JP3317749B2 - Inorganic porous column - Google Patents

Inorganic porous column

Info

Publication number
JP3317749B2
JP3317749B2 JP20039293A JP20039293A JP3317749B2 JP 3317749 B2 JP3317749 B2 JP 3317749B2 JP 20039293 A JP20039293 A JP 20039293A JP 20039293 A JP20039293 A JP 20039293A JP 3317749 B2 JP3317749 B2 JP 3317749B2
Authority
JP
Japan
Prior art keywords
column
pores
solution
pressure loss
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20039293A
Other languages
Japanese (ja)
Other versions
JPH06265534A (en
Inventor
直弘 曽我
和樹 中西
Original Assignee
直弘 曽我
和樹 中西
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26361077&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3317749(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 直弘 曽我, 和樹 中西 filed Critical 直弘 曽我
Priority to JP20039293A priority Critical patent/JP3317749B2/en
Priority to PCT/EP1994/002331 priority patent/WO1995003256A1/en
Priority to EP94921649A priority patent/EP0710219B1/en
Priority to DE69407295T priority patent/DE69407295T2/en
Priority to US08/586,632 priority patent/US5624875A/en
Publication of JPH06265534A publication Critical patent/JPH06265534A/en
Application granted granted Critical
Publication of JP3317749B2 publication Critical patent/JP3317749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N2030/524Physical parameters structural properties
    • G01N2030/528Monolithic sorbent material

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、無機系多孔質カラム
に関する。この発明の無機系多孔質カラムは、グルコー
スイソメラーゼ等の酵素や白金、パラジウム等の触媒あ
るいは、オクタデシル基等の官能基が担持されて、液体
クロマトグラフィー、ガスクロマトグラフィー等のクロ
マトグラフィー用カラムに好適に利用され得る。また、
注射器や血液注入カテーテルにも利用され得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic porous column. The inorganic porous column of the present invention supports an enzyme such as glucose isomerase, a catalyst such as platinum or palladium, or a functional group such as an octadecyl group, and is suitable for chromatography columns such as liquid chromatography and gas chromatography. Can be used for Also,
It can also be used for syringes and blood infusion catheters.

【0002】[0002]

【従来の技術】この種のクロマトグラフィー用カラムと
しては、スチレン・ジビニルベンゼン共重合体等の有機
ポリマーよりなるものと、シリカゲル等の無機系充填剤
を筒内に充填したものが知られている。
2. Description of the Related Art Chromatography columns of this type are known to be composed of an organic polymer such as a styrene-divinylbenzene copolymer or a column filled with an inorganic filler such as silica gel in a cylinder. .

【0003】有機系の材質で構成されたカラムは、低強
度のために耐圧性が低い、溶媒により膨潤・収縮してし
まう、加熱殺菌不可能である等の難点がある。従って、
こうした難点がない無機系のもの、特にシリカゲルが、
汎用されている。
A column made of an organic material has disadvantages such as low pressure resistance due to low strength, swelling / shrinking by a solvent, and inability to heat sterilize. Therefore,
Inorganic materials without such difficulties, especially silica gel,
It is widely used.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の無機系
充填剤であっても、その形状がビーズ状であるせいか、
有機系カラムとは違った欠点を有することが判明した。
However, even with the conventional inorganic filler, it may be because the shape is bead-like.
It was found to have disadvantages different from those of organic columns.

【0005】すなわち、シリカゲル等の無機系充填剤を
筒内に充填して構成されたカラムは、まず、流体の流れ
に対する抵抗が大きく、それ故に圧力損失が大きい。そ
の結果、単位時間当たりの流量が少なくなり、クロマト
グラフィーとして用いるには分析に長時間を要する。同
じく圧力損失が大きいので注射器等の器具に用いると、
試料溶液の流速が極めて遅くなってしまう。
[0005] That is, a column constituted by packing an inorganic filler such as silica gel in a cylinder first has a large resistance to the flow of a fluid and therefore a large pressure loss. As a result, the flow rate per unit time decreases, and the analysis requires a long time to be used as chromatography. Similarly, when used for instruments such as syringes due to large pressure loss,
The flow rate of the sample solution becomes extremely slow.

【0006】また、充填状態によって流量が変化するの
で、カラムの製造ロット間で分析値が大きくばらつく。
更に血液注入カテーテルや注射器に用いようとすると、
ビーズがこぼれるおそれがある。
[0006] Further, since the flow rate changes depending on the packing state, the analysis value greatly varies between the production lots of the column.
In addition, when trying to use it for blood infusion catheters and syringes,
The beads may be spilled.

【0007】そこで、本発明者等が研究したところ、充
填型ではなく、一体型であって且つ気孔径及び気孔分布
を適切に制御した無機系カラムは、従来の無機系充填型
カラムが有する欠点を生じないことを見いだした。
The inventors of the present invention have studied and found that an inorganic column which is not a packed column but which is of an integral type and whose pore diameter and pore distribution are appropriately controlled is a disadvantage of the conventional inorganic packed column. Did not occur.

【0008】この発明は、このような知見に基づいてな
されたものである。その目的は、従来の無機系カラムが
有する課題を解決し、圧力損失が小さく、取扱いの容易
な無機系多孔質カラムを提供することにある。また、他
の目的は、試料流体との単位体積当たりの接触面積の大
きい無機系多孔質カラムを提供することにある。
The present invention has been made based on such findings. It is an object of the present invention to solve the problems of conventional inorganic columns, and to provide an inorganic porous column with small pressure loss and easy handling. Another object is to provide an inorganic porous column having a large contact area per unit volume with a sample fluid.

【0009】[0009]

【課題を解決するための手段】その手段は、実質的にガ
ラス又はガラスセラミックスよりなり、孔径500nm
以上で3次元網目状に連続した貫通孔と、この貫通孔の
内壁面に形成された孔径5〜100nmの細孔とを有
し、細孔の全容積が10m/t以下であって、全体に
対して貫通孔の占める容積率が20〜90%望ましくは
50〜80%で、全気孔中の細孔の占める容積率が10
%以上望ましくは50%以上であり、一体型であること
を特徴とする無機系多孔質カラムにある。この手段にお
いて、望ましいのは、ガラス又はガラスセラミックス
が、シリカSiOを主成分とする場合である。
The means is substantially made of glass or glass ceramic and has a pore diameter of 500 nm.
The above has a through-hole continuous in a three-dimensional network and pores having a pore diameter of 5 to 100 nm formed on the inner wall surface of the through-hole, and the total volume of the pores is 10 m 3 / t or less, The volume ratio of the through-holes to the whole is 20 to 90%, preferably 50 to 80%, and the volume ratio of the pores in all the pores is 10 to 90%.
% Or more, desirably 50% or more , and is an integral type porous column. In this means, it is desirable that the glass or glass ceramic is mainly composed of silica SiO 2 .

【0010】本発明の無機系多孔質カラムは、例えば有
機高分子の酸性溶液中において珪素アルコキシドを加水
分解・重合して反応溶液のゲル化を行った後、生成した
多孔質ゲル中の有機高分子を除去し、その後焼成するこ
とによって、製造され得る。
In the inorganic porous column of the present invention, for example, after a silicon alkoxide is hydrolyzed and polymerized in an acidic solution of an organic polymer to gel a reaction solution, an organic polymer in the formed porous gel is formed. It can be produced by removing the molecules and then firing.

【0011】多孔質ゲルの固化したものをアンモニア水
溶液に浸漬する工程を、加水分解工程と焼成工程との中
間に加えると、細孔径及び細孔容積率を制御し易くな
る。また、有機高分子に代えてホルムアミドと多価アル
コールとの混合物を用いても良い。
If the step of immersing the solidified porous gel in an aqueous ammonia solution is added between the hydrolysis step and the calcination step, the pore diameter and the pore volume ratio can be easily controlled. Further, a mixture of formamide and a polyhydric alcohol may be used instead of the organic polymer.

【0012】そして、本発明の無機系多孔質カラムは、
貫通孔とその内壁面に形成された細孔の孔径、細孔の全
容積、カラム全体に対する貫通孔の容積率、細孔と貫通
孔との合計容積に対する細孔の容積率を重要な構成要件
とする。カラムの立体構造は、反応系の組成及び温度や
pH値、有機高分子の分子量、その他珪素アルコキシド
の反応性に影響を及ぼす各種条件によって変わる。従っ
て、立体構造の制御の方法を一律に述べることは困難で
あるが、前述した条件が同じであれば細孔径等がほぼ同
じの目的物を再現性良く提供できる。
Further, the inorganic porous column of the present invention comprises:
Important component requirements are the pore diameter of the through-holes and the pores formed on the inner wall surface, the total volume of the pores, the volume ratio of the through-holes to the entire column, and the volume ratio of the pores to the total volume of the pores and the through-holes. And The three-dimensional structure of the column varies depending on the composition of the reaction system, the temperature and pH value, the molecular weight of the organic polymer, and other various conditions that affect the reactivity of the silicon alkoxide. Therefore, it is difficult to uniformly describe a method of controlling the three-dimensional structure, but if the conditions described above are the same, an object having substantially the same pore diameter and the like can be provided with good reproducibility.

【0013】中間物質として生成する多孔質ゲルからの
有機高分子の除去は、乾燥前のゲルを洗浄することによ
ってある程度なすことができるが、洗浄過程の後に有機
高分子が分解あるいは燃焼する温度までゲルを十分長時
間加熱してこれを完全に除去する方が有効である。
The removal of the organic polymer from the porous gel formed as an intermediate can be done to some extent by washing the gel before drying, but after the washing process, up to the temperature at which the organic polymer decomposes or burns. It is more effective to completely remove the gel by heating it for a sufficiently long time.

【0014】本発明無機系多孔質カラムの製造に使用す
る有機高分子は、理論的には適当な濃度の水溶液となし
得る水溶性有機高分子であって、且つ珪素アルコキシド
の加水分解によって生成する、アルコールを含む反応系
中に均一に溶解し得るものであれば良いが、具体的には
高分子金属塩であるポリスチレンスルホン酸のナトリウ
ム塩またはカリウム塩、高分子酸であって解離してポリ
アニオンとなるポリアクリル酸、高分子塩基であって水
溶液中でポリカチオンを生ずるポリアリルアミンおよび
ポリエチレンイミン、あるいは中性高分子であって主鎖
にエーテル結合を持つポリエチレンオキシド、側鎖に環
状アミドを有するポリビニルピロリドン等が好適であ
る。
The organic polymer used in the production of the inorganic porous column of the present invention is a water-soluble organic polymer which can theoretically be formed into an aqueous solution having an appropriate concentration, and is formed by hydrolysis of silicon alkoxide. Any one can be used as long as it can be uniformly dissolved in the reaction system containing alcohol, and specifically, a sodium or potassium salt of polystyrene sulfonic acid, which is a polymer metal salt, or a polymer acid, which is dissociated to form a polyanion. Polyacrylic acid, polyallylamine and polyethyleneimine which are polymer bases and generate polycations in aqueous solution, or polyethylene oxide which is a neutral polymer and has an ether bond in the main chain, and has a cyclic amide in the side chain Polyvinylpyrrolidone and the like are preferred.

【0015】有機高分子に代えてホルムアミドと多価ア
ルコールとの混合物を用いる場合の多価アルコールとし
ては、グリセリンが最適である。珪素アルコキシドとし
ては、テトラメトキシシラン、テトラエトキシシラン、
さらにこれらを適宜重合させて酸化物含量を上げた物等
を挙げることができる。
When a mixture of formamide and a polyhydric alcohol is used in place of the organic polymer, glycerin is most suitable as the polyhydric alcohol. As silicon alkoxide, tetramethoxysilane, tetraethoxysilane,
Further, those obtained by appropriately polymerizing these to increase the oxide content can be mentioned.

【0016】尚、本発明無機系多孔質カラムは、その立
体構造が上記の条件を充足していれば、後述の作用効果
を発揮するものである。従って、その製造法は、限定さ
れない。
Incidentally, the inorganic porous column of the present invention exerts the operation and effect described later as long as the three-dimensional structure satisfies the above conditions. Therefore, the manufacturing method is not limited.

【0017】[0017]

【作用】試料溶液等の流体は、カラムの一端から入って
三次元網目状に連続した貫通孔を通過し、他端から出
る。通過途中、従来の充填型カラムにおけるビーズのよ
うな障害物がなく、しかも貫通孔の孔径が500nm以
上であるから、流体が受ける抵抗は小さい。従って、圧
力損失も小さい。
A fluid such as a sample solution enters from one end of the column, passes through a continuous through-hole formed in a three-dimensional network, and exits from the other end. During the passage, there is no obstacle such as beads in a conventional packed column, and the through-hole has a diameter of 500 nm or more, so that the fluid receives little resistance. Therefore, the pressure loss is also small.

【0018】貫通孔の孔径が同じであるなら、カラム全
体に対する貫通孔の容積率が高いほど、圧力損失が小さ
くなるので好ましいが、容積率が90%を超えると機械
的強度が著しく損なわれてしまい、単体でクロマトグラ
フィー用などのカラムを構成することが困難となる。他
方、容積率が20%に満たないとかえって充填型カラム
よりも圧力損失が大きくなる。クロマトグラフィー用と
して好適な容積率の範囲は、50〜80%である。
If the diameter of the through-holes is the same, the higher the volume ratio of the through-holes to the whole column, the smaller the pressure loss, which is preferable. However, if the volume ratio exceeds 90%, the mechanical strength is significantly impaired. As a result, it becomes difficult to constitute a column for chromatography or the like by itself. On the other hand, if the volume ratio is less than 20%, the pressure loss is larger than that of the packed column. A preferred range of volume fraction for chromatography is 50-80%.

【0019】そして、貫通孔の内壁に細孔が形成されて
いるので、比表面積が高い。従って、その細孔に、例え
ばオクタデシル基等の官能基を化学的修飾によって固定
したり、グルコースイソメラーゼ等の酵素や白金、パラ
ジウム等の触媒を担持させておくと、流体が通過する過
程でこれらの分子と効率よく反応する。しかも官能基が
細孔内に固定されているので、流体の流れが速くても官
能基が流されることはない。
Since the pores are formed on the inner wall of the through hole, the specific surface area is high. Therefore, for example, when a functional group such as an octadecyl group is fixed to the pores by chemical modification, or an enzyme such as glucose isomerase, or a catalyst such as platinum or palladium is supported on the pores, these fluids pass through in the process of passing the fluid. Reacts efficiently with molecules. Moreover, since the functional groups are fixed in the pores, the functional groups will not flow even if the flow of the fluid is fast.

【0020】但し、全気孔中の細孔の占める容積率を1
0%以上を必要とする。10%よりも少ないと、貫通孔
の前記容積率を90%まであげたとしても、官能基をほ
とんど固定することができないからである。他方、細孔
の全容積が10m3/tを超えると機械的強度が著しく
損なわれてしまい、単体でクロマトグラフィー用などの
カラムを構成することが困難となる。クロマトグラフィ
ー用として好適な細孔容積率及び全容積の範囲は、全気
孔に対する容積率50%以上、細孔の全容積1m3/t
である。
However, the volume ratio occupied by the pores in all the pores is 1
0% or more is required. If it is less than 10%, the functional groups can hardly be fixed even if the volume ratio of the through holes is increased to 90%. On the other hand, if the total volume of the pores exceeds 10 m 3 / t, the mechanical strength is significantly impaired, and it becomes difficult to constitute a single column for chromatography or the like. The range of the pore volume ratio and the total volume suitable for chromatography is 50% or more with respect to all pores, and the total volume of pores is 1 m 3 / t.
It is.

【0021】尚、カラム全体に対する貫通孔の容積率及
び細孔の全容積が、上記好適な上限値より高くても、本
発明の範囲であれば、外周を筒体で覆うなどして機械的
に補強することによって、クロマトグラフィーに適用可
能である。
Incidentally, even if the volume ratio of the through-holes and the total volume of the pores with respect to the entire column are higher than the above-mentioned preferable upper limits, within the scope of the present invention, the outer periphery is covered with a cylindrical body or the like. It can be applied to chromatography by reinforcement.

【0022】[0022]

【実施例】【Example】

−実施例1− まず高分子金属塩であるポリスチレンスルホン酸ナトリ
ウム(アルドリッチ製商品番号24305−1)を、1
規定硝酸水溶液5.51gに溶解して20重量%溶液と
した。これにメタノール5mlを加え、均一溶液とした
後テトラメトキシシラン5mlを約1分間かけて滴下
し、加水分解反応を行った。数分攪拌したのち得られた
透明溶液を密閉容器に移し、40℃の恒温槽中に保持し
たところ約20時間後に固化した。
Example 1 First, sodium polystyrene sulfonate (product number 24305-1 manufactured by Aldrich), which is a polymer metal salt, was added to 1
It was dissolved in 5.51 g of a normal nitric acid aqueous solution to obtain a 20% by weight solution. 5 ml of methanol was added thereto to make a homogeneous solution, and then 5 ml of tetramethoxysilane was added dropwise over about 1 minute to carry out a hydrolysis reaction. After stirring for several minutes, the resulting clear solution was transferred to a closed vessel and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 20 hours.

【0023】固化した試料をさらに数日熟成させ、0.
1規定アンモニア水溶液中に室温において7日間、1日
ごとに溶液を更新しながら浸漬し、60℃で乾燥したの
ち100℃/hの昇温速度で500℃まで加熱した。蒸
留水で高分子金属塩の分解生成物を洗浄し、最後に80
0℃で2時間熱処理した。この後、試料を長さ150m
m、内径4.6mmの寸法のカラム形状に機械加工し
た。これによって、多孔質シリカガラスよりなるカラム
を得た。
The solidified sample was further aged for several days,
It was immersed in a 1N aqueous ammonia solution at room temperature for 7 days while renewing the solution every day, dried at 60 ° C., and then heated to 500 ° C. at a heating rate of 100 ° C./h. The decomposition products of the high-molecular metal salt are washed with distilled water.
Heat treatment was performed at 0 ° C. for 2 hours. After this, the sample was 150 m long.
m and machined into a column shape with an inner diameter of 4.6 mm. Thus, a column made of porous silica glass was obtained.

【0024】得られた多孔質シリカガラスのカラム中に
は3μm程度の揃った貫通孔が三次元網目状にからみあ
った構造で存在していることが、電子顕微鏡及び水銀圧
入測定によって確かめられた。そして、その貫通孔の内
壁に10nm程度の細孔が多数存在していることが、窒
素吸着測定によって確かめられた。なお、60℃で乾燥
した試料の気孔容積および気孔径は、熱処理を終えた多
孔質シリカガラスのそれにほぼ一致していた。
It was confirmed by an electron microscope and a mercury intrusion measurement that through holes of about 3 μm were present in the column of the obtained porous silica glass in a three-dimensionally meshed structure. Then, it was confirmed by nitrogen adsorption measurement that many pores of about 10 nm were present on the inner wall of the through hole. The pore volume and pore diameter of the sample dried at 60 ° C. were almost the same as those of the porous silica glass after the heat treatment.

【0025】−実施例2− まず高分子酸であるポリアクリル酸の25重量%水溶液
(アルドリッチ製 商品番号19205−8;分子量9
万)を、蒸留水で希釈して7.4%水溶液とした後濃硝
酸を加えて1規定硝酸酸性とした。ポリアクリル酸0.
4gと1規定硝酸5.51gとから成るこの溶液に、攪
拌下でテトラエトキシシラン7mlを加えて加水分解反
応を行った。数分後、得られた透明溶液を密閉容器に移
し、60℃の恒温槽中に保持したところ、約2時間後に
固化した。
Example 2 First, a 25% by weight aqueous solution of polyacrylic acid which is a high molecular acid (manufactured by Aldrich, product number 19205-8; molecular weight 9)
Was diluted with distilled water to give a 7.4% aqueous solution, and then concentrated nitric acid was added to make the solution 1N nitric acid. Polyacrylic acid
To this solution consisting of 4 g and 5.51 g of 1N nitric acid was added 7 ml of tetraethoxysilane under stirring to effect a hydrolysis reaction. A few minutes later, the obtained clear solution was transferred to a closed container and kept in a thermostat at 60 ° C., and solidified after about 2 hours.

【0026】固化した試料をさらに数時間熟成し、蒸留
水とエタノールで数回洗浄を行い、0.1規定アンモニ
ア水溶液中に室温において7日間、1日ごとに溶液を更
新しながら浸漬した後、60℃で乾燥した。そして、長
さ150mm、内径4.6mmの寸法のカラム形状に機
械加工した。
The solidified sample was aged for several hours, washed several times with distilled water and ethanol, and immersed in a 0.1 N aqueous ammonia solution at room temperature for 7 days while renewing the solution every day. Dried at 60 ° C. Then, it was machined into a column shape having a length of 150 mm and an inner diameter of 4.6 mm.

【0027】乾燥した試料中には3μm程度の揃った貫
通孔が三次元網目状にからみあった構造で存在している
ことが、電子顕微鏡及び水銀圧入測定によって確かめら
れた。そして、その貫通孔の内壁に10nm程度の細孔
が多数存在していることが、窒素吸着測定によって確か
められた。
It was confirmed by an electron microscope and a mercury intrusion measurement that through-holes having a uniform size of about 3 μm were present in the dried sample in a three-dimensionally meshed structure. Then, it was confirmed by nitrogen adsorption measurement that many pores of about 10 nm were present on the inner wall of the through hole.

【0028】上記反応溶液にエタノールを最大5mlま
で添加して固化させると、得られる多孔質体の貫通孔径
は小さくなり、最小0.5μm程度までこれを連続的に
制御することができた。また用いる1規定硝酸水溶液の
量を、最少3.3gから最大11gまで変化させて、生
成する多孔質体の貫通孔径を最大約10μmから最小約
0.2μmの範囲で制御することができた。さらに、ポ
リアクリル酸の濃度や、反応温度を変化させても同様に
貫通孔径を制御することができた。
When ethanol was added to the above reaction solution to a maximum of 5 ml and solidified, the diameter of the through-hole of the obtained porous material became small, and it could be continuously controlled to a minimum of about 0.5 μm. Also, by changing the amount of the 1N nitric acid aqueous solution to be used from a minimum of 3.3 g to a maximum of 11 g, the diameter of the through-hole of the resulting porous body could be controlled in a range of a maximum of about 10 μm to a minimum of about 0.2 μm. Furthermore, the through-hole diameter could be controlled similarly by changing the concentration of polyacrylic acid and the reaction temperature.

【0029】これらの乾燥した試料を100℃/hの昇
温速度で800℃まで加熱して、この温度に2時間保持
したところ、乾燥試料とほぼ同じ構造を持った多孔質シ
リカガラスよりなるカラムが得られた。
These dried samples were heated to 800 ° C. at a rate of temperature increase of 100 ° C./h and maintained at this temperature for 2 hours. A column made of porous silica glass having almost the same structure as the dried samples was obtained. was gotten.

【0030】−実施例3− まず、ホルムアミドとグリセリンのモル比3:2混合物
を用意する。そして、テトラメトキシシランとグリセリ
ン中のホルムアミドと1規定硝酸(HNO3)水溶液と
をモル比で、1:3:1.5の割合となるように混合、
攪拌して均一化し、ゾル−ゲル反応液とした。この反応
液10mlを長さ200mm、内径6mmの寸法の円筒
形密閉容器に入れ、その容器を恒温槽に入れてゾル−ゲ
ル反応液の温度を60℃に2時間保持し、加水分解・縮
重合を行い、固化させ、カラム形状の試料を得た。
Example 3 First, a mixture of formamide and glycerin at a molar ratio of 3: 2 is prepared. Then, tetramethoxysilane, formamide in glycerin, and a 1 N nitric acid (HNO 3 ) aqueous solution are mixed at a molar ratio of 1: 3: 1.5,
The mixture was stirred to homogenize to obtain a sol-gel reaction solution. 10 ml of the reaction solution is placed in a cylindrical closed container having a length of 200 mm and an inner diameter of 6 mm, and the container is placed in a thermostat, and the temperature of the sol-gel reaction solution is maintained at 60 ° C. for 2 hours to carry out hydrolysis / condensation polymerization. And solidified to obtain a column-shaped sample.

【0031】この固化したカラム形状の試料を、1規定
硝酸水溶液中に室温において1日間、続いて0.1規定
アンモニア水溶液中に室温において7日間、1日ごとに
溶液を更新しながら浸漬し、次いで60℃で10時間乾
燥させた後、100℃/時間の昇温速度で700℃まで
加熱して、700℃で2時間熱処理した。これによっ
て、多孔質シリカガラスよりなるカラムを得た。
The solidified column-shaped sample was immersed in a 1N aqueous nitric acid solution at room temperature for 1 day, and then in a 0.1N aqueous ammonia solution at room temperature for 7 days while renewing the solution every day, Next, after drying at 60 ° C. for 10 hours, it was heated to 700 ° C. at a rate of 100 ° C./hour and heat-treated at 700 ° C. for 2 hours. Thus, a column made of porous silica glass was obtained.

【0032】得られた多孔質シリカガラスのカラム中に
は3μm程度の揃った貫通孔が三次元網目状にからみあ
った構造で存在していることが、電子顕微鏡及び水銀圧
入測定によって確かめられた。そして、その貫通孔の内
壁に8nm程度の細孔が多数存在していることが、窒素
吸着測定によって確かめられた。
It was confirmed by an electron microscope and a mercury intrusion measurement that through-holes of about 3 μm were present in the column of the obtained porous silica glass in a structure entangled in a three-dimensional network. Then, it was confirmed by nitrogen adsorption measurement that many pores of about 8 nm were present on the inner wall of the through hole.

【0033】−実験例1− この実験は、実施例1の多孔質カラムを製造するために
用いた原料と同じ原料を用いて、テトラメトキシシラン
滴下量を表1に示すように種々変化させて多孔質カラム
を製造し、カラムの微構造とその性能との関係を評価し
たものである。
-Experimental Example 1- In this experiment, the same raw materials as those used for manufacturing the porous column of Example 1 were used, and the amount of tetramethoxysilane dropped was varied as shown in Table 1. A porous column was manufactured, and the relationship between the microstructure of the column and its performance was evaluated.

【0034】[0034]

【表1】 性能評価は、流体をカラムに流したときの圧力損失の測
定をもって行った。
[Table 1] The performance evaluation was performed by measuring the pressure loss when a fluid was passed through the column.

【0035】すなわち、まず多孔質カラムを液体クロマ
トグラフィー装置に組み付け、一定流量を得るために必
要な圧力を自動的に設定するポンプを用いて、カラムに
試料溶液を流し、出口流量を1ml/minとするため
に必要な入口圧力を求めた。出口側が大気に開放されて
いるので、この入口圧力がそのまま圧力損失に相当する
のである。試料溶液としては、ノルマルヘキサンとイソ
プロピルアルコールの9:1(体積比)混合物を用い
た。
That is, first, a porous column is assembled into a liquid chromatography apparatus, and a sample solution is flowed through the column using a pump that automatically sets a pressure necessary for obtaining a constant flow rate, and an outlet flow rate is 1 ml / min. The inlet pressure required to satisfy the condition was determined. Since the outlet side is open to the atmosphere, this inlet pressure directly corresponds to the pressure loss. As a sample solution, a 9: 1 (volume ratio) mixture of normal hexane and isopropyl alcohol was used.

【0036】そして、同一製造条件のカラムをそれぞれ
10本製造し、上記試料溶液を流して、その圧力損失の
最大値及び最小値を記録した。測定結果をカラムの微構
造とともに表2に記載した。
Then, ten columns were manufactured under the same manufacturing conditions, and the sample solution was flowed, and the maximum value and the minimum value of the pressure loss were recorded. The measurement results are shown in Table 2 together with the microstructure of the column.

【0037】[0037]

【表2】 表2にみられるように、本発明範囲に属するカラムN
o.2〜4は、圧力損失が小さく、しかもそのばらつき
も小さいものであった。
[Table 2] As seen from Table 2, column N belonging to the scope of the present invention
o. In Nos. 2 to 4, the pressure loss was small and the variation was small.

【0038】これに対して、本発明範囲に属さないカラ
ムNo.1,5は、貫通孔の容積率が20%より低いの
で、圧力損失が測定不可能であるほどに大きかった。
On the other hand, column No. which does not belong to the scope of the present invention. In Nos. 1 and 5, since the volume ratio of the through-holes was lower than 20%, the pressure loss was so large that the pressure loss could not be measured.

【0039】−実験例2− この実験は、実施例2の多孔質カラムを製造するために
用いた原料と同じ原料を用いて、テトラエトキシシラン
滴下量を表3に示すように種々変化させて多孔質カラム
を製造し、カラムの微構造とその性能との関係を評価し
たものである。
Experimental Example 2 In this experiment, the same raw materials as those used for producing the porous column of Example 2 were used, and the amount of tetraethoxysilane dropped was varied as shown in Table 3. A porous column was manufactured, and the relationship between the microstructure of the column and its performance was evaluated.

【0040】[0040]

【表3】 性能評価は、実験例1と同じ要領で流体をカラムに流し
たときの圧力損失の測定をもって行った。測定結果をカ
ラムの微構造とともに表4に記載した。
[Table 3] The performance evaluation was performed by measuring the pressure loss when a fluid was passed through the column in the same manner as in Experimental Example 1. The measurement results are shown in Table 4 together with the microstructure of the column.

【0041】[0041]

【表4】 表4にみられるように、本発明範囲に属するカラムN
o.7〜9は、圧力損失が小さく、しかもそのばらつき
も小さいものであった。
[Table 4] As shown in Table 4, column N belonging to the scope of the present invention
o. In Nos. 7 to 9, the pressure loss was small and the variation was small.

【0042】これに対して、本発明範囲に属さないカラ
ムNo.6は、貫通孔の容積率が20%より低いので、
圧力損失が測定不可能であるほどに大きかった。また、
カラムNo.10は、貫通孔の容積率がかろうじて本発
明範囲内となっているものの、貫通孔径が小さすぎるの
で、圧力損失が測定不可能であるほどに大きかった。
On the other hand, column No. which does not belong to the scope of the present invention. 6, since the volume ratio of the through-hole is lower than 20%,
The pressure loss was so large that it could not be measured. Also,
Column No. In No. 10, although the volume ratio of the through-hole was barely within the range of the present invention, the diameter of the through-hole was so small that the pressure loss was too large to be measured.

【0043】−実験例3− この実験は、実施例3の多孔質カラムを製造するために
用いた原料と同じ原料を用いて、原料の混合比及び反応
温度を表5に示すように種々変化させて多孔質カラムを
製造し、カラムの微構造とその性能との関係を評価した
ものである。
Experimental Example 3 In this experiment, the same raw materials as those used for manufacturing the porous column of Example 3 were used, and the mixing ratio of the raw materials and the reaction temperature were varied as shown in Table 5. Thus, a porous column was manufactured, and the relationship between the microstructure of the column and its performance was evaluated.

【0044】[0044]

【表5】 性能評価は、実験例1と同じ要領で流体をカラムに流し
たときの圧力損失の測定をもって行った。測定結果をカ
ラムの微構造とともに表6に記載した。
[Table 5] The performance evaluation was performed by measuring the pressure loss when a fluid was passed through the column in the same manner as in Experimental Example 1. The measurement results are shown in Table 6 together with the microstructure of the column.

【0045】[0045]

【表6】 表6にみられるように、本発明範囲に属するカラムN
o.12〜14は、圧力損失が小さく、しかもそのばら
つきも小さいものであった。
[Table 6] As shown in Table 6, column N belonging to the scope of the present invention
o. Nos. 12 to 14 had a small pressure loss and a small variation.

【0046】これに対して、本発明範囲に属さないカラ
ムNo.11,15は、貫通孔の容積率が本発明範囲内
となっているものの、貫通孔径が小さすぎるので、圧力
損失が測定不可能であるほどに大きかった。
On the other hand, column No. which does not belong to the scope of the present invention. In Nos. 11 and 15, although the volume ratio of the through-hole was within the range of the present invention, the diameter of the through-hole was too small, so that the pressure loss was too large to be measured.

【0047】−比較実験1− この実験は、実験例1〜3と比較するために従来の充填
型無機系カラムを用いてなされたものである。
-Comparative Experiment 1- This experiment was conducted using a conventional packed inorganic column for comparison with Experimental Examples 1 to 3.

【0048】すなわち、直径10μm、密度1.5g/
cm3のシリカゲル製ビーズを長さ150mm、内径
4.6mmの筒体に空隙率40%で充填し、これをカラ
ムとしてクロマトグラフィーに組み付け、上記各実験例
と同様に圧力損失及び流量の測定を行った。
That is, a diameter of 10 μm and a density of 1.5 g /
silica gel beads length 150mm of cm 3, filled with void ratio of 40% to the tubular body having an inner diameter of 4.6 mm, which assembled to chromatography, column, measured like the pressure loss as in the above Experimental Examples and flow went.

【0049】その結果、圧力損失は、最大70kg/c
2,最小30kg/cm2と大きく、しかもカラムによ
ってかなりの差が有った。
As a result, the pressure loss is 70 kg / c at maximum.
m 2 , a minimum of 30 kg / cm 2 , and there was a considerable difference depending on the column.

【0050】−実験例4及び比較実験2− この実験は、多孔質カラムに実際に官能基を固定して、
その分析性能を評価するものである。まず、通常の移動
相にニトロベンゼンとトルエンとの混合液を添加し、こ
れを試料溶液とした。
Experimental Example 4 and Comparative Experiment 2 In this experiment, a functional group was actually immobilized on a porous column.
The analytical performance is evaluated. First, a mixed solution of nitrobenzene and toluene was added to a normal mobile phase, and this was used as a sample solution.

【0051】実験例3で製造したカラムNo.13にオ
クタデシル基を化学修飾させた後、液体クロマトグラフ
ィー装置に組み付けた。そして、液体クロマトグラフィ
ーに試料溶液を流した。その後、比較実験1で製造した
カラムにもオクタデシル基を化学修飾させた後、液体ク
ロマトグラフィー装置に組み付け、試料溶液を流した。
The column no. 13 was chemically modified with an octadecyl group, and then assembled into a liquid chromatography apparatus. Then, the sample solution was passed through liquid chromatography. Thereafter, the column manufactured in Comparative Experiment 1 was also chemically modified with an octadecyl group, and then assembled in a liquid chromatography apparatus, and a sample solution was flowed.

【0052】両カラムによって、ニトロベンゼンのピー
クとトルエンのピークとを同様に分離することができた
が、カラムNo.13を用いたときの圧力損失は、比較
用カラムを用いたときの圧力損失の1/10以下であっ
た。
With both columns, the peak of nitrobenzene and the peak of toluene could be similarly separated. The pressure loss when using No. 13 was 1/10 or less of the pressure loss when using the comparative column.

【0053】[0053]

【発明の効果】本発明無機質多孔質カラムは、以下のよ
うな多大の効果を有する。 (1)カラム一体型なので、充填状態によって流量が変
化するという問題がおこらず、ロット間のばらつきが小
さい。
The inorganic porous column of the present invention has the following great effects. (1) Since the column is integrated, there is no problem that the flow rate changes depending on the packing state, and the variation between lots is small.

【0054】(2)孔径及び容積率が適切に制御された
貫通孔を有するので、圧力損失が小さい。従って、入口
圧力が同じであれば、単位時間当たりの流量が多くな
り、従来よりも短時間で分析することができる。しかも
細孔に固定されたすべての官能基と流体とが反応するの
で、官能基の消費効率が高い。従って、短いカラムで分
析可能となる。
(2) The pressure loss is small because of the through-holes whose pore diameter and volume ratio are appropriately controlled. Therefore, if the inlet pressure is the same, the flow rate per unit time increases, and analysis can be performed in a shorter time than in the past. Moreover, since all the functional groups fixed to the pores react with the fluid, the efficiency of functional group consumption is high. Therefore, analysis can be performed with a short column.

【0055】(3)血液注入カテーテルや注射器に用い
るときの取扱いが容易である。 (4)流体の流路の形状・サイズの均一性が高いので、
分析物質の溶液−カラム内部表面間の分配が場所によっ
てばらつかない。
(3) Easy handling when used for blood infusion catheters and syringes. (4) Since the shape and size of the fluid flow path are highly uniform,
The distribution of the analyte between the solution and the inner surface of the column does not vary from place to place.

フロントページの続き (56)参考文献 特開 平4−187237(JP,A) 特開 昭54−9691(JP,A) 特開 平2−291963(JP,A) 特開 平2−290552(JP,A) 特表 平4−500726(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 30/60 Continuation of the front page (56) References JP-A-4-187237 (JP, A) JP-A-54-9969 (JP, A) JP-A-2-291963 (JP, A) JP-A-2-290552 (JP, A) , A) Special table Hei 4-500726 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 30/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 実質的にガラス又はガラスセラミックス
よりなり、孔径500nm以上で3次元網目状に連続し
た貫通孔と、この貫通孔の内壁面に形成された孔径5〜
100nmの細孔とを有し、細孔の全容積が10m
t以下であって、全体に対して貫通孔の占める容積率が
20〜90%で、全気孔中の細孔の占める容積率が10
%以上であり、一体型であることを特徴とする無機系多
孔質カラム。
1. A through hole substantially made of glass or glass ceramic having a hole diameter of 500 nm or more and continuous in a three-dimensional network, and a hole diameter of 5 to 5 formed on the inner wall surface of the through hole.
100 nm pores, and the total volume of the pores is 10 m 3 /
t, the volume ratio of the through-holes to the whole is 20 to 90%, and the volume ratio of the pores in all the pores is 10 to 90%.
% Or more , and is an integral type .
【請求項2】 ガラス又はガラスセラミックスが、シリ
カSiO2を主成分とするものである請求項1の無機系
多孔質カラム。
2. The inorganic porous column according to claim 1, wherein the glass or glass ceramic is mainly composed of silica SiO 2 .
【請求項3】 単体でクロマトグラフィーに用いられる
請求項1又は請求項2の無機系多孔質カラム。
3. The inorganic porous column according to claim 1, which is used alone for chromatography.
JP20039293A 1993-01-18 1993-07-19 Inorganic porous column Expired - Fee Related JP3317749B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20039293A JP3317749B2 (en) 1993-01-18 1993-07-19 Inorganic porous column
PCT/EP1994/002331 WO1995003256A1 (en) 1993-07-19 1994-07-15 Inorganic porous material and process for making same
EP94921649A EP0710219B1 (en) 1993-07-19 1994-07-15 Inorganic porous material and process for making same
DE69407295T DE69407295T2 (en) 1993-07-19 1994-07-15 INORGANIC, POROUS MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
US08/586,632 US5624875A (en) 1993-07-19 1994-07-15 Inorganic porous material and process for making same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2367093 1993-01-18
JP5-23670 1993-01-18
JP20039293A JP3317749B2 (en) 1993-01-18 1993-07-19 Inorganic porous column

Publications (2)

Publication Number Publication Date
JPH06265534A JPH06265534A (en) 1994-09-22
JP3317749B2 true JP3317749B2 (en) 2002-08-26

Family

ID=26361077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20039293A Expired - Fee Related JP3317749B2 (en) 1993-01-18 1993-07-19 Inorganic porous column

Country Status (1)

Country Link
JP (1) JP3317749B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198705A (en) * 1993-12-28 1995-08-01 Shimadzu Corp Inorganic porous plate
JP2007145636A (en) * 2005-11-25 2007-06-14 Shimadzu Corp Porous continuum, column using the same, and method of manufacturing porous continuum
US7291383B2 (en) 2004-01-23 2007-11-06 Ngk Insulators, Ltd. Supports for solid phase extraction
DE112008000134T5 (en) 2007-01-17 2010-06-02 Shimadzu Corp. Ionization emitter, ionization device and method of making an ionization emitter
JPWO2008156199A1 (en) * 2007-06-18 2010-08-26 ジーエルサイエンス株式会社 Monolith adsorbent and sample adsorption method and apparatus using the same
WO2012005353A1 (en) 2010-07-08 2012-01-12 ダイセル化学工業株式会社 Separation/detection column and kit thereof
WO2013105572A1 (en) 2012-01-11 2013-07-18 株式会社ダイセル Chromatographic medium
WO2013115350A1 (en) 2012-02-03 2013-08-08 株式会社ダイセル Chromatography medium
JP2021003696A (en) * 2017-08-17 2021-01-14 台灣創新材料股▲ふん▼有限公司 Manufacturing method of three-dimensional ordered porous microstructure and monolithic column manufactured by the method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030665A1 (en) * 2000-06-23 2002-01-03 Merck Patent Gmbh Gelling mold for the production of moldings
US20050255989A1 (en) * 2002-08-26 2005-11-17 Kyoto Monotech Co., Ltd Process for producing integrated reactive porous carrier
JP2005049119A (en) 2003-07-30 2005-02-24 Ngk Insulators Ltd Column for chromatograph
JP2005290032A (en) * 2004-03-31 2005-10-20 Kazuki Nakanishi Method for producing hierarchical porous body containing meso pore having long range order
JP2006150214A (en) * 2004-11-29 2006-06-15 Daicel Chem Ind Ltd Separating agent for optical isomer, and separation column for optical isomer
JP4715221B2 (en) * 2005-02-16 2011-07-06 憲 細矢 Porous silica continuous column
EP1890965B1 (en) 2005-06-07 2010-07-21 Canon Kabushiki Kaisha Structure, porous body, sensor, process of structure and detecting method for specimen
JP5240965B2 (en) * 2005-09-02 2013-07-17 愛知県 Method and apparatus for analyzing sulfated glycolipid
JP2007197297A (en) 2005-12-27 2007-08-09 Canon Inc Porous material, composition containing porous material, and sensor with porous material
JP5382170B2 (en) * 2007-01-17 2014-01-08 株式会社島津製作所 Ionization emitter, ionization apparatus, and method of manufacturing ionization emitter
US7651762B2 (en) * 2007-03-13 2010-01-26 Varian, Inc. Methods and devices using a shrinkable support for porous monolithic materials
US20110089033A1 (en) 2008-06-12 2011-04-21 Sumitomo Bakelite Co., Ltd. Method of preparing sugar chain sample, sugar chain sample, and method of analyzing sugar chain
JP2011017678A (en) * 2009-07-10 2011-01-27 Japan Atomic Energy Agency Zwitter-ion type organic polymer based monolith column for separating polar compound, and method of manufacturing the same
JP5878308B2 (en) * 2011-06-20 2016-03-08 ジーエルサイエンス株式会社 Porous material and method for producing the same
JP6261005B2 (en) * 2012-11-30 2018-01-17 国立大学法人京都大学 Macroporous monolith and method for producing the same
EP3118277B1 (en) 2014-03-10 2019-10-23 Kyoto University Method for producing surface-modified substrate, method for producing conjugate, novel hydrosilane compound, surface treatment agent, surface treatment agent kit, and surface-modified substrate
US11118024B2 (en) 2017-09-08 2021-09-14 Tantti Laboratory Inc. Method for producing three-dimensional ordered porous microstructure and monolithic column produced thereby
JP7189106B2 (en) * 2019-09-13 2022-12-13 株式会社東芝 Holding plate and substrate polishing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549691A (en) * 1977-06-22 1979-01-24 Pilot Precision Column for chromatography
JPH02290552A (en) * 1989-04-29 1990-11-30 Tonen Corp Liquid chromatography column
JPH02291963A (en) * 1989-05-02 1990-12-03 Matsunami Glass Kogyo Kk Glass tube wherein porous glass is sealed and sealing method thereof
ATE179901T1 (en) * 1989-07-06 1999-05-15 Perseptive Biosystems Inc CHROMATOGRAPHY METHOD
JP3026594B2 (en) * 1990-11-20 2000-03-27 旭光学工業株式会社 Separation material and separator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198705A (en) * 1993-12-28 1995-08-01 Shimadzu Corp Inorganic porous plate
US7291383B2 (en) 2004-01-23 2007-11-06 Ngk Insulators, Ltd. Supports for solid phase extraction
JP2007145636A (en) * 2005-11-25 2007-06-14 Shimadzu Corp Porous continuum, column using the same, and method of manufacturing porous continuum
DE112008000134T5 (en) 2007-01-17 2010-06-02 Shimadzu Corp. Ionization emitter, ionization device and method of making an ionization emitter
US8153992B2 (en) 2007-01-17 2012-04-10 Shimadzu Corporation Ionization emitter, ionization apparatus, and method for manufacturing ionization emitter
JPWO2008156199A1 (en) * 2007-06-18 2010-08-26 ジーエルサイエンス株式会社 Monolith adsorbent and sample adsorption method and apparatus using the same
JP5330238B2 (en) * 2007-06-18 2013-10-30 ジーエルサイエンス株式会社 Monolith adsorbent and sample adsorption method and apparatus using the same
WO2012005353A1 (en) 2010-07-08 2012-01-12 ダイセル化学工業株式会社 Separation/detection column and kit thereof
WO2013105572A1 (en) 2012-01-11 2013-07-18 株式会社ダイセル Chromatographic medium
WO2013115350A1 (en) 2012-02-03 2013-08-08 株式会社ダイセル Chromatography medium
JP2021003696A (en) * 2017-08-17 2021-01-14 台灣創新材料股▲ふん▼有限公司 Manufacturing method of three-dimensional ordered porous microstructure and monolithic column manufactured by the method
JP7076834B2 (en) 2017-08-17 2022-05-30 台灣創新材料股▲ふん▼有限公司 A method for manufacturing a three-dimensional ordered porous microstructure and a monolithic column manufactured by this method.

Also Published As

Publication number Publication date
JPH06265534A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JP3317749B2 (en) Inorganic porous column
US5624875A (en) Inorganic porous material and process for making same
US6207098B1 (en) Method for producing porous inorganic materials
Nakanishi et al. Structure design of double-pore silica and its application to HPLC
JP2893104B2 (en) Method for producing inorganic porous body having organic functional groups bonded thereto
Colomer et al. High porosity silica xerogels prepared by a particulate sol–gel route: pore structure and proton conductivity
US5770631A (en) Production process of connected microgel particles and articles treated with connected microgel particles
JP5878308B2 (en) Porous material and method for producing the same
JPWO2007021037A1 (en) INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
JP3397255B2 (en) Method for producing inorganic porous body
CN114468353A (en) Thermosensitive response essence slow-release microcapsule and preparation method and application thereof
JP3985170B2 (en) Method for producing inorganic porous body
JPH038729A (en) Production of porous glass
WO2004018099A1 (en) Process for producing integrated reactive porous carrier
JP2002362918A (en) Method for producing inorganic porous body
JP2004099418A (en) Method for producing integrated porous material
JP3149787U (en) Antibody purification chip
JPH07113011A (en) Porous material and column charged with the same as filler and production thereof
JP2007090324A (en) Microreactor and manufacturing method thereof
JP3349574B2 (en) Inorganic porous plate
CN103865214A (en) Temperature-sensitive polyvinylidene fluoride/precious metal nanoparticle hybrid membrane and preparation method thereof
RU2812077C1 (en) Method for synthesizing cobalt ion sorbent from aqueous solutions
RU2741002C1 (en) Monolithic sorption materials based on polyethyleneimine for extraction of ions of heavy metals and organic pollutants
JP3393224B2 (en) Humidity control material and method for producing the same
Suzuki et al. Interpenetrating inorganic–organic hybrid gels: preparation of hybrid and replica gels

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees