WO2005030431A1 - Method for machining a three-dimensional surface - Google Patents

Method for machining a three-dimensional surface Download PDF

Info

Publication number
WO2005030431A1
WO2005030431A1 PCT/EP2004/010724 EP2004010724W WO2005030431A1 WO 2005030431 A1 WO2005030431 A1 WO 2005030431A1 EP 2004010724 W EP2004010724 W EP 2004010724W WO 2005030431 A1 WO2005030431 A1 WO 2005030431A1
Authority
WO
WIPO (PCT)
Prior art keywords
polygon
workpiece
dimensional
bitmap
removal
Prior art date
Application number
PCT/EP2004/010724
Other languages
German (de)
French (fr)
Inventor
Raul Hess
Original Assignee
Peguform Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peguform Gmbh filed Critical Peguform Gmbh
Priority to US10/572,755 priority Critical patent/US20070120842A1/en
Priority to EP04765572A priority patent/EP1667812B1/en
Priority to DE502004007246T priority patent/DE502004007246D1/en
Publication of WO2005030431A1 publication Critical patent/WO2005030431A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Definitions

  • etching scar in which the surface of the workpiece is masked differently and then removed selectively by an etching liquid.
  • This method can also be used in layers with restrictions and then creates a strongly graded transition between scar peaks and scar valleys. There are also difficulties with complicated geometries of the surface to be grained.
  • galvano method a positive model, the so-called leather model, is covered with a film (or leather) which has the desired structure, for example leather grain.
  • the scar is then transferred to a negative tool, which in turn is used to produce a (positive) bath model.
  • a metal layer is then electroplated onto this in a bath.
  • the electroplating tool obtained in this way then has to be reinforced, but can then only be used for certain methods for producing parts which do not stress its surface too much.
  • the slush method and the spray skin method are particularly widespread. In addition, each of the latter methods is very time-consuming and costly.
  • a laser beam is a versatile removal agent.
  • the technology of removing material by means of laser is known, for example, from DE3939866 A1 in the field of laser engraving.
  • the removal of material by evaporation of a surface layer using a laser is known from DE4209933 C2.
  • the laser beam is expanded and guided by rotatable deflecting mirrors over a reference line specified by a computer.
  • the reference lines form a grid.
  • the grid is scanned several times by the laser beam along angularly offset reference lines, material being removed by evaporation.
  • Boundary layer avoided. This creates a network-like structure of the grid lines. This technology is only used on two-dimensional surfaces. A uniform removal of material in the grid is achieved by means of the technology disclosed in the patent specification.
  • a line-by-line guidance of the laser in tracks (raster lines) or tracks in the respective processing field of the laser is disclosed in DE10032981 A1.
  • the traces are applied in areas to a moving workpiece. In order to avoid that a sharp dividing line is formed in the overlap area of the tracks at the area boundaries, which is caused by excessive material removal in the overlap area, the area limits are offset with each removal. In other words, if an area is removed in a line, the laser does not stop at the edge along a line, but moves in the vicinity of this line.
  • the end point of the removal is then in a distance range of this line, but this distance range differs from line to line. Since the end points are statistically distributed around the mean value of the line, no optical defect can be perceived.
  • This method is suitable for removing grid fields that are on one level. As soon as the grid fields are inclined towards each other, a different amount of material is removed by the removal means when the removal means moves away from the grid field. Each individual end point would therefore have to be recorded, the material removal determined, and the material removal intended for the adjacent grid field corrected for the shortfall. For this reason, the method for three-dimensional surfaces can only be used with a high additional computing effort.
  • complicated structures can also be produced, for example, by material removal using a laser; this is used, for example, in the micromachining of materials. There are also processes for removing material over a large area with the laser.
  • any surface structure such as a leather grain, of arbitrarily designed three-dimensional
  • the object of the invention is therefore to develop a method which offers the possibility of providing tools and models of any shape with a three-dimensional surface structure which comes as close as possible to a natural or any other surface structure.
  • a surface structure is, for example, the grain of the leather, which is characterized in that grain peaks have different heights and dimensions and the transition between grain peaks and grain valleys runs smoothly.
  • the method according to the invention is to be applied to any combination of materials.
  • Single- or multi-layer material removal of an arbitrarily shaped three-dimensional surface is carried out by means of a removal agent acting point-wise on a surface, such as a laser, in which a surface structure is produced on the three-dimensional surface, the surface being approximated by at least one polygon mesh, each polygon of the Polygon mesh is assigned to the processing area of the laser.
  • the surface approximated by the polygon mesh is scanned using a scanning device.
  • the scanning device for example a galvanoscanner, defines the processing area of the laser.
  • the original three-dimensional computer model or master model of the workpiece is described by a sufficiently close-meshed polygon mesh, which in turn is derived from the CAD (spline) description of the workpiece.
  • the three-dimensional corners of the polygons correspond to two-dimensional points in one or more original texture bitmaps, as a result of which the polygons are transferred into the two-dimensional space of the bitmap.
  • the grayscale value of the bitmap corresponds to the required surface removal on the workpiece. Subsequently, processing areas for the individual layers are defined.
  • the grayscale bitmaps for the polygons of the individual layers result from a parallel projection of the polygons and bitmaps of the original model onto the polygon of the processing area.
  • the surface structure is thus described by at least one raster image, the processing area of the surface to be processed in each case coming completely into the focus area of the laser.
  • the point position of the polygon corners in three-dimensional space corresponds to a two-dimensional coordinate position on the surface of the raster images.
  • Material removal can take place in several layers, each layer being assigned its own polygon mesh.
  • the section of each layer to be processed does not have an edge section in common with one of the previously processed sections of another layer.
  • the method for the layer-by-layer selective removal of shape on a workpiece aims to introduce a structure, for example in the form of a leather grain in the workpiece, which is characterized in that the transitions between scar peaks and scar valleys run as evenly as possible.
  • NURBS non-uniform rational B-splines
  • this topology To be able to process this topology with the laser, it must be divided into processing areas.
  • the size of the processing area is ideally selected so that it can be scanned only by influencing the galvanomirror when the scanner is in the appropriate position (approximately vertically on the processing area if possible). Furthermore, the change in distance between scanner and processing area should be kept small.
  • the goal When choosing the size of the machining area, the goal must always be that neither the angular position of the laser nor the change in the distance between the surface and the scanner results in an undesirable change in the thickness of the material removal or the material removed per unit of time. With each processing area, it should be noted that the laser as a whole focuses on it.
  • the possible processing area at a certain position of the scanner can be described by using the focus cuboid when using a plane field lens.
  • the distance between the scanner and the center plane of the cuboid is given by the focal length of the laser optics.
  • the processing section can be approximated by a polygon, the corners of which all lie on a surface that ideally has the exact distance of the focal length from the laser optics and is perpendicular to the direction of the laser beam in the middle position of the deflection mirror.
  • a surface section of the surface to be processed corresponds to this polygon, which is created by projecting the polygon onto the NURBS surface and must lie completely in the focus cuboid.
  • the entire topology of the surface to be processed is thus described by a grid of connected polygons of different sizes and shapes.
  • the polygon edges are to be selected independently of the edges of the NURBS patches describing the surface to be processed, ie it can and it will happen that one or more points of the polygon lie on a patch and one or more points of the polygon on the adjacent NURBS patch.
  • a raster image (bitmap) is assigned to each polygon for the purpose of better processability by the control program of the laser.
  • the size of the pixel corresponds minimally to the size of the diameter of the laser light spot and the gray level (brightness) or the color level (intensity) of the pixel corresponds to the depth of the structure at this point. For example, a white dot would mean that no material would be removed at all, while a black dot would mean maximum material removal (or vice versa).
  • bitmap An even higher accuracy can be achieved by a description of the laser point by several pixels in the bitmap.
  • the disadvantage is the enlargement of the bitmap and the correspondingly higher memory requirement and computing effort in the control electronics.
  • Various computer formats with corresponding compression algorithms are known for storing this raster image, which result in a very large reduction in the memory requirement.
  • the polygon will rarely have a square shape. Therefore, the corner points of the polygon in three-dimensional space are assigned to a corresponding point on the bitmap in 2 D coordinates (texture coordinates).
  • the polygons are arranged accordingly, it is also possible to combine the texture coordinates of several polygons on a bitmap.
  • an angular direction for the laser tracks (cf. DE 4209933 C2) can also be specified.
  • the laser tracks do not necessarily have to follow the raster lines of the bitmap, but methods of computer graphics can be used to calculate the brightness values for a laser track running obliquely to the raster lines, using antialiasing algorithms. (Compare a line running diagonally on a computer screen).
  • a laser device When machining the workpiece, a laser device must be used in which the scanner in which the galvanomirrors are located has sufficient mobility with respect to the workpiece in order to be able to move to a position that is as perpendicular as possible to every polygon at a distance of Focal length of the laser optics is located, that is, corresponds to the position that was used as the basis for the calculation of the polygons.
  • the control electronics it is necessary to order the polygons in the data set so that they are read by the control electronics in a sequence that has the shortest possible travel of the scanner.
  • Another object is to avoid dividing lines that arise in the area in which one laser track ends and the next begins (see. DE10032981 A1). There is a particular danger at the edges where two polygons meet.
  • the addition of the dividing line error at the polygon edges is avoided by assigning a separate, independent 3-dimensional polygon mesh to each layer to be removed. This can be chosen completely freely, taking into account the above requirements. It should also be noted that polygon borders overlap (this is inevitable), but must not be on top of each other. Otherwise the dividing line error is added. This means, when considering any point on the surface of the workpiece to be machined and removing material in n layers, that this point "belongs" to n different polygons from n different polygon meshes.
  • These polygons can either share a texture bitmap, or else they can be distributed over more than one to a maximum of n bitmaps.
  • the associated texture bitmaps it must be noted that if there are several bitmaps, the corresponding layer removal is distributed over the individual bitmaps. This means that the final material removal at a certain point results from an addition of the individual gray values of the texture bitmaps at this point. If the dividing line error can be reduced even more, a method according to DE10032981A can be used, in which an overlap area is formed between the processing sections, in which the processing tracks of the laser interlock in the sections, and the transition points are statistically distributed.
  • Fig. 1 Schematic representation of the process flow
  • the sequence of the method is shown schematically in the single figure.
  • the method for multi-layer material removal from a workpiece (15) with an arbitrarily shaped three-dimensional surface (1) is carried out by means of a removal means (9) acting point-wise on a surface, such as a laser, by means of which a surface structure (2) on the three-dimensional surface (1 ) is produced.
  • Machining areas (10) are defined on the surface (1), such a machining area (10) being determined by the focus area (11) of the removal means.
  • the surface (1) is approximated by superimposed polygon meshes (18), each polygon (19) of the polygon mesh (18) being assigned to the processing area (10) of the removal means (9).
  • the surface structure (2) is described by at least one grayscale bitmap (14).
  • the grayscale bitmap (14) comprises image points of different grayscale (12) or different color levels.
  • the brightness of the gray level (12) corresponding to each pixel of the gray level bitmap (14) or the intensity of the color level or the characteristic value of the color, such as a wavelength when using multicolored bitmaps, determines the depth of the material removal.
  • the material is removed in the number of layers (7) which correspond to the value of the gray level (12).
  • Each layer (7) is assigned its own polygon mesh (18).
  • the polygon (19) of each layer (7) to be machined does not have an edge section in common with one of the previously machined polygons, so that edge effects can be avoided, which can become visible on the surface by attaching and removing the removal agent.
  • an original three-dimensional computer model (16) of the workpiece (15) is generated, which is described by an original polygon mesh (17).
  • the three-dimensional corners of the polygons of the original polygon network (17) correspond to two-dimensional points in one or more original texture bitmaps (3).
  • the polygons are transferred into the two-dimensional space of the original texture bitmaps (3), the grayscale value (5) of a pixel (4) of the original texture bitmap (3) corresponding to the required material removal on the workpiece (15) and the processing areas (10) individually Layers (7) comprise.
  • the sum of the machining areas (10) gives the surface (1) and the sum of the layers (7) gives the surface structure (2) of the workpiece (15).
  • Each layer (7) can be written on by a polygon mesh (18), polygon meshes lying one above the other being offset from one another.
  • the surface structure (2) of the workpiece (15) is formed by stacked, mutually offset, Polygon meshes (18) approximated.
  • a grayscale bitmap (14) from a parallel projection of the original texture bitmap (3) onto the polygon (19) within the processing area (10) is assigned to each polygon (19) of the polygon network (18) within the processing area (10) so that the material is removed the removal means (9) can be carried out in each layer (7) according to the values of the gray scale bitmaps (14).
  • the distance value (6) between two layers (7) thus corresponds to the difference in brightness between two adjacent gray levels (12).
  • the original model is derived from the description of the workpiece by means of CAD (spline) surfaces, which represent the original polygon mesh (17). result.
  • the brightness values of the gray levels (12) of the gray level bitmaps (14) are calculated back to the original texture bitmap (3) before or during the processing of the surface (1) of the workpiece (15).
  • color levels or colors from the color spectrum can also be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Numerical Control (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Turning (AREA)

Abstract

The invention relates to a method for removing material from a three-dimensional surface (1) of any shape in a multi-layered manner by means of a material removing agent (9), such as a laser, that acts in points on a surface. According to said method, a surface structure (2) is removed from the three-dimensional surface (1), the surface (1) is approximated by a polygon network (18), and raster images are associated with the polygons (19) of the polygon network (18). Said polygons are projected onto the machining region (10) of the material removing means. A series of superimposed polygon networks (18) is produced for the removal of the material, each of the polygon networks being associated with a layer in which material is removed, if the information stored on the projected raster image indicates the planned removal of material. The use of polygon networks (18) for removing material in a multi-layered manner ensures a very precise removal of material from a surface structure (2) of any shape, thus creating a highly precise three-dimensional surface structure (2).

Description

Verfahren zur Bearbeitung einer dreidimensionalen OberflächeProcess for processing a three-dimensional surface
[001] Der schichtweise Abtrag einer Materialschicht von einer Form zur Herstellung einer beliebigen dreidimensionalen Oberflächenstruktur erfolgte bisher mittels Ätzverfahren oder galvanischen Verfahren, bei welchen eine Positivform mit der gewünschten Oberflächengestaltung mit einem Metall überzogen worden ist, welches dann eine Negativform zur Herstellung des gewünschten Formteils oder der Folie ergibt. Diese Verfahrensvarianten erfordern immer eine große Anzahl von Verfahrensschritten, um eine Negativform für nur eine einzige Oberflächengestaltung zu erhalten. Dies hat zur Folge, dass bei jeder Änderung der Oberflächengestaltung dieselben Verfahrensschritte erneut anfallen, was zusätzliche Kosten und nicht unbeträchtlichen Zeitaufwand bedeutet, um Oberflächenstrukturen mit einer derartigen Präzision abzubilden, wie sie z.B. zur naturgetreuen Darstellung einer Oberflächenstruktur, wie einer Ledernarbe erforderlich sind. Bislang sind vor allem zwei Verfahren verbreitet, um Werkzeuge wirtschaftlich zu narben, zum einen ist das die Ätznarbe, bei der die Oberfläche des Werkstücks unterschiedlich maskiert wird und dann durch eine Ätzflüssigkeit selektiv abgetragen wird. Dieses Verfahren kann mit Einschränkungen auch schichtweise angewendet werden und erzeugt dann allerdings einen stark abgestuften Übergang zwischen Narbgipfeln und Narbtälern. Außerdem gibt es Schwierigkeiten bei komplizierten Geometrien der zu narbenden Fläche. [002] Ein anderes Verfahren ist das sogenannte Galvano- Verfahren. Hierbei wird ein Positivmodell, das sogenannte Belederungsmodell mit einer Folie (oder Leder) bezogen, welche die gewünschte Struktur, beispielsweise Ledernarbe aufweist. In einem Abformverfahren wird dann die Narbe in ein Negativwerkzeug übernommen, das wiederum zur Herstellung eines (Positiv-) Badmodells verwendet wird. Auf dieses wird dann in einem Bad galvanisch eine Metallschicht aufgebracht. Das so erhaltene Galvanowerkzeug muss dann noch verstärkt werden, kann dann aber auch nur für bestimmte Verfahren zur Teileherstellung zur Anwendung kommen, die seine Oberfläche nicht zu stark beanspruchen. Verbreitet sind vor allem das Slush-Verfahren und das Sprühhaut-Verfahren. Außerdem ist jedes dieser letztgenannten Verfahren sehr zeit- und kostenaufwendig.The layer-by-layer removal of a material layer from a mold for the production of any three-dimensional surface structure has hitherto been carried out by means of etching processes or galvanic processes in which a positive mold with the desired surface design has been coated with a metal, which is then a negative mold for producing the desired molded part or the slide results. These process variants always require a large number of process steps in order to obtain a negative shape for only a single surface design. As a result, the same process steps are repeated each time the surface design is changed, which means additional costs and not inconsiderable expenditure of time in order to image surface structures with the precision such as that e.g. for the lifelike representation of a surface structure, such as a leather grain are required. So far, two methods have been widely used to economically scar tools, on the one hand, there is the etching scar, in which the surface of the workpiece is masked differently and then removed selectively by an etching liquid. This method can also be used in layers with restrictions and then creates a strongly graded transition between scar peaks and scar valleys. There are also difficulties with complicated geometries of the surface to be grained. Another method is the so-called galvano method. Here, a positive model, the so-called leather model, is covered with a film (or leather) which has the desired structure, for example leather grain. In a molding process, the scar is then transferred to a negative tool, which in turn is used to produce a (positive) bath model. A metal layer is then electroplated onto this in a bath. The electroplating tool obtained in this way then has to be reinforced, but can then only be used for certain methods for producing parts which do not stress its surface too much. The slush method and the spray skin method are particularly widespread. In addition, each of the latter methods is very time-consuming and costly.
[003] Aufgrund des großen Aufwandes, welcher mit den aus dem Stand der Technik vorbekannten und in industriellem Maßstab zum Einsatz kommenden Verfahren verbunden ist, gibt es Ansätze, die Oberflächenstruktur mit einem Abtragmittel herzustellen. Ein vielseitig verwendbares Abtragmittel ist ein Laserstrahl. Die Technologie der Abtragung von Material mittels Laser ist beispielsweise aus DE3939866 A1 aus dem Bereich der Lasergravur bekannt. Die Materialabtragung durch Verdampfen einer Oberflächenschicht mittels Laser ist aus DE4209933 C2 bekannt. Der Laserstrahl wird aufgeweitet und durch drehbare Ablenkspiegel über eine von einem Rechner vorgegebene Bezugslinie geführt. Die Bezugslinien bilden ein Rasterfeld. Das Rasterfeld wird mehrmals vom Laserstrahl entlang winkelversetzter Bezugslinien abgefahren, wobei Material durch Verdampfung abgetragen wird. Durch die Variation der Richtung der Laserspuren durch Drehung in der Bearbeitungsebene um einen bestimmten Winkel werden systematische Überhöhungen in derDue to the great effort, which is associated with the processes known from the prior art and used on an industrial scale, there are approaches to the surface structure with a removal agent manufacture. A laser beam is a versatile removal agent. The technology of removing material by means of laser is known, for example, from DE3939866 A1 in the field of laser engraving. The removal of material by evaporation of a surface layer using a laser is known from DE4209933 C2. The laser beam is expanded and guided by rotatable deflecting mirrors over a reference line specified by a computer. The reference lines form a grid. The grid is scanned several times by the laser beam along angularly offset reference lines, material being removed by evaporation. By varying the direction of the laser tracks by rotating in the processing plane by a certain angle, systematic increases in the
Grenzschicht vermieden. Dadurch entsteht eine netzartige Struktur der Rasterlinien. Diese Technologie findet ausschließlich auf zweidimensionale Oberflächen Anwendung. Mittels der in der Patentschrift offenbarten Technologie wird ein gleichmäßiger Abtrag von Material im Rasterfeld erzielt. [004] Eine zeilenweise Führung des Lasers in Bahnen (Rasterlinien), bzw. Spuren, im jeweiligen Bearbeitungsfeld des Lasers wird in DE10032981 A1 offenbart. Die Spuren werden bereichsweise auf ein sich bewegendes Werkstück aufgebracht. Um zu vermeiden, dass sich im Überlappungsbereich der Spuren an den Bereichsgrenzen eine scharfe Trennlinie ausbildet, die durch übermäßigen Materialabtrag im Überlappungsbereich entsteht, werden die Bereichsgrenzen bei jedem Abtrag versetzt. Mit anderen Worten, bei zeilenförmigem Abtrag eines Bereichs setzt der Laser am Rand nicht längs einer Linie ab, sondern fährt in die Nähe dieser Linie. Der Endpunkt der Abtragung liegt dann zwar in einem Abstandsbereich dieser Linie, dieser Abstandsbereich ist aber von Zeile zu Zeile verschieden. Da die Endpunkte sich somit statistisch um den Mittelwert der Linie verteilen, kann kein optischer Defekt wahrgenommen werden. Dieses Verfahren eignet sich zum Abtrag von Rasterfeldern, welche auf einer Ebene liegen. Sobald die Rasterfelder aber eine Neigung gegeneinander aufweisen, wird durch das Abtragmittel eine andere Materialmenge abgetragen, wenn sich das Abtragmittel aus dem Rasterfeld entfernt. Somit müsste jeder einzelne Endpunkt aufgezeichnet werden, der Materialabtrag bestimmt, und der für das benachbarte Rasterfeld vorgesehene Materialabtrag um den Fehlbetrag korrigiert werden. Aus diesem Grund ist das Verfahren für dreidimensionale Oberflächen nur unter hohem zusätzlichen Rechenaufwand anwendbar. [005] Nach der Lehre der DE10116672 A1 werden Grob- und Feinstrukturen unterschiedlich bearbeitet, wobei Feinbereiche mittels Laser und Grobbereiche mittels einer Aushebvorrichtung bearbeitet werden. Diese Technologie eignet sich insbesondere für Bearbeitung von Metalloberflächen, welche beispielsweise auf Druckzylindem angeordnet sind. Die Grobbearbeitung erfolgt mittels mechanischer Abtragvorrichtungen.Boundary layer avoided. This creates a network-like structure of the grid lines. This technology is only used on two-dimensional surfaces. A uniform removal of material in the grid is achieved by means of the technology disclosed in the patent specification. A line-by-line guidance of the laser in tracks (raster lines) or tracks in the respective processing field of the laser is disclosed in DE10032981 A1. The traces are applied in areas to a moving workpiece. In order to avoid that a sharp dividing line is formed in the overlap area of the tracks at the area boundaries, which is caused by excessive material removal in the overlap area, the area limits are offset with each removal. In other words, if an area is removed in a line, the laser does not stop at the edge along a line, but moves in the vicinity of this line. The end point of the removal is then in a distance range of this line, but this distance range differs from line to line. Since the end points are statistically distributed around the mean value of the line, no optical defect can be perceived. This method is suitable for removing grid fields that are on one level. As soon as the grid fields are inclined towards each other, a different amount of material is removed by the removal means when the removal means moves away from the grid field. Each individual end point would therefore have to be recorded, the material removal determined, and the material removal intended for the adjacent grid field corrected for the shortfall. For this reason, the method for three-dimensional surfaces can only be used with a high additional computing effort. [005] According to the teaching of DE10116672 A1, coarse and fine structures are processed differently, fine areas being processed by means of lasers and coarse areas using a lifting device. This technology is suitable in particular for processing metal surfaces which are arranged, for example, on printing cylinders. The rough machining is carried out by means of mechanical removal devices.
[006] Bekanntermaßen lassen sich beispielsweise durch die Materialabtragung mittels Laser auch komplizierte Strukturen herstellen, dies wird beispielsweise bei der Mikrobearbeitung von Materialien ausgenutzt. Es gibt auch bereits Verfahren, um großflächig Material mit dem Laser abzutragen.As is known, complicated structures can also be produced, for example, by material removal using a laser; this is used, for example, in the micromachining of materials. There are also processes for removing material over a large area with the laser.
[007] Es ist eine Aufgabe der Erfindung, eine beliebige Oberflächenstruktur, wie beispielsweise eine Ledernarbe, von beliebig gestalteten dreidimensionalenIt is an object of the invention, any surface structure, such as a leather grain, of arbitrarily designed three-dimensional
Oberflächen abzutragen. Die Aufgabe der Erfindung besteht somit darin, ein Verfahren zu entwickeln, welches die Möglichkeit bietet, beliebig geformte Werkzeuge und Modelle mit einer dreidimensionalen Oberflächenstruktur zu versehen, die einer natürlichen oder beliebig anderen Oberflächenstruktur möglichst nahe kommt. Eine derartige Oberflächenstruktur ist beispielsweise die Narbe des Leders, die dadurch gekennzeichnet ist, dass Narbgipfel unterschiedliche Höhen und Ausdehnungen aufweisen und der Übergang zwischen Narbgipfeln und Narbtälern gleichmäßig verläuft. Es ist eine weitere Aufgabe der Erfindung, Trenn- oder Grenzlinien beim Materialabtrag zu vermeiden. [008] Diese Aufgabe wird durch das Verfahren gemäß Anspruch 1 gelöst, das für verschiedene Arten von Materialien Verwendung finden kann, im Vergleich einem der aus dem Stand der Technik bekannten Verfahren schnell durchführbar ist, und keine oder wenig Einschränkungen in Bezug auf die abzubildenden Geometrien der Oberflächenstruktur verursacht. Zudem soll das erfindungsgemäße Verfahren Anwendung auf beliebige Materialkombinationen finden. Eine ein- oder mehrschichtige Materialabtragung einer beliebig geformten dreidimensionalen Oberfläche erfolgt mittels eines punktförmig auf eine Oberfläche wirkenden Abtragmittels, wie eines Lasers, bei welchem eine Oberflächenstruktur auf der dreidimensionalen Oberfläche erzeugt wird, wobei die Oberfläche durch mindestens ein Polygonnetz angenähert wird, wobei jedes Polygon des Polygonnetzes dem Bearbeitungsbereich des Lasers zugeordnet ist. Die durch das Polygonnetz angenäherte Oberfläche wird mittels einer Scanvorrichtung gescannt. Die Scanvorrichtung, z.B. ein Galvanoscanner, definiert den Bearbeitungsbereich des Lasers. [009] Das ursprüngliche dreidimensionale Computermodell oder Urmodell des Werkstücks wird durch ein ausreichend engmaschiges Polygonnetz beschrieben, das wiederum aus der CAD-(Spline)-Beschreibung des Werkstückes abgeleitet wird. [0010] Den dreidimensionalen Ecken der Polygone entsprechen zweidimensionale Punkte in einer oder mehrerer Ur-Texturbitmaps, wodurch die Polygone in den zweidimensionalen Raum der Bitmap übertragen werden. Der Graustufenwert der Bitmap entspricht der erforderlichen Oberflächenabtragung am Werkstück. [0011] Anschließend werden Bearbeitungsflächen für die einzelnen Schichten definiert. Die Graustufenbitmaps für die Polygone der einzelnen Schichten ergeben sich aus einer Parallelprojektion der Polygone und Bitmaps des Urmodells auf das Polygon der Bearbeitungsfläche. Die Oberflächenstruktur wird somit durch mindestens ein Rasterbild beschrieben, wobei der jeweils zu bearbeitende Bearbeitungsbereich der Oberfläche vollkommen in den Fokusbereich des Lasers zu liegen kommt. Die Punktlage der Polygonecken im dreidimensionalen Raum entspricht einer zweidimensionalen Koordinatenlage auf der Fläche der Rasterbilder. Die Materialabtragung kann in mehreren Schichten erfolgen, wobei jeder Schicht ein eigenes Polygonnetz zugeordnet ist. Das jeweils zu bearbeitende Teilstück jeder Schicht hat in einer vorteilhaften Ausgestaltung keinen Randabschnitt mit einem der vorher bearbeiteten Teilstücke einer anderen Schicht gemeinsam. [0012] Das Verfahren für den schichtweisen selektiven Formabtrag an einem Werkstück bezweckt die Einbringung einer Struktur, beispielsweise in der Form einer Ledernarbe in das Werkstück, die dadurch gekennzeichnet ist, dass die Übergänge zwischen Narbgipfeln und Narbtälern möglichst gleichmäßig verlaufen. Des weiteren sollen bezüglich der Topologie des Werkstückes möglichst wenig Einschränkungen notwendig sein, d.h. es erfolgt hier keine Beschränkung auf z.B. Zylinderflächen wie im Stand der Technik, siehe z.B. DE 101 16672 A1. [0013] Gemäß DE 4209933 C2 erfolgt die Einbringung der Struktur beispielsweise durch das Verdampfen des Materials mittels eines Laserstrahles. Dieser wird rechnergesteuert entlang vorgegebener Rasterlinien über das Werkstück geführt. Bei großen Flächen geschieht die Bearbeitung im allgemeinen abschnittsweise (vgl. auch DE10032981 A1). [0014] Beliebige Oberflächen und Narben müssen derart dargestellt werden, dass sie mit einem bekannten Verfahren zur Abtragung von Material, insbesondere einem Laserverfahren, hergestellt werden können. Hierbei muss man zwischen der Beschreibung der Topologie, d.h. der Geometrie des Werkstücks und der Narbe unterscheiden, das heißt, der gewünschten Feinstrukturierung der Oberfläche, welche mit dem Werkstück durch ein formgebendes Verfahren erzeugt wird. [0015] In der Automobilindustrie werden zur Topologie-Beschreibung von sogenannten Freiformflächen im allgemeinen NURBS (non-uniform rational B-Splines) eingesetzt. Da man mit einer einzigen NURBS-Fläche eine komplexe Geometrie nicht zufriedenstellend beschreiben kann, werden mehrere sogenannte NURBS-Patches aneinandergesetzt. Oftmals werden diese vor dem Zusammensetzen auch noch beschnitten (getrimmt), wozu auf den NURBS-Flächen liegende NURBS-Kurven eingesetzt werden.Remove surfaces. The object of the invention is therefore to develop a method which offers the possibility of providing tools and models of any shape with a three-dimensional surface structure which comes as close as possible to a natural or any other surface structure. Such a surface structure is, for example, the grain of the leather, which is characterized in that grain peaks have different heights and dimensions and the transition between grain peaks and grain valleys runs smoothly. It is a further object of the invention to avoid dividing lines or boundary lines when removing material. This object is achieved by the method according to claim 1, which can be used for different types of materials, can be carried out quickly in comparison to one of the methods known from the prior art, and no or little restrictions with regard to the geometries to be imaged of the surface structure. In addition, the method according to the invention is to be applied to any combination of materials. Single- or multi-layer material removal of an arbitrarily shaped three-dimensional surface is carried out by means of a removal agent acting point-wise on a surface, such as a laser, in which a surface structure is produced on the three-dimensional surface, the surface being approximated by at least one polygon mesh, each polygon of the Polygon mesh is assigned to the processing area of the laser. The surface approximated by the polygon mesh is scanned using a scanning device. The scanning device, for example a galvanoscanner, defines the processing area of the laser. The original three-dimensional computer model or master model of the workpiece is described by a sufficiently close-meshed polygon mesh, which in turn is derived from the CAD (spline) description of the workpiece. The three-dimensional corners of the polygons correspond to two-dimensional points in one or more original texture bitmaps, as a result of which the polygons are transferred into the two-dimensional space of the bitmap. The grayscale value of the bitmap corresponds to the required surface removal on the workpiece. Subsequently, processing areas for the individual layers are defined. The grayscale bitmaps for the polygons of the individual layers result from a parallel projection of the polygons and bitmaps of the original model onto the polygon of the processing area. The surface structure is thus described by at least one raster image, the processing area of the surface to be processed in each case coming completely into the focus area of the laser. The point position of the polygon corners in three-dimensional space corresponds to a two-dimensional coordinate position on the surface of the raster images. Material removal can take place in several layers, each layer being assigned its own polygon mesh. In an advantageous embodiment, the section of each layer to be processed does not have an edge section in common with one of the previously processed sections of another layer. The method for the layer-by-layer selective removal of shape on a workpiece aims to introduce a structure, for example in the form of a leather grain in the workpiece, which is characterized in that the transitions between scar peaks and scar valleys run as evenly as possible. Furthermore, as few restrictions as possible should be necessary with regard to the topology of the workpiece, ie there is no restriction here, for example, to cylinder surfaces as in the prior art, see, for example, DE 101 16672 A1. According to DE 4209933 C2, the structure is introduced, for example, by evaporating the material by means of a laser beam. This is guided computer-controlled along predetermined grid lines over the workpiece. In the case of large areas, processing generally takes place in sections (cf. also DE10032981 A1). Any surfaces and scars must be represented in such a way that they can be produced using a known method for removing material, in particular a laser method. A distinction must be made here between the description of the topology, ie the geometry of the workpiece and the scar, that is to say the desired fine structuring of the surface which is produced with the workpiece by a shaping process. In the automotive industry, NURBS (non-uniform rational B-splines) are generally used to describe the topology of so-called free-form surfaces. Since a single NURBS surface cannot describe a complex geometry satisfactorily, several so-called NURBS patches are put together. Often, these are also trimmed before assembly, for which purpose NURBS curves lying on the NURBS surfaces are used.
[0016] Um diese Topologie mit dem Laser bearbeiten zu können, muss sie in Bearbeitungsbereiche aufgeteilt werden. Die Größe des Bearbeitungsbereichs wird Idealerweise so gewählt, dass er bei entsprechender Stellung des Scanners (möglichst näherungsweise senkrecht auf dem Bearbeitungsbereich) lediglich durch Einflussnahme auf die Galvanospiegel abgescannt werden kann. Des weiteren sollte die Entfernungsänderung zwischen Scanner und Bearbeitungsbereich gering gehalten werden. Ziel muss bei der Wahl der Größe des Bearbeitungsbereichs in jedem Falle sein, dass weder durch die Winkelstellung des Lasers, noch durch die Veränderung des Abstandes zwischen der Fläche und dem Scanner eine unerwünschte Änderung der Stärke des Materialabtrages beziehungsweise des pro Zeiteinheit abgetragenen Materials erfolgt. Bei jedem Bearbeitungsbereich ist zu beachten, dass er als ganzes im Fokus des Lasers zu liegen kommt.To be able to process this topology with the laser, it must be divided into processing areas. The size of the processing area is ideally selected so that it can be scanned only by influencing the galvanomirror when the scanner is in the appropriate position (approximately vertically on the processing area if possible). Furthermore, the change in distance between scanner and processing area should be kept small. When choosing the size of the machining area, the goal must always be that neither the angular position of the laser nor the change in the distance between the surface and the scanner results in an undesirable change in the thickness of the material removal or the material removed per unit of time. With each processing area, it should be noted that the laser as a whole focuses on it.
[0017] Den möglichen Bearbeitungsbereich bei einer bestimmten Position des Scanners kann man bei Einsatz einer Planfeldlinse durch den Fokus-Quader beschreiben. Der Abstand zwischen Scanner und der Mittelebene des Quaders ist durch die Brennweite der Laseroptik gegeben. Die Höhe des Bearbeitungsbereichs, bei vorgegebenem maximalen Fehler der abgetragenen Schichtdicke, ist durch die maximale Fokustiefe (= Abweichung von der Brennweite) gegeben und seine Seitenlänge durch die entsprechende maximale Auslenkung der Galvanospiegel im Scanner. Innerhalb des Fokus-Quaders kann der Bearbeitungsabschnitt durch ein Polygon angenähert werden, dessen Ecken alle auf einer Fläche liegen, die idealerweise exakt den Abstand der Brennweite zu der Laseroptik hat und senkrecht zur Richtung des Laserstrahles in der Mittelstellung der Ablenkspiegel steht. Diesem Polygon entspricht nun ein Flächenabschnitt der zu bearbeitenden Fläche, der durch Projektion des Polygons auf die NURBS-Fläche entsteht und vollkommen im Focus- Quader liegen muss.The possible processing area at a certain position of the scanner can be described by using the focus cuboid when using a plane field lens. The distance between the scanner and the center plane of the cuboid is given by the focal length of the laser optics. The height of the processing area, given the maximum error of the removed layer thickness, is given by the maximum depth of focus (= deviation from the focal length) and its side length by the corresponding maximum deflection of the galvanomirror in the scanner. Within the focus cuboid, the processing section can be approximated by a polygon, the corners of which all lie on a surface that ideally has the exact distance of the focal length from the laser optics and is perpendicular to the direction of the laser beam in the middle position of the deflection mirror. A surface section of the surface to be processed corresponds to this polygon, which is created by projecting the polygon onto the NURBS surface and must lie completely in the focus cuboid.
[0018] Die gesamte Topologie der zu bearbeitenden Fläche wird somit durch ein Gitternetz von zusammenhängenden Polygonen verschiedener Größe und Form beschrieben. Dabei sind die Polygonkanten unabhängig von den Rändern der die zu bearbeitende Fläche beschreibenden NURBS-Patches zu wählen, d.h. es kann und wird vorkommen, dass ein oder mehrere Punkte des Polygons auf einem Patch liegen und ein oder mehrere Punkte des Polygons auf dem angrenzenden NURBS-Patch. [0019] Für die Beschreibung der Feinstruktur der Oberfläche wird jedem Polygon zwecks der besseren Verarbeitbarkeit durch das Steuerprogramm des Lasers ein Rasterbild (Bitmap) zugeordnet. Hierbei entspricht die Größe des Bildpunktes minimal der Größe des Durchmessers des Laser-Lichtpunkts und die Graustufe (Helligkeit) oder die Farbstufe (Intensität) des Bildpunktes der Tiefe der Struktur an diesem Punkt. Ein weißer Punkt würde zum Beispiel bedeuten, das überhaupt kein Material abgetragen wird, während ein schwarzer Punkt maximalen Materialabtrag bedeuten würde (oder umgekehrt).The entire topology of the surface to be processed is thus described by a grid of connected polygons of different sizes and shapes. The polygon edges are to be selected independently of the edges of the NURBS patches describing the surface to be processed, ie it can and it will happen that one or more points of the polygon lie on a patch and one or more points of the polygon on the adjacent NURBS patch. For the description of the fine structure of the surface, a raster image (bitmap) is assigned to each polygon for the purpose of better processability by the control program of the laser. The size of the pixel corresponds minimally to the size of the diameter of the laser light spot and the gray level (brightness) or the color level (intensity) of the pixel corresponds to the depth of the structure at this point. For example, a white dot would mean that no material would be removed at all, while a black dot would mean maximum material removal (or vice versa).
[0020] Eine noch höhere Genauigkeit kann durch eine Beschreibung des Laserpunktes durch mehrere Bildpunkte in der Bitmap erreicht werden. Der Nachteil besteht in der Vergrößerung der Bitmap und der entsprechend höhere Speicherbedarf und Rechenaufwand in der Steuerelektronik. [0021] Die Codierung der Bitmap entspricht hierbei der maximalen Schichtenzahl, das heißt bei 256 Graustufen (= 8 bit) je Bildpunkt können maximal 256 Schichten dargestellt werden. Zur Abspeicherung dieses Rasterbildes sind verschiedene Computerformate mit entsprechenden Komprimierungsalgorithmen bekannt, die eine sehr starke Verringerung des Speicherbedarfes zur Folge haben. [0022] Im allgemeinen Fall wird das Polygon selten eine quadratische Form haben. Daher erfolgt eine Zuordnung der Eckpunkte des Polygons im dreidimensionalen Raum zu jeweils einem entsprechenden Punkt auf der Bitmap in 2 D-Koordinaten (Texturkoordinaten). Es ist bei entsprechender Anordnung der Polygone auch möglich, die Texturkoordinaten mehrerer Polygone auf einer Bitmap zusammenzufassen. Außerdem kann beim Errechnen und Abspeichern der Polygone und zugehörigen Bitmaps auch schon eine Winkelrichtung für die Laserspuren (vgl. DE 4209933 C2) vorgegeben werden. Die Laserspuren brauchen den Rasterlinien der Bitmap nicht unbedingt zu folgen, sondern es können Verfahren der Computergrafik zum Einsatz kommen, die für eine schräg zu den Rasterlinien verlaufende Laserspur die Helligkeitswerte errechnen, unter Verwendung von Antialiasing-Algorithmen. (vergleiche eine diagonal auf einem Computerbildschirm verlaufende Linie). [0023] Bei der Bearbeitung des Werkstückes muss ein Lasergerät zum Einsatz kommen, bei dem der Scanner, in dem sich die Galvanospiegel befinden, in Bezug auf das Werkstück eine ausreichende Beweglichkeit aufweist, um eine Position anfahren zu können, die sich möglichst senkrecht relativ zu jedem Polygon im Abstand der Brennweite der Laseroptik befindet, d.h. die derjenigen Position entspricht, die bei der Berechnung der Polygone zugrunde gelegt wurde. [0024] Für die Steuerung des Lasergerätes im Sinne einer wirtschaftlichen Bearbeitung ist es vonnöten, die Polygone im Datensatz so zu ordnen, dass sie von der Steuerelektronik in einer Reihenfolge eingelesen werden, die möglichst geringe Verfahrwege des Scanners zur Folge hat.An even higher accuracy can be achieved by a description of the laser point by several pixels in the bitmap. The disadvantage is the enlargement of the bitmap and the correspondingly higher memory requirement and computing effort in the control electronics. The coding of the bitmap corresponds to the maximum number of layers, that is to say 256 layers of gray (= 8 bits) per pixel, a maximum of 256 layers can be displayed. Various computer formats with corresponding compression algorithms are known for storing this raster image, which result in a very large reduction in the memory requirement. In the general case, the polygon will rarely have a square shape. Therefore, the corner points of the polygon in three-dimensional space are assigned to a corresponding point on the bitmap in 2 D coordinates (texture coordinates). If the polygons are arranged accordingly, it is also possible to combine the texture coordinates of several polygons on a bitmap. In addition, when calculating and storing the polygons and associated bitmaps, an angular direction for the laser tracks (cf. DE 4209933 C2) can also be specified. The laser tracks do not necessarily have to follow the raster lines of the bitmap, but methods of computer graphics can be used to calculate the brightness values for a laser track running obliquely to the raster lines, using antialiasing algorithms. (Compare a line running diagonally on a computer screen). When machining the workpiece, a laser device must be used in which the scanner in which the galvanomirrors are located has sufficient mobility with respect to the workpiece in order to be able to move to a position that is as perpendicular as possible to every polygon at a distance of Focal length of the laser optics is located, that is, corresponds to the position that was used as the basis for the calculation of the polygons. For the control of the laser device in the sense of an economic processing, it is necessary to order the polygons in the data set so that they are read by the control electronics in a sequence that has the shortest possible travel of the scanner.
[0025] Eine weitere Aufgabe besteht in der Vermeidung von Trennlinien, die in dem Bereich entstehen, in dem eine Laserspur endet und die nächste beginnt (vgl. DE10032981 A1). Die Gefahr besteht insbesondere an den Kanten, an denen zwei Polygone aneinander stoßen.Another object is to avoid dividing lines that arise in the area in which one laser track ends and the next begins (see. DE10032981 A1). There is a particular danger at the edges where two polygons meet.
[0026] Diese Aufgabe wird dadurch gelöst, dass die Schichtdicke so stark herabgesetzt wird, dass die entstehende Grenzlinie in der Höhe vernachlässigbar klein im Vergleich zu der Gesamthöhe der Narbe und somit nicht mehr sichtbar ist. Die Addition des Trennlinien-Fehlers an den Polygonkanten wird dadurch vermieden, dass jeder abzutragenden Schicht ein eigenes unabhängiges 3-dimensionales Polygonnetz zugeordnet wird. Dieses kann völlig frei gewählt werden, unter Beachtung der oben genannten Vorgaben. Außerdem muss beachtet werden, dass sich Polygonränder zwar überschneiden (das ist unvermeidlich), aber keinesfalls übereinander liegen dürfen. Ansonsten addiert sich der Trennlinien-Fehler. Das bedeutet, bei Betrachtung eines beliebigen Punktes auf der zu bearbeitenden Fläche des Werkstückes und einem Materialabtrag in n Schichten, dass dieser Punkt zu n verschiedenen Polygonen aus n verschiedenen Polygonnetzen „gehört".This object is achieved in that the layer thickness is reduced so much that the resulting boundary line is negligible in height compared to the total height of the scar and is therefore no longer visible. The addition of the dividing line error at the polygon edges is avoided by assigning a separate, independent 3-dimensional polygon mesh to each layer to be removed. This can be chosen completely freely, taking into account the above requirements. It should also be noted that polygon borders overlap (this is inevitable), but must not be on top of each other. Otherwise the dividing line error is added. This means, when considering any point on the surface of the workpiece to be machined and removing material in n layers, that this point "belongs" to n different polygons from n different polygon meshes.
[0027] Diese Polygone können sich entweder eine Textur-Bitmap teilen, oder aber sie verteilen sich auf mehr als eine bis maximal n Bitmaps. [0028] Bezüglich der zugehörigen Textur-Bitmaps muss beachtet werden, dass beim Vorhandensein von mehreren Bitmaps sich der entsprechende Schichtabtrag auf die einzelnen Bitmaps verteilt. Das heißt, der endgültige Materialabtrag an einem bestimmten Punkt ergibt sich aus einer Addition der einzelnen Grauwerte der Texturbitmaps an diesem Punkt. [0029] Ist der Trennlinienfehler noch stärker zu reduzieren, kann ein Verfahren nach DE10032981A zur Anwendung kommen, bei dem ein Überlappungsbereich zwischen den Bearbeitungsabschnitten gebildet wird, in dem die Bearbeitungsspuren des Lasers in den Anschnitten ineinander greifen, und die Übergangspunkte statistisch verteilt sind.[0027] These polygons can either share a texture bitmap, or else they can be distributed over more than one to a maximum of n bitmaps. With regard to the associated texture bitmaps, it must be noted that if there are several bitmaps, the corresponding layer removal is distributed over the individual bitmaps. This means that the final material removal at a certain point results from an addition of the individual gray values of the texture bitmaps at this point. If the dividing line error can be reduced even more, a method according to DE10032981A can be used, in which an overlap area is formed between the processing sections, in which the processing tracks of the laser interlock in the sections, and the transition points are statistically distributed.
Fig. 1 Schematische Darstellung des Verfahrenablaufs [0030] In der einzigen Figur ist der Ablauf des Verfahrens schematisch dargestellt. Das Verfahren zur mehrschichtigen Materialabtragung von einem Werkstück (15) mit einer beliebig geformten dreidimensionalen Oberfläche (1) erfolgt mittels eines punktförmig auf eine Oberfläche wirkenden Abtragmittels (9), wie eines Lasers, mittels welchem eine Oberflächenstruktur (2) auf der dreidimensionalen Oberfläche (1) erzeugt wird. Auf der Oberfläche (1) werden Bearbeitungsbereiche (10) definiert, wobei ein derartiger Bearbeitungsbereich (10) durch den Fokusbereich (11) des Abtragmittels bestimmt ist. Die Oberfläche (1) wird durch übereinander liegende Polygonnetze (18) angenähert, wobei jedes Polygon (19) des Polygonnetzes (18) dem Bearbeitungsbereich (10) des Abtragmittels (9) zugeordnet ist. [0031] Die Oberflächenstruktur (2) wird durch mindestens eine Graustufenbitmap (14) beschrieben. Die Graustufenbitmap (14) umfasst Biidpunkte unterschiedlicher Graustufen (12) oder unterschiedlicher Farbstufen. Die jedem Bildpunkt der Graustufenbitmap (14) entsprechende Helligkeit der Graustufe (12) oder die Intensität der Farbstufe oder der Kennwert der Farbe, wie beispielsweise eine Wellenlänge bei Verwendung mehrfarbiger Bitmaps, bestimmt die Tiefe des Materialabtrags. [0032] Der Materialabtrag erfolgt in der Anzahl Schichten (7), welche dem Wert der Graustufe (12) entsprechen. Jeder Schicht (7) ist ein eigenes Polygonnetz (18) zugeordnet. Das jeweils zu bearbeitende Polygon (19) jeder Schicht (7) hat keinen Randabschnitt mit einem der vorher bearbeiteten Polygone gemeinsam, womit sich Randeffekte vermeiden lassen, welche durch Ansetzen und Absetzen des Abtragmittels auf der Oberfläche sichtbar werden können. [0033] Zur Durchführung des Verfahrens wird ein ursprüngliches dreidimensionales Computermodell (16) des Werkstücks (15) erzeugt, welches durch ein ursprüngliches Polygonnetz (17) beschrieben wird. Den dreidimensionalen Ecken der Polygone des ursprünglichen Polygonnetzes (17) entsprechen zweidimensionale Punkte in einer oder mehrerer Ur-Texturbitmaps (3). Die Polygone werden in den zweidimensionalen Raum der Ur-Texturbitmaps (3) übertragen, wobei der Graustufenwert (5) eines Bildpunktes (4) der Ur-Texturbitmap (3) der erforderlichen Materialabtragung am Werkstück (15) entspricht und die Bearbeitungsbereiche (10) einzelne Schichten (7) umfassen. Die Summe der Bearbeitungsbereiche (10) ergeben die Oberfläche (1) und die Summe der Schichten (7) ergibt die Oberflächenstruktur (2) des Werkstücks (15). Jede Schicht (7) ist durch ein Polygonnetz (18) beschreibbar, wobei übereinander liegende Polygonnetze versetzt zueinander angeordnet sind. Die Oberflächenstruktur (2) des Werkstücks (15) wird durch übereinander liegende, zueinander versetzt angeordnete, Polygonnetze (18) angenähert. Jedem Polygon (19) des Polygonnetzes (18) wird innerhalb des Bearbeitungsbereichs (10) eine Graustufenbitmap (14) aus einer Parallelprojektion der Ur-Texturbitmap (3) auf das Polygon (19) innerhalb des Bearbeitungsbereichs (10) zugeordnet, sodass der Materialabtrag durch das Abtragmittel (9) in jeder Schicht (7) entsprechend der Werte der Graustufenbitmaps (14) vorgenommen werden kann. Der Abstandswert (6) zwischen zwei Schichten (7) entspricht somit der Helligkeitsdifferenz zwischen zwei benachbarten Graustufen (12) [0034] Das Urmodell wird aus der Beschreibung des Werkstückes durch CAD-(Spline)- Flächen abgeleitet, welche das ursprüngliche Polygonnetz (17) ergeben. [0035] Die Helligkeitswerte der Graustufen (12) der Graustufenbitmaps (14) werden vor oder während der Bearbeitung der Oberfläche (1) des Werkstücks (15) auf die Ur- Texturbitmap (3) zurückgerechnet. Anstelle von Helligkeitswerten von Graustufen (12) können auch Farbstufen oder Farben aus dem Farbspektrum verwendet werden. Fig. 1 Schematic representation of the process flow The sequence of the method is shown schematically in the single figure. The method for multi-layer material removal from a workpiece (15) with an arbitrarily shaped three-dimensional surface (1) is carried out by means of a removal means (9) acting point-wise on a surface, such as a laser, by means of which a surface structure (2) on the three-dimensional surface (1 ) is produced. Machining areas (10) are defined on the surface (1), such a machining area (10) being determined by the focus area (11) of the removal means. The surface (1) is approximated by superimposed polygon meshes (18), each polygon (19) of the polygon mesh (18) being assigned to the processing area (10) of the removal means (9). The surface structure (2) is described by at least one grayscale bitmap (14). The grayscale bitmap (14) comprises image points of different grayscale (12) or different color levels. The brightness of the gray level (12) corresponding to each pixel of the gray level bitmap (14) or the intensity of the color level or the characteristic value of the color, such as a wavelength when using multicolored bitmaps, determines the depth of the material removal. The material is removed in the number of layers (7) which correspond to the value of the gray level (12). Each layer (7) is assigned its own polygon mesh (18). The polygon (19) of each layer (7) to be machined does not have an edge section in common with one of the previously machined polygons, so that edge effects can be avoided, which can become visible on the surface by attaching and removing the removal agent. To carry out the method, an original three-dimensional computer model (16) of the workpiece (15) is generated, which is described by an original polygon mesh (17). The three-dimensional corners of the polygons of the original polygon network (17) correspond to two-dimensional points in one or more original texture bitmaps (3). The polygons are transferred into the two-dimensional space of the original texture bitmaps (3), the grayscale value (5) of a pixel (4) of the original texture bitmap (3) corresponding to the required material removal on the workpiece (15) and the processing areas (10) individually Layers (7) comprise. The sum of the machining areas (10) gives the surface (1) and the sum of the layers (7) gives the surface structure (2) of the workpiece (15). Each layer (7) can be written on by a polygon mesh (18), polygon meshes lying one above the other being offset from one another. The surface structure (2) of the workpiece (15) is formed by stacked, mutually offset, Polygon meshes (18) approximated. A grayscale bitmap (14) from a parallel projection of the original texture bitmap (3) onto the polygon (19) within the processing area (10) is assigned to each polygon (19) of the polygon network (18) within the processing area (10) so that the material is removed the removal means (9) can be carried out in each layer (7) according to the values of the gray scale bitmaps (14). The distance value (6) between two layers (7) thus corresponds to the difference in brightness between two adjacent gray levels (12). The original model is derived from the description of the workpiece by means of CAD (spline) surfaces, which represent the original polygon mesh (17). result. The brightness values of the gray levels (12) of the gray level bitmaps (14) are calculated back to the original texture bitmap (3) before or during the processing of the surface (1) of the workpiece (15). Instead of brightness values of gray levels (12), color levels or colors from the color spectrum can also be used.
[0036] Bezugszeichenliste[0036] List of reference symbols
I . Oberfläche 2. Textur = OberflächenstrukturI. Surface 2. Texture = surface structure
3. Teilfläche =Urtexturbitmap3rd partial area = original texture bitmap
4. Bildpunkt4th pixel
5. Graustufe5th grayscale
6. Abstandswert 7. Schicht6th distance value 7th layer
8. frei8. free
9. Abtragmittel9. Means of removal
10. Bearbeitungsbereich10. Machining area
I I . Fokusbereich 12. GraustufeI I. Focus area 12. Grayscale
13. frei13. free
14. Rasterbild = Graustufenbitmap14. Raster image = grayscale bitmap
15. Werkstück15. Workpiece
16. Ursprüngliches 3d Computermodell 17. Ursprüngliches Polygonnetz16. Original 3d computer model 17. Original polygon mesh
18. Polygonnetz einer Schicht18. Polygon mesh of a layer
19. Polygon des Polygonnetzes 18 19.Polygon of the mesh 18

Claims

ANSPRÜCHE EXPECTATIONS
1. Verfahren zur mehrschichtigen Materialabtragung von einem Werkstück (15) mit einer beliebig geformten dreidimensionalen Oberfläche (1) mittels eines punktförmig auf eine Oberfläche wirkenden Abtragmittels (9), wie eines Lasers, mittels welchem eine Oberflächenstruktur (2) auf der dreidimensionalen Oberfläche (1) erzeugt wird, wobei auf der Oberfläche (1) Bearbeitungsbereiche (10) definiert werden und ein derartiger Bearbeitungsbereich (10) durch den Fokusbereich (11) des Abtragmittels bestimmt ist, dadurch gekennzeichnet, dass die Oberfläche (1) durch übereinander liegende Polygonnetze (18) angenähert wird, wobei jedes Polygon (19) des Polygonnetzes (18) dem Bearbeitungsbereich (10) des Abtragmittels (9) zugeordnet ist.1. A method for multi-layer material removal from a workpiece (15) with an arbitrarily shaped three-dimensional surface (1) by means of an ablation means (9) acting point-wise on a surface, such as a laser, by means of which a surface structure (2) on the three-dimensional surface (1 ) is generated, with machining areas (10) being defined on the surface (1) and such a machining area (10) being determined by the focus area (11) of the removal means, characterized in that the surface (1) is formed by polygon meshes (18 ) is approximated, each polygon (19) of the polygon network (18) being assigned to the processing area (10) of the removal means (9).
2. Verfahren nach Anspruch 1, gekennzeichnet dadurch, dass die Oberflächenstruktur (2) durch mindestens eine Graustufenbitmap (14) beschrieben wird.2. The method according to claim 1, characterized in that the surface structure (2) is described by at least one grayscale bitmap (14).
3. Verfahren nach Anspruch 2, gekennzeichnet dadurch, dass die Graustufenbitmap (14) Bildpunkte unterschiedlicher Graustufen (12) oder unterschiedlicher Farbstufen umfasst.3. The method according to claim 2, characterized in that the gray level bitmap (14) comprises pixels of different gray levels (12) or different color levels.
4. Verfahren nach Anspruch 3, gekennzeichnet dadurch, dass die jedem Bildpunkt der Graustufenbitmap (14) entsprechende Helligkeit der Graustufe (12) oder die Intensität der Farbstufe die Tiefe des Materialabtrags bestimmt.4. The method according to claim 3, characterized in that the brightness of the gray level (12) corresponding to each pixel of the gray level bitmap (14) or the intensity of the color level determines the depth of the material removal.
5. Verfahren nach Anspruch 4, gekennzeichnet dadurch, dass der Materialabtrag in der Anzahl Schichten (7) erfolgt, welche dem Wert der Graustufe (12) entsprechen.5. The method according to claim 4, characterized in that the material removal takes place in the number of layers (7) which correspond to the value of the gray level (12).
6. Verfahren nach Anspruch 1 , gekennzeichnet dadurch, dass jeder Schicht (7) ein eigenes Polygonnetz (18) zugeordnet ist.6. The method according to claim 1, characterized in that each layer (7) is assigned its own polygon network (18).
7. Verfahren nach Anspruch 7, gekennzeichnet dadurch, dass das jeweils zu bearbeitende Polygon (19) jeder Schicht (7) keinen Randabschnitt mit einem der vorher bearbeiteten Polygone gemeinsam hat. 7. The method according to claim 7, characterized in that the respective polygon to be processed (19) of each layer (7) has no edge section in common with one of the previously processed polygons.
8. Verfahren zur mehrschichtigen Materialabtragung von einer beliebig geformten dreidimensionalen Oberfläche nach Anspruch 1 , wobei ein ursprüngliches dreidimensionales Computermodell (16) des Werkstücks (15) erzeugt wird, welches durch ein ursprüngliches Polygonnetz (17) beschrieben wird, wobei den dreidimensionalen Ecken der Polygone des ursprünglichen Polygonnetzes (17) zweidimensionale Punkte in einer oder mehrerer Ur-Texturbitmaps (3) entsprechen, wobei die Polygone in den zweidimensionalen Raum der Ur-Texturbitmaps (3) übertragen werden, wobei der Graustufenwert (5) eines Bildpunktes (4) der Ur- Texturbitmap (3) der erforderlichen Materialabtragung am Werkstück (15) entspricht und die Bearbeitungsbereiche (10) einzelne Schichten (7) umfassen, wobei die Summe der Bearbeitungsbereiche (10) die Oberfläche (1) und die Summe der Schichten (7) die Oberflächenstruktur (2) des Werkstücks (15) ergeben, und jede Schicht (7) durch ein Polygonnetz (18) beschreibbar ist, und die Oberflächenstruktur (2) des Werkstücks (15) durch übereinander liegende, zueinander versetzt angeordnete, Polygonnetze (18) angenähert wird, wobei jedem Polygon (19) des Polygonnetzes (18) innerhalb des Bearbeitungsbereichs (10) eine Graustufenbitmap (14) aus einer Parallelprojektion der Ur-Texturbitmap (3) auf das Polygon (19) innerhalb des Bearbeitungsbereichs (10) zugeordnet wird, sodass der Materialabtrag durch das Abtragmittel (9) in jeder Schicht (7) entsprechend der Werte der Graustufenbitmaps (14) vorgenommen werden kann.8. A method for multi-layer material removal from an arbitrarily shaped three-dimensional surface according to claim 1, wherein an original three-dimensional computer model (16) of the workpiece (15) is generated, which is described by an original polygon mesh (17), the three-dimensional corners of the polygons original polygon network (17) correspond to two-dimensional points in one or more original texture bitmaps (3), the polygons being transferred into the two-dimensional space of the original texture bitmaps (3), the grayscale value (5) of a pixel (4) being the original Texture bitmap (3) corresponds to the required material removal on the workpiece (15) and the processing areas (10) comprise individual layers (7), the total of the processing areas (10) the surface (1) and the total of the layers (7) the surface structure ( 2) of the workpiece (15), and each layer (7) can be written on by a polygon mesh (18), and the ob Surface structure (2) of the workpiece (15) is approximated by superposed, mutually offset polygon networks (18), with each polygon (19) of the polygon network (18) within the processing area (10) having a grayscale bitmap (14) from a parallel projection of the Original texture bitmap (3) is assigned to the polygon (19) within the processing area (10) so that the material can be removed by the removal means (9) in each layer (7) according to the values of the grayscale bitmaps (14).
9. Verfahren nach Anspruch 8, gekennzeichnet dadurch, dass das Urmodell aus der Beschreibung des Werkstückes durch CAD-(Spline)-Flächen abgeleitet wird, welche das ursprüngliche Polygonnetz (17) ergeben.9. The method according to claim 8, characterized in that the master model is derived from the description of the workpiece by CAD (spline) surfaces, which result in the original polygon mesh (17).
10. Verfahren nach Anspruch 8, gekennzeichnet dadurch, dass die Helligkeitswerte der Graustufen (12) der Graustufenbitmaps (14) vor oder während der Bearbeitung der Oberfläche (1) des Werkstücks (15) auf die Ur-Texturbitmap (3) zurückgerechnet werden. 10. The method according to claim 8, characterized in that the brightness values of the gray levels (12) of the gray level bitmaps (14) are calculated back to the original texture bitmap (3) before or during the processing of the surface (1) of the workpiece (15).
PCT/EP2004/010724 2003-09-26 2004-09-24 Method for machining a three-dimensional surface WO2005030431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/572,755 US20070120842A1 (en) 2003-09-26 2004-09-24 Method for manipulating a three-dimensional surface
EP04765572A EP1667812B1 (en) 2003-09-26 2004-09-24 Method for machining a three-dimensional surface
DE502004007246T DE502004007246D1 (en) 2003-09-26 2004-09-24 PROCESS FOR MACHINING A THREE-DIMENSIONAL SURFACE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10345081.5 2003-09-26
DE10345081A DE10345081A1 (en) 2003-09-26 2003-09-26 Method for processing a three-dimensional surface

Publications (1)

Publication Number Publication Date
WO2005030431A1 true WO2005030431A1 (en) 2005-04-07

Family

ID=34384323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/010724 WO2005030431A1 (en) 2003-09-26 2004-09-24 Method for machining a three-dimensional surface

Country Status (7)

Country Link
US (1) US20070120842A1 (en)
EP (1) EP1667812B1 (en)
AT (1) ATE396007T1 (en)
DE (2) DE10345081A1 (en)
ES (1) ES2305827T3 (en)
PT (1) PT1667812E (en)
WO (1) WO2005030431A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016651A1 (en) * 2005-04-12 2006-10-26 Frimo Group Gmbh Method for manufacture of contoured and finely structured surface of tool for producing of plastic film entails producing contour and fine structure by means of numerically controlled machine tool in a machine cutting
DE102005022696A1 (en) * 2005-05-18 2006-11-23 Benecke-Kaliko Ag Method for producing three-dimensionally structured surfaces
CN114083112A (en) * 2021-10-20 2022-02-25 泰德激光惠州有限公司 Control method and device of laser ablation system and computer readable storage medium

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345087A1 (en) * 2003-09-26 2005-05-19 Peguform Gmbh & Co. Kg Process for layer-removing 3-dimensional material processing
DE102004022606A1 (en) * 2004-05-07 2005-12-15 Envisiontec Gmbh Method for producing a three-dimensional object with improved separation of hardened material layers from a building level
DE102006019963B4 (en) 2006-04-28 2023-12-07 Envisiontec Gmbh Device and method for producing a three-dimensional object by layer-by-layer solidifying a material that can be solidified under the influence of electromagnetic radiation using mask exposure
DE102006019964C5 (en) 2006-04-28 2021-08-26 Envisiontec Gmbh Device and method for producing a three-dimensional object by means of mask exposure
US7636610B2 (en) * 2006-07-19 2009-12-22 Envisiontec Gmbh Method and device for producing a three-dimensional object, and computer and data carrier useful therefor
US7892474B2 (en) 2006-11-15 2011-02-22 Envisiontec Gmbh Continuous generative process for producing a three-dimensional object
US8003039B2 (en) 2007-01-17 2011-08-23 3D Systems, Inc. Method for tilting solid image build platform for reducing air entrainment and for build release
CN101318263B (en) * 2007-06-08 2011-12-07 深圳富泰宏精密工业有限公司 Laser engraving system and laser engraving method employing the same
DK2011631T3 (en) 2007-07-04 2012-06-25 Envisiontec Gmbh Method and apparatus for making a three-dimensional object
DK2052693T4 (en) * 2007-10-26 2021-03-15 Envisiontec Gmbh Process and free-form manufacturing system to produce a three-dimensional object
DE102007061170B4 (en) * 2007-12-17 2018-10-04 Volkswagen Ag A method of ornamenting or lettering a surface of a vehicle seat
US8372330B2 (en) * 2009-10-19 2013-02-12 Global Filtration Systems Resin solidification substrate and assembly
AT512092B1 (en) 2011-11-07 2014-03-15 Trotec Produktions U Vertriebs Gmbh LASER PLOTTER AND METHOD FOR ENGRAVING, MARKING AND / OR LABELING A WORKPIECE
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
EP3047932B1 (en) 2015-01-21 2018-12-26 Agie Charmilles New Technologies SA Method of laser ablation for engraving of a surface with patch optimization, with corresponding software and machine tool
US10737479B2 (en) 2017-01-12 2020-08-11 Global Filtration Systems Method of making three-dimensional objects using both continuous and discontinuous solidification
US20210379701A1 (en) * 2020-06-08 2021-12-09 Standex International Corporation Laser engraving using stochastically generated laser pulse locations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10116672A1 (en) * 2000-04-08 2001-10-18 Heinrich Juergensen Fine and coarse structured surface machining of workpieces, particularly printing rolls uses two different machining systems to produce fine and coarser details
US6337749B1 (en) * 1996-05-08 2002-01-08 Benecke-Kaliko Ag Method for generating a control signal for apparatus producing topological depths on a workpiece

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2111628A1 (en) * 1971-03-11 1972-09-14 Gruner & Jahr Relief printing plates - or cylinders engraved by use of an electron beam
DE3939866A1 (en) * 1989-12-01 1991-06-06 Baasel Carl Lasertech Laser engraving device for workpiece cylindrical mantle surface - has annular focussing mirror with curved mirror surface
US5266771A (en) * 1991-12-05 1993-11-30 Amf Irrevocable Trust Ornament having patterned ornamental indicia thereon, and method and apparatus for fabricating same
DE4209933C2 (en) * 1992-03-27 1994-08-11 Foba Formenbau Gmbh Process for the removal of shape on a workpiece by laser beam evaporation of the material with a cw-Nd: YAG laser
US5804353A (en) * 1992-05-11 1998-09-08 E. I. Dupont De Nemours And Company Lasers engravable multilayer flexographic printing element
EP0578841A1 (en) * 1992-07-11 1994-01-19 International Business Machines Corporation Method for generating contour lines with a computer system
JP3466661B2 (en) * 1993-06-29 2003-11-17 キヤノン株式会社 Image processing apparatus and method
DE4326874C3 (en) * 1993-08-11 1999-11-25 Benecke Kaliko Ag Method of engraving a pattern on a surface of a workpiece
DE29505985U1 (en) * 1995-04-06 1995-07-20 Bestenlehrer Alexander Device for processing, in particular for polishing and structuring any 3D shape surfaces by means of a laser beam
DE19730887A1 (en) * 1997-07-18 1999-01-21 Hans Hnatek Image application onto food products or soap industry products
JP4384813B2 (en) * 1998-06-08 2009-12-16 マイクロソフト コーポレーション Time-dependent geometry compression
US6407361B1 (en) * 1999-06-03 2002-06-18 High Tech Polishing, Inc. Method of three dimensional laser engraving
US6300595B1 (en) * 1999-06-03 2001-10-09 High Tech Polishing, Inc. Method of three dimensional laser engraving
EP1112553B9 (en) * 1999-07-20 2006-10-11 Koninklijke Philips Electronics N.V. Method and apparatus for computing a computer graphics image of a textured surface
DE10032981A1 (en) * 2000-07-10 2002-01-24 Alltec Angewandte Laser Licht Process for material processing by laser
US7225050B2 (en) * 2001-01-04 2007-05-29 Sutula Jr Daniel P Method and apparatus for precisely fitting, reproducing, and creating 3-dimensional objects from digitized and/or parametric data inputs using computer aided design and manufacturing technology
EP1262316B1 (en) * 2001-05-25 2004-11-17 Stork Prints Austria GmbH Method and apparatus for making a printing plate
DE10224735A1 (en) * 2002-06-04 2004-01-08 Holberg, Christof, Dr. Method, device and computer program product for generating a three-dimensional model

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337749B1 (en) * 1996-05-08 2002-01-08 Benecke-Kaliko Ag Method for generating a control signal for apparatus producing topological depths on a workpiece
DE10116672A1 (en) * 2000-04-08 2001-10-18 Heinrich Juergensen Fine and coarse structured surface machining of workpieces, particularly printing rolls uses two different machining systems to produce fine and coarser details

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016651A1 (en) * 2005-04-12 2006-10-26 Frimo Group Gmbh Method for manufacture of contoured and finely structured surface of tool for producing of plastic film entails producing contour and fine structure by means of numerically controlled machine tool in a machine cutting
DE102005022696A1 (en) * 2005-05-18 2006-11-23 Benecke-Kaliko Ag Method for producing three-dimensionally structured surfaces
US7822294B2 (en) 2005-05-18 2010-10-26 Benecke-Kaliko Ag Method and apparatus for producing three-dimensionally structured surfaces
CN114083112A (en) * 2021-10-20 2022-02-25 泰德激光惠州有限公司 Control method and device of laser ablation system and computer readable storage medium

Also Published As

Publication number Publication date
EP1667812A1 (en) 2006-06-14
DE10345081A1 (en) 2005-05-19
US20070120842A1 (en) 2007-05-31
ES2305827T3 (en) 2008-11-01
ATE396007T1 (en) 2008-06-15
EP1667812B1 (en) 2008-05-21
PT1667812E (en) 2008-07-31
DE502004007246D1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
EP1667812B1 (en) Method for machining a three-dimensional surface
EP1663567B1 (en) Method and device for removing material from a three-dimensional surface in a multi-layered manner by means of a laser, using a polygon network which is described by a mathematical function and represents the surface
EP3710182B1 (en) Layer-selective exposure in the overhang region in additive manufacturing
EP2785481B1 (en) Process for producing a shaped body by layerwise buildup from material powder
EP0152772B1 (en) Method of producing the contours of a work piece
DE102014011301A1 (en) Method for generating a relative movement between a jet unit and a curved surface
WO2018146018A2 (en) Method for machining a workpiece surface by means of a laser
DE102006057961A1 (en) Method and device for generating a sequence of individual individual patterns from a master pattern and device for printing such individual patterns
WO2020094450A1 (en) Apparatus and method for structuring a roller surface
DE102017213720A1 (en) Optimized segmentation process
DE102018119499A1 (en) Selective modification of building strategy parameters for additive manufacturing
EP2428307B1 (en) Method for generating rough surface structures
DE102018119673A1 (en) Selective modification of building strategy parameters for additive manufacturing
DE10124795A1 (en) Device and method for producing a workpiece with an exact geometry
WO2018172079A1 (en) Overlap optimization
DE102019104839A1 (en) Control the microstructure of a selected portion of layers of an object during additive production
DE4038073A1 (en) METHOD FOR MACHINING WORKPIECES WITH NUMERICALLY CONTROLLED MACHINES
EP1663565B1 (en) Method for multi-layer material erosion on a three-dimensional surface by use of a raster image describing the surface structure
DE102018119500A1 (en) Selective modification of building strategy parameters for additive manufacturing
DE102005026968B4 (en) Method for permanently applying a grayscale image to a matte surface
DE102017207740B4 (en) Printer and method of operating a printer
DE102007056652A1 (en) Three-dimensional replication generating method for object i.e. human head of person, involves converting image into three-dimensional model data and reproducing three-dimensional replication of object from powdered material by model data
DE102021127824A1 (en) Device and method for surface treatment
DE102022121182A1 (en) Process for improving surface roughness
EP0934777A2 (en) Method and program control system for producing control data for a coating installation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004765572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007120842

Country of ref document: US

Ref document number: 10572755

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004765572

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10572755

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004765572

Country of ref document: EP