WO2005027333A1 - Conductive polymer composite structural body bundle - Google Patents

Conductive polymer composite structural body bundle Download PDF

Info

Publication number
WO2005027333A1
WO2005027333A1 PCT/JP2004/013313 JP2004013313W WO2005027333A1 WO 2005027333 A1 WO2005027333 A1 WO 2005027333A1 JP 2004013313 W JP2004013313 W JP 2004013313W WO 2005027333 A1 WO2005027333 A1 WO 2005027333A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
polymer composite
composite structure
bundle
conductive
Prior art date
Application number
PCT/JP2004/013313
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuji Zama
Susumu Hara
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Publication of WO2005027333A1 publication Critical patent/WO2005027333A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution

Definitions

  • the present invention relates to a bundle of a conductive polymer composite structure having a structure in which a conductive polymer and a conductive substrate are combined, a driving method thereof, and uses thereof.
  • Conductive polymers such as polypyrrole are known to exhibit electrolytic stretching, which is the phenomenon of stretching due to electrochemical redox! Electrolytic expansion and contraction of this conductive polymer has attracted attention in recent years for applications such as artificial muscles, robot arms, and artificial hand actuators, and has attracted attention not only for small-sized applications such as micromachines but also for large-sized applications. I have.
  • a conductive polymer is generally produced by an electrolytic polymerization method.
  • a monomer component such as pyrrole is added to an electrolytic solution, a working electrode and a counter electrode are set in the electrolytic solution, and a voltage is applied to both electrodes to obtain a conductive property.
  • a method of forming a polymer as a film on a working electrode is performed (for example, see Non-Patent Document 1).
  • the conductive polymer obtained by electrolytic polymerization can be expanded or contracted or bent by applying a voltage to the conductive polymer formed into a film.
  • Non-Patent Document 1 Ed. Naoya Ogata, "Conductive Polymers”, 8th edition, Scientifick, Inc., February 10, 1990, pp. 70-73.
  • An element containing a conductive polymer (hereinafter, referred to as a conductive polymer element) manufactured by an electrolytic polymerization method is used as a drive unit for a large-sized application such as a robot arm of an industrial robot or an artificial muscle such as an artificial hand.
  • a conductive polymer element manufactured by an electrolytic polymerization method
  • the conductive polymer film obtained by electrolytic polymerization is subjected to a process such as lengthening or laminating a plurality of sheets in order to increase the size of the conductive polymer film. It must be an element.
  • a large conductive polymer molded product requires controlling the length of the conductive polymer element.
  • an electrode may be provided on the entire bottom surface.
  • the conductivity of the conductive polymer obtained by the electrolytic polymerization method is usually about 10 Zcm, and the conductivity further decreases in the undoped state, so that a sufficient voltage cannot be applied to the upper part of the element.
  • a conductive polymer composite structure in which a conductive polymer layer is formed by electrolytic polymerization using a spiral conductive substrate as a working electrode.
  • the conductive polymer composite structure may be, for example, a coiled metal spring as a spiral conductive substrate, and may be cylindrical or tubular.
  • each conductive polymer composite structure bundle is formed. Due to the variation in the length of the polymer composite structure and the components for binding, the driving of the conductive polymer composite structure bundle is hindered as a whole, and it is difficult to generate the inherently generated force.
  • an actuator using the conductive polymer composite structure bundle requires a counter electrode in order to cause electrolytic expansion and contraction. Desirably smaller.
  • the invention of the present application provides a helical conductive polymer composite structure having a conductive polymer layer formed on a helical conductive substrate, and a helical conductive polymer composite structure bundle formed on the outside of the bundle. It is a conductive polymer composite structure bundle having a linear body wound around. According to the present invention, it is possible to prevent each conductive polymer composite structure from bending, and to exert the inherent power of the conductive polymer composite structure bundle.
  • the present invention provides a method for producing a conductive polymer composite structure bundle by applying a voltage using the conductive substrate as a working electrode and the linear body as an auxiliary electrode. It is also a method of driving a molecular composite structure bundle.
  • the linear body is an electrically conductive wire, When the conductive wire is used as an auxiliary electrode, a voltage can be easily applied to the conductive polymer layer, so that the conductive polymer composite structure easily generates a large generating force.
  • the present invention is a pressing device, a gripping device, an extruding device, a bending device, a clamping device, a close contact device, or a contact device using the conductive polymer composite structure bundle as a pressing portion. Further, it is a positioning device, a posture control device, an elevating device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, or a joint device using a conductive polymer composite structure as a driving unit.
  • the conductive polymer composite structure bundle has a simple structure and can generate a large generating force as compared with a conventional driving device or a pressing device, so that it is light in weight and generates a large generating force. Therefore, it can be suitably used as a pressing portion of each device.
  • FIG. 1 is a partially enlarged perspective view of an embodiment of a conductive polymer composite structure bundle of the present invention.
  • FIG. 2 is a perspective view of a cylindrical conductive polymer composite structure used for the conductive polymer composite structure bundle of FIG. 1.
  • FIG. 3 is a partially enlarged perspective view of the conductive polymer composite structure bundle of FIG. 1 further provided with a wound insulating film on the outside.
  • FIG. 1 is a partially enlarged view of one embodiment of the conductive polymer composite structure bundle of the present invention.
  • the conductive polymer composite structure bundle 1 is a cylindrical conductive polymer shown in Fig. 2.
  • Composite structure 2 is bundled.
  • a conductive polymer layer is formed on a spiral conductive substrate provided with auxiliary metal wires 3 and 3 ′ at both ends.
  • two or more conductive polymer composite structures are bundled in a conductive polymer composite structure bundle 1, and a linear body 4 is spirally wound outside the bundle.
  • each conductive polymer composite structure can expand and contract, and bind both ends of the tubular or columnar conductive polymer composite structure. There is no bending during electrolytic stretching as in the case of binding with parts. Also, the linear body 4 can apply uniform tension to each conductive polymer composite structure.
  • the spiral conductive substrate is not particularly limited.
  • a coiled metal spring can be used.
  • a conductive polymer composite structure can be obtained by forming a conductive polymer layer by electrolytic polymerization using a spiral conductive substrate such as a coiled metal panel as a working electrode.
  • the shape of the conductive polymer composite structure is not particularly limited as long as the space between the wires provided at a predetermined pitch of the spiral conductive substrate is filled with the conductive polymer.
  • a tubular shape or a tube shape is preferred because bundling is easy.
  • a material having a conductivity of 10 3 SZcm or more can be used as the conductive substrate. Even in the case of a conductive polymer composite structure whose size is increased in the length direction or the height direction, a potential sufficient to cause displacement such as expansion and contraction can be applied to the entire device.
  • a conductive substrate containing a conductive metal metals such as Ag, Ni, Ti, Au, Pt, and W, and alloys such as SUS can be used.
  • the conductive substrate preferably contains a simple metal of an element such as Pt, W, Ni, Ta, etc. preferable.
  • the size of the spiral conductive substrate is not particularly limited as the force exemplified for the above-mentioned coiled metal spring.
  • the length of the spiral conductive substrate may be 0.5 to 100 mm.
  • the length can be 50 mm or 100 mm when used for a large actuator.
  • the length can be 5 mm or 10 mm when used in a small actuator or to prevent buckling, and the outer diameter of the coiled shape of the spiral conductive substrate is 3 mm or more.
  • the coil-shaped metal base A large conductive substrate such as a screw-shaped member may be used, or a small conductive substrate such as a coil-shaped metal panel-shaped member having a diameter of several tens of meters may be used.
  • the outer diameter may be 1 mm or 0.5 mm in order to prevent the conductive polymer composite structure from breaking.
  • the conductive polymer film alone does not have sufficient mechanical strength during the application, so the outer diameter or width of the conductive polymer film obtained by electrolytic polymerization is small. It is difficult to cut into actuator elements less than lmm, in particular, actuator elements with outer diameter or width less than 500 ⁇ m. . Therefore, it is preferable that the outer diameter of the shape of the spiral conductive substrate is lmm or less, particularly 500 m or less when bundled.
  • the linear body constituting the spiral conductive substrate is not particularly limited as long as it has a wire diameter that allows stable conduction.
  • the wire diameter can be, for example, 25 ⁇ m or 40 ⁇ m.
  • the conductive polymer contained in the conductive polymer composite structure a known conductive polymer can be used, and polypyrrole, polythiophene, polyarline, polyphenylene, and the like can be used.
  • the conductive polymer that is a conductive polymer containing pyrrole and Z or a pyrrole derivative in the molecular chain is easy to manufacture, and is not only stable as a conductive polymer but also an electrolytic polymer. It is preferable because of its excellent stretching performance.
  • the conductive polymer exhibits an excellent expansion and contraction rate per electrolytic cycle in electrolytic expansion and contraction and can show a displacement rate per specific time, the trifluoromethanesulfonate ion is used.
  • the electrolyte solution is used as an ion as the trifluoromethanesulfonic acid ion and z or the central atom.
  • anion containing multiple fluorine atoms the chemical formula (1)
  • n and m are arbitrary integers.
  • the electrolytic polymerization method for obtaining the conductive polymer composite structure is a conductive polymer composite structure.
  • a known electrolytic polymerization method can be used. Therefore, a known electrolytic solution and a known conductive polymer monomer can be used.
  • any of the constant potential method, the constant current method and the electric sweep method can be used.
  • the electrolytic polymerization has a current density of 0.01-20 mAZcm 2 and a reaction temperature of 70-80. C, preferably a current density of 0.1 to 2 mAZcm 2 , and a reaction temperature of 40 to 40 ° C, and more preferably 20 to 30 ° C.
  • the linear body is not particularly limited as long as it does not hinder the winding operation and is not water-soluble.
  • the linear body is preferably an electrically conductive wire since a voltage can be applied to the conductive polymer layer of the conductive polymer composite structure.
  • the conductive wire is preferably a metal wire because it can be used as an auxiliary electrode, and is more preferably a thin metal wire for saving space.
  • the conductor is preferably a noble metal, which is preferably a conductor having corrosion resistance, or more preferably a metal wire having an alloy force having corrosion resistance.
  • the diameter of the linear body is not particularly limited, but can be appropriately adjusted according to the number of conductive polymer composite structures to be bundled and the material of the linear body.
  • the linear body is a metal wire, it is preferably 0.1 mm or less from the viewpoint of light weight and resource saving.
  • the wire diameter can be, for example, 30-100 / zm.
  • As the wire diameter for example, a gold wire of 30 ⁇ m or 50 ⁇ m can be used.
  • the bundle of conductive polymer composite structures 1 in Fig. 1 is obtained by winding the linear body so that a force for uniformly binding the entire conductive polymer composite structure in the length direction is applied. ! /
  • an auxiliary metal wire 3 as shown in FIG. When 3 ′ is bound, it may be wound near the center of the conductive polymer composite structure bundle. In the conductive polymer composite structure bundle, the auxiliary metal wire may not be provided.
  • the conductive polymer composite structure bundle of the present invention is not particularly limited in the number of conductive polymer composite structures that can be arranged and bundled, for example, four in parallel. In other words, before The number of the conductive polymer composite structures may be 100 or more, such as about 1000, depending on the required force.
  • the conductive polymer composite structure bundle may be formed by bundling conductive polymer composite structures having a cylindrical, cylindrical, or prismatic shape.
  • the conductive polymer composite structure bundle of the present invention is also a conductive polymer composite structure bundle provided with an ion-permeable insulating film wound so that the linear body is on the inside. is there. As shown in FIG. 3, the conductive polymer composite structure bundle 1 is further wound on the outside thereof with an ion-permeable insulating film 5. Since the conductive polymer composite structure bundle includes an ion-permeable insulating film, the insulating film functions as a separator. Therefore, the counter electrode is the conductive polymer composite through the insulating film. It can be installed close to the structure bundle. Therefore, the conductive polymer composite structure bundle provided with the wound insulating film can reduce the size of the actuator using the conductive polymer composite structure bundle as an operating unit.
  • the insulating film is not particularly limited, but is preferably an elastic solution in which an electrolytic solution for electrolytically expanding and contracting the conductive polymer composite structure bundle by applying a voltage is preferable. Preferably have water resistance.
  • the insulating film for example, a nonwoven fabric or a mesh body mainly composed of a polyvinyl alcohol-based synthetic fiber such as vinylon or a polyester fiber can be used.
  • the thickness of the insulating film is not particularly limited as long as the conductive polymer composite structure bundle does not expand and contract.
  • the insulating film is wound if it is wound outside the conductive polymer composite structure bundle so that the counter electrode is not in direct contact with the conductive polymer composite structure bundle and a short circuit does not occur.
  • the method, film thickness, and winding position are not limited.
  • the conductive polymer composite structure bundle of the present invention is a conductive polymer composite structure bundle in which electrode wires are wound on an ion-permeable insulating film wound so that the linear body is on the inside. It is also a polymer composite structure bundle.
  • the electrode wire By winding the electrode wire on the insulating film, when the electrode wire is used as a counter electrode when the conductive polymer composite structure bundle is electrolytically expanded and contracted, the conductive portion, which is an operating portion, is used.
  • the counter electrode can be formed at a position very close to the molecular composite structure bundle, space can be saved, and no special member is required, so that the counter electrode can be easily installed.
  • the conductive polymer composite structure bundle in which the electrode wires are wound is, for example, a helical coiled metal panel having a length of 25 mm, an outer diameter of 0.25 to 0.30 mm, and an inner diameter of 0.15 mm.
  • a known non-woven fabric made of vinylon and polyester is wound around a conductive polymer composite structure bundle in which ten conductive polymer composite structures each having a polypyrrole layer on a conductive substrate are bundled with a linear body. It can be obtained by wrapping and further wrapping a 100 m gold wire as an electrode wire around the outside.
  • the wire diameter of the electrode wire is not particularly limited, as described above.
  • the wire diameter may be 30-100 m.
  • the diameter of the electrode wire may be, for example, a 30 m or 50 m gold wire. Further, the electrode wire is not particularly limited as long as it has electric conductivity, electrical conductivity can be used as the conductive substrate described above can be used 10 3 SZcm more metals.
  • the conductive polymer composite structure bundle and a counter electrode are installed in a state of interposing an electrolyte, and the conductive polymer composite structure bundle is driven. This can be performed by applying a voltage to the counter electrode and subjecting the conductive polymer composite structure bundle to electrolytic expansion and contraction.
  • the electrolyte is not particularly limited, and may be a liquid or a gel. Further, the electrolyte preferably contains ions of the same kind as the ions doped in the conductive polymer constituting the conductive polymer composite structure bundle, and the ions have the same ionic radius as the doped ions. It is more preferable to have a constant in order to keep the expansion and contraction rate of the electrolytic expansion and contraction constant.
  • the present invention provides a helical conductive polymer composite structure in which a conductive polymer layer is formed on a helical conductive substrate.
  • the conductive polymer composite structure bundle has a simple structure as compared with a conventional pressing device, and can generate a large generating force, so that it is lightweight and can generate a large generating force. It can be suitably used as a driving unit or a pressing unit of each device.
  • the conductive polymer composite structure bundle can be used as a pressing portion of the following various devices. Audio / visual equipment for visually impaired persons whose pressing part forms Braille, pressing part of flexible endoscope, pressing part of motorcycle front fork, high frequency orifice in air pressure control type fluid-filled vibration damping device A pressing part that blocks the opening of the passage, a pressing part that presses the end of the valve shaft in the valve deactivating device of the cylinder-controllable engine that can be deactivated, and a plate-shaped member in the injection molding device that is pushed out to the mold side and pressed against By pressing a pressing portion, a pressing portion for pressing an image pickup device of an imaging device such as a television camera, a video camera, or a digital camera toward the lens seat, and a chuck claw end of an information reproducing mechanism having a clamp mechanism.
  • the conductive polymer composite structure bundle can be used as a pressing portion of the following various devices; a pressing portion for pressing a movable spring plate in a direction of contacting a fixed contact in an electromagnetic relay; an NC machine tool Pressing part of a speed reduction mechanism with a large reduction ratio incorporated into a device, etc., pressing part for forming a hollow member of a predetermined shape by abutting against a raw pipe in a hollow product manufacturing apparatus, pressing and spinning to form a hollow member of a predetermined shape Masking plate in a leak tester that measures the amount of leakage from a pressing part that presses and grips a cylindrical article between a plate-like gripping member and a pressing part in a gripping device, and a hole that is drilled in a cylinder block, etc.
  • a pressing portion that presses the flexible tube a pressing portion that presses a flexible tube in a tube pump suitable for dispensing a small amount of a liquid material, and a driving force of a prime mover that is distributed to the front wheels and the rear wheels at a predetermined distribution ratio. More driving the motor force that presses the multiple disc clutch in the drive force distribution device with a predetermined pressing force
  • the pressing portion for transmitting the force to the front wheel and the rear wheel at a distribution ratio corresponding to the predetermined pressing force, the pressing portion of the pusher pressing unit in the coil insertion device, and the end of the seal component in the peeling device for the adhesive seal component.
  • the conductive polymer composite structure bundle can be used as a pressing portion of the following various devices; a driven clutch claw in a planting portion of a rice transplanter can be pressed against a driving clutch claw.
  • Pressing portion pressing portion of a fixed plate that presses a substantially central portion of a hot plate in a hot press device for obtaining a laminate, lead pressing portion forming a bent portion of a lead in a lead forming device of a semiconductor device, and a disk.
  • a pressing part that presses the detection lever for detecting the position of the disc tray in the tray position detection mechanism, a pressing part that makes close contact with the film pressure plate of the film carrier that reads the image, and an underground drainage pipe function regeneration method
  • a pressing part that operates a drilling cone to drill a new strainer hole in the pipe wall of the application device.
  • the conductive polymer composite structure bundle can also be used for the following various devices in addition to the pressing portion of the above device: a boring machine equipped with a shutter position detecting device and a boring bar. , Laser welding equipment, kneaded product extrusion equipment, video tape cassettes, industrial vehicle transmission equipment, plate-shaped body end fixing equipment, reinforcement of concrete structures, repair material coating equipment, sheet folding and laminating equipment, paper ejection Devices, driving devices for moving objects, printers, electric circuit interrupters, heating devices with temperature detection units, liquid crystal display devices, image forming devices, recording devices, bread slicers, two-axis simultaneous tightening tools, powder molding devices, paper sheets Processing equipment, seamless belt fixing device, optical fiber connection device, vacuum press device, shutter device, image stabilization device, image reading device, media storage mechanism, label Pasting device, stencil printing device, press working device, deburring device for work outer peripheral edge, disk device, blade mounting structure, awarding machine of gaming machine, wafer transfer container mounting device, molding die for partial bonding of interior trim, knea
  • the actuator used for the working part in the conductive polymer composite structure bundle can be reduced in weight because the conductive polymer composite structure bundle has a simple structure, and the pressing force is easy. Therefore, it is preferable to use the actuator in a pressing portion of a caropressure device, a gripping device, an extruding device, a bending device, a clamping device, a contact device, and a contact device using the pressing device as a pressing portion.
  • the present invention provides a positioning device, a posture control device, an elevating device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device using the above-described conductive polymer composite structure bundle as a driving portion, Or a joint device.
  • the driving unit using the conductive polymer composite structure bundle has a simple structure and can generate a large generating force as compared with a conventional driving device, so that it is lightweight and generates a large generating force. Can be suitably used as a driving unit of each device.
  • the actuator used for the operating unit in the conductive polymer composite structure bundle is a driving unit for generating a linear driving force or a driving unit for moving a track-type orbit of an arcuate unit in the following apparatus. It can be suitably used as a driving unit that generates force; OA equipment, antennas, devices for placing people such as beds and chairs, medical equipment, engines, optical equipment, fixtures, side trimmers, vehicles, lifting equipment, foods Processing equipment, cleaning equipment, measuring equipment, inspection equipment, control equipment, machine tools, processing machines, electronic equipment, electron microscopes, electric razors, electric toothbrushes, manipulators, masts, play equipment, amusement equipment, boarding simulation equipment, Vehicle occupant holding device and aircraft extension device.
  • the actuator of the present invention when used as a drive unit, it has a simple device configuration and can easily generate a pressing force. Therefore, the positioning device, the attitude control device, the elevating device, the transport device, and the moving device It can be suitably used as a drive unit of a device, an adjusting device, an adjusting device, a guiding device, or a joint device.
  • the conductive polymer composite structure bundle of the present invention can prevent deflection of each conductive polymer composite structure, and exerts the inherent power of the conductive polymer composite structure bundle.
  • the structure is simpler than that of a conventional driving device or a pressing device, and a large generating force can be generated. Therefore, it is lightweight and can generate a large generating force. It can be suitably used as a pressing portion or a driving portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manipulator (AREA)

Abstract

A conductive polymer composite structural body bundle composed of a bundle of conductive polymer composite structural bodies each comprising a spiral conductive base and a conductive polymer layer formed on the base. The conductive polymer composite structural body bundle is provided with a linear body spirally wound around the bundle. When the conductive polymer composite structural body is electolytically expanded/shrinked, the bundle can generate a generation force that the bundle intrinsically has without block of the entire drive due to the variation of length of the conductive polymer composite structural bodies and to the parts for binding. The linear body is a conductive wire through which current can flow and can be used as an auxiliary electrode to apply a voltage to the conductive polymer layer. As a result, the conductive polymer composite structural body bundle can easily generate a strong generation force.

Description

明 細 書  Specification
導電性高分子複合構造体束  Conductive polymer composite structure bundle
技術分野  Technical field
[0001] 本発明は、導電性高分子と導電性基体とが複合した構造体を有する導電性高分 子複合構造体の束とその駆動方法並びにその用途に関する。  The present invention relates to a bundle of a conductive polymer composite structure having a structure in which a conductive polymer and a conductive substrate are combined, a driving method thereof, and uses thereof.
背景技術  Background art
[0002] ポリピロールなどの導電性高分子は、電気化学的な酸化還元によって伸縮する現 象である電解伸縮を発現することが知られて!/、る。この導電性高分子の電解伸縮は 、人工筋肉、ロボットアーム、義手ゃァクチユエータ等の用途へ適用が近年注目され 、マイクロマシン等の小型の用途だけでなく大型化された用途への適用も注目されて いる。  [0002] Conductive polymers such as polypyrrole are known to exhibit electrolytic stretching, which is the phenomenon of stretching due to electrochemical redox! Electrolytic expansion and contraction of this conductive polymer has attracted attention in recent years for applications such as artificial muscles, robot arms, and artificial hand actuators, and has attracted attention not only for small-sized applications such as micromachines but also for large-sized applications. I have.
[0003] 導電性高分子は、電解重合方法により製造されるのが一般的である。電解重合方 法としては、通常は、電解液中にピロール等のモノマー成分をカ卩え、この電解液中に 作用電極及び対向電極を設置して、両電極に電圧を印加することで導電性高分子 を作用電極上に膜として形成させる方法が行われる (例えば、非特許文献 1参照)。 電解重合により得られた導電性高分子は、膜状に成形された導電性高分子に電圧 を印加することにより伸縮または屈曲の変位をさせることができる。  [0003] A conductive polymer is generally produced by an electrolytic polymerization method. In the electropolymerization method, usually, a monomer component such as pyrrole is added to an electrolytic solution, a working electrode and a counter electrode are set in the electrolytic solution, and a voltage is applied to both electrodes to obtain a conductive property. A method of forming a polymer as a film on a working electrode is performed (for example, see Non-Patent Document 1). The conductive polymer obtained by electrolytic polymerization can be expanded or contracted or bent by applying a voltage to the conductive polymer formed into a film.
[0004] 非特許文献 1 :緒方直哉編 「導電性高分子」、第 8版、株式会社サイェンティフイク、 1990年 2月 10日、第 70頁一第 73頁。  [0004] Non-Patent Document 1: Ed. Naoya Ogata, "Conductive Polymers", 8th edition, Scientifick, Inc., February 10, 1990, pp. 70-73.
[0005] 電解重合法により製造された導電性高分子を含む素子 (以下、導電性高分子素子 )を産業用ロボット等のロボットアーム、義手などの人工筋肉等の大型化した用途の 駆動部のァクチユエータに用いる場合には、マイクロマシン等の小型のァクチユエ一 タとして用いられる素子に比べて、より大きな伸縮量若しくはより大きな発生力を得る ために素子のサイズを大きくする必要がある。そのため、電解重合により得られた導 電性高分子膜は、サイズを大きくするために長片化または複数枚積層するなどの厚 膜ィ匕などの加工を施して、サイズの大きな導電性高分子素子とする必要がある。  [0005] An element containing a conductive polymer (hereinafter, referred to as a conductive polymer element) manufactured by an electrolytic polymerization method is used as a drive unit for a large-sized application such as a robot arm of an industrial robot or an artificial muscle such as an artificial hand. When used for an actuator, it is necessary to increase the size of the element in order to obtain a larger amount of expansion or contraction or a larger generation force than an element used as a small actuator such as a micromachine. For this reason, the conductive polymer film obtained by electrolytic polymerization is subjected to a process such as lengthening or laminating a plurality of sheets in order to increase the size of the conductive polymer film. It must be an element.
[0006] サイズの大きな導電性高分子成型品は、導電性高分子素子の長さを制御すること により所望の変位量とする場合において、大きい変位量を得るために、例えば、柱状 体の高さ方向に大型化した導電性高分子素子を用いた場合では、底面一面に電極 を設置しても、電解重合法で得られる導電性高分子の導電率は通常 10 Zcm程 度であり、脱ドープ状態では更に導電率が低下するため、素子上部では十分な電圧 を印加することができない。また、高さ方向に金属板等の電極を設置した場合には、 金属板等の電極が導電性高分子成型品の動作が阻害され、前記導電性高分子成 型品は伸縮運動をすることが難しいという問題がある。 [0006] A large conductive polymer molded product requires controlling the length of the conductive polymer element. In order to obtain a large amount of displacement when the desired amount of displacement is obtained, for example, in the case of using a conductive polymer element which is enlarged in the height direction of the columnar body, an electrode may be provided on the entire bottom surface. On the other hand, the conductivity of the conductive polymer obtained by the electrolytic polymerization method is usually about 10 Zcm, and the conductivity further decreases in the undoped state, so that a sufficient voltage cannot be applied to the upper part of the element. In addition, when an electrode such as a metal plate is installed in the height direction, the operation of the conductive polymer molded product is hindered by the electrode such as the metal plate, and the conductive polymer molded product is caused to expand and contract. There is a problem that is difficult.
[0007] この問題を解決するためには、螺旋状の導電性基体を作用電極として電解重合法 により導電性高分子層を掲載させた導電性高分子複合構造体を用いることができる 。この導電性高分子複合構造体は、例えば螺旋状の導電性基体としてコイル状の金 属バネを用いることができ、円筒状若しくはチューブ状とすることができる。  [0007] In order to solve this problem, it is possible to use a conductive polymer composite structure in which a conductive polymer layer is formed by electrolytic polymerization using a spiral conductive substrate as a working electrode. The conductive polymer composite structure may be, for example, a coiled metal spring as a spiral conductive substrate, and may be cylindrical or tubular.
[0008] しかし、より大きな発生力を生じることができるァクチユエータを得るために、上述の 導電性高分子複合構造体を束ねて導電性高分子複合構造体束を形成した場合に は、各導電性高分子複合構造体の長さのバラツキや結束用の部品により、導電性高 分子複合構造体束は、全体としての駆動が阻害されて、本来有する発生力を生じる ことが難しい。  [0008] However, in order to obtain an actuator capable of generating a larger generating force, when the above-described conductive polymer composite structure is bundled to form a conductive polymer composite structure bundle, each conductive polymer composite structure bundle is formed. Due to the variation in the length of the polymer composite structure and the components for binding, the driving of the conductive polymer composite structure bundle is hindered as a whole, and it is difficult to generate the inherently generated force.
[0009] また、前記導電性高分子複合構造体束を用いたァクチユエータは、電解伸縮を生 じさせるためには、対極が必要となるので、上述の装置に適用する場合には、デバイ スとして小さくすることが望ま 、。  [0009] Furthermore, an actuator using the conductive polymer composite structure bundle requires a counter electrode in order to cause electrolytic expansion and contraction. Desirably smaller.
発明の開示  Disclosure of the invention
[0010] 本願発明は、螺旋状の導電性基体上に導電性高分子層が形成された導電性高分 子複合構造体を複数束ねた導電性高分子複合構造体束の外側に、螺旋状に捲回 された線状体を備えた導電性高分子複合構造体束である。前記発明は、各導電性 高分子複合構造体のたわみを防止することができ、前記導電性高分子複合構造体 束が本来有する発生力を発揮することができる。  [0010] The invention of the present application provides a helical conductive polymer composite structure having a conductive polymer layer formed on a helical conductive substrate, and a helical conductive polymer composite structure bundle formed on the outside of the bundle. It is a conductive polymer composite structure bundle having a linear body wound around. According to the present invention, it is possible to prevent each conductive polymer composite structure from bending, and to exert the inherent power of the conductive polymer composite structure bundle.
[0011] また、本発明は、前記導電性基体を作用極とし、前記線状体を補助電極として電圧 を印加することにより、前記の導電性高分子複合構造体束を電解伸縮させる導電性 高分子複合構造体束の駆動方法でもある。前記線状体が通電可能な導線であり、 該導線を補助電極と使用することにより、導電性高分子層に電圧印可を容易に行う ことができるので、前記導電性高分子複合構造体は、大きな発生力を生じ易くなる。 [0011] Further, the present invention provides a method for producing a conductive polymer composite structure bundle by applying a voltage using the conductive substrate as a working electrode and the linear body as an auxiliary electrode. It is also a method of driving a molecular composite structure bundle. The linear body is an electrically conductive wire, When the conductive wire is used as an auxiliary electrode, a voltage can be easily applied to the conductive polymer layer, so that the conductive polymer composite structure easily generates a large generating force.
[0012] また、本発明は、前記導電性高分子複合構造体束を押圧部に用いた加圧装置、 握持装置、押出装置、折り曲げ装置、挟持装置、密着装置、または当接装置であり、 また、導電性高分子複合構造体を駆動部に用いた位置決め装置、姿勢制御装置、 昇降装置、搬送装置、移動装置、調節装置、調整装置、誘導装置、または関節装置 である。前記導電性高分子複合構造体束は、従来の駆動装置または押圧装置に比 ベて構造が簡単であり、し力も大きな発生力を生じることができることから、軽量であり 、大きな発生力を生じることができるので、各装置の押圧部として好適に用いることが できる。  [0012] Further, the present invention is a pressing device, a gripping device, an extruding device, a bending device, a clamping device, a close contact device, or a contact device using the conductive polymer composite structure bundle as a pressing portion. Further, it is a positioning device, a posture control device, an elevating device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, or a joint device using a conductive polymer composite structure as a driving unit. The conductive polymer composite structure bundle has a simple structure and can generate a large generating force as compared with a conventional driving device or a pressing device, so that it is light in weight and generates a large generating force. Therefore, it can be suitably used as a pressing portion of each device.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は本発明の導電性高分子複合構造体束についての一実施態様例の部分 拡大斜視図である。  FIG. 1 is a partially enlarged perspective view of an embodiment of a conductive polymer composite structure bundle of the present invention.
[図 2]図 2は、図 1の導電性高分子複合構造体束に用いられる円筒状の導電性高分 子複合構造体の斜視図である。  FIG. 2 is a perspective view of a cylindrical conductive polymer composite structure used for the conductive polymer composite structure bundle of FIG. 1.
[図 3]図 3は、更に外側に、捲回された絶縁膜を備えた図 1の導電性高分子複合構造 体束の部分拡大斜視図である。  FIG. 3 is a partially enlarged perspective view of the conductive polymer composite structure bundle of FIG. 1 further provided with a wound insulating film on the outside.
符号の説明  Explanation of symbols
[0014] 1 導電性高分子複合構造体束 [0014] 1 Bundle of conductive polymer composite structures
2 導電性高分子複合構造体  2 Conductive polymer composite structure
3, 3' 補助金属線  3, 3 'auxiliary metal wire
4 線状体  4 Linear body
5 絶縁膜  5 Insulation film
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明について図を用いて説明するが、本願発明はこれらに限定されるもの ではない。 Hereinafter, the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
[0016] 図 1は、本発明の導電性高分子複合構造体束についての一実施態様例の部分拡 大図である。導電性高分子複合構造体束 1は、図 2で示す円筒状の導電性高分子 複合構造体 2が束ねられている。図 2の導電性高分子複合構造体は、両端に補助金 属線 3、 3'を備えた螺旋状の導電性基体上に導電性高分子層が形成されている。図 1において、導電性高分子複合構造体束 1は、 2以上の導電性高分子複合構造体が 束ねられ、その外側に線状体 4が螺旋状に捲回されている。線状体 4が螺旋状に捲 回されることにより、各導電性高分子複合構造体は、伸縮可能であって、管状若しく は円柱状の導電性高分子複合構造体の両端を結束用部品により結束した場合のよ うな電解伸時のたわみを生じることが無い。し力も、線状体 4は、均一なテンションを 各導電性高分子複合構造体に与えることができる。 FIG. 1 is a partially enlarged view of one embodiment of the conductive polymer composite structure bundle of the present invention. The conductive polymer composite structure bundle 1 is a cylindrical conductive polymer shown in Fig. 2. Composite structure 2 is bundled. In the conductive polymer composite structure of FIG. 2, a conductive polymer layer is formed on a spiral conductive substrate provided with auxiliary metal wires 3 and 3 ′ at both ends. In FIG. 1, two or more conductive polymer composite structures are bundled in a conductive polymer composite structure bundle 1, and a linear body 4 is spirally wound outside the bundle. When the linear body 4 is spirally wound, each conductive polymer composite structure can expand and contract, and bind both ends of the tubular or columnar conductive polymer composite structure. There is no bending during electrolytic stretching as in the case of binding with parts. Also, the linear body 4 can apply uniform tension to each conductive polymer composite structure.
[0017] 螺旋状の導電性基体としては、特に限定されるものではな 、が、例えば、日本ケー ブルシステム社製の長さ 25mm、外径 0. 25—0. 30mm,内径 0. 15mmのコイル 状の金属ばねを用いることができる。コイル状金属パネ等の螺旋状の導電性基体を 作用電極として、電解重合法により導電性高分子層を形成して、導電性高分子複合 構造体を得ることができる。前記導電性高分子複合構造体の形状は、螺旋状の導電 性基体の所定のピッチで設けられた線材間が導電性高分子により埋められていれば 特に形状が限定されるものではないが、結束が容易であることから筒状またはチュー ブ状が好ましい。また、前記導電性基体としては導電率が 103SZcm以上である材 料を用いることができる。長さ方向または高さ方向にサイズを大きくした導電性高分子 複合構造体の場合であっても、伸縮等の変位をするのに十分な電位を素子全体に かけることができる。導電性金属を含む導電性基体としては、 Ag、 Ni、 Ti、 Au、 Pt、 W等の金属や SUS等の合金を用いることができる。特に、前記導電性基体は、大き な伸縮性能をもつ導電性高分子を得るために、 Pt、 W、 Ni、 Ta等の元素についての 金属単体を含むことが好ましぐ W、 Ni合金が特に好ましい。 The spiral conductive substrate is not particularly limited. For example, a spiral conductive substrate having a length of 25 mm, an outer diameter of 0.25-0.30 mm, and an inner diameter of 0.15 mm manufactured by Nippon Cable Systems Co., Ltd. A coiled metal spring can be used. A conductive polymer composite structure can be obtained by forming a conductive polymer layer by electrolytic polymerization using a spiral conductive substrate such as a coiled metal panel as a working electrode. The shape of the conductive polymer composite structure is not particularly limited as long as the space between the wires provided at a predetermined pitch of the spiral conductive substrate is filled with the conductive polymer. A tubular shape or a tube shape is preferred because bundling is easy. Further, a material having a conductivity of 10 3 SZcm or more can be used as the conductive substrate. Even in the case of a conductive polymer composite structure whose size is increased in the length direction or the height direction, a potential sufficient to cause displacement such as expansion and contraction can be applied to the entire device. As a conductive substrate containing a conductive metal, metals such as Ag, Ni, Ti, Au, Pt, and W, and alloys such as SUS can be used. In particular, in order to obtain a conductive polymer having a large elasticity, the conductive substrate preferably contains a simple metal of an element such as Pt, W, Ni, Ta, etc. preferable.
[0018] 前記螺旋状導電性基体のサイズは、上記のコイル状の金属ばねについて例示した 力 特に限定されるものではない。前記螺旋状導電性基体の長さは、 0. 5— 100m mを用いることができる。例えば、前記の長さを、大型のァクチユエータに用いる場合 には 50mmや 100mmとすることができる。小型のァクチユエータに用いる場合や腰 折れを防止する場合には、前記の長さを 5mmや 10mmとすることもできる 前記螺 旋状導電性基体のコイル状形状の外径は、外径が 3mm以上のコイル型の金属製バ ネ状部材などの大型の導電性基体を用いても良ぐ数十 m径のコイル型の金属製 パネ状部材等の小型の導電性基体を用いても良い。例えば、前記外径としては、導 電性高分子複合構造体の腰折れ防止のために、 1mmまたは 0. 5mmとしても良い。 また、小型のァクチユエータ素子を得る場合において、導電性高分子膜のみでは加 ェに際して機械的強度が十分ではな 、ために、電解重合により得られた導電性高分 子膜を外径または幅が lmm未満のァクチユエータ素子、特に外径または幅が 500 μ m未満のァクチユエータ素子にカ卩ェすることは難しぐ 100 m未満である数十 m径の円柱状のァクチユエータ素子に加工することはさらに難しい。そのため、前記 螺旋状導電性基体の形状の外径が、束ねた場合に lmm以下、特に 500 m以下と なるような外径とすることが好ま 、。前記螺旋状導電性基体を構成する線状体は、 安定して通電可能な線径であれば特に限定されるものではない。前記線径は、例え ば 25 μ mや 40 μ mとすることができる。 [0018] The size of the spiral conductive substrate is not particularly limited as the force exemplified for the above-mentioned coiled metal spring. The length of the spiral conductive substrate may be 0.5 to 100 mm. For example, the length can be 50 mm or 100 mm when used for a large actuator. The length can be 5 mm or 10 mm when used in a small actuator or to prevent buckling, and the outer diameter of the coiled shape of the spiral conductive substrate is 3 mm or more. The coil-shaped metal base A large conductive substrate such as a screw-shaped member may be used, or a small conductive substrate such as a coil-shaped metal panel-shaped member having a diameter of several tens of meters may be used. For example, the outer diameter may be 1 mm or 0.5 mm in order to prevent the conductive polymer composite structure from breaking. In addition, when a small actuator element is obtained, the conductive polymer film alone does not have sufficient mechanical strength during the application, so the outer diameter or width of the conductive polymer film obtained by electrolytic polymerization is small. It is difficult to cut into actuator elements less than lmm, in particular, actuator elements with outer diameter or width less than 500 μm. . Therefore, it is preferable that the outer diameter of the shape of the spiral conductive substrate is lmm or less, particularly 500 m or less when bundled. The linear body constituting the spiral conductive substrate is not particularly limited as long as it has a wire diameter that allows stable conduction. The wire diameter can be, for example, 25 μm or 40 μm.
導電性高分子複合構造体に含まれる導電性高分子は、公知の導電性高分子を用 いることができ、ポリピロール、ポリチォフェン、ポリア-リン、ポリフエ-レンなどを用い ることができる。特に前記導電性高分子として、分子鎖にピロール及び Zまたはピロ ール誘導体を含む導電性高分子であることが、製造が容易であり、導電性高分子と して安定であるだけではなぐ電解伸縮性能に優れているために好ましい。また、前 記導電性高分子は、電解伸縮において優れた 1酸ィ匕還元サイクル当たりの伸縮率を 示し、特定時間あたりの変位率をも示すことができるために、トリフルォロメタンスルホ ン酸イオン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを、ドー パントとして含むことが好ましい。また、導電性高分子複合構造体束の電解伸縮によ る伸縮率を 16%以上とするために、前記電解液としてァ-オンとして、上記のトリフル ォロメタンスルホン酸イオン及び zまたは中心原子に対してフッ素原子を複数含むァ 二オンの替えて、化学式(1)  As the conductive polymer contained in the conductive polymer composite structure, a known conductive polymer can be used, and polypyrrole, polythiophene, polyarline, polyphenylene, and the like can be used. In particular, the conductive polymer that is a conductive polymer containing pyrrole and Z or a pyrrole derivative in the molecular chain is easy to manufacture, and is not only stable as a conductive polymer but also an electrolytic polymer. It is preferable because of its excellent stretching performance. In addition, since the conductive polymer exhibits an excellent expansion and contraction rate per electrolytic cycle in electrolytic expansion and contraction and can show a displacement rate per specific time, the trifluoromethanesulfonate ion is used. Further, it is preferable to include, as dopants, ions containing a plurality of fluorine atoms with respect to Z or the central atom. In addition, in order to make the expansion and contraction ratio of the conductive polymer composite structure bundle due to electrolytic expansion and contraction to be 16% or more, the electrolyte solution is used as an ion as the trifluoromethanesulfonic acid ion and z or the central atom. On the other hand, instead of anion containing multiple fluorine atoms, the chemical formula (1)
(C F SO ) (C F SO ) N— (1)  (C F SO) (C F SO) N— (1)
n (2n+ l) 2 m (2m+ l) 2  n (2n + l) 2 m (2m + l) 2
(ここで、 n及び mは任意の整数。 )  (Here, n and m are arbitrary integers.)
で表されるパーフルォロアルキルスルホ二ルイミドイオンを含む電解液を用いることが 好ましい。なお、前記導電性高分子複合構造体を得るための電解重合法は、導電性 高分子単量体の電解重合とし、公知の電解重合方法を用いることが可能である。従 つて、公知の電解液、公知の導電性高分子単量体を用いることができる。また、電解 重合において、定電位法、定電流法及び電気掃引法のいずれをも用いることができ る。例えば、前記電解重合は、電流密度 0. 01— 20mAZcm2、反応温度 70— 80 。C、好ましくは電流密度 0. 1— 2mAZcm2、反応温度 40— 40°Cの条件下で行うこ とが好ましぐ反応温度カ 20— 30°Cの条件であることがより好ましい。 It is preferable to use an electrolyte containing a perfluoroalkylsulfonylimide ion represented by In addition, the electrolytic polymerization method for obtaining the conductive polymer composite structure is a conductive polymer composite structure. As the electrolytic polymerization of the polymer monomer, a known electrolytic polymerization method can be used. Therefore, a known electrolytic solution and a known conductive polymer monomer can be used. In electrolytic polymerization, any of the constant potential method, the constant current method and the electric sweep method can be used. For example, the electrolytic polymerization has a current density of 0.01-20 mAZcm 2 and a reaction temperature of 70-80. C, preferably a current density of 0.1 to 2 mAZcm 2 , and a reaction temperature of 40 to 40 ° C, and more preferably 20 to 30 ° C.
[0020] 前記線状体としては、巻く作業上に支障がないもので、水溶性でなければ特に限 定されるものではない。前記線状体は、導電性高分子複合構造体の導電性高分子 層に電圧を印加することが可能であることから、通電性を有する導線であることが好ま しい。前記導線としては、補助電極として用いることができるので金属線であることが 好ましぐ省スペースのために金属製の細線であることがより好ましい。また、前記導 線としては、電解質に対する耐腐食性の観点から、耐食性を有する導線であることが 好ましぐ貴金属若しくは耐食性を有する合金力もなる金属線であることがより好まし い。 [0020] The linear body is not particularly limited as long as it does not hinder the winding operation and is not water-soluble. The linear body is preferably an electrically conductive wire since a voltage can be applied to the conductive polymer layer of the conductive polymer composite structure. The conductive wire is preferably a metal wire because it can be used as an auxiliary electrode, and is more preferably a thin metal wire for saving space. In addition, from the viewpoint of corrosion resistance to an electrolyte, the conductor is preferably a noble metal, which is preferably a conductor having corrosion resistance, or more preferably a metal wire having an alloy force having corrosion resistance.
[0021] 前記線状体の径は、特に限定されるものではないが、束ねられる導電性高分子複 合構造体の本数や線状体の材質により適宜調整することができる。前記線状体が金 属線である場合には、軽量ィ匕並びに省資源の観点から 0. 1mm以下であることが好 ましい。前記線径は、例えば 30— 100 /z mとすることができる。前記線径は、例えば 30 μ mや 50 μ mの金線を用いることができる。  [0021] The diameter of the linear body is not particularly limited, but can be appropriately adjusted according to the number of conductive polymer composite structures to be bundled and the material of the linear body. When the linear body is a metal wire, it is preferably 0.1 mm or less from the viewpoint of light weight and resource saving. The wire diameter can be, for example, 30-100 / zm. As the wire diameter, for example, a gold wire of 30 μm or 50 μm can be used.
[0022] 図 1の導電性高分子複合構造体束 1は、長さ方向において導電性高分子複合構 造体の全体に均一に結束する力がかかるように前記線状体が捲回されて!/、る。しか し、前記線状体は、導電性高分子層の全体に電圧を印加するための電極若しくは補 助電極として用いられない場合には、例えば図 2に示されているような補助金属線 3 、 3 'が結束されているときには、導電性高分子複合構造体束の中央付近で捲回され てもよい。なお、導電性高分子複合構造体束において、前記補助金属線は無くても よい。  [0022] The bundle of conductive polymer composite structures 1 in Fig. 1 is obtained by winding the linear body so that a force for uniformly binding the entire conductive polymer composite structure in the length direction is applied. ! / However, when the linear body is not used as an electrode or an auxiliary electrode for applying a voltage to the entire conductive polymer layer, for example, an auxiliary metal wire 3 as shown in FIG. When 3 ′ is bound, it may be wound near the center of the conductive polymer composite structure bundle. In the conductive polymer composite structure bundle, the auxiliary metal wire may not be provided.
[0023] 本発明の導電性高分子複合構造体束は、例えば、並列に 4本配置して束ねても良 ぐ導電性高分子複合構造体の使用本数が特に限定されるものではない。つまり、前 記導電性高分子複合構造体は、必要な発生力に応じて約 1000本などの 100本以 上の本数を用いることができる。導電性高分子複合構造体束は、円筒状、円柱状及 び角柱状の形状の導電性高分子複合構造体を束ねて形成しても良い。 The conductive polymer composite structure bundle of the present invention is not particularly limited in the number of conductive polymer composite structures that can be arranged and bundled, for example, four in parallel. In other words, before The number of the conductive polymer composite structures may be 100 or more, such as about 1000, depending on the required force. The conductive polymer composite structure bundle may be formed by bundling conductive polymer composite structures having a cylindrical, cylindrical, or prismatic shape.
[0024] また、本発明の導電性高分子複合構造体束は、前記線状体が内側となるように捲 回されたイオン透過性の絶縁膜を備えた導電性高分子複合構造体束でもある。図 3 に示すように、導電性高分子複合構造体束 1は、更にその外側に、イオン透過性の 絶縁膜 5で捲回される。前記導電性高分子複合構造体束がイオン透過性の絶縁膜 を備えていることにより、前記絶縁膜がセパレータとしての機能を発揮するので、対極 は前記絶縁膜を介して前記導電性高分子複合構造体束と近接した位置に設置する ことができる。従って、捲回された絶縁膜を備えた導電性高分子複合構造体束は、導 電性高分子複合構造体束を作動部として用いたァクチユエータの小型化を図ること ができる。  [0024] The conductive polymer composite structure bundle of the present invention is also a conductive polymer composite structure bundle provided with an ion-permeable insulating film wound so that the linear body is on the inside. is there. As shown in FIG. 3, the conductive polymer composite structure bundle 1 is further wound on the outside thereof with an ion-permeable insulating film 5. Since the conductive polymer composite structure bundle includes an ion-permeable insulating film, the insulating film functions as a separator. Therefore, the counter electrode is the conductive polymer composite through the insulating film. It can be installed close to the structure bundle. Therefore, the conductive polymer composite structure bundle provided with the wound insulating film can reduce the size of the actuator using the conductive polymer composite structure bundle as an operating unit.
[0025] 前記絶縁膜は、特に限定されるものではないが、伸縮性があることが好ましぐ電圧 印可により導電性高分子複合構造体束を電解伸縮させるための電解液が水溶液で ある場合には耐水性を有することが好ましい。前記絶縁膜は、例えば、ビニロンなど のポリビュルアルコール系合成繊維またはポリエステル繊維を主とした不織布若しく は網目状体を用いることができる。また、前記絶縁膜の厚さは、前記導電性高分子複 合構造体束の伸縮をするものでなければ特に限定されるものではない。  [0025] The insulating film is not particularly limited, but is preferably an elastic solution in which an electrolytic solution for electrolytically expanding and contracting the conductive polymer composite structure bundle by applying a voltage is preferable. Preferably have water resistance. As the insulating film, for example, a nonwoven fabric or a mesh body mainly composed of a polyvinyl alcohol-based synthetic fiber such as vinylon or a polyester fiber can be used. The thickness of the insulating film is not particularly limited as long as the conductive polymer composite structure bundle does not expand and contract.
[0026] 前記絶縁膜は、対極が導電性高分子複合構造体束と直接接触して短絡が生じな いように、導電性高分子複合構造体束の外側に捲回されれば、捲回方法、膜厚、捲 付け位置が限定されるものではな 、。  [0026] The insulating film is wound if it is wound outside the conductive polymer composite structure bundle so that the counter electrode is not in direct contact with the conductive polymer composite structure bundle and a short circuit does not occur. The method, film thickness, and winding position are not limited.
[0027] また、本発明の導電性高分子複合構造体束は、前記線状体が内側となるように捲 回されたイオン透過性の絶縁膜上に、電極線が捲回された導電性高分子複合構造 体束でもある。前記電極線が前記絶縁膜上に捲回されることにより、導電性高分子複 合構造体束を電解伸縮させる際の対極として前記電極線を用いた場合には、作動 部である導電性高分子複合構造体束に極めて近接した位置に対極を形成すること ができ、省スペース化が図れ、特別な部材を必要としないので容易に対極の設置が 図れる。 [0028] 前記の電極線が捲回された導電性高分子複合構造体束は、例えば、長さ 25mm、 外径 0. 25-0. 30mm,内径 0. 15mmのコイル状金属パネを螺旋状の導電性基体 上にポリピロール層を備えた導電性高分子複合構造体を線状体により 10本束ねた 導電性高分子複合構造体束にビニロンとポリエステルカゝらなる公知の不織布を捲回 して包み、更にその外側に電極線である 100 mの金線を巻き付けることにより得る ことができる。前記電極線の線径は、上述のように 100 mを例示した力 特に限定 されるものではない。前記線径は、 30— 100 mとすることができる。前記電極線の 線径は、例えば 30 mや 50 mの金線を用いることができる。また、前記電極線は、 通電性を有するものであれば特に限定されないが、上述の導電性基体として用いる ことができる導電率が 103SZcm以上の金属を用いることができる。 [0027] The conductive polymer composite structure bundle of the present invention is a conductive polymer composite structure bundle in which electrode wires are wound on an ion-permeable insulating film wound so that the linear body is on the inside. It is also a polymer composite structure bundle. By winding the electrode wire on the insulating film, when the electrode wire is used as a counter electrode when the conductive polymer composite structure bundle is electrolytically expanded and contracted, the conductive portion, which is an operating portion, is used. The counter electrode can be formed at a position very close to the molecular composite structure bundle, space can be saved, and no special member is required, so that the counter electrode can be easily installed. [0028] The conductive polymer composite structure bundle in which the electrode wires are wound is, for example, a helical coiled metal panel having a length of 25 mm, an outer diameter of 0.25 to 0.30 mm, and an inner diameter of 0.15 mm. A known non-woven fabric made of vinylon and polyester is wound around a conductive polymer composite structure bundle in which ten conductive polymer composite structures each having a polypyrrole layer on a conductive substrate are bundled with a linear body. It can be obtained by wrapping and further wrapping a 100 m gold wire as an electrode wire around the outside. The wire diameter of the electrode wire is not particularly limited, as described above. The wire diameter may be 30-100 m. The diameter of the electrode wire may be, for example, a 30 m or 50 m gold wire. Further, the electrode wire is not particularly limited as long as it has electric conductivity, electrical conductivity can be used as the conductive substrate described above can be used 10 3 SZcm more metals.
[0029] 前記導電性高分子複合構造体束を駆動させる方法は、前記導電性高分子複合構 造体束と対極とを電解質を介する状態で設置し、前記導電性高分子複合構造体束 と対極とに電圧を印加して、前記導電性高分子複合構造体束が電解伸縮することで 、行うことができる。前記電解質は、特に限定されるものではなぐ液状であってもよく ゲル状であってもよい。また前記電解質は、前記導電性高分子複合構造体束を構成 する導電性高分子にドープされたイオンと同種のイオンを含むことが好ましぐ前記ィ オンが前記ドープされたイオンと同じイオン半径を有する事が電解伸縮の伸縮率を 一定に維持するために更に好まし 、。  [0029] In the method of driving the conductive polymer composite structure bundle, the conductive polymer composite structure bundle and a counter electrode are installed in a state of interposing an electrolyte, and the conductive polymer composite structure bundle is driven. This can be performed by applying a voltage to the counter electrode and subjecting the conductive polymer composite structure bundle to electrolytic expansion and contraction. The electrolyte is not particularly limited, and may be a liquid or a gel. Further, the electrolyte preferably contains ions of the same kind as the ions doped in the conductive polymer constituting the conductive polymer composite structure bundle, and the ions have the same ionic radius as the doped ions. It is more preferable to have a constant in order to keep the expansion and contraction rate of the electrolytic expansion and contraction constant.
[0030] (導電性高分子複合構造体束を用いた装置)  (Device Using Conductive Polymer Composite Structure Bundle)
また、本発明は、上述の螺旋状の導電性基体上に導電性高分子層が形成された 導電性高分子複合構造体を複数束ねた導電性高分子複合構造体束の外側に、螺 旋状に捲回された線状体を備えた導電性高分子複合構造体束を押圧部に用いた視 聴覚装置、加圧装置、握持装置、押出装置、折り曲げ装置、挟持装置、密着装置、 または当接装置でもある。前記導電性高分子複合構造体束は、従来の押圧装置に 比べて構造が簡単であり、し力も大きな発生力を生じることができることから、軽量で あり、大きな発生力を生じることができるので、各装置の駆動部または押圧部として好 適に用いることができる。  In addition, the present invention provides a helical conductive polymer composite structure in which a conductive polymer layer is formed on a helical conductive substrate. Hearing device, pressurizing device, gripping device, extruding device, bending device, clamping device, contact device, using a conductive polymer composite structure bundle having a linear body wound in a Or it is a contact device. The conductive polymer composite structure bundle has a simple structure as compared with a conventional pressing device, and can generate a large generating force, so that it is lightweight and can generate a large generating force. It can be suitably used as a driving unit or a pressing unit of each device.
[0031] 前記導電性高分子複合構造体束は、次の各種装置の押圧部として用いることがで きる;押圧部が点字を形成する視覚障害者用の視聴覚装置、可撓性可変内視鏡の 押圧部、二輪車用フロントフォークの押圧部、空気圧制御型の流体封入式防振装置 における高周波用オリフィス通路の開口部を遮断せしめる押圧部、休止可能な気筒 制御式エンジンの弁休止装置におけるバルブ軸端部を押圧するための押圧部、射 出成形装置における板状部材を金型側に押し出して圧接させる押圧部、テレビカメ ラ、ビデオカメラ、デジタルカメラ等の撮像装置における撮像素子を前記レンズ座に 向かって加圧する押圧部、クランプ機構を備えた情報再生機構におけるチャック爪 端部を押圧することにより記録媒体の保持を解除する押圧部、電界駆動型の画像表 示媒体における局所的に導電性基板に導通させるためのバイアス印カロ (接地も含む )用の押圧部、シールド工法用元押し装置における駆動させ推進方向に押圧する押 圧部、画像形成装置における搬送手段に用いられる押圧部、板状部材の研磨装置 におけるフィルム状の研磨部材を板状部材に圧接する押圧部。 [0031] The conductive polymer composite structure bundle can be used as a pressing portion of the following various devices. Audio / visual equipment for visually impaired persons whose pressing part forms Braille, pressing part of flexible endoscope, pressing part of motorcycle front fork, high frequency orifice in air pressure control type fluid-filled vibration damping device A pressing part that blocks the opening of the passage, a pressing part that presses the end of the valve shaft in the valve deactivating device of the cylinder-controllable engine that can be deactivated, and a plate-shaped member in the injection molding device that is pushed out to the mold side and pressed against By pressing a pressing portion, a pressing portion for pressing an image pickup device of an imaging device such as a television camera, a video camera, or a digital camera toward the lens seat, and a chuck claw end of an information reproducing mechanism having a clamp mechanism. Pressing part for releasing the holding of the recording medium, bias mark for conducting locally to the conductive substrate in the electric field driven type image display medium ), A pressing unit that is driven in the main pushing device for the shield method and presses in the propulsion direction, a pressing unit that is used as a conveying unit in the image forming apparatus, and a film-shaped polishing member in the plate-shaped member polishing device. A pressing portion that presses against a plate-shaped member.
また、前記導電性高分子複合構造体束は、次の各種装置の押圧部として用いるこ とができる;電磁リレーにおける固定接点に接触する向きに可動ばね板を押圧する押 圧部、 NC工作機械等に組み込まれる減速比の大きい減速機構の押圧部、中空製 品の製造装置における素管に当接させて押圧しスピニング加工して所定形状の中空 部材を成形するための押圧部、円筒状物品の把持装置における板状把持部材と押 圧部との間で円筒状物品を押圧して把持する押圧部、シリンダーブロック等に穿設し た穿孔の漏れ量を検測する漏れ試験装置におけるマスキング板を押圧する押圧部、 液状体を微量ずつ定量吐出するに用いて好適なチューブポンプにおける可撓性チ ユーブを押圧する押圧部、原動機力 の駆動力を所定の配分比で前輪および後輪 に配分する駆動力配分装置における多板クラッチを所定の押圧力で押圧することに より原動機力 の駆動  Further, the conductive polymer composite structure bundle can be used as a pressing portion of the following various devices; a pressing portion for pressing a movable spring plate in a direction of contacting a fixed contact in an electromagnetic relay; an NC machine tool Pressing part of a speed reduction mechanism with a large reduction ratio incorporated into a device, etc., pressing part for forming a hollow member of a predetermined shape by abutting against a raw pipe in a hollow product manufacturing apparatus, pressing and spinning to form a hollow member of a predetermined shape Masking plate in a leak tester that measures the amount of leakage from a pressing part that presses and grips a cylindrical article between a plate-like gripping member and a pressing part in a gripping device, and a hole that is drilled in a cylinder block, etc. A pressing portion that presses the flexible tube, a pressing portion that presses a flexible tube in a tube pump suitable for dispensing a small amount of a liquid material, and a driving force of a prime mover that is distributed to the front wheels and the rear wheels at a predetermined distribution ratio. More driving the motor force that presses the multiple disc clutch in the drive force distribution device with a predetermined pressing force
力を前記所定の押圧力に応じた配分比で前輪および後輪に伝達する押圧部、コィ ル挿入装置におけるプッシャ押圧ユニットの押圧部、粘着シール部品の剥離装置に おけるシール部品の端部を該剥離紙力 分離させるための押圧部、シート材の搬送 張力を制御するダンサロール装置における前記係止部を押圧することにより前記支 持アームを加圧する押圧部。 [0033] また、前記導電性高分子複合構造体束は、次の各種装置の押圧部として用いるこ とができる;田植機の植付部における従動側クラッチ爪を駆動側クラッチ爪に押圧可 能な押圧部、積層体を得るためのホットプレス装置における熱板の略中央部分を押 圧する固定盤の押圧部、半導体装置のリード成形装置におけるリードの折曲部を形 成するリード押圧部、ディスクトレイ位置検出機構におけるディスクトレイの位置を検 出するための検出レバーを押圧する押圧部、画像の読み取りを行うフィルムキャリア におけるフィルム圧着板を密着させる押圧部、地中集排水管の機能再生工法の施 行装置における管壁に新たなストレーナ孔を穿孔するために穿孔錐を動作する押圧 部。 The pressing portion for transmitting the force to the front wheel and the rear wheel at a distribution ratio corresponding to the predetermined pressing force, the pressing portion of the pusher pressing unit in the coil insertion device, and the end of the seal component in the peeling device for the adhesive seal component. A pressing portion for separating the release paper force, and a pressing portion for pressing the support arm by pressing the locking portion in a dancer roll device for controlling the conveying tension of the sheet material. [0033] Further, the conductive polymer composite structure bundle can be used as a pressing portion of the following various devices; a driven clutch claw in a planting portion of a rice transplanter can be pressed against a driving clutch claw. Pressing portion, pressing portion of a fixed plate that presses a substantially central portion of a hot plate in a hot press device for obtaining a laminate, lead pressing portion forming a bent portion of a lead in a lead forming device of a semiconductor device, and a disk. A pressing part that presses the detection lever for detecting the position of the disc tray in the tray position detection mechanism, a pressing part that makes close contact with the film pressure plate of the film carrier that reads the image, and an underground drainage pipe function regeneration method A pressing part that operates a drilling cone to drill a new strainer hole in the pipe wall of the application device.
[0034] また、前記導電性高分子複合構造体束は、上記装置の押圧部の他にも、次の各種 装置に用いることもできる;シャッター位置検出装置、ボーリングバーを備えた中ぐり 加工装置、レーザ溶接装置、練り製品の押出装置、ビデオテープカセット、産業用車 両のトランスミッション装置、板状体端部固定装置、コンクリート構造物の補強'補修 材塗り装置、シートの折畳積層装置、排紙装置、移動体の駆動装置、プリンタ、電気 回路遮断装置、温度検知ユニットを有する加熱装置、液晶表示装置、画像形成装置 、記録装置、食パンスライサ、 2軸同時締付工具、粉末成形装置、紙葉類処理装置、 シームレスベルトの定着装置、光ファイバ接続装置、真空式プレス装置のシャツタ機 構、像振れ補正装置、画像読取装置、媒体収納機構、ラベル貼付装置、孔版印刷 装置、プレス加工装置、ワーク外周縁のばり抜き装置、ディスク装置、刃物取付構造 、遊技機の入賞装置、ウェハ搬送容器装着装置、内装トリムの部分貼合用成形金型 、練条機、クランプ装置、計量器、熱処理炉、オイルポンプ、折り曲げ加工装置、位 置スィッチ付モータ、間仕切パネルの運搬装置、間仕切パネルの運搬装置、及び力 ムシャフト素材支持装置。  The conductive polymer composite structure bundle can also be used for the following various devices in addition to the pressing portion of the above device: a boring machine equipped with a shutter position detecting device and a boring bar. , Laser welding equipment, kneaded product extrusion equipment, video tape cassettes, industrial vehicle transmission equipment, plate-shaped body end fixing equipment, reinforcement of concrete structures, repair material coating equipment, sheet folding and laminating equipment, paper ejection Devices, driving devices for moving objects, printers, electric circuit interrupters, heating devices with temperature detection units, liquid crystal display devices, image forming devices, recording devices, bread slicers, two-axis simultaneous tightening tools, powder molding devices, paper sheets Processing equipment, seamless belt fixing device, optical fiber connection device, vacuum press device, shutter device, image stabilization device, image reading device, media storage mechanism, label Pasting device, stencil printing device, press working device, deburring device for work outer peripheral edge, disk device, blade mounting structure, awarding machine of gaming machine, wafer transfer container mounting device, molding die for partial bonding of interior trim, kneading Stripping machines, clamping devices, measuring instruments, heat treatment furnaces, oil pumps, bending devices, motors with position switches, partition panel transport devices, partition panel transport devices, and force shaft material support devices.
[0035] 前記導電性高分子複合構造体束で作動部に用いたァクチユエータは、前記導電 性高分子複合構造体束が簡単な構造であるために軽量化が可能であり、押圧する 力を容易に発生することができることから、前記ァクチユエ一タを押圧部に用いたカロ 圧装置、握持装置、押出装置、折り曲げ装置、挟持装置、密着装置、及び当接装置 の押圧部に好適に用いることができる。 [0036] また、本発明は、上述の導電性高分子複合構造体束を駆動部に用いた位置決め 装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節装置、調整装置、誘導 装置、または関節装置でもある。前記導電性高分子複合構造体束を用いた駆動部 は、従来の駆動装置に比べて構造が簡単であり、し力も大きな発生力を生じることが できることから、軽量であり、大きな発生力を生じることができるので、各装置の駆動 部として好適に用いることができる [0035] The actuator used for the working part in the conductive polymer composite structure bundle can be reduced in weight because the conductive polymer composite structure bundle has a simple structure, and the pressing force is easy. Therefore, it is preferable to use the actuator in a pressing portion of a caropressure device, a gripping device, an extruding device, a bending device, a clamping device, a contact device, and a contact device using the pressing device as a pressing portion. Can be. Further, the present invention provides a positioning device, a posture control device, an elevating device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device using the above-described conductive polymer composite structure bundle as a driving portion, Or a joint device. The driving unit using the conductive polymer composite structure bundle has a simple structure and can generate a large generating force as compared with a conventional driving device, so that it is lightweight and generates a large generating force. Can be suitably used as a driving unit of each device.
[0037] 前記導電性高分子複合構造体束で作動部に用いたァクチユエータは、次の装置 において直線的な駆動力を発生する駆動部若しくは円弧部力 なるトラック型の軌道 を移動するための駆動力を発生する駆動部として好適に用いることができる; OA機 器、アンテナ、ベッドや椅子等の人を乗せる装置、医療機器、エンジン、光学機器、 固定具、サイドトリマ、車両、昇降器械、食品加工装置、清掃装置、測定機器、検査 機器、制御機器、工作機械、加工機械、電子機器、電子顕微鏡、電気かみそり、電 動歯ブラシ、マニピュレータ、マスト、遊戯装置、アミューズメント機器、乗車用シミュレ ーシヨン装置、車両乗員の押さえ装置及び航空機用付属装備展張装置。すなわち、 本発明のァクチユエータは、駆動部として用いる場合において、簡単な装置構成で あり、押圧する力を容易に発生することができることから、位置決め装置、姿勢制御装 置、昇降装置、搬送装置、移動装置、調節装置、調整装置、誘導装置、または関節 装置の駆動部として好適に用いることができる。  [0037] The actuator used for the operating unit in the conductive polymer composite structure bundle is a driving unit for generating a linear driving force or a driving unit for moving a track-type orbit of an arcuate unit in the following apparatus. It can be suitably used as a driving unit that generates force; OA equipment, antennas, devices for placing people such as beds and chairs, medical equipment, engines, optical equipment, fixtures, side trimmers, vehicles, lifting equipment, foods Processing equipment, cleaning equipment, measuring equipment, inspection equipment, control equipment, machine tools, processing machines, electronic equipment, electron microscopes, electric razors, electric toothbrushes, manipulators, masts, play equipment, amusement equipment, boarding simulation equipment, Vehicle occupant holding device and aircraft extension device. That is, when the actuator of the present invention is used as a drive unit, it has a simple device configuration and can easily generate a pressing force. Therefore, the positioning device, the attitude control device, the elevating device, the transport device, and the moving device It can be suitably used as a drive unit of a device, an adjusting device, an adjusting device, a guiding device, or a joint device.
産業上の利用可能性  Industrial applicability
[0038] 本発明の導電性高分子複合構造体束は、各導電性高分子複合構造体のたわみを 防止することができ、前記導電性高分子複合構造体束が本来有する発生力を発揮 することができ、しかも従来の駆動装置または押圧装置に比べて構造が簡単であり、 し力も大きな発生力を生じることができることから、軽量であり、大きな発生力を生じる ことができるので、各装置の押圧部または駆動部として好適に用いることができる。 [0038] The conductive polymer composite structure bundle of the present invention can prevent deflection of each conductive polymer composite structure, and exerts the inherent power of the conductive polymer composite structure bundle. In addition, the structure is simpler than that of a conventional driving device or a pressing device, and a large generating force can be generated. Therefore, it is lightweight and can generate a large generating force. It can be suitably used as a pressing portion or a driving portion.

Claims

請求の範囲  The scope of the claims
[I] 螺旋状の導電性基体上に導電性高分子層が形成された導電性高分子複合構造体 を複数束ねた導電性高分子複合構造体束の外側に、螺旋状に捲回された線状体を 備えた導電性高分子複合構造体束。  [I] spirally wound on the outside of a conductive polymer composite structure bundle in which a plurality of conductive polymer composite structures each having a conductive polymer layer formed on a spiral conductive substrate are bundled A bundle of conductive polymer composite structures having a linear body.
[2] 前記線状体が通電可能な導線である請求の範囲第 1項に記載の導電性高分子複合 構造体束。  [2] The bundle of conductive polymer composite structures according to claim 1, wherein the linear body is an electrically conductive wire.
[3] 前記線状体が金属導線である請求の範囲第 1項に記載の導電性高分子複合構造 体束。  [3] The conductive polymer composite structure bundle according to claim 1, wherein the linear body is a metal conductive wire.
[4] 前記線状体が内側となるように捲回されたイオン透過性の絶縁膜を備えた請求の範 囲第 1項に記載の導電性高分子複合構造体束。  4. The conductive polymer composite structure bundle according to claim 1, comprising an ion-permeable insulating film wound so that the linear body is on the inside.
[5] 前記絶縁膜が不織布である請求の範囲第 4項に記載の導電性高分子導電性高分 子複合構造体束。 5. The conductive polymer conductive polymer composite structure bundle according to claim 4, wherein the insulating film is a nonwoven fabric.
[6] 前記絶縁膜上に電極線が捲回された請求の範囲第 4項に記載の導電性高分子複 合構造体束。  6. The conductive polymer composite structure bundle according to claim 4, wherein an electrode wire is wound on the insulating film.
[7] 前記導電性高分子複合構造体が円筒状またはチューブ状である請求の範囲第 1項 に記載の導電性高分子複合構造体束。  [7] The conductive polymer composite structure bundle according to claim 1, wherein the conductive polymer composite structure is cylindrical or tubular.
[8] 前記導電性基体を作用極とし、前記線状体を補助電極として電圧を印加すること〖こ より、請求の範囲第 2項に記載の導電性高分子複合構造体束を電解伸縮させる導電 性高分子複合構造体束の駆動方法。  [8] The conductive polymer composite structure bundle according to claim 2 is subjected to electrolytic expansion and contraction by applying a voltage using the conductive substrate as a working electrode and the linear body as an auxiliary electrode. A method for driving a conductive polymer composite structure bundle.
[9] 前記導電性基体を作用極とし、前記電極線を対極として電圧を印加することにより、 請求の範囲第 6項に記載の導電性高分子複合構造体束を電解伸縮させる導電性高 分子複合構造体束の駆動方法。 [9] A conductive polymer that electrolytically expands and contracts the conductive polymer composite structure bundle according to claim 6, by applying a voltage using the conductive substrate as a working electrode and the electrode wire as a counter electrode. The driving method of the composite structure bundle.
[10] 前記線状体を補助電極として電圧を印加する請求の範囲第 9項に記載の導電性高 分子複合構造体束の駆動方法。 10. The method for driving a conductive polymer composite structure bundle according to claim 9, wherein a voltage is applied using the linear body as an auxiliary electrode.
[II] 請求の範囲第 1項に記載の導電性高分子複合構造体束を作動部として用いたァク チユエータ。  [II] An actuator using the conductive polymer composite structure bundle according to claim 1 as an operating part.
[12] 請求の範囲第 1項に記載の導電性高分子複合構造体束を押圧部に用いた加圧装 置、握持装置、押出装置、折り曲げ装置、挟持装置、密着装置、または当接装置。 請求の範囲第 1項に記載の導電性高分子複合構造体を駆動部に用いた位置決め 装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節装置、調整装置、誘導 装置、または関節装置。 [12] A pressing device, a gripping device, an extruding device, a bending device, a clamping device, a close contact device, or a contact using the conductive polymer composite structure bundle according to claim 1 as a pressing portion. apparatus. A positioning device, a posture control device, a lifting device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, or a joint device using the conductive polymer composite structure according to claim 1 as a driving unit. .
PCT/JP2004/013313 2003-09-12 2004-09-13 Conductive polymer composite structural body bundle WO2005027333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003321681 2003-09-12
JP2003-321681 2003-09-12

Publications (1)

Publication Number Publication Date
WO2005027333A1 true WO2005027333A1 (en) 2005-03-24

Family

ID=34308647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013313 WO2005027333A1 (en) 2003-09-12 2004-09-13 Conductive polymer composite structural body bundle

Country Status (1)

Country Link
WO (1) WO2005027333A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018106941A1 (en) * 2016-12-08 2018-06-14 Lintec Of America, Inc. Improvements in artificial muscle actuators
EP3333419A3 (en) * 2016-12-08 2018-09-12 Panasonic Intellectual Property Management Co., Ltd. Actuator device
US10815976B2 (en) * 2017-11-27 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Actuator device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111089A (en) * 2000-07-24 2002-04-12 Omron Corp Method for manufacturing actuator and strain element
JP2003518752A (en) * 1999-12-21 2003-06-10 1...リミテッド Electro-active device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518752A (en) * 1999-12-21 2003-06-10 1...リミテッド Electro-active device
JP2002111089A (en) * 2000-07-24 2002-04-12 Omron Corp Method for manufacturing actuator and strain element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018106941A1 (en) * 2016-12-08 2018-06-14 Lintec Of America, Inc. Improvements in artificial muscle actuators
WO2018106926A1 (en) * 2016-12-08 2018-06-14 Lintec Of America, Inc. Improvements in artificial muscle actuators
EP3333419A3 (en) * 2016-12-08 2018-09-12 Panasonic Intellectual Property Management Co., Ltd. Actuator device
US10480492B2 (en) 2016-12-08 2019-11-19 Panasonic Intellectual Property Management Co., Ltd. Actuator device
JP2020513715A (en) * 2016-12-08 2020-05-14 リンテック・オブ・アメリカ・インコーポレイテッド Improvement of artificial muscle actuator
US10935009B2 (en) 2016-12-08 2021-03-02 Lintec Of America, Inc. Artificial muscle actuators
US11028835B2 (en) 2016-12-08 2021-06-08 Lintec Of America, Inc. Artificial muscle actuators
US11085426B2 (en) 2016-12-08 2021-08-10 Lintec Of America, Inc. Artificial muscle actuators
US11466671B2 (en) 2016-12-08 2022-10-11 Lintec Of America, Inc. Artificial muscle actuators
US11703037B2 (en) 2016-12-08 2023-07-18 Lintec Of America, Inc. Artificial muscle actuators
US12110879B2 (en) 2016-12-08 2024-10-08 Lintec Of America, Inc. Artificial muscle actuators
US10815976B2 (en) * 2017-11-27 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Actuator device

Similar Documents

Publication Publication Date Title
JP5937044B2 (en) Transducer, actuator, and method of manufacturing transducer
US7808163B2 (en) Multilayer composite and a method of making such
JP5714200B2 (en) Improved electroactive polymer
EP3082237B1 (en) Driving apparatus and device fabrication method
US7518284B2 (en) Dielectric composite and a method of manufacturing a dielectric composite
US8181338B2 (en) Method of making a multilayer composite
EP1919071B1 (en) A dielectric composite and a method of manufacturing a dielectric composite
US7224106B2 (en) Electroactive polymers
US8237324B2 (en) Bistable electroactive polymers
Mineta et al. Batch fabricated flat meandering shape memory alloy actuator for active catheter
US6583533B2 (en) Electroactive polymer electrodes
CN101222016B (en) A multilayer composite and a method of making such
EP1589059B1 (en) Conductive polymer composite structure
US20110123724A1 (en) Dielectric composite and a method of manufacturing a dielectric composite
US7064473B2 (en) Actuator film material, actuator film and actuator using the same
US20160025077A1 (en) Electrothermal composite material and electrothermal actuator using the same
US7256529B2 (en) High power-to-mass ratio actuator
WO2005027333A1 (en) Conductive polymer composite structural body bundle
JP4717401B2 (en) Conductive polymer composite structure bundle, driving method thereof and use thereof
US8144407B2 (en) CNT-based actuator, lens module using same and camera module using same
JP2005006490A (en) Actuator
JP4806745B2 (en) Conductive polymer composite structure and method for producing conductive polymer
WO2004075389A1 (en) Actuator
WO2004074354A1 (en) Tubular conductive polymer molded article
Su et al. Membrane Tension Control

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP