honeycomb substrate was 0.95 mm. The Ra of the inner wall surface facing the pores of the honeycomb substrate was 1.74 m. The porosity of the honeycomb substrate was about 30%.
  • FIG. 3 shows a photograph (magnification: 20.0 times) before the porous material was formed on the inner wall surface of the honeycomb substrate. Fine irregularities can be seen on the inner wall.
  • a porous silica material was generated in each hole of the honeycomb substrate in the same manner as in Example 1 to produce a composite member of the present invention.
  • FIG. 4 shows a photograph (magnification: 10000) of the inner wall surface after the porous material was peeled off.
  • the white protrusions are a porous silica material. That is, it was confirmed that the porous material remained on the inner wall surface of the void after the silica porous material was forcibly peeled off from the inner wall surface. This is because the porous material This indicates that the sheet is caught on the inner wall surface and is strongly held by the honeycomb substrate.
  • Alumina powder (manufactured by Sumitomo Chemical Co., Ltd., trade name: AES-11C) is pelletized by adding a binder, a dispersing agent, and water. A square plate with a height of 40 mm and a thickness of 4 mm was formed. The square plate was dried and fired at 1600 ° C. to obtain an alumina square plate. A gap of about 1.0 mm was formed between the square plates. The Ra of the inner wall surface facing the hole of the square plate was 0.06997 ⁇ 1. Before the porous material is formed on the inner wall surface of this alumina square plate, fine irregularities can be confirmed on the inner wall surface in the same manner as in Examples 1 and 2. A porous silica material was generated in the gaps of the alumina square plate in the same manner as in Example 1 to produce a composite member of Example 3.
  • the obtained composite member was cut, and the porous material was peeled off. Next, when the inner wall surface after peeling the porous material was observed, it was confirmed that the porous material remained on the inner wall surface of the void, almost in the same manner as in Examples 1 and 2. This indicates that the porous material was caught on the inner wall surface of the void and was strongly held by the honeycomb substrate.
  • FIG. 1 A pair of dense slide glasses was prepared, and a gap of 1.0 mm was formed between the slide glasses.
  • the Ra of the inner wall surface facing the pores of the slide glass was 0.0607 m.
  • Figure 5 shows a photograph (magnification: 200x) of the inner surface of the slide glass before the porous material was formed. The inner wall surface is almost flat.
  • FIG. 6 shows a photograph (magnification: 1000) of the inner wall surface after the porous material was peeled off. As shown in Fig. 6, a small amount of white porous silica material is seen on the surface of the slide glass. However, this silica only rests on the slide glass, and is not caught and held on the slide glass surface.
  • a holding member having a gap having a width of 1 mm or less and an inorganic porous material generated by a sol-gel transition accompanied by a phase transition are provided in the gap.
  • an inorganic porous material generated by a sol-gel transition accompanied by a phase transition are provided in the gap.
  • peeling or falling off of the porous material from the inner wall surface can be reduced.
  • a honeycomb having a cell pitch of 1.04 mm, a wall thickness of 0.09 mm, a spacing of 0.95 mm, and a porosity of about 30% for the wall was prepared.
  • This honeycomb was cut, and Ra on the inner wall surface was measured with a surface roughness meter. As a result, Ra was 1.7 / m. Observation of this honeycomb with an electron microscope revealed fine irregularities on the inner wall and pores of several meters in diameter.
  • the honeycomb After extruding and forcibly exfoliating the porous porous body formed inside the cell of the obtained composite member, the honeycomb is cut, and the inner wall surface of the honeycomb supporting the porous silica body is observed with an electron microscope. Upon observation, it was confirmed that the porous silica containing dispersed particles remained in the concave portions and pores of the honeycomb wall surface. This indicates that the porous silica containing the dispersed particles caught on the inner wall surface of the honeycomb cell and was strongly held by the honeycomb.
  • a pair of alumina square plates having a gap of l.Oimn was prepared by sandwiching a 1.0 mm spacer between both ends of the two square plates.
  • 1.8 g of polyethylene oxide, which is a water-soluble polymer was dissolved in 20 ml of an aqueous solution of O.Olmol / L acetic acid and uniformly dissolved to obtain an aqueous solution.
  • 0.2 g of silica force particles (“S0-C1” manufactured by Admatech) was added, and after stirring for 5 minutes, ultrasonic waves were further applied for 5 minutes to disperse the silica particles.
  • the spacer was removed from the alumina square plate to sandwich the porous silica body.
  • the inner wall surface of the alumina square plate was observed with an electron microscope, it was confirmed that a silica porous body containing dispersed particles remained in some of the recesses of the alumina square plate. This indicates that the porous silica containing the dispersed particles caught the inner wall surface of the alumina square plate and was strongly held by the alumina square plate.
  • a dense slide glass was prepared.
  • the surface of the slide glass was observed with an electron microscope, the surface was almost flat.
  • a pair of slide glasses having a gap of 1.0 mm was produced by sandwiching a 1.0 mm spacer between both ends of the two slide glasses.
  • the spacer was removed from the slide glass to sandwich the porous silica body. Observation of the inner wall surface with an electron microscope revealed that almost no porous silica containing dispersed particles remained. Only a small amount of the porous silica remained on the slide glass, and it was not observed that the porous silica was retained on the slide glass surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A composite member, which has a holding member having an interstice of a width of 1 mm or less and an inorganic porous material formed in the interstice by a sol-gel transition accompanied by a phase transition, characterized in that the inner wall surface of the holding member, which faces the interstice, has a centerline average surface roughness (Ra) of 0.05 μm or greater. The composite member is reduced in the exfoliation or fallout of the porous material from the inner wall surface.

Description

明細書  Specification
複合部材  Composite members
発明の属する技術分野 Technical field to which the invention belongs
本発明は、 相転移を伴うゾルーゲル転移によって生成した,無機多孔質 材料を備える複合部材に関するものである。  The present invention relates to a composite member provided with an inorganic porous material, which is generated by a sol-gel transition accompanied by a phase transition.
背景技術  Background art
特開平 1 1— 2 9 2 5 2 8号公報においては、 例えばクロマトグラ ム用カラムの 1 m m以下の間隙内に、 ゾル—ゲル法により、 平均直径 1 0 0ナノメートル以上の三次元網目状に連続したシリカ多孔質材料を生 成させることを開示している。 これによつて、 高い分離能を示すクロマ トグラム用毛細管カラムの提供を試みている。  In Japanese Patent Application Laid-Open No. H11-292925, for example, a three-dimensional network having an average diameter of 100 nm or more is formed by a sol-gel method in a gap of 1 mm or less of a chromatographic column. It discloses generating a continuous porous silica material. In this way, we are trying to provide a capillary column for chromatogram that shows high resolution.
また、 特開 2 0 0 4— 1 1 5 3 4 7では、 開気孔が設けられた無機物 の多孔質骨格と、 多孔質骨格の開気孔に面する壁面に露出する分散粒子 とを含んでおり、 多孔質骨格が、 相転移を伴うゾル—ゲル転移によって 生成している無機系多孔質体が開示されている。 発明の開示  Japanese Patent Application Laid-Open No. 2004-1151547 includes a porous skeleton of an inorganic material provided with open pores and dispersed particles exposed on a wall surface facing the open pores of the porous skeleton. An inorganic porous body in which a porous skeleton is formed by a sol-gel transition accompanied by a phase transition is disclosed. Disclosure of the invention
本発明者は、 このようなカラムの生産を検討してきた。 しかし、 実 際の製造時には、 カラムの間隙内でゾル一ゲル転移反応によってシリ力 多孔体を生成させると、 多孔体がカラムの間隙の内壁面から剥離しやす く、 カラムの外部へと脱落することがあった。 このように多孔体の脱落 が生ずると、 歩留り低下の原因となる。  The present inventor has studied production of such a column. However, during actual production, if a porous silica is generated by the sol-gel transition reaction in the gap between the columns, the porous body easily separates from the inner wall surface of the gap between the columns and falls off to the outside of the column There was something. If the porous body falls off in this way, it causes a decrease in yield.
本発明の課題は、 幅 1 m m以下の間隙が形成されている保持部材、 お よび間隙内に、 相転移を伴うゾルーゲル転移によって生成した無機多孔 質材料を備えている複合部材において、 間隙内で多孔質材料をゾルーゲ ル転移によって生成させたときの多孔質材料の内壁面からの剥離や脱落 を低減することである。 An object of the present invention is to provide a holding member in which a gap having a width of 1 mm or less is formed, and a composite member including an inorganic porous material generated by a sol-gel transition accompanied by a phase transition in the gap. Separation or falling off of the porous material from the inner wall surface when the porous material is generated by the sol-gel transition It is to reduce.
第一の発明は、 幅 1 m m以下の間隙が形成されている保持部材、 およ び間隙内に、 相転移を伴うゾルーゲル転移によって生成した無機多孔質 材料を備えており、 保持部材の間隙に面する内壁面の中心線平均表面粗 さ R aが 0 . 0 5 / m以上であることを特徴とする、 複合部材に係るも のである。  The first invention includes a holding member having a gap of 1 mm or less in width, and an inorganic porous material generated by a sol-gel transition accompanied by a phase transition in the gap. A composite member according to the present invention, characterized in that the center line average surface roughness Ra of the facing inner wall surface is 0.05 / m or more.
第二の発明は、 幅 1 m m以下の間隙が形成されている保持部材、 およ びこの間隙内に無機多孔質材料を備えており、 この無機多孔質材料が、 開気孔が設けられた無機物の多孔質骨格と、 多孔質骨格の開気孔に面す る壁面に露出する分散粒子とを含んでおり、 多孔質骨格が、 相転移を伴 ぅゾルーゲル転移によって生成しており、 保持部材の間隙に面する内壁 面の中心線平均表面粗さ R aが 0 . 0 5 m以上であることを特徴とす る、 複合部材に係るものである。  According to a second aspect of the present invention, there is provided a holding member having a gap having a width of 1 mm or less, and an inorganic porous material in the gap, wherein the inorganic porous material is an inorganic material having an open pore. And a dispersed particle exposed on a wall surface facing the open pores of the porous skeleton. The porous skeleton is generated by a sol-gel transition accompanied by a phase transition, and a gap between the holding members is formed. A center line average surface roughness Ra of the inner wall surface facing the metal member is 0.05 m or more.
本発明者は、 ゾルーゲル転移によって微小間隙内に多孔質材料を生成 させる場合に、 間隙に面する内壁面の粗さが、 多孔質材料の内壁面から の剥離、 間隙からの脱落を低減する上で重要であることを見いだした。 即ち、 保持部材の間隙に面する内壁面の中心線平均表面粗さ R aを 0 . 0 5〃m以上とすることによって、 多孔質材料の内壁面からの剥離、 間 隙からの脱落を低減可能であることを見いだし、 本発明に到達した。 保持部材の間隙に面する内壁面の R aを、 ある程度以上大きくするこ とは難しいので、 R aは、 通常は 2 0 / m以下であり、 特に好ましくは 1 0 m以下である。  The present inventor has found that when a porous material is generated in a minute gap by a sol-gel transition, the roughness of the inner wall face facing the gap reduces the separation of the porous material from the inner wall and the dropout from the gap. And found it important. That is, by setting the center line average surface roughness Ra of the inner wall surface facing the gap of the holding member to 0.05 μm or more, peeling of the porous material from the inner wall surface and dropping from the gap are reduced. The inventors have found that this is possible and arrived at the present invention. Since it is difficult to increase Ra of the inner wall surface facing the gap of the holding member to a certain degree or more, Ra is usually 20 / m or less, particularly preferably 10 m or less.
保持部材の間隙に面する内壁面の: R aを測定するためには、 保持部材 を切断し、 間隙に面する内壁面を露出させる。 次いで、 内壁面の R aを 表面粗さ計によって測定する。  To measure the Ra of the inner wall surface facing the gap of the holding member, cut the holding member to expose the inner wall surface facing the gap. Then, Ra of the inner wall surface is measured by a surface roughness meter.
本発明のこれらのおよび他の目的、 特徴および利点は、 次の発明の詳 細な説明によって更に明らかとなるであろうし、 これに対して当業者が 変更、 変形、 修正を適宜行えるものである。 図面の簡単な説明 These and other objects, features and advantages of the present invention are set forth in the following Detailed Description of the Invention. The detailed description will become clearer, and a person skilled in the art can make appropriate changes, variations, and modifications. Brief Description of Drawings
図 1は、 本発明の実施例 1において、 多孔質材料を生成させる前の写 真 (倍率 2 0 0倍) を示す。  FIG. 1 shows a photograph (magnification: 200 times) before forming a porous material in Example 1 of the present invention.
図 2は、 実施例 1の複合部材において、 保持部材の内壁面から多孔質 材料を剥離した後の内壁面の写真 (倍率 1 0 0 0倍) を示す。  FIG. 2 shows a photograph (magnification: 1000) of the inner wall surface of the composite member of Example 1 after the porous material was peeled off from the inner wall surface of the holding member.
図 3は、 本発明の実施例 2において、 多孔質材料を生成させる前の写 真 (倍率 2 0 0倍) を示す。  FIG. 3 shows a photograph (magnification: 200 times) before forming a porous material in Example 2 of the present invention.
図 4は、 実施例 2の複合部材において、 多孔質材料を剥離した後の内 壁面の写真 (倍率 1 0 0 0倍) を示す。  FIG. 4 shows a photograph (magnification: 1000) of the inner wall surface of the composite member of Example 2 after the porous material was peeled off.
図 5は、 比較例 1において、 多孔質材料を生成させる前の写真 (倍率 2 0 0倍) を示す。  FIG. 5 shows a photograph (magnification: 200 times) of Comparative Example 1 before the porous material was formed.
図 6は、 比較例 1の複合部材から多孔質材料を剥離した後の内壁面の 写真 (倍率 1 0 0 0倍) を示す。 発明を実施するための最良の形態  FIG. 6 shows a photograph (magnification: 1000) of the inner wall surface after the porous material was peeled off from the composite member of Comparative Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
(保持部材)  (Holding member)
第一の発明、 第二の発明において用いる保持部材について述べる。 保持部材の形態は特に限定されない。 保持部材は、 毛細管であってよ く、 複数枚の平板であってよく、 ハニカム構造体であってよい。 また、 複数本の毛細管を束ねることができる。  The holding member used in the first invention and the second invention will be described. The form of the holding member is not particularly limited. The holding member may be a capillary, may be a plurality of flat plates, or may be a honeycomb structure. Also, a plurality of capillaries can be bundled.
保持部材の材質は特に限定されず、 セラミックス、 高分子、 金属、 ガ ラス、 セラミヅクス一金属複合材料であってよい。 例えば以下の材質が 特に好ましい。 酸化ケィ素、 酸化アルミニウム、 酸化チタン、 酸化ジル コニゥム、 コージエライ トなどの無機系酸化物、 炭化ケィ素、 窒化ケィ 素などのセラミックスなどが望ましい。 The material of the holding member is not particularly limited, and may be a ceramic, a polymer, a metal, a glass, or a ceramics-metal composite material. For example, the following materials Particularly preferred. Inorganic oxides such as silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, and cordierite, and ceramics such as silicon carbide and silicon nitride are preferable.
また、 保持部材は、 その間隙内部に形成されるシリカ多孔体との接着 性を調整するために、 表面を処理された材料であってよい。 その表面を 処理する方法としては、 例えばゾルゲル法、 化学蒸着法、 物理蒸着法、 スパッ夕法、 めっき法や、 この他の様々な方法が考えられる。  The holding member may be made of a material whose surface has been treated in order to adjust the adhesiveness with the porous silica formed inside the gap. Examples of methods for treating the surface include a sol-gel method, a chemical vapor deposition method, a physical vapor deposition method, a sputtering method, a plating method, and various other methods.
保持部材の間隙に面する内壁面の R aを大きくする方法は特に限定さ れない。 例えば、 保持部材を構成する材質の気孔率を大きくすることに よって、 内壁面の R aを大きくすることができる。 また、 保持部材の間 隙内に、 セラミック粒子を含むスラリーを流入させ、 スラリーを熱処理 で硬化させることによって、 間隙に面する内壁面の R aを増大させるこ とができる。 また、 セラミックスの場合、 粒子径の大きな原料にて保持 部材を作製することにより内壁面 R aを大きくすることができる。  The method of increasing the Ra of the inner wall surface facing the gap of the holding member is not particularly limited. For example, Ra of the inner wall surface can be increased by increasing the porosity of the material constituting the holding member. Further, the slurry containing the ceramic particles is caused to flow into the gap between the holding members, and the slurry is hardened by heat treatment, so that Ra on the inner wall surface facing the gap can be increased. In the case of ceramics, the inner wall surface Ra can be increased by preparing the holding member from a material having a large particle diameter.
(第一の発明における無機多孔質材料)  (Inorganic porous material in the first invention)
第一の発明においては、 保持部材の間隙内に、 相転移を伴うゾルーゲ ル転移によって生成した多孔質材料が存在する。 この生成反応を生じさ せるためには、 網目形成成分の前駆体を含む溶液を製造し、 この溶液中 において前駆体を反応 (例えば加水分解反応) させることによってゾル を生成し、 このゾルをゲル化 (固化) させる。 これをゾルーゲル転移と 呼ぶ。 このゾル—ゲル転移の際に、 ゲル形成を起こす網目形成成分に富 む相 (ゲル相) と、 ゲル形成を起こさない溶媒成分に富む相 (溶媒相) に相分離を起こさせる。 その結果、 このゲルは網目構造を形成している ので、 その溶媒相を乾燥して溶媒を除去することにより、 開気孔を有す る多孔質体が得られる。 ' このゾルーゲル反応系においては、 時間経過につれて、 ゲル形成を起 こす網目形成成分に富む相 (ゲル相) と、 ゲル形成を起こさない溶媒成 分に富む相 (溶媒相) とに、 相分離が起こる。 各相領域の形成にあたつ ては、 学ポテンシャルの差を駆動力として、 濃度勾配に逆らった各成 分の拡散が起こり、 各相領域が、 与えられた温度 '圧力下での平衡組成 に達するまで、 物質移動が継続する。 In the first invention, a porous material generated by a sol-gel transition accompanied by a phase transition exists in a gap between the holding members. In order to cause this formation reaction, a solution containing a precursor of the network-forming component is produced, and a sol is formed by reacting the precursor in the solution (for example, a hydrolysis reaction). (Solidification). This is called the sol-gel transition. At the time of this sol-gel transition, phase separation occurs between a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase). As a result, since this gel forms a network structure, a porous body having open pores can be obtained by drying the solvent phase and removing the solvent. '' In this sol-gel reaction system, gel formation occurs over time. Phase separation occurs between a phase rich in the scraping network-forming component (gel phase) and a phase rich in the solvent component that does not cause gel formation (solvent phase). In forming each phase region, the diffusion of each component against the concentration gradient occurs using the difference in the chemical potential as a driving force, and each phase region becomes an equilibrium composition under a given temperature and pressure. Mass transfer will continue until it is reached.
溶媒中でゾルーゲル転移反応を終了させると、 湿潤ゲルを洗浄し、 あ るいは溶媒置換処理を行った後で、 溶媒を除去し、 無機系多孔質複合体 を得る。 必要に応じて適切な温度で無機系多孔質複合体を熱処理するこ ともできる。  When the sol-gel transition reaction is completed in a solvent, the wet gel is washed or subjected to a solvent replacement treatment, and then the solvent is removed to obtain an inorganic porous composite. If necessary, the inorganic porous composite can be heat-treated at an appropriate temperature.
例えばクロマトグラフィー用カラムの場合には、 多孔質体が、 孔径及 び容積率が適切に制御された空孔を有するので、 圧力損失が小さい。 ま た、 流体の流路の形状 'サイズの均一性が高いので、 分析物質の溶液一 カラム内部表面間の分配が場所によってばらっかない。  For example, in the case of a chromatography column, the pressure loss is small because the porous body has pores whose pore size and volume ratio are appropriately controlled. In addition, the distribution of the analyte between the solution and the inner surface of the column does not vary from place to place because the fluid channel shape is highly uniform in size.
多孔質材料の開気孔の気孔径は、 直径 lOO n m以上であることが好ま しい。 このようなマクロ孔は、 相分離の際に生じる溶媒相の占めていた 領域として形成される。 溶媒相とゲル相が各々絡み合って連続したいわ ゆる共連構造を形成する場合には、 きわめて鋭いサイズ分布を得ること ができる。  The pore diameter of the open pores of the porous material is preferably 100 nm or more in diameter. Such macropores are formed as regions occupied by the solvent phase generated during phase separation. When the solvent phase and the gel phase are entangled with each other to form a continuous so-called interconnected structure, an extremely sharp size distribution can be obtained.
多孔質材料を構成する無機物は特に限定されない。 しかし、 金属の酸 化物が特に好ましい。 金属酸化物としては、 酸化珪素、 酸化チタン、 酸 化ジルコニウム、 アルミナを例示できる。 金属酸化物を二種以上使用し てもよい。  The inorganic substance constituting the porous material is not particularly limited. However, metal oxides are particularly preferred. Examples of the metal oxide include silicon oxide, titanium oxide, zirconium oxide, and alumina. Two or more metal oxides may be used.
ゾルーゲル反応に用いられるゲル形成を起こす網目形成成分の前駆体 としては、 以下を例示できる。  Examples of the precursor of the network-forming component that causes gel formation used in the sol-gel reaction include the following.
( 1 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシド, アルキル基置換有機金属アルコキシド ( 2 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシドまたはアルキル基置換有機金属アルコキ シドの部分加水分解生成物 (1) Metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, alkyl-substituted organometallic alkoxides (2) Partial hydrolysis products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, or alkyl group-substituted organometallic alkoxides
( 3 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシドまたはアルキル基置換有機金属アルコキ シドの部分重合生成物である多量体  (3) Multimers that are partial polymerization products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides or alkyl-substituted organic metal alkoxides
( 4 ) 水ガラスほかケィ酸塩水溶液の p Hを変化させることによるゾル —ゲル転移  (4) Sol-gel transition by changing pH of water glass and silicate aqueous solution
さらに具体的な製造方法では、 水溶性高分子を酸性水溶液に溶かし、 前記前駆体 (特に好ましくは加水分解性の官能基を有する金属化合物) を添加して加水分解反応を行う。 網目形成成分の前駆体は次第にその重 合度を増していき、 水を主成分とする溶媒相または水溶性高分子を主成 分とする溶媒相との相溶性が低下する。 このときに溶液にスピノーダル 分解が生じると同時に網目形成成分の加水分解 ·重合反応によりゲル化 が起こる。 次いで生成物を乾燥し、 加熱する。  In a more specific production method, a water-soluble polymer is dissolved in an acidic aqueous solution, and the precursor (particularly preferably a metal compound having a hydrolyzable functional group) is added to carry out a hydrolysis reaction. The degree of polymerization of the precursor of the network forming component gradually increases, and the compatibility with the solvent phase mainly composed of water or the solvent phase mainly composed of the water-soluble polymer decreases. At this time, spinodal decomposition occurs in the solution, and at the same time, gelation occurs due to hydrolysis and polymerization of the network-forming component. The product is then dried and heated.
(第二の発明における無機多孔質材料)  (Inorganic porous material in the second invention)
この多孔体においては、 各分散粒子が多孔質体の開気孔壁面から露出 する。 この際、 好ましくは、 各分散粒子の体積の 1 vol.%以上、 更に好ま しくは 5 vol.%以上が多孔質骨格の開気孔の壁面から浮き出している。 この無機多孔質材料においては、 多孔質骨格が、 相転移を伴うゾル— ゲル転移によって生成している。 この反応を生じさせるためには、 網目 形成成分の前駆体を含む溶液を製造し、 この溶液中において前駆体を反 応、 例えば加水分解反応させることによってゾルを生成し、 このゾルを ゲル化 (固化) させる。 これをゾル—ゲル転移と呼ぶ。 このゾル一ゲル 転移の際に、 ゲル形成を起こす網目形成成分に富む相 (ゲル相) と、 ゲ ル形成を起こさない溶媒成分に富む相(溶媒相)に相分離を起こさせる。 その結果、 このゲルは網目構造を形成しているので、 その溶媒相を乾燥 して溶媒を除去することにより、 開気孔を有する多孔質体が得られる。 この多孔質体を得た後に、 多孔質体の開気孔から分散粒子を含むスラ リーを充填し、 次いで多孔質体を熱処理することによって分散粒子を多 孔質体の開気孔中に露出させることも可能である。 In this porous body, each dispersed particle is exposed from the open pore wall surface of the porous body. At this time, preferably, 1 vol.% Or more, more preferably 5 vol.% Or more of the volume of each dispersed particle is raised from the wall surface of the open pores of the porous skeleton. In this inorganic porous material, the porous skeleton is formed by a sol-gel transition accompanied by a phase transition. In order to cause this reaction, a solution containing a precursor of the network-forming component is produced, and the precursor is reacted in the solution, for example, a hydrolysis reaction is performed to form a sol, and the sol is gelled ( Solidification). This is called a sol-gel transition. At the time of this sol-gel transition, phase separation occurs between a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase). As a result, since this gel has a network structure, the solvent phase is dried to remove the solvent, whereby a porous body having open pores is obtained. After obtaining the porous body, a slurry containing dispersed particles is filled from the open pores of the porous body, and then the porous body is subjected to a heat treatment so that the dispersed particles are exposed in the open pores of the porous body. Is also possible.
しかし、 好適な実施形態においては、 前記のゾル—ゲル反応溶液中に 予め分散粒子を共存させておく。 この分散粒子は、 ゾルーゲル反応が進 行した後には、 網目構造の開気孔の壁面上に多数露出するようにする。 この場合には、 分散粒子を多孔質体の開気孔の壁面に一層均一に分散す ることができる。  However, in a preferred embodiment, dispersed particles coexist in the sol-gel reaction solution in advance. After the sol-gel reaction proceeds, a large number of these dispersed particles are exposed on the wall surface of the open pores of the network structure. In this case, the dispersed particles can be more uniformly dispersed on the walls of the open pores of the porous body.
好適な実施形態においては、 ゾル—ゲル反応溶液に分散粒子を共存さ せておき、 相転移を伴うゾルーゲル転移を起こさせることによって、 開 気孔を含む多孔質骨格を形成すると共に、 開気孔の壁面に分散粒子を露 出させる。  In a preferred embodiment, dispersed particles are allowed to coexist in a sol-gel reaction solution, and a sol-gel transition accompanied by a phase transition is caused to form a porous skeleton including open pores. To disperse the dispersed particles.
このゾル—ゲル反応系においては、 時間経過につれて、 ゲル形成を起 こす網目形成成分に富む相 (ゲル相) と、 ゲル形成を起こさない溶媒成 分に富む相 (溶媒相) とに、 相分離が起こる。 各相領域の形成にあたつ ては、 化学ポテンシャルの差を駆動力として濃度匂配に逆らった各成分 の拡散が起こり、 各相領域が、 与えられた温度 ·圧力下での平衡組成に 達するまで、 物質移動が継続する。 この際に、 出発組成に分散粒子を共 存させ、 なおかつ分散粒子が相分離ゃゾルーゲル反応に著しい影響を与 えないような条件を選ぶ。  In this sol-gel reaction system, as time elapses, phase separation into a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase) is performed. Happens. In forming each phase region, diffusion of each component against the concentration gradient occurs by using the difference in chemical potential as a driving force, and each phase region reaches an equilibrium composition at a given temperature and pressure. Until the mass transfer continues. At this time, conditions are selected so that the dispersed particles coexist in the starting composition and that the dispersed particles do not significantly affect the phase separation-sol-gel reaction.
具体的な製法を例示する。  A specific production method will be exemplified.
( 1 ) 溶媒中に分散粒子を加え、 撹拌、 超音波処理することにより分 散させる。 次いで、 溶媒に、 網目形成成分の前駆体を溶解させ、 網目形 成成分の生成反応を生じさせ、 ゾルーゲル転移および相分離反応を進行 させる。 (1) Add dispersed particles to a solvent, disperse by stirring and sonication. Next, the precursor of the network-forming component is dissolved in the solvent to cause a reaction for generating the network-forming component, and the sol-gel transition and the phase separation reaction proceed. Let
( 2 ) 溶媒中に網目形成成分を溶解させる。 この溶液に分散粒子の分 散液を加え、 撹拌、 超音波処理を行う。 そして網目形成成分の生成反応 を生じさせ、 ゾルーゲル転移および相分離反応を進行させる。  (2) Dissolve the network-forming component in the solvent. The dispersion of the dispersed particles is added to this solution, followed by stirring and ultrasonic treatment. Then, a formation reaction of a network-forming component is caused, and a sol-gel transition and a phase separation reaction proceed.
( 1 )、 または ( 2 ) の工程の後には、 湿潤ゲルを洗浄し、 あるいは溶 媒置換処理を行った後で、 溶媒を除去し、 無機系多孔質複合体を得る。 必要に応じて適切な温度で無機系多孔質複合体を熱処理することもでき る。  After the step (1) or (2), the wet gel is washed or subjected to a solvent replacement treatment, and then the solvent is removed to obtain an inorganic porous composite. If necessary, the inorganic porous composite can be heat-treated at an appropriate temperature.
多孔質骨格の開気孔の気孔径は、 開気孔の通気性を向上させるという 観点からは、 直径 1 0 0 n m以上であることが好ましく、 2 0 0 n m以 上であることが更に好ましい。 このようなマクロ孔は、 相分離の際に生 じる溶媒相の占めていた領域として形成される。 溶媒相とゲル相が各々 絡み合って連続したいわゆる共連構造を形成する場合には、 きわめて鋭  The pore diameter of the open pores of the porous skeleton is preferably 100 nm or more, more preferably 200 nm or more, from the viewpoint of improving the air permeability of the open pores. Such macropores are formed as regions occupied by the solvent phase generated during phase separation. When the solvent phase and the gel phase are entangled with each other to form a continuous so-called interconnected structure,
ί 1 ί 1
いサイズ分布を得ることができる。 Size distribution can be obtained.
開気孔の気孔径 (直径) の上限は特にない。 しかし、 製造し易さの点 からは 1 0 0 0 0 n m以下が好ましい。  There is no particular upper limit on the pore diameter (diameter) of the open pores. However, from the viewpoint of easiness of manufacture, it is preferably at most 1000 nm.
多孔質骨格を構成する無機物は特に限定されない。 しかし、 金属の酸 化物が特に好ましい。 金属酸化物としては、 酸化珪素、 酸化チタン、 酸 化ジルコニウム、 アルミナ、 を例示できる。 金属酸化物を二種以上使用 してもよい。  The inorganic substance constituting the porous skeleton is not particularly limited. However, metal oxides are particularly preferred. Examples of the metal oxide include silicon oxide, titanium oxide, zirconium oxide, and alumina. Two or more metal oxides may be used.
現在工業的に生産、 市販されている分散粒子は、 有機高分子、 金属酸 化物あるいは金属を主成分とし、 その粒径 (平均直径) は 5 n m程度か ら 1 0 0 m程度まで非常に広い範囲にわたっている。 これらの微粒子 と、ゲル形成を起こす網目形成成分との化学的な親和性は、多くの場合、 粒子表面の化学修飾などによって自由に制御できることが知られている。 従って、 ゾル—ゲル反応時に凝集や沈降を起こさない条件を満たす粒子 であれば、 化学組成に関係なく、 本製造方法に適用することができる。 したがって、 本発明において分散粒子は、 金属酸化物、 金属、 有機高 分子、 およびそれらの複合体を用いることができる。 具体的には、 酸化 珪素、 酸化チタン、 酸化ジルコニウム、 酸化アルミニウム、 酸化カルシ ゥム、 酸化マグネシウム, 酸化鉄ほか遷移金属酸化物、 酸化ィ 'ットリウ ムおよび酸化ランタンほか希土類酸化物などが好適である。 更に反応溶 液中で安定な炭酸塩、 硝酸塩、 硫酸塩、 リン酸塩、 ハロゲン化物、 無機 塩類なども同様に用いることができる。 有機塩、 錯体、 保護された金属 コロイ ド、 高分子ラテックスほか微粒子状有機高分子も、 反応溶液への 分散性を制御することによって、 本発明による無機系多孔質複合体の作 製に用いることができる。 Currently, industrially produced and commercially available dispersed particles are mainly composed of organic polymers, metal oxides or metals, and their particle diameters (average diameter) are extremely wide from about 5 nm to about 100 m. Range. It is known that the chemical affinity between these fine particles and the network-forming component causing gel formation can be freely controlled in many cases by chemical modification of the particle surface. Therefore, particles that meet the conditions that do not cause aggregation or sedimentation during the sol-gel reaction Then, it can be applied to the present production method regardless of the chemical composition. Therefore, in the present invention, as the dispersed particles, metal oxides, metals, organic polymers, and composites thereof can be used. Specifically, silicon oxide, titanium oxide, zirconium oxide, aluminum oxide, calcium oxide, magnesium oxide, iron oxide, transition metal oxides, lithium oxide, lanthanum oxide, rare earth oxides, and the like are preferable. . Further, carbonates, nitrates, sulfates, phosphates, halides, inorganic salts, and the like that are stable in the reaction solution can also be used. Organic salts, complexes, protected metal colloids, polymer latexes, and even finely divided organic polymers can be used to produce the inorganic porous composite of the present invention by controlling the dispersibility in the reaction solution. Can be.
分散粒子の平均直径は特に限定されない。 分散粒子は、 多孔質骨格の 開気孔内に入る大きさでなければならないので、分散粒子の平均直径は、 多孔質骨格の開気孔の気孔径 (直径) よりも小さくなければならない。 特に開気孔内で何らかの機能を発揮するという観点からは、 分散粒子の 平均直径は、 開気孔の直径よりもある程度小さいことが好ましい。 こう した観点からは、 分散粒子の直径は、 5 0 0 ii m以下であることが好ま しい。  The average diameter of the dispersed particles is not particularly limited. Since the dispersed particles must be sized to fit within the open pores of the porous skeleton, the average diameter of the dispersed particles must be smaller than the pore diameter (diameter) of the open pores of the porous skeleton. In particular, from the viewpoint of exerting some function in the open pores, it is preferable that the average diameter of the dispersed particles is somewhat smaller than the diameter of the open pores. From such a viewpoint, the diameter of the dispersed particles is preferably 500 nm or less.
分散粒子の平均直径は、 分散時の凝集を抑制するという観点からは、 5 n m以上であることが好ましい。 また、 分散粒子の平均直径が開気孔 の直径に比べて小さくなりすぎると、 開気孔内を通過する流体が分散粒 子と接触しにく くなり、 機能が発揮されにく くなるおそれがある。 従つ て、 本願のベースになった材料について明記すれば、 分散粒子無添加の 多孔体開気孔の直径 D /分散粒子の直径 dは、 6 0 0以下であることが 好ましく、 1 0 0以下であることが更に好ましい。  The average diameter of the dispersed particles is preferably 5 nm or more from the viewpoint of suppressing aggregation during dispersion. Also, if the average diameter of the dispersed particles is too small compared to the diameter of the open pores, the fluid passing through the open pores will be less likely to come into contact with the dispersed particles, and the function may not be exerted. . Therefore, if the material on which the present application is based is specified, the diameter D of the open pores of the porous body without the addition of the dispersed particles / the diameter d of the dispersed particles is preferably 600 or less, and 100 or less. Is more preferable.
また、 分散粒子が細長いと、 相転移の過程において、 分散粒子の周囲 の状態が変化し、 '開気孔の内壁面に不規則な凹凸が生じやすい。 これを 防止するという観点からは、分散粒子の平均ァスぺク ト比(長軸/短軸) は、 1 . 5以下とすることが好ましい。 Also, if the dispersed particles are elongated, the surroundings of the dispersed particles during the phase transition process Changes, and irregular irregularities are likely to occur on the inner wall surface of the open pores. From the viewpoint of preventing this, the average aspect ratio (major axis / minor axis) of the dispersed particles is preferably set to 1.5 or less.
'分散粒子の重量比率は、 無機系多孔質複合材の全体に対して、 9 0重 量%以下であることが好ましく、 8 0重量%以下であることが更に好ま しい。  'The weight ratio of the dispersed particles is preferably 90% by weight or less, more preferably 80% by weight or less, based on the whole inorganic porous composite material.
また、 分散粒子の機能を発揮させるという観点からは、 分散粒子の重 量比率は、 無機系多孔質複合体の全体に対して、 0 . 0 1重量%以上で あるつことが好ましく、 0 . 1重量%以上であることが更に好ま,しい。 分散粒子を開気孔内に担持させることによる作用は特に限定されない。 例えば開気孔の表面粗さを大きく し、 流体と多孔質骨格内壁面との接触 面積を大きくする表面粗さ形成機能であってよい。 また、 化学反応の触 媒機能を担持させてもよい。  Further, from the viewpoint of exerting the function of the dispersed particles, the weight ratio of the dispersed particles is preferably 0.01% by weight or more based on the whole inorganic porous composite, and more preferably 0.1% by weight. More preferably, it is more than 1% by weight. The effect of supporting the dispersed particles in the open pores is not particularly limited. For example, it may have a surface roughness forming function of increasing the surface roughness of the open pores and increasing the contact area between the fluid and the inner wall surface of the porous skeleton. Further, it may have a catalytic function of a chemical reaction.
ゾル一ゲル反応に用いられるゲル形成を起こす網目形成成分の前駆体 としては、 以下を例示できる。  Examples of the precursor of the network-forming component that causes gel formation used in the sol-gel reaction include the following.
( 1 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシド, アルキル基置換有機金属アルコキシド (1) Metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, alkyl-substituted organometallic alkoxides
( 2 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシドまたはアルキル基置換有機金属アルコキ シドの部分加水分解生成物 (2) Partial hydrolysis products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, or alkyl group-substituted organometallic alkoxides
( 3 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシドまたはアルキル基置換有機金属アルコキ シドの部分重合生成物である多量体  (3) Multimers that are partial polymerization products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides or alkyl-substituted organic metal alkoxides
( ) 水ガラスほかケィ酸塩水溶液の p Hを変化させることによるゾル —ゲル転移  () Sol-gel transition by changing pH of water glass and silicate aqueous solution
さらに具体的な製造方法では、 水溶性高分子を酸性水溶液に溶かし、 それに分散粒子を加え、撹拌、超音波処理することにより分散させた後、 前記前駆体、 特に好ましくは加水分解性の官能基を有する金属化合物を 添加して加水分解反応を行う。 網目形成成分の前駆体は次第にその重合 度を増していき、 水を主成分とする溶媒相または水溶性高分子を主成分 とする溶媒相との相溶性が低下する。 このときに溶液にスピノーダル分 解が生じると同時に網目形成成分の加水分解 ·重合反応によりゲル化が 起こる。 次いで生成物を乾燥し、 加熱する。 In a more specific manufacturing method, a water-soluble polymer is dissolved in an acidic aqueous solution, The dispersion particles are added thereto, and the mixture is dispersed by stirring and ultrasonic treatment. Then, the precursor, particularly preferably a metal compound having a hydrolyzable functional group, is added to carry out a hydrolysis reaction. The precursor of the network-forming component gradually increases its degree of polymerization, and the compatibility with the solvent phase mainly composed of water or the solvent phase mainly composed of the water-soluble polymer decreases. At this time, spinodal decomposition occurs in the solution, and at the same time, gelation occurs due to hydrolysis and polymerization of the network-forming component. The product is then dried and heated.
(第一、 第二の発明における無機多孔質材料用の素材例)  (Examples of materials for inorganic porous materials in the first and second inventions)
ここで、 水溶性高分子は、 適当な濃度の水溶液となしえる水溶性有機 高分子であって、 加水分解性の官能基を有する金属化合物によって生成 するアルコールを含む反応系中に均一に溶解し得るものであればよい。 具体的には、 高分子金属塩であるポリスチレンスルホン酸のナトリウム 塩またはカリウム塩、 高分子酸であって解離してポリァニオンとなるポ リアクリル酸、 高分子塩基であって, 水溶液中でポリカチオンを生ずる ポリアリルアミンおよびポリエチレンィミン, あるいは中性高分子であ つて主鎖にエーテル結合を持つポリエチレンォキシド、 あるいはポリビ ニルピロリ ドン等が好適である。 また、 有機高分子に代えてホルムアミ ド、 多価アルコール、 界面活性剤を用いてもよく、 その場合多価アルコ —ルとしてはグリセリンが、 界面活性剤としてポリォキシエチレンアル キルエーテル類が最適である。  Here, the water-soluble polymer is a water-soluble organic polymer that can be converted into an aqueous solution having an appropriate concentration, and is uniformly dissolved in a reaction system containing an alcohol generated by a metal compound having a hydrolyzable functional group. Anything can be obtained. Specifically, sodium or potassium salts of polystyrene sulfonic acid, which is a polymer metal salt, polyacrylic acid, which is a polymer acid and dissociates to form a polyanion, and a polymer base, which forms a polycation in an aqueous solution. The resulting polyallylamine and polyethyleneimine, or a neutral polymer which is a polyethylene oxide having an ether bond in the main chain, or polyvinylpyrrolidone is preferred. Formamides, polyhydric alcohols and surfactants may be used in place of the organic polymer, in which case glycerin is the best polyhydric alcohol and polyoxyethylene alkyl ethers are the best surfactants. It is.
加水分解性の官能基を有する金属化合物としては、 金属アルコキシド またはそのオリゴマーを用いることができ、 これらのものは例えば、 メ トキシ基、 エトキシ基、 プロポキシ基等の炭素数の少ないものが好まし い。 また、 その金属としては、 最終的に形成される酸化物の金属、 例え ば S i、 T i、 Z r、 A 1が使用される。 この金属としては一種または 二種以上であってもよい。 一方ォリゴマーとしてはアルコールに均一に 溶解分散してあるものであればよく、 具体的には 1 0量体程度まで使用 できる。 また、 これらの珪素アルコキシドのアルコキシ基のいくつかが アルキル基に置換された、 アルキルアルコキシシラン類、 それらの 1 0 量体程度までのオリゴマーが好適に用いられる。 また珪素に変えて中心 金属元素を、 チタン、 ジルコニウム、 アルミニウム等に置換したアルキ ル置換金属アルコキシドも同様に用いることができる。 As the metal compound having a hydrolyzable functional group, a metal alkoxide or an oligomer thereof can be used. For example, those having a small number of carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group are preferable. . As the metal, a metal of an oxide to be finally formed, for example, Si, Ti, Zr, or A1 is used. The metal may be one kind or two or more kinds. On the other hand, as Oligomer Any substance that has been dissolved and dispersed may be used, and specifically, up to about 10-mers can be used. Alkoxyalkoxysilanes, in which some of the alkoxy groups of these silicon alkoxides are substituted with alkyl groups, and oligomers up to about 10-mers thereof are preferably used. Alkyl-substituted metal alkoxides in which the central metal element is replaced with titanium, zirconium, aluminum or the like instead of silicon can also be used.
また、 酸性水溶液としては、 通常塩酸、 硝酸等の鉱酸 0 . 0 0 1規定 以上のもの、 あるいは蟻酸、 酢酸等の有機酸 0 . 0 1規定以上のものが 好ましい。  The acidic aqueous solution is preferably one having a mineral acid such as hydrochloric acid or nitric acid of 0.01 N or more, or one having an organic acid such as formic acid or acetic acid of 0.01 N or more.
加水分解 ·重合反応にあたっては、 溶液を室温 4 0〜 8 0 °Cで 0 . 5 〜 5時間保存することによって達成できる。 この過程においてゲル化お よび相分離が進行する。  The hydrolysis and polymerization reaction can be achieved by storing the solution at room temperature of 40 to 80 ° C for 0.5 to 5 hours. During this process, gelation and phase separation proceed.
本発明の多孔質材料には、 グルコースイソメラーゼ等の酵素、 白金、 パラジウム等の触媒、 ォクタデシル基等の官能基を担持することができ る。 本発明の複合部材は、 例えば、 液体クロマトグラフィーのクロマト グラフィ一用カラムに好適に利用され得る。  The porous material of the present invention can carry an enzyme such as glucose isomerase, a catalyst such as platinum and palladium, and a functional group such as an octadecyl group. The composite member of the present invention can be suitably used, for example, for a column for chromatography in liquid chromatography.
実施例  Example
[実施例 1 ]  [Example 1]
面間隔 1 . 0 m m、 気孔率約 6 0 %、 R a = 5 . 1 6〃mのハニカム 基体を準備した。 このハニカム基体の内壁面において、 多孔質材料を生 成させる前の写真 (倍率 2 0 0倍) を図 1に示す。 内壁面に微細な凹凸 を確認できる。  A honeycomb substrate having an interplanar spacing of 1.0 mm, a porosity of about 60%, and Ra = 5.16 μm was prepared. FIG. 1 shows a photograph (magnification: 200 times) of a porous material on the inner wall surface of the honeycomb substrate before a porous material was generated. Fine irregularities can be seen on the inner wall.
(ハニカム基体の間隙内での多孔質材料の生成)  (Formation of porous material in the gap between honeycomb substrates)
水溶性高分子であるポリエチレンオキサイ ド (アルドリッチ製) 0 . 9 gを 0.01mol/L の酢酸水溶液 1 0 m lに溶解し、均一に溶かして溶液 を得た。 その後、 氷冷下で 10分撹拌した後、 テトラメ 卜キシシラン (網 目形成成分の前駆体:信越シリコーン製) 5 m lを撹拌下で加えて、 加水 分解反応を行った。 得られた透明溶液を、 各間隙中に注入した。 ハニカ ム基体を 40°Cの恒温槽中に保持したところ、 透明溶液が固化した。次い で、 4 0 °Cで約 24時間熟成させ、 その後 60°Cで乾燥させることにより、 本発明例の複合部材を得た。 0.9 g of polyethylene oxide (manufactured by Aldrich), which is a water-soluble polymer, was dissolved in 10 ml of a 0.01 mol / L acetic acid aqueous solution and uniformly dissolved to obtain a solution. Then, after stirring for 10 minutes under ice-cooling, tetramethoxysilane (net 5 ml of an eye-forming component precursor (Shin-Etsu Silicone) was added under stirring to carry out a hydrolysis reaction. The resulting clear solution was injected into each gap. When the honeycomb substrate was kept in a constant temperature bath at 40 ° C, the transparent solution solidified. Next, the composite member of the present invention was obtained by aging at 40 ° C. for about 24 hours and then drying at 60 ° C.
得られた複合部材を切断し、 多孔質材料を剥離させた。 次いで、 多孔 質材料を剥離した後の内壁面の写真 (倍率 1 0 0 0倍) を図 2に示す。 図 2において、 白い突起は、 シリカ多孔質材料である。 つまり、 シリカ 多孔質材料を内壁面から強制的に剥離させた後に、 多孔質材料が空隙の 内壁面上に残留していることを確認した。 これは、 多孔質材料が空隙の 内壁面に引っ掛かり、 ハニカム基体に強く保持されていることを示して いる。  The obtained composite member was cut, and the porous material was peeled off. Next, FIG. 2 shows a photograph (magnification: 10000) of the inner wall surface after the porous material was peeled off. In FIG. 2, the white protrusions are a porous silica material. That is, it was confirmed that the porous material remained on the inner wall surface of the void after the silica porous material was forcibly peeled off from the inner wall surface. This indicates that the porous material was caught on the inner wall surface of the void and was strongly held by the honeycomb substrate.
[実施例 2 ]  [Example 2]
実施例 1と同様にして複合部材を作製した。 ただし、 このハニカム基 体の間隙の面間隔は 0 . 9 5 m mとした。 ハニカム基体の空孔に面する 内壁面の R aは 1 . 7 4 mであった。ハニカム基体の気孔率は約 3 0 % であった。 このハニカム基体の内壁面において、 多孔質材料を生成させ る前の写真 (倍率 2 0 .0倍) を図 3に示す。 内壁面に微細な凹凸を確認 できる。  A composite member was produced in the same manner as in Example 1. However, the interplanar spacing of the gaps of the honeycomb substrate was 0.95 mm. The Ra of the inner wall surface facing the pores of the honeycomb substrate was 1.74 m. The porosity of the honeycomb substrate was about 30%. FIG. 3 shows a photograph (magnification: 20.0 times) before the porous material was formed on the inner wall surface of the honeycomb substrate. Fine irregularities can be seen on the inner wall.
このハニカム基体の各孔内に、 実施例 1と同様にしてシリカ多孔質材 料を生成させ、 本発明の複合部材を作製した。  A porous silica material was generated in each hole of the honeycomb substrate in the same manner as in Example 1 to produce a composite member of the present invention.
得られた複合部材を切断し、 多孔質材料を剥離させた。 次いで、 多孔 質材料を剥離した後の内壁面の写真 (倍率 1 0 0 0倍) を図 4に示す。 図 4において、 白い突起は、 シリカ多孔質材料である。 つまり、 シリカ 多孔質材料を内壁面から強制的に剥離させた後に、 多孔質材料が空隙の 内壁面上に残留していることを確認した。 これは、 多孔質材料が空隙の 内壁面に引っ掛かり、 ハニカム基体に強く保持されていることを示して いる。 The obtained composite member was cut, and the porous material was peeled off. Next, FIG. 4 shows a photograph (magnification: 10000) of the inner wall surface after the porous material was peeled off. In FIG. 4, the white protrusions are a porous silica material. That is, it was confirmed that the porous material remained on the inner wall surface of the void after the silica porous material was forcibly peeled off from the inner wall surface. This is because the porous material This indicates that the sheet is caught on the inner wall surface and is strongly held by the honeycomb substrate.
[実施例 3]  [Example 3]
アルミナ粉末 (住友化学工業 (株) 製、 商品名 : AE S— 1 1 C)にノ インダー、 分散剤、'水を加えペレッ ト化し、 3 0 トンの電動射出成形機 にて縦 4 0 mm、 高さ 40 mm、 厚さ 4 mmの角板を成形した。 この角 板を乾燥させ、 1 600 °Cにて焼成し、 アルミナ角板を得た。 この角板 の間に約 1. 0mmの空隙を形成した。 角板の空孔に面する内壁面の R aは 0. 0 6 9 7 Π1であった。 このアルミナ角板の内壁面において、 多孔質材料を生成させる前は、 実施例 1、 2と同様に内壁面に微細な凹 凸を確認できる。 , 、 このアルミナ角板の空隙に、 実施例 1と同様にしてシリカ多孔質材料 を生成させ、 実施例 3の複合部材を作製した。  Alumina powder (manufactured by Sumitomo Chemical Co., Ltd., trade name: AES-11C) is pelletized by adding a binder, a dispersing agent, and water. A square plate with a height of 40 mm and a thickness of 4 mm was formed. The square plate was dried and fired at 1600 ° C. to obtain an alumina square plate. A gap of about 1.0 mm was formed between the square plates. The Ra of the inner wall surface facing the hole of the square plate was 0.06997Π1. Before the porous material is formed on the inner wall surface of this alumina square plate, fine irregularities can be confirmed on the inner wall surface in the same manner as in Examples 1 and 2. A porous silica material was generated in the gaps of the alumina square plate in the same manner as in Example 1 to produce a composite member of Example 3.
得られた複合部材を切断し、 多孔質材料を剥離させた。 次いで、 多孔 質材料を剥離した後の内壁面を観察したところ、 ほぼ実施例 1、 2と同 じく、 多孔質材料が空隙の内壁面上に残留していることを確認した。 こ れは、 多孔質材料が空隙の内壁面に引っ掛かり、 ハニカム基体に強く保 持されていることを示している。  The obtained composite member was cut, and the porous material was peeled off. Next, when the inner wall surface after peeling the porous material was observed, it was confirmed that the porous material remained on the inner wall surface of the void, almost in the same manner as in Examples 1 and 2. This indicates that the porous material was caught on the inner wall surface of the void and was strongly held by the honeycomb substrate.
[比較例 1 ]  [Comparative Example 1]
一対の緻密質のスライ ドガラスを準備し、 スライ ドガラスの間に間隔 1. O mmの空隙を形成した。 スライ ドガラスの空孔に面する内壁面の R aは 0. 0 0 6 7 mであった。 このスライ ドガラスの内壁面におい て、 多孔質材料を生成させる前の写真 (倍率 2 0 0倍) を図 5に示す。 内壁面はほぼ平坦である。  A pair of dense slide glasses was prepared, and a gap of 1.0 mm was formed between the slide glasses. The Ra of the inner wall surface facing the pores of the slide glass was 0.0607 m. Figure 5 shows a photograph (magnification: 200x) of the inner surface of the slide glass before the porous material was formed. The inner wall surface is almost flat.
このスライ ドガラス間の空隙に、 実施例 1 と同様にしてシリカ多孔質 材料を生成させ、 比較例の複合部材を作製した。 得られた複合部材を切断し、 多孔質材料を剥離させた。 次いで、 多孔 質材料を剥離した後の内壁面の写真 (倍率 1 0 0 0倍) を図 6に示す。 図 6に示すように、 白いシリカ多孔質材料が、 スライ ドガラス表面に少 し載っているのが見える。 しかし、 このシリカは、 スライ ドガラス上に 載っているだけであり、 スライ ドガラス表面に引っ掛かって保持されて いるわけではない。 A porous silica material was generated in the gap between the slide glasses in the same manner as in Example 1 to produce a composite member of the comparative example. The obtained composite member was cut, and the porous material was peeled off. Next, FIG. 6 shows a photograph (magnification: 1000) of the inner wall surface after the porous material was peeled off. As shown in Fig. 6, a small amount of white porous silica material is seen on the surface of the slide glass. However, this silica only rests on the slide glass, and is not caught and held on the slide glass surface.
以上述べたように、 本発明によれば、 幅 1 m m以下の間隙が形成され ている保持部材、 および間隙内に、 相転移を伴うゾルーゲル転移によつ て生成した無機多孔質材料を備えている複合部材において、 間隙内で多 孔質材料をゾル—ゲル転移によって生成させたときの多孔質材料の内壁 面からの剥離や脱落を低減することができる。  As described above, according to the present invention, a holding member having a gap having a width of 1 mm or less and an inorganic porous material generated by a sol-gel transition accompanied by a phase transition are provided in the gap. In such a composite member, when the porous material is generated by the sol-gel transition in the gap, peeling or falling off of the porous material from the inner wall surface can be reduced.
[実施例 4 ]  [Example 4]
セルピッチ 1.04mm、 壁厚 0.09mm、 面間隔 0.95mm、 壁面の気孔率 約 30%のハニカムを準備した。 このハニカムを切断し、 その内壁面の Raを表面粗さ計で測定したところ、 Ra=1.7 / mであった。 このハニカ ムを電子顕微鏡にて観察すると、 その内壁面に微細な凹凸のほか、 数 mの気孔を確認することができた。  A honeycomb having a cell pitch of 1.04 mm, a wall thickness of 0.09 mm, a spacing of 0.95 mm, and a porosity of about 30% for the wall was prepared. This honeycomb was cut, and Ra on the inner wall surface was measured with a surface roughness meter. As a result, Ra was 1.7 / m. Observation of this honeycomb with an electron microscope revealed fine irregularities on the inner wall and pores of several meters in diameter.
水溶性高分子であるポリエチレンォキサイ ド 22.5gを 0.01mol/Lの酢 酸水溶液 300mlに溶解し、 均一に溶かして水溶液を得た。 この溶液に、 シリカ粒子(アドマテック製 「SO-C2」)3.0gを加え、 5分間攪拌した後、 更に 5分間超音波をかけ、 シリカ粒子を分散させた。 その後、 氷冷下で 10分間攪拌した後、 テトラメ トキシシラン 120mlを攪拌下で加えて、 60分氷冷下で攪拌させた。得られた溶液中に、 上記のハニカム (面間隔 0.95mmN Ra=1.7 m) を漬けて、 反応溶液ごと振ることによりセル内 の気泡を取り除いた後、ハニカムと反応溶液の入った容器を密閉し 40°C の恒温槽中に静置したところ、 反応溶液が固化した。 次いで、 そのまま 24時間熟成させた後、 密閉容器から取り出し、 ハニカム外表面に付着し ていたシリカ多孔質体を取り除いた。次いで、 ハニカムを 60°Cで乾燥さ せることにより本発明例の複合部材を得た。 22.5 g of polyethylene oxide, a water-soluble polymer, was dissolved in 300 ml of a 0.01 mol / L acetic acid aqueous solution, and uniformly dissolved to obtain an aqueous solution. To this solution was added 3.0 g of silica particles (“SO-C2” manufactured by Admatech), and after stirring for 5 minutes, ultrasonic waves were further applied for 5 minutes to disperse the silica particles. Then, after stirring for 10 minutes under ice-cooling, 120 ml of tetramethoxysilane was added with stirring, and the mixture was stirred for 60 minutes under ice-cooling. The honeycomb (surface gap 0.95 mm N Ra = 1.7 m) is immersed in the obtained solution, and the reaction solution is shaken to remove air bubbles in the cell. Then, the container containing the honeycomb and the reaction solution is sealed. After standing in a constant temperature bath at 40 ° C, the reaction solution solidified. Then, as it is After aging for 24 hours, it was taken out of the closed container, and the porous silica adhered to the outer surface of the honeycomb was removed. Then, the honeycomb was dried at 60 ° C to obtain a composite member of the present invention.
得られた複合部材のセル内部に形成されたシリ力多孔質体を押出して 強制的に剥離させた後、 ハニカムを切断し、 シリカ多孔質体が担持され ていたハニカム内壁面を電子顕微鏡にて観察したところ、 ハニカム壁面 の凹部や気孔に分散粒子を含むシリ力多孔質体が残留していることを確 認した。 これは、 分散粒子を含むシリカ多孔質体がハニカムのセルの内 壁面に引つかかり、 ハニカムに強く保持されていたことを示している。  After extruding and forcibly exfoliating the porous porous body formed inside the cell of the obtained composite member, the honeycomb is cut, and the inner wall surface of the honeycomb supporting the porous silica body is observed with an electron microscope. Upon observation, it was confirmed that the porous silica containing dispersed particles remained in the concave portions and pores of the honeycomb wall surface. This indicates that the porous silica containing the dispersed particles caught on the inner wall surface of the honeycomb cell and was strongly held by the honeycomb.
[実施例 5 ]  [Example 5]
アルミナ粉末 (住友化学工業 (株)製、 商品名 「AES- 11C」 )にバインダ 一、 分散剤、 水を加えペレッ ト化し、 30 トンの電動射出成形機にて縦 40mm、 高さ 40mm、 厚さ 4mm の角板を成形した。 この角板を乾燥さ せ、 1600°Cにて焼成し、 アルミナ角板の焼結体を得た。 この角板の Ra を表面粗さ計で測定したところ、 Ra=0.070 z niであった。アルミナ角板 の表面を電子顕微鏡にて観察したところ、 アルミナ粉末の粒界と見られ る微細な凹凸を確認できた。 この角板 2枚の両端に、 1.0mmのスぺーサ —を挟み、 面間隔 l.Oimnの空隙を持つアルミナ角板対を作製した。 水溶性高分子であるポリエチレンォキサイ ド 1.8gを O.Olmol/Lの酢 酸水溶液 20mlに溶解し、 均一に溶かして水溶液を得た。 この溶液に、 シリ力粒子(ァドマテック製 「S0-C1」 )0.2gを加え、 5分間攪拌した後、 更に 5分間超音波をかけ、 シリカ粒子を分散させた。 その後、 氷冷下で 10分間攪袢した後、 テトラメ トキシシラン 8mlを攪拌下で加えて、 60 分氷冷下で攪拌させた。 得られた溶液中に、 上記のアルミナ角板対 (面 間隔 1.0mm、 Ra=0.070 m ) を漬けた後、 アルミナ角板対を軽く振つ て気泡を取り除き、 反応溶液とアルミナ角板対を入れた容器ごと密閉し 40°Cの恒温槽中に静置したところ、 反応溶液が固化した。 次いでそのま ま 24 時間熟成させた後、 密閉容器を開放してアルミナ角板対を取り除 き、その外表面のシリカ多孔質体を取り除いて 60°Cで乾燥させることに より、 本発明例の複合部材を得た。 Alumina powder (AES-11C, manufactured by Sumitomo Chemical Co., Ltd.) is pelletized by adding a binder, a dispersant, and water, and is 40 mm long, 40 mm high and 40 mm thick with a 30-ton electric injection molding machine. A 4 mm square plate was formed. The square plate was dried and fired at 1600 ° C. to obtain a sintered body of an alumina square plate. The R a of the square plate was measured by a surface roughness meter was Ra = 0.070 z ni. Observation of the surface of the alumina square plate with an electron microscope confirmed fine irregularities seen as grain boundaries of the alumina powder. A pair of alumina square plates having a gap of l.Oimn was prepared by sandwiching a 1.0 mm spacer between both ends of the two square plates. 1.8 g of polyethylene oxide, which is a water-soluble polymer, was dissolved in 20 ml of an aqueous solution of O.Olmol / L acetic acid and uniformly dissolved to obtain an aqueous solution. To this solution, 0.2 g of silica force particles (“S0-C1” manufactured by Admatech) was added, and after stirring for 5 minutes, ultrasonic waves were further applied for 5 minutes to disperse the silica particles. Thereafter, the mixture was stirred for 10 minutes under ice cooling, and then 8 ml of tetramethoxysilane was added thereto with stirring, followed by stirring for 60 minutes under ice cooling. After immersing the above-mentioned alumina square plate pair (surface interval 1.0 mm, Ra = 0.070 m) in the obtained solution, the alumina square plate pair is gently shaken to remove bubbles, and the reaction solution and the alumina square plate pair are separated. Seal the entire container The reaction solution solidified when allowed to stand in a constant temperature bath at 40 ° C. Then, after aging for 24 hours, the closed container was opened to remove the pair of alumina square plates, the porous silica on the outer surface thereof was removed, and dried at 60 ° C to obtain an example of the present invention. Was obtained.
得られた複合部材のアルミナ角板対内部に形成されたシリカ多孔質体 を押出して強制的に剥離させた後、 アルミナ角板よりスぺーサーを取り 除いて、 シリカ多孔質体を挟んでいたアルミナ角板の内壁面を電子顕微 鏡にて観察したところ、 アルミナ角板の一部の凹部に分散粒子を含むシ リカ多孔質体が残留していることを確認した。 これは、 分散粒子を含む シリカ多孔質体がアルミナ角板の内壁面に引つかかり、 アルミナ角板に 強く保持されていたことを示している。  After extruding and forcibly exfoliating the porous silica body formed inside the pair of alumina square plates of the obtained composite member, the spacer was removed from the alumina square plate to sandwich the porous silica body. When the inner wall surface of the alumina square plate was observed with an electron microscope, it was confirmed that a silica porous body containing dispersed particles remained in some of the recesses of the alumina square plate. This indicates that the porous silica containing the dispersed particles caught the inner wall surface of the alumina square plate and was strongly held by the alumina square plate.
[比較例 2 ]  [Comparative Example 2]
緻密性のスライ ドガラスを準備した。 このスライ ドガラスの Ra を表 面粗さ計で測定したところ、 Ra=0.0067 ^ 111であった。 スライ ドガラス の表面を電子顕微鏡にて観察したところ、その表面はほぼ平坦であった。 このスライ ドガラス 2枚の両端に、 1.0mmのスぺーサーを挟み、 面間隔 1.0mmの空隙を持つスライ ドガラス対を作製した。  A dense slide glass was prepared. The Ra of this slide glass was measured with a surface roughness meter, and found to be Ra = 0.0067 ^ 111. When the surface of the slide glass was observed with an electron microscope, the surface was almost flat. A pair of slide glasses having a gap of 1.0 mm was produced by sandwiching a 1.0 mm spacer between both ends of the two slide glasses.
水溶性高分子であるポリエチレンォキサイ ド 1.5gを 0.01raol/Lの酢 酸水溶液 20mlに溶解し、 均一に溶かして水溶液を得た。 この溶液に、 シリカ粒子(アドマテヅク製 「SO-C2」)0.2gを加え、 5分間攪拌した後、 更に 5分間超音波をかけ、 シリカ粒子を分散させた。 その後、 氷冷下で 10分間攪拌した後、 テトラメ トキシシラン 8mlを攪拌下で加えて、 60 分氷冷下で攪拌させた。得られた溶液中に、上記のスライ ドガラス対(面 間隔 1.0mm、 Ra=0.0067 z m) を漬けた後、 スライ ドガラス対を軽く振 つて気泡を取り除き、 反応溶液とスライ ドガラス対を入れた容器ごと密 閉し 40°Cの恒温槽中に静置したところ、 反応溶液が固化した。次いでそ のまま 24 時間熟成させた後、 密閉容器を開放してスライ ドガラス対を 取り除き、その外表面のシリカ多孔質体を取り P余'いて 60°Cで乾燥させる ことにより、 本発明例の複合部材を得た。 1.5 g of polyethylene oxide, which is a water-soluble polymer, was dissolved in 20 ml of an aqueous solution of acetic acid of 0.01 raol / L and uniformly dissolved to obtain an aqueous solution. To this solution was added 0.2 g of silica particles ("SO-C2" manufactured by Admatech), and after stirring for 5 minutes, ultrasonic waves were further applied for 5 minutes to disperse the silica particles. Then, after stirring for 10 minutes under ice-cooling, 8 ml of tetramethoxysilane was added with stirring, and the mixture was stirred for 60 minutes under ice-cooling. After the above slide glass pair (surface gap: 1.0 mm, Ra = 0.0067 zm) is immersed in the obtained solution, the slide glass pair is gently shaken to remove bubbles, and the reaction solution and the slide glass pair are placed in each container. The reaction solution solidified when left tightly closed and kept in a constant temperature bath at 40 ° C. Then After aging for 24 hours as it is, the closed container is opened to remove the slide glass pair, the porous silica on the outer surface is removed, and dried at 60 ° C to obtain the composite member of the present invention. Got.
得られた複合部材のスライ ドガラス対内部に形成されたシリカ多孔質 体を押出して強制的に剥離させた後、 スライ ドガラスよりスぺ一サーを 取り除いてシリ力多孔質体を挟んでいたスライ ドガラスの内壁面を電子 顕微鏡にて観察したところ、 分散粒子を含むシリカ多孔質体はほとんど 残留していなかった。 わずかに残留していたシリカ多孔質体もスライ ド ガラス上に載つているだけであり、 スライ ドガラス表面に引つかかって 保持されている様子は観察されなかった。  After extruding and forcibly exfoliating the porous silica formed inside the slide glass pair of the obtained composite member, the spacer was removed from the slide glass to sandwich the porous silica body. Observation of the inner wall surface with an electron microscope revealed that almost no porous silica containing dispersed particles remained. Only a small amount of the porous silica remained on the slide glass, and it was not observed that the porous silica was retained on the slide glass surface.
本発明の好適な実施形態を参照しながら説明してきたけれども、 本発 明は、 これら実施形態に限定されるものではなく、 これら実施形態は例 示のためにのみ記載されたものであり、 本発明の請求の範囲から離れる ことなく種々の変更が可能である。  Although described with reference to the preferred embodiments of the present invention, the present invention is not limited to these embodiments, and these embodiments are described only for illustrative purposes. Various changes can be made without departing from the scope of the invention.

Claims

請求の範囲 The scope of the claims
1. 幅 1 mm以下の間隙が形成されている保持部材、 および前記間 隙内に、 相転移を伴うゾルーゲル転移によって生成した無機多孔質材料 を備えており、 前記保持部材の前記間隙に面する内壁面の中心線平均表 面粗さ R aが 0. 0 5 /m以上であることを特徴とする、 複合部材。 1. A holding member having a gap having a width of 1 mm or less, and an inorganic porous material generated by a sol-gel transition accompanied by a phase transition in the gap, facing the gap of the holding member. A composite member, characterized in that the center line average surface roughness Ra of the inner wall surface is not less than 0.05 / m.
2. 前記保持部材がハ二カム構造体であることを特徴とする、 請求項 1記載の複合部材。 2. The composite member according to claim 1, wherein the holding member is a honeycomb structure.
3. 前記無機多孔質材料がシリカからなることを特徴とする、 請求項 1または 2記載の複合部材。  3. The composite member according to claim 1, wherein the inorganic porous material is made of silica.
4. 幅 1 mm以下の間隙が形成されている保持部材、 および前記間隙 内に無機多孔質材料を備えており、 この無機多孔質材料が、 開気孔が設 けられた無機物の多孔質骨格と、 前記多孔質骨格の前記開気孔に面する 壁面に露出する分散粒子とを含んでおり、 前記多孔質骨格が、 相転移を 伴うゾル—ゲル転移によって生成しており、 前記保持部材の前記間隙に 面する内壁面の中心線平均表面粗さ; aが 0. 0 5 m以上であること を特徴とする、 複合部 。 4. A holding member in which a gap having a width of 1 mm or less is formed, and an inorganic porous material is provided in the gap, and the inorganic porous material comprises an inorganic porous skeleton having open pores. And dispersed particles exposed on a wall surface facing the open pores of the porous skeleton, wherein the porous skeleton is generated by a sol-gel transition accompanied by a phase transition, and the gap of the holding member A composite having a center line average surface roughness of the inner wall surface facing the surface;
5. 前記分散粒子が、 金属酸化物、 金属、 有機高分子およびこれらの 複合体からなる群より選ばれた一種以上の材質からなることを特徴とす る、 請求項 4記載の複合部材。 .  5. The composite member according to claim 4, wherein the dispersed particles are made of at least one material selected from the group consisting of a metal oxide, a metal, an organic polymer, and a composite thereof. .
6. 前記保持部材がハ二カム構造体であることを特徴とする、 請求項 4または 5記載の複合部材。 6. The composite member according to claim 4, wherein the holding member is a honeycomb structure.
7. 前記無機多孔質材料がシリカからなることを特徴とする、 請求項 4〜 6のいずれか一つの請求項に記載の複合部材。  7. The composite member according to any one of claims 4 to 6, wherein the inorganic porous material is made of silica.
PCT/JP2004/014429 2003-09-25 2004-09-24 Composite member WO2005031338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003332746 2003-09-25
JP2003-332746 2003-09-25

Publications (1)

Publication Number Publication Date
WO2005031338A1 true WO2005031338A1 (en) 2005-04-07

Family

ID=34385966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014429 WO2005031338A1 (en) 2003-09-25 2004-09-24 Composite member

Country Status (1)

Country Link
WO (1) WO2005031338A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119924A (en) * 1995-08-01 1997-05-06 Hewlett Packard Co <Hp> Separating column for chromatography
JPH11292528A (en) * 1998-01-23 1999-10-26 Naohiro Soga Production of inorganic porous material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119924A (en) * 1995-08-01 1997-05-06 Hewlett Packard Co <Hp> Separating column for chromatography
JPH11292528A (en) * 1998-01-23 1999-10-26 Naohiro Soga Production of inorganic porous material

Similar Documents

Publication Publication Date Title
EP0710219B1 (en) Inorganic porous material and process for making same
US6207098B1 (en) Method for producing porous inorganic materials
AU657121B2 (en) Catalyst or membrane precursor systems, catalyst or membrane systems, and method of preparing such systems
JP4503831B2 (en) Method for producing a ceramic foam
JP3317749B2 (en) Inorganic porous column
JP4683554B2 (en) Method for producing porous titania molded body
JPS5834006A (en) Filter structure, production thereof and ultrafiltration apparatus using same
CN112592149B (en) Method for preparing silicon dioxide aerogel composite material by single solvent exchange
AU764586B2 (en) Sol-gel process using porous mold
Buekenhoudt et al. 1.11—Basic Aspects in Inorganic Membrane Preparation
JP2003527277A (en) Monolithic alpha-alumina articles with controlled porosity and sol-gel process for making those articles
CN107746060B (en) Hierarchical porous silicon dioxide microcapsule material and application thereof
JP2005049119A (en) Column for chromatograph
JPWO2006112505A1 (en) Mesoporous silica thick film and method for producing the same, adsorption device, and adsorption film
WO2005031338A1 (en) Composite member
JP2004099418A (en) Method for producing integrated porous material
Eljaouhari et al. New anisotropic ceramic membranes from chemically fixed dissipative structures
JP7011119B2 (en) A monolith filter, a solid separation device using it, and a method for manufacturing the monolith filter.
WO2004018099A1 (en) Process for producing integrated reactive porous carrier
JP4524425B2 (en) Ceramic nanoparticle-coated organic resin sphere particles, molded body thereof, porous ceramics, and production method thereof
JP4051432B2 (en) Porous ceramic membrane in which porosity and film thickness are controlled simultaneously and method for producing the same
JP2002220292A (en) Porous, inorganic material having a porous ceramic membrane and its manufacturing method
JP4784719B2 (en) Method for producing inorganic porous composite containing dispersed particles
JP2004115347A (en) Inorganic porous body containing dispersed particles
JPH04209772A (en) Ceramic porous material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP