JP4717401B2 - Conductive polymer composite structure bundle, driving method thereof and use thereof - Google Patents

Conductive polymer composite structure bundle, driving method thereof and use thereof Download PDF

Info

Publication number
JP4717401B2
JP4717401B2 JP2004265560A JP2004265560A JP4717401B2 JP 4717401 B2 JP4717401 B2 JP 4717401B2 JP 2004265560 A JP2004265560 A JP 2004265560A JP 2004265560 A JP2004265560 A JP 2004265560A JP 4717401 B2 JP4717401 B2 JP 4717401B2
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer composite
composite structure
structure bundle
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004265560A
Other languages
Japanese (ja)
Other versions
JP2005110494A (en
Inventor
哲司 座間
進 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eamex Corp
Original Assignee
Eamex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corp filed Critical Eamex Corp
Priority to JP2004265560A priority Critical patent/JP4717401B2/en
Publication of JP2005110494A publication Critical patent/JP2005110494A/en
Application granted granted Critical
Publication of JP4717401B2 publication Critical patent/JP4717401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性高分子と導電性基体とが複合した構造体を有する導電性高分子複合構造体の束とその駆動方法並びにその用途に関する。   The present invention relates to a bundle of conductive polymer composite structures having a structure in which a conductive polymer and a conductive substrate are combined, a driving method thereof, and uses thereof.

ポリピロールなどの導電性高分子は、電気化学的な酸化還元によって伸縮する現象である電解伸縮を発現することが知られている。この導電性高分子の電解伸縮は、人工筋肉、ロボットアーム、義手やアクチュエータ等の用途へ適用が近年注目され、マイクロマシン等の小型の用途だけでなく大型化された用途への適用も注目されている。   It is known that a conductive polymer such as polypyrrole exhibits electrolytic expansion and contraction, which is a phenomenon that expands and contracts by electrochemical oxidation and reduction. Electrolytic expansion and contraction of this conductive polymer has recently attracted attention for applications such as artificial muscles, robot arms, artificial hands and actuators, and has attracted attention not only for small applications such as micromachines but also for larger applications. Yes.

導電性高分子は、電解重合方法により製造されるのが一般的である。電解重合方法としては、通常は、電解液中にピロール等のモノマー成分を加え、この電解液中に作用電極及び対向電極を設置して、両電極に電圧を印加することで導電性高分子を作用電極上に膜として形成させる方法が行われる(例えば、非特許文献1参照)。電解重合により得られた導電性高分子は、膜状に成形された導電性高分子に電圧を印加することにより伸縮または屈曲の変位をさせることができる。   The conductive polymer is generally produced by an electrolytic polymerization method. As an electropolymerization method, usually, a monomer component such as pyrrole is added to an electrolytic solution, a working electrode and a counter electrode are installed in the electrolytic solution, and a voltage is applied to both electrodes to form a conductive polymer. A method of forming a film on the working electrode is performed (for example, see Non-Patent Document 1). The conductive polymer obtained by electrolytic polymerization can be expanded or contracted or displaced by applying a voltage to the conductive polymer formed into a film shape.

緒方直哉編 「導電性高分子」、第8版、株式会社サイエンティフィク、1990年2月10日、第70頁〜第73頁。Edited by Naoya Ogata, “Conductive Polymers”, 8th Edition, Scientific Co., Ltd., February 10, 1990, pages 70-73.

電解重合法により製造された導電性高分子を含む素子(以下、導電性高分子素子)を産業用ロボット等のロボットアーム、義手などの人工筋肉等の大型化した用途の駆動部のアクチュエータに用いる場合には、マイクロマシン等の小型のアクチュエータとして用いられる素子に比べて、より大きな伸縮量若しくはより大きな発生力を得るために素子のサイズを大きくする必要がある。そのため、電解重合により得られた導電性高分子膜は、サイズを大きくするために長片化または複数枚積層するなどの厚膜化などの加工を施して、サイズの大きな導電性高分子素子とする必要がある。   An element including a conductive polymer manufactured by an electropolymerization method (hereinafter referred to as a conductive polymer element) is used as an actuator for a drive unit of an enlarged application such as a robot arm for an industrial robot or an artificial muscle such as a prosthetic hand. In some cases, it is necessary to increase the size of the element in order to obtain a larger expansion / contraction amount or a larger generation force than an element used as a small actuator such as a micromachine. For this reason, the conductive polymer film obtained by electrolytic polymerization is subjected to processing such as lengthening or thickening such as laminating a plurality of layers in order to increase the size. There is a need to.

サイズの大きな導電性高分子成型品は、導電性高分子素子の長さを制御することにより所望の変位量とする場合において、大きい変位量を得るために、例えば、柱状体の高さ方向に大型化した導電性高分子素子を用いた場合では、底面一面に電極を設置しても、電解重合法で得られる導電性高分子の導電率は通常10S/cm程度であり、脱ドープ状態では更に導電率が低下するため、素子上部では十分な電圧を印加することができない。また、高さ方向に金属板等の電極を設置した場合には、金属板等の電極が導電性高分子成型品の動作が阻害され、前記導電性高分子成型品は伸縮運動をすることが難しいという問題がある。 In order to obtain a large amount of displacement when a large size conductive polymer molded product is obtained by controlling the length of the conductive polymer element, for example, in the height direction of the columnar body. In the case of using a large conductive polymer element, the conductivity of the conductive polymer obtained by the electrolytic polymerization method is usually about 10 2 S / cm, even if an electrode is provided on the entire bottom surface. In this state, the conductivity is further lowered, so that a sufficient voltage cannot be applied to the upper part of the element. In addition, when an electrode such as a metal plate is installed in the height direction, the operation of the conductive polymer molded product is hindered by the electrode such as the metal plate, and the conductive polymer molded product may expand and contract. There is a problem that it is difficult.

この問題を解決するためには、螺旋状の導電性基体を作用電極として電解重合法により導電性高分子層を掲載させた導電性高分子複合構造体を用いることができる。この導電性高分子複合構造体は、例えば螺旋状の導電性基体としてコイル状の金属バネを用いることができ、円筒状若しくはチューブ状とすることができる。   In order to solve this problem, a conductive polymer composite structure in which a conductive polymer layer is placed by electrolytic polymerization using a spiral conductive substrate as a working electrode can be used. In this conductive polymer composite structure, for example, a coiled metal spring can be used as a spiral conductive base, and it can be cylindrical or tube-shaped.

しかし、より大きな発生力を生じることができるアクチュエータを得るために、上述の導電性高分子複合構造体を束ねて導電性高分子複合構造体束を形成した場合には、各導電性高分子複合構造体の長さのバラツキや結束用の部品により、導電性高分子複合構造体束は、全体としての駆動が阻害されて、本来有する発生力を生じることが難しい。   However, in order to obtain an actuator capable of generating a greater generating force, when the above-described conductive polymer composite structure is bundled to form a conductive polymer composite structure bundle, each conductive polymer composite The conductive polymer composite structure bundle is hindered from being driven as a whole due to variations in the length of the structure and binding parts, and it is difficult to generate the inherent generation force.

また、前記導電性高分子複合構造体束を用いたアクチュエータは、電解伸縮を生じさせるためには、対極が必要となるので、上述の装置に適用する場合には、デバイスとして小さくすることが望ましい。   In addition, the actuator using the conductive polymer composite structure bundle needs a counter electrode in order to cause electrolytic expansion and contraction. Therefore, when applied to the above-described apparatus, it is desirable to make the device small. .

本願発明は、螺旋状の導電性基体上に導電性高分子層が形成された導電性高分子複合構造体を複数束ねた導電性高分子複合構造体束の外側に、螺旋状に捲回された線状体を備えた導電性高分子複合構造体束である。前記発明は、各導電性高分子複合構造体のたわみを防止することができ、前記導電性高分子複合構造体束が本来有する発生力を発揮することができる。   The present invention is spirally wound outside a conductive polymer composite structure bundle in which a plurality of conductive polymer composite structures each having a conductive polymer layer formed on a spiral conductive substrate are bundled. A conductive polymer composite structure bundle provided with a linear body. The said invention can prevent the bending of each conductive polymer composite structure, and can exhibit the generating force which the said conductive polymer composite structure bundle originally has.

また、本発明は、前記導電性基体を作用極とし、前記線状体を補助電極として電圧を印加することにより、前記の導電性高分子複合構造体束を電解伸縮させる導電性高分子複合構造体束の駆動方法でもある。前記線状体が通電可能な導線であり、該導線を補助電極と使用することにより、導電性高分子層に電圧印可を容易に行うことができるので、前記導電性高分子複合構造体は、大きな発生力を生じ易くなる。   The present invention also provides a conductive polymer composite structure in which the conductive polymer composite structure bundle is electrolytically stretched by applying a voltage using the conductive substrate as a working electrode and the linear body as an auxiliary electrode. It is also a driving method for body bundles. The linear body is a conductive wire that can be energized, and by using the conductive wire as an auxiliary electrode, voltage application to the conductive polymer layer can be easily performed. A large generating force is likely to be generated.

また、本発明は、前記導電性高分子複合構造体束を押圧部に用いた加圧装置、握持装置、押出装置、折り曲げ装置、挟持装置、密着装置、または当接装置であり、また、導電性高分子複合構造体を駆動部に用いた位置決め装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節装置、調整装置、誘導装置、または関節装置である。前記導電性高分子複合構造体束は、従来の駆動装置または押圧装置に比べて構造が簡単であり、しかも大きな発生力を生じることができることから、軽量であり、大きな発生力を生じることができるので、各装置の押圧部として好適に用いることができる。   Further, the present invention is a pressure device, a gripping device, an extrusion device, a bending device, a clamping device, a contact device, or a contact device using the conductive polymer composite structure bundle as a pressing portion, A positioning device, a posture control device, an elevating device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, or a joint device using a conductive polymer composite structure as a driving unit. The conductive polymer composite structure bundle has a simple structure as compared with a conventional driving device or pressing device, and can generate a large generating force. Therefore, the conductive polymer composite structure bundle is lightweight and can generate a large generating force. Therefore, it can be suitably used as the pressing portion of each device.

以下、本発明について図を用いて説明するが、本願発明はこれらに限定されるものではない。   Hereinafter, although this invention is demonstrated using figures, this invention is not limited to these.

図1は、本発明の導電性高分子複合構造体束についての一実施態様例の部分拡大図である。導電性高分子複合構造体束1は、図2で示す円筒状の導電性高分子複合構造体2が束ねられている。図2の導電性高分子複合構造体は、両端に補助金属線3、3’を備えた螺旋状の導電性基体上に導電性高分子層が形成されている。図1において、導電性高分子複合構造体束1は、2以上の導電性高分子複合構造体が束ねられ、その外側に線状体4が螺旋状に捲回されている。線状体4が螺旋状に捲回されることにより、各導電性高分子複合構造体は、伸縮可能であって、管状若しくは円柱状の導電性高分子複合構造体の両端を結束用部品により結束した場合のような電解伸時のたわみを生じることが無い。しかも、線状体4は、均一なテンションを各導電性高分子複合構造体に与えることができる。   FIG. 1 is a partially enlarged view of an embodiment of the conductive polymer composite structure bundle of the present invention. The conductive polymer composite structure bundle 1 is a bundle of cylindrical conductive polymer composite structures 2 shown in FIG. In the conductive polymer composite structure of FIG. 2, a conductive polymer layer is formed on a spiral conductive substrate provided with auxiliary metal wires 3, 3 'at both ends. In FIG. 1, a conductive polymer composite structure bundle 1 is formed by bundling two or more conductive polymer composite structures, and a linear body 4 is spirally wound on the outside thereof. When the linear body 4 is spirally wound, each conductive polymer composite structure can be expanded and contracted, and both ends of the tubular or columnar conductive polymer composite structure are bound by binding parts. There is no bending at the time of electrolytic stretching as in the case of binding. Moreover, the linear body 4 can give a uniform tension to each conductive polymer composite structure.

螺旋状の導電性基体としては、特に限定されるものではないが、例えば、日本ケーブルシステム社製の長さ25mm、外径0.25〜0.30mm、内径0.15mmのコイル状の金属ばねを用いることができる。コイル状金属バネ等の螺旋状の導電性基体を作用電極として、電解重合法により導電性高分子層を形成して、導電性高分子複合構造体を得ることができる。前記導電性高分子複合構造体の形状は、螺旋状の導電性基体の所定のピッチで設けられた線材間が導電性高分子により埋められていれば特に形状が限定されるものではないが、結束が容易であることから筒状またはチューブ状が好ましい。また、前記導電性基体としては導電率が10S/cm以上である材料を用いることができる。長さ方向または高さ方向にサイズを大きくした導電性高分子複合構造体の場合であっても、伸縮等の変位をするのに十分な電位を素子全体にかけることができる。導電性金属を含む導電性基体としては、Ag、Ni、Ti、Au、Pt、W等の金属やSUS等の合金を用いることができる。特に、前記導電性基体は、大きな伸縮性能をもつ導電性高分子を得るために、Pt、W、Ni、Ta等の元素についての金属単体を含むことが好ましく、W、Ni合金が特に好ましい。 The spiral conductive substrate is not particularly limited. For example, a coiled metal spring having a length of 25 mm, an outer diameter of 0.25 to 0.30 mm, and an inner diameter of 0.15 mm manufactured by Nippon Cable System Co., Ltd. Can be used. A conductive polymer composite structure can be obtained by forming a conductive polymer layer by electrolytic polymerization using a spiral conductive substrate such as a coiled metal spring as a working electrode. The shape of the conductive polymer composite structure is not particularly limited as long as the space between the wires provided at a predetermined pitch of the spiral conductive substrate is filled with the conductive polymer. A cylindrical shape or a tube shape is preferable because bundling is easy. Moreover, as the conductive substrate, a material having a conductivity of 10 3 S / cm or more can be used. Even in the case of a conductive polymer composite structure whose size is increased in the length direction or height direction, a potential sufficient for displacement such as expansion and contraction can be applied to the entire element. As the conductive substrate containing a conductive metal, a metal such as Ag, Ni, Ti, Au, Pt, or W, or an alloy such as SUS can be used. In particular, in order to obtain a conductive polymer having a large expansion / contraction performance, the conductive substrate preferably contains a single metal for an element such as Pt, W, Ni, and Ta, and particularly preferably a W or Ni alloy.

前記螺旋状導電性基体のサイズは、上記のコイル状の金属ばねについて例示したが、特に限定されるものではない。前記螺旋状導電性基体の長さは、0.5〜100mmを用いることができる。例えば、前記の長さを、大型のアクチュエータに用いる場合には50mmや100mmとすることができる。小型のアクチュエータに用いる場合や腰折れを防止する場合には、前記の長さを5mmや10mmとすることもできる。前記螺旋状導電性基体のコイル状形状の外径は、外径が3mm以上のコイル型の金属製バネ状部材などの大型の導電性基体を用いても良く、数十μm径のコイル型の金属製バネ状部材等の小型の導電性基体を用いても良い。例えば、前記外径としては、導電性高分子複合構造体の腰折れ防止のために、1mmまたは0.5mmとしても良い。また、小型のアクチュエータ素子を得る場合において、導電性高分子膜のみでは加工に際して機械的強度が十分ではないために、電解重合により得られた導電性高分子膜を外径または幅が1mm未満のアクチュエータ素子、特に外径または幅が500μm未満のアクチュエータ素子に加工することは難しく、100μm未満である数十μm径の円柱状のアクチュエータ素子に加工することはさらに難しい。そのため、前記螺旋状導電性基体の形状の外径が、束ねた場合に1mm以下、特に500μm以下となるような外径とすることが好ましい。前記螺旋状導電性基体を構成する線状体は、安定して通電可能な線径であれば特に限定されるものではない。前記線径は、例えば25μmや40μmとすることができる。   The size of the spiral conductive substrate is exemplified with respect to the coiled metal spring, but is not particularly limited. The length of the spiral conductive substrate may be 0.5 to 100 mm. For example, the length can be set to 50 mm or 100 mm when used for a large actuator. In the case of using for a small actuator or preventing hip folding, the length can be set to 5 mm or 10 mm. The coil-shaped outer diameter of the spiral conductive substrate may be a large conductive substrate such as a coil-type metal spring-shaped member having an outer diameter of 3 mm or more. A small conductive substrate such as a metal spring-like member may be used. For example, the outer diameter may be 1 mm or 0.5 mm in order to prevent the conductive polymer composite structure from being folded back. In addition, when obtaining a small actuator element, the mechanical strength is not sufficient when processing only with the conductive polymer film, so the conductive polymer film obtained by electrolytic polymerization has an outer diameter or width of less than 1 mm. It is difficult to process an actuator element, particularly an actuator element having an outer diameter or width of less than 500 μm, and further difficult to process a cylindrical actuator element having a diameter of several tens of μm that is less than 100 μm. Therefore, it is preferable that the outer diameter of the spiral conductive substrate is 1 mm or less, particularly 500 μm or less when bundled. The linear body constituting the helical conductive substrate is not particularly limited as long as it has a wire diameter that can be stably energized. The said wire diameter can be 25 micrometers or 40 micrometers, for example.

導電性高分子複合構造体に含まれる導電性高分子は、公知の導電性高分子を用いることができ、ポリピロール、ポリチオフェン、ポリアニリン、ポリフェニレンなどを用いることができる。特に前記導電性高分子として、分子鎖にピロール及び/またはピロール誘導体を含む導電性高分子であることが、製造が容易であり、導電性高分子として安定であるだけではなく、電解伸縮性能に優れているために好ましい。また、前記導電性高分子は、電解伸縮において優れた1酸化還元サイクル当たりの伸縮率を示し、特定時間あたりの変位率をも示すことができるために、トリフルオロメタンスルホン酸イオン及び/または中心原子に対してフッ素原子を複数含むアニオンを、ドーパントとして含むことが好ましい。また、導電性高分子複合構造体束の電解伸縮による伸縮率を16%以上とするために、前記電解液としてアニオンとして、上記のトリフルオロメタンスルホン酸イオン及び/または中心原子に対してフッ素原子を複数含むアニオンの替えて、化学式(1)
(C(2n+1)SO)(C(2m+1)SO)N- (1)
(ここで、n及びmは任意の整数。)
で表されるパーフルオロアルキルスルホニルイミドイオンを含む電解液を用いることが好ましい。なお、前記導電性高分子複合構造体を得るための電解重合法は、導電性高分子単量体の電解重合とし、公知の電解重合方法を用いることが可能である。従って、公知の電解液、公知の導電性高分子単量体を用いることができる。また、電解重合において、定電位法、定電流法及び電気掃引法のいずれをも用いることができる。例えば、前記電解重合は、電流密度0.01〜20mA/cm2、反応温度−70〜80℃、好ましくは電流密度0.1〜2mA/cm、反応温度−40〜40℃の条件下で行うことが好ましく、反応温度が−20〜30℃の条件であることがより好ましい。
As the conductive polymer contained in the conductive polymer composite structure, a known conductive polymer can be used, and polypyrrole, polythiophene, polyaniline, polyphenylene, or the like can be used. In particular, as the conductive polymer, a conductive polymer containing pyrrole and / or a pyrrole derivative in the molecular chain is easy to manufacture and is not only stable as a conductive polymer, but also has an electrolytic stretching performance. It is preferable because of its superiority. In addition, the conductive polymer exhibits an excellent expansion / contraction rate per one oxidation-reduction cycle in electrolytic expansion / contraction, and can also exhibit a displacement rate per specific time. Therefore, trifluoromethanesulfonic acid ions and / or central atoms It is preferable that an anion containing a plurality of fluorine atoms is contained as a dopant. Moreover, in order to make the expansion / contraction ratio due to electrolytic expansion / contraction of the conductive polymer composite structure bundle to be 16% or more, the above trifluoromethanesulfonate ion and / or the central atom is used as an anion as the electrolytic solution. In place of multiple anions, chemical formula (1)
(C n F (2n + 1) SO 2 ) (C m F (2m + 1) SO 2 ) N (1)
(Here, n and m are arbitrary integers.)
It is preferable to use an electrolytic solution containing a perfluoroalkylsulfonylimide ion represented by: The electropolymerization method for obtaining the conductive polymer composite structure is electropolymerization of a conductive polymer monomer, and a known electropolymerization method can be used. Therefore, a known electrolyte solution and a known conductive polymer monomer can be used. In the electrolytic polymerization, any of a constant potential method, a constant current method, and an electric sweep method can be used. For example, the electrolytic polymerization is performed under the conditions of a current density of 0.01 to 20 mA / cm 2 and a reaction temperature of −70 to 80 ° C., preferably a current density of 0.1 to 2 mA / cm 2 and a reaction temperature of −40 to 40 ° C. It is preferable to carry out, and it is more preferable that the reaction temperature is −20 to 30 ° C.

前記線状体としては、巻く作業上に支障がないもので、水溶性でなければ特に限定されるものではない。前記線状体は、導電性高分子複合構造体の導電性高分子層に電圧を印加することが可能であることから、通電性を有する導線であることが好ましい。前記導線としては、補助電極として用いることができるので金属線であることが好ましく、省スペースのために金属製の細線であることがより好ましい。また、前記導線としては、電解質に対する耐腐食性の観点から、耐食性を有する導線であることが好ましく、貴金属若しくは耐食性を有する合金からなる金属線であることがより好ましい。   The linear body is not particularly limited as long as it does not hinder the winding operation and is not water-soluble. Since the linear body can apply a voltage to the conductive polymer layer of the conductive polymer composite structure, it is preferably a conducting wire having electrical conductivity. The conductive wire is preferably a metal wire because it can be used as an auxiliary electrode, and more preferably a thin metal wire for saving space. In addition, the lead wire is preferably a lead wire having corrosion resistance, and more preferably a metal wire made of a noble metal or an alloy having corrosion resistance, from the viewpoint of corrosion resistance to the electrolyte.

前記線状体の径は、特に限定されるものではないが、束ねられる導電性高分子複合構造体の本数や線状体の材質により適宜調整することができる。前記線状体が金属線である場合には、軽量化並びに省資源の観点から0.1mm以下であることが好ましい。前記線径は、例えば30〜100μmとすることができる。前記線径は、例えば30μmや50μmの金線を用いることができる。   The diameter of the linear body is not particularly limited, but can be appropriately adjusted depending on the number of conductive polymer composite structures to be bundled and the material of the linear body. When the linear body is a metal wire, it is preferably 0.1 mm or less from the viewpoint of weight reduction and resource saving. The said wire diameter can be 30-100 micrometers, for example. As the wire diameter, for example, a gold wire of 30 μm or 50 μm can be used.

図1の導電性高分子複合構造体束1は、長さ方向において導電性高分子複合構造体の全体に均一に結束する力がかかるように前記線状体が捲回されている。しかし、前記線状体は、導電性高分子層の全体に電圧を印加するための電極若しくは補助電極として用いられない場合には、例えば図2に示されているような補助金属線3、3’が結束されているときには、導電性高分子複合構造体束の中央付近で捲回されてもよい。なお、導電性高分子複合構造体束において、前記補助金属線は無くてもよい。   In the conductive polymer composite structure bundle 1 in FIG. 1, the linear bodies are wound so as to apply a uniform binding force to the entire conductive polymer composite structure in the length direction. However, when the linear body is not used as an electrode or an auxiliary electrode for applying a voltage to the entire conductive polymer layer, for example, the auxiliary metal wires 3 and 3 as shown in FIG. When 'is bound, it may be wound around the center of the conductive polymer composite structure bundle. In the conductive polymer composite structure bundle, the auxiliary metal wire may not be provided.

本発明の導電性高分子複合構造体束は、例えば、並列に4本配置して束ねても良く、導電性高分子複合構造体の使用本数が特に限定されるものではない。つまり、前記導電性高分子複合構造体は、必要な発生力に応じて約1000本などの100本以上の本数を用いることができる。導電性高分子複合構造体束は、円筒状、円柱状及び角柱状の形状の導電性高分子複合構造体を束ねて形成しても良い。   For example, four conductive polymer composite structure bundles of the present invention may be arranged and bundled in parallel, and the number of conductive polymer composite structures used is not particularly limited. That is, the conductive polymer composite structure can be used in a number of 100 or more, such as about 1000, depending on the required generation force. The conductive polymer composite structure bundle may be formed by bundling conductive polymer composite structures having a cylindrical shape, a columnar shape, and a prismatic shape.

また、本発明の導電性高分子複合構造体束は、前記線状体が内側となるように捲回されたイオン透過性の絶縁膜を備えた導電性高分子複合構造体束でもある。図3に示すように、導電性高分子複合構造体束1は、更にその外側に、イオン透過性の絶縁膜5で捲回される。前記導電性高分子複合構造体束がイオン透過性の絶縁膜を備えていることにより、前記絶縁膜がセパレータとしての機能を発揮するので、対極は前記絶縁膜を介して前記導電性高分子複合構造体束と近接した位置に設置することができる。従って、捲回された絶縁膜を備えた導電性高分子複合構造体束は、導電性高分子複合構造体束を作動部として用いたアクチュエータの小型化を図ることができる。   The conductive polymer composite structure bundle of the present invention is also a conductive polymer composite structure bundle provided with an ion-permeable insulating film wound so that the linear body is inside. As shown in FIG. 3, the conductive polymer composite structure bundle 1 is wound further on the outside by an ion-permeable insulating film 5. Since the conductive polymer composite structure bundle includes an ion-permeable insulating film, the insulating film exhibits a function as a separator. Therefore, the counter electrode is connected to the conductive polymer composite via the insulating film. It can be installed at a position close to the structure bundle. Therefore, the conductive polymer composite structure bundle provided with the wound insulating film can reduce the size of the actuator using the conductive polymer composite structure bundle as an operating portion.

前記絶縁膜は、特に限定されるものではないが、伸縮性があることが好ましく、電圧印可により導電性高分子複合構造体束を電解伸縮させるための電解液が水溶液である場合には耐水性を有することが好ましい。前記絶縁膜は、例えば、ビニロンなどのポリビニルアルコール系合成繊維またはポリエステル繊維を主とした不織布若しくは網目状体を用いることができる。また、前記絶縁膜の厚さは、前記導電性高分子複合構造体束の伸縮をするものでなければ特に限定されるものではない。   The insulating film is not particularly limited, but is preferably stretchable, and is water resistant when the electrolytic solution for electrostretching the conductive polymer composite structure bundle by voltage application is an aqueous solution. It is preferable to have. For the insulating film, for example, a polyvinyl alcohol synthetic fiber such as vinylon or a non-woven fabric or a net-like body mainly made of polyester fiber can be used. The thickness of the insulating film is not particularly limited as long as the conductive polymer composite structure bundle does not expand and contract.

前記絶縁膜は、対極が導電性高分子複合構造体束と直接接触して短絡が生じないように、導電性高分子複合構造体束の外側に捲回されれば、捲回方法、膜厚、捲付け位置が限定されるものではない。   If the insulating film is wound outside the conductive polymer composite structure bundle so that the counter electrode is in direct contact with the conductive polymer composite structure bundle and no short circuit occurs, the winding method, film thickness The brazing position is not limited.

また、本発明の導電性高分子複合構造体束は、前記線状体が内側となるように捲回されたイオン透過性の絶縁膜上に、電極線が捲回された導電性高分子複合構造体束でもある。前記電極線が前記絶縁膜上に捲回されることにより、導電性高分子複合構造体束を電解伸縮させる際の対極として前記電極線を用いた場合には、作動部である導電性高分子複合構造体束に極めて近接した位置に対極を形成することができ、省スペース化が図れ、特別な部材を必要としないので容易に対極の設置が図れる。   In addition, the conductive polymer composite structure bundle of the present invention includes a conductive polymer composite in which electrode wires are wound on an ion-permeable insulating film wound so that the linear body is inside. It is also a structure bundle. When the electrode wire is used as a counter electrode when the conductive polymer composite structure bundle is electrolytically expanded and contracted by winding the electrode wire on the insulating film, the conductive polymer that is an operating part The counter electrode can be formed at a position very close to the composite structure bundle, space can be saved, and no special member is required, so that the counter electrode can be easily installed.

前記の電極線が捲回された導電性高分子複合構造体束は、例えば、長さ25mm、外径0.25〜0.30mm、内径0.15mmのコイル状金属バネを螺旋状の導電性基体上にポリピロール層を備えた導電性高分子複合構造体を線状体により10本束ねた導電性高分子複合構造体束にビニロンとポリエステルからなる公知の不織布を捲回して包み、更にその外側に電極線である100μmの金線を巻き付けることにより得ることができる。前記電極線の線径は、上述のように100μmを例示したが、特に限定されるものではない。前記線径は、30〜100μmとすることができる。前記電極線の線径は、例えば30μmや50μmの金線を用いることができる。また、前記電極線は、通電性を有するものであれば特に限定されないが、上述の導電性基体として用いることができる導電率が10S/cm以上の金属を用いることができる。 The conductive polymer composite structure bundle in which the electrode wires are wound is, for example, a coiled metal spring having a length of 25 mm, an outer diameter of 0.25 to 0.30 mm, and an inner diameter of 0.15 mm. A known non-woven fabric made of vinylon and polyester is wrapped and wrapped in a conductive polymer composite structure bundle in which ten conductive polymer composite structures each having a polypyrrole layer on a substrate are bundled by a linear body, and further outside It can be obtained by winding a gold wire of 100 μm which is an electrode wire. The wire diameter of the electrode wire is exemplified as 100 μm as described above, but is not particularly limited. The said wire diameter can be 30-100 micrometers. As the wire diameter of the electrode wire, for example, a gold wire of 30 μm or 50 μm can be used. The electrode wire is not particularly limited as long as it has electrical conductivity, but a metal having a conductivity of 10 3 S / cm or more that can be used as the conductive substrate described above can be used.

前記導電性高分子複合構造体束を駆動させる方法は、前記導電性高分子複合構造体束と対極とを電解質を介する状態で設置し、前記導電性高分子複合構造体束と対極とに電圧を印加して、前記導電性高分子複合構造体束が電解伸縮することで、行うことができる。前記電解質は、特に限定されるものではなく、液状であってもよくゲル状であってもよい。また前記電解質は、前記導電性高分子複合構造体束を構成する導電性高分子にドープされたイオンと同種のイオンを含むことが好ましく、前記イオンが前記ドープされたイオンと同じイオン半径を有する事が電解伸縮の伸縮率を一定に維持するために更に好ましい。   In the method of driving the conductive polymer composite structure bundle, the conductive polymer composite structure bundle and the counter electrode are installed with an electrolyte interposed therebetween, and a voltage is applied to the conductive polymer composite structure bundle and the counter electrode. And the conductive polymer composite structure bundle is subjected to electrolytic expansion and contraction. The electrolyte is not particularly limited, and may be liquid or gelled. The electrolyte preferably includes ions of the same kind as ions doped in the conductive polymer constituting the conductive polymer composite structure bundle, and the ions have the same ionic radius as the doped ions. This is more preferable in order to maintain a constant expansion / contraction rate of electrolytic expansion / contraction.

(導電性高分子複合構造体束を用いた装置)
また、本発明は、上述の螺旋状の導電性基体上に導電性高分子層が形成された導電性高分子複合構造体を複数束ねた導電性高分子複合構造体束の外側に、螺旋状に捲回された線状体を備えた導電性高分子複合構造体束を押圧部に用いた視聴覚装置、加圧装置、握持装置、押出装置、折り曲げ装置、挟持装置、密着装置、または当接装置でもある。前記導電性高分子複合構造体束は、従来の押圧装置に比べて構造が簡単であり、しかも大きな発生力を生じることができることから、軽量であり、大きな発生力を生じることができるので、各装置の駆動部または押圧部として好適に用いることができる。
(Device using conductive polymer composite structure bundle)
In addition, the present invention provides a spiral-shaped outer surface of a conductive polymer composite structure bundle in which a plurality of conductive polymer composite structures each having a conductive polymer layer formed on the above-described spiral conductive substrate are bundled. An audio-visual device, a pressurizing device, a gripping device, an extruding device, a folding device, a clamping device, a close-contact device, or a contact device using a conductive polymer composite structure bundle having a linear body wound around It is also a contact device. Since the conductive polymer composite structure bundle has a simple structure as compared with a conventional pressing device and can generate a large generating force, it is lightweight and can generate a large generating force. It can be suitably used as a drive unit or a pressing unit of the apparatus.

前記導電性高分子複合構造体束は、押圧部が点字を形成する視覚障害者用の視聴覚装置、可撓性可変内視鏡の押圧部、二輪車用フロントフォークの押圧部、空気圧制御型の流体封入式防振装置における高周波用オリフィス通路の開口部を遮断せしめる押圧部、休止可能な気筒制御式エンジンの弁休止装置におけるバルブ軸端部を押圧するための押圧部、射出成形装置における板状部材を金型側に押し出して圧接させる押圧部、テレビカメラ、ビデオカメラ、デジタルカメラ等の撮像装置における撮像素子を前記レンズ座に向かって加圧する押圧部、クランプ機構を備えた情報再生機構におけるチャック爪端部を押圧することにより記録媒体の保持を解除する押圧部、電界駆動型の画像表示媒体における局所的に導電性基板に導通させるためのバイアス印加(接地も含む)用の押圧部、シールド工法用元押し装置における駆動させ推進方向に押圧する押圧部、画像形成装置における搬送手段に用いられる押圧部、板状部材の研磨装置におけるフィルム状の研磨部材を板状部材に圧接する押圧部として用いることができる。   The conductive polymer composite structure bundle includes an audiovisual device for a visually impaired person in which the pressing portion forms braille, a pressing portion of a flexible variable endoscope, a pressing portion of a front fork for a motorcycle, a pneumatic control type fluid A pressing portion that blocks an opening of a high-frequency orifice passage in a sealed vibration isolator, a pressing portion that presses a valve shaft end portion in a valve deactivation device of a cylinder control engine that can be deactivated, and a plate-like member in an injection molding apparatus A pressing part that pushes and presses the lens toward the mold side, a pressing part that presses an image sensor in an imaging device such as a television camera, a video camera, or a digital camera toward the lens seat, and a chuck claw in an information reproducing mechanism including a clamp mechanism A pressing portion for releasing the holding of the recording medium by pressing the end portion, for locally conducting to the conductive substrate in the electric field drive type image display medium Pressing part for bias application (including grounding), pressing part for driving in the main pushing device for shield method and pushing in the propulsion direction, pressing part used for conveying means in the image forming apparatus, film-like shape in plate member polishing apparatus The polishing member can be used as a pressing portion that presses the plate member.

また、前記導電性高分子複合構造体束は、電磁リレーにおける固定接点に接触する向きに可動ばね板を押圧する押圧部、NC工作機械等に組み込まれる減速比の大きい減速機構の押圧部、中空製品の製造装置における素管に当接させて押圧しスピニング加工して所定形状の中空部材を成形するための押圧部、円筒状物品の把持装置における板状把持部材と押圧部との間で円筒状物品を押圧して把持する押圧部、シリンダーブロック等に穿設した穿孔の漏れ量を検測する漏れ試験装置におけるマスキング板を押圧する押圧部、液状体を微量ずつ定量吐出するに用いて好適なチューブポンプにおける可撓性チューブを押圧する押圧部、原動機からの駆動力を所定の配分比で前輪および後輪に配分する駆動力配分装置における多板クラッチを所定の押圧力で押圧することにより原動機からの駆動
力を前記所定の押圧力に応じた配分比で前輪および後輪に伝達する押圧部、コイル挿入装置におけるプッシャ押圧ユニットの押圧部、粘着シール部品の剥離装置におけるシール部品の端部を該剥離紙から分離させるための押圧部、シート材の搬送張力を制御するダンサロール装置における前記係止部を押圧することにより前記支持アームを加圧する押圧部として用いることができる。
The conductive polymer composite structure bundle includes a pressing portion that presses the movable spring plate in a direction in contact with the fixed contact in the electromagnetic relay, a pressing portion of a reduction mechanism with a large reduction ratio incorporated in an NC machine tool, etc. A pressing portion for forming a hollow member of a predetermined shape by pressing and spinning by contacting an element tube in a product manufacturing apparatus, and a cylinder between a plate-shaped gripping member and a pressing portion in a cylindrical article gripping device Suitable for pressing a gripping part, pressing part for pressing a masking plate in a leak test device for measuring the leak amount of a perforation drilled in a cylinder block, etc. A multi-plate clutch in a driving force distribution device that distributes a driving force from a prime mover to a front wheel and a rear wheel at a predetermined distribution ratio. A pressing portion that transmits a driving force from the prime mover to the front wheels and the rear wheels by pressing with pressure, a pressing portion of a pusher pressing unit in a coil insertion device, and a peeling device for adhesive seal parts A pressing part for separating the end of the sealing part from the release paper, and a pressing part for pressing the support arm by pressing the locking part in the dancer roll device for controlling the conveying tension of the sheet material. Can do.

また、前記導電性高分子複合構造体束は、田植機の植付部における従動側クラッチ爪を駆動側クラッチ爪に押圧可能な押圧部、積層体を得るためのホットプレス装置における熱板の略中央部分を押圧する固定盤の押圧部、半導体装置のリード成形装置におけるリードの折曲部を形成するリード押圧部、ディスクトレイ位置検出機構におけるディスクトレイの位置を検出するための検出レバーを押圧する押圧部、画像の読み取りを行うフイルムキャリアにおけるフイルム圧着板を密着させる押圧部、地中集排水管の機能再生工法の施行装置における管壁に新たなストレーナ孔を穿孔するために穿孔錐を動作する押圧部として用いることができる。   The conductive polymer composite structure bundle is an abbreviation of a hot plate in a hot press apparatus for obtaining a pressing portion capable of pressing the driven side clutch pawl in the planting portion of the rice transplanter against the driving side clutch pawl. Pressing the pressing part of the fixed plate that presses the central part, the lead pressing part that forms the bent part of the lead in the lead molding device of the semiconductor device, and the detection lever for detecting the position of the disk tray in the disk tray position detection mechanism The pressing part, the pressing part that attaches the film crimping plate in the film carrier that reads the image, and the drilling cone is operated to drill a new strainer hole in the pipe wall in the enforcement device of the function regeneration method of the underground drainage pipe It can be used as a pressing part.

また、前記導電性高分子複合構造体束は、上記装置の押圧部の他にも、シャッター位置検出装置、ボーリングバーを備えた中ぐり加工装置、レーザ溶接装置、練り製品の押出装置、ビデオテープカセット、産業用車両のトランスミッション装置、板状体端部固定装置、コンクリート構造物の補強・補修材塗り装置、シートの折畳積層装置、排紙装置、移動体の駆動装置、プリンタ、電気回路遮断装置、温度検知ユニットを有する加熱装置、液晶表示装置、画像形成装置、記録装置、食パンスライサ、2軸同時締付工具、粉末成形装置、紙葉類処理装置、シームレスベルトの定着装置、光ファイバ接続装置、真空式プレス装置のシャッタ機構、像振れ補正装置、画像読取装置、媒体収納機構、ラベル貼付装置、孔版印刷装置、プレス加工装置、ワーク外周縁のばり抜き装置、ディスク装置、刃物取付構造、遊技機の入賞装置、ウェハ搬送容器装着装置、内装トリムの部分貼合用成形金型、練条機、クランプ装置、計量器、熱処理炉、オイルポンプ、折り曲げ加工装置、位置スイッチ付モータ、間仕切パネルの運搬装置、間仕切パネルの運搬装置、及びカムシャフト素材支持装置の押圧部に用いることもできる。   The conductive polymer composite structure bundle includes a shutter position detecting device, a boring device equipped with a boring bar, a laser welding device, a kneaded product extrusion device, a video tape cassette, in addition to the pressing portion of the device. , Industrial vehicle transmission device, plate-like body end fixing device, concrete structure reinforcement / repair material coating device, sheet folding and laminating device, paper discharge device, moving body drive device, printer, electric circuit interrupting device , Heating device having temperature detection unit, liquid crystal display device, image forming device, recording device, bread slicer, two-axis simultaneous tightening tool, powder forming device, paper sheet processing device, seamless belt fixing device, optical fiber connecting device , Shutter mechanism of vacuum press device, image shake correction device, image reading device, medium storage mechanism, label sticking device, stencil printing device, press working device, Deburring device for outer periphery of disc, disc device, blade mounting structure, award winning device for game machine, wafer transfer container mounting device, mold for partial bonding of interior trim, drawing machine, clamping device, measuring instrument, heat treatment It can also be used for a pressing portion of a furnace, an oil pump, a bending device, a motor with a position switch, a partition panel transport device, a partition panel transport device, and a camshaft material support device.

前記導電性高分子複合構造体束で作動部に用いたアクチュエータは、前記導電性高分子複合構造体束が簡単な構造であるために軽量化が可能であり、押圧する力を容易に発生することができることから、前記アクチュエータを押圧部に用いた加圧装置、握持装置、押出装置、折り曲げ装置、挟持装置、密着装置、及び当接装置の押圧部に好適に用いることができる。   The actuator used in the operating portion of the conductive polymer composite structure bundle can be reduced in weight because the conductive polymer composite structure bundle has a simple structure, and easily generates a pressing force. Therefore, it can be suitably used for the pressing portion of the pressing device, the gripping device, the pushing device, the bending device, the clamping device, the contact device, and the contact device using the actuator as the pressing portion.

また、本発明は、上述の導電性高分子複合構造体束を駆動部に用いた位置決め装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節装置、調整装置、誘導装置、または関節装置でもある。前記導電性高分子複合構造体束を用いた駆動部は、従来の駆動装置に比べて構造が簡単であり、しかも大きな発生力を生じることができることから、軽量であり、大きな発生力を生じることができるので、各装置の駆動部として好適に用いることができる   Further, the present invention provides a positioning device, posture control device, lifting device, transport device, moving device, adjusting device, adjusting device, guiding device, or joint device using the above-described conductive polymer composite structure bundle as a drive unit. But there is. The drive unit using the conductive polymer composite structure bundle has a simple structure as compared with a conventional drive unit and can generate a large generation force, and thus is lightweight and generates a large generation force. Therefore, it can be suitably used as a drive unit for each device.

前記導電性高分子複合構造体束で作動部に用いたアクチュエータは、OA機器、アンテナ、ベッドや椅子等の人を乗せる装置、医療機器、エンジン、光学機器、固定具、サイドトリマ、車両、昇降器械、食品加工装置、清掃装置、測定機器、検査機器、制御機器、工作機械、加工機械、電子機器、電子顕微鏡、電気かみそり、電動歯ブラシ、マニピュレータ、マスト、遊戯装置、アミューズメント機器、乗車用シミュレーション装置、車両乗員の押さえ装置及び航空機用付属装備展張装置において直線的な駆動力を発生する駆動部若しくは円弧部からなるトラック型の軌道を移動するための駆動力を発生する駆動部として好適に用いることができる。すなわち、本発明のアクチュエータは、駆動部として用いる場合において、簡単な装置構成であり、押圧する力を容易に発生することができることから、位置決め装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節装置、調整装置、誘導装置、または関節装置の駆動部として好適に用いることができる。   Actuators used in the working part of the conductive polymer composite structure bundle are OA devices, antennas, devices for placing people such as beds and chairs, medical devices, engines, optical devices, fixtures, side trimmers, vehicles, lifting Instruments, food processing equipment, cleaning equipment, measuring equipment, inspection equipment, control equipment, machine tools, processing equipment, electronic equipment, electron microscopes, electric razors, electric toothbrushes, manipulators, masts, amusement equipment, amusement equipment, riding simulation equipment It is preferably used as a drive unit that generates a driving force for moving a track-type track composed of a drive unit that generates a linear drive force or a circular arc part in a vehicle occupant pressing device and an aircraft accessory equipment extension device. Can do. That is, the actuator of the present invention has a simple device configuration when used as a drive unit, and can easily generate a pressing force. Therefore, the positioning device, the posture control device, the lifting device, the conveying device, and the moving device are used. It can be suitably used as a drive unit for an adjustment device, an adjustment device, a guidance device, or a joint device.

本発明の導電性高分子複合構造体束は、各導電性高分子複合構造体のたわみを防止することができ、前記導電性高分子複合構造体束が本来有する発生力を発揮することができ、しかも従来の駆動装置または押圧装置に比べて構造が簡単であり、しかも大きな発生力を生じることができることから、軽量であり、大きな発生力を生じることができるので、各装置の押圧部または駆動部として好適に用いることができる。   The conductive polymer composite structure bundle of the present invention can prevent the deflection of each conductive polymer composite structure, and can exhibit the inherent power of the conductive polymer composite structure bundle. In addition, since the structure is simpler than that of a conventional driving device or pressing device and a large generating force can be generated, the weight is light and a large generating force can be generated. It can be suitably used as a part.

本発明の導電性高分子複合構造体束についての一実施態様例の部分拡大斜視図。The partial expansion perspective view of the example of one embodiment about the conductive polymer composite structure bundle | flux of this invention. 図1の導電性高分子複合構造体束に用いられる円筒状の導電性高分子複合構造体の斜視図。The perspective view of the cylindrical conductive polymer composite structure used for the conductive polymer composite structure bundle of FIG. 更に外側に、捲回された絶縁膜を備えた図1の導電性高分子複合構造体束の部分拡大斜視図。FIG. 2 is a partially enlarged perspective view of the conductive polymer composite structure bundle of FIG. 1 provided with a wound insulating film on the outside.

符号の説明Explanation of symbols

1 導電性高分子複合構造体束
2 導電性高分子複合構造体
3,3’ 補助金属線
4 線状体
5 絶縁膜

DESCRIPTION OF SYMBOLS 1 Conductive polymer composite structure bundle 2 Conductive polymer composite structure 3, 3 'Auxiliary metal wire 4 Linear body 5 Insulating film

Claims (13)

螺旋状の導電性基体上に導電性高分子層が形成された導電性高分子複合構造体を複数束ねた導電性高分子複合構造体束の外側に、螺旋状に捲回された線状体を備え
前記線状体が、電極又は補助電極である導電性高分子複合構造体束。
A linear body spirally wound outside the conductive polymer composite structure bundle in which a plurality of conductive polymer composite structures having a conductive polymer layer formed on a spiral conductive substrate are bundled equipped with a,
A conductive polymer composite structure bundle in which the linear body is an electrode or an auxiliary electrode .
前記線状体が通電可能な導線である請求項1に記載の導電性高分子複合構造体束。   The conductive polymer composite structure bundle according to claim 1, wherein the linear body is a conductive wire that can be energized. 前記線状体が金属導線である請求項1又は2に記載の導電性高分子複合構造体束。 Conductive polymer composite structures bundle according to claim 1 or 2, wherein the linear body is a metal wire. 前記線状体が内側となるように捲回されたイオン透過性の絶縁膜を備えた請求項1〜3のいずれかに記載の導電性高分子複合構造体束。 The conductive polymer composite structure bundle according to any one of claims 1 to 3, further comprising an ion-permeable insulating film wound so that the linear body is inside. 前記絶縁膜が不織布である請求項4に記載の導電性高分子複合構造体束。 The conductive polymer composite structure bundle according to claim 4, wherein the insulating film is a nonwoven fabric. 前記絶縁膜上に電極線が捲回された請求項4又は5に記載の導電性高分子複合構造体束。 The conductive polymer composite structure bundle according to claim 4 or 5 , wherein an electrode wire is wound on the insulating film. 前記電極線が、対極である請求項6に記載の導電性高分子複合構造体束。The conductive polymer composite structure bundle according to claim 6, wherein the electrode wire is a counter electrode. 前記導電性高分子複合構造体が円筒状またはチューブ状である請求項1〜7のいずれかに記載の導電性高分子複合構造体束。 The conductive polymer composite structure bundle according to any one of claims 1 to 7, wherein the conductive polymer composite structure has a cylindrical shape or a tube shape. 前記導電性基体を作用極とし、
前記導電性基体と、前記線状体に電圧を印加することにより、請求項1〜8のいずれかに記載の導電性高分子複合構造体束を電解伸縮させる導電性高分子複合構造体束の駆動方法。
The conductive substrate as a working electrode,
A conductive polymer composite structure bundle for electrolytically expanding and contracting the conductive polymer composite structure bundle according to any one of claims 1 to 8, by applying a voltage to the conductive substrate and the linear body . Driving method.
前記導電性基体を作用極とし、
前記導電性基体と、前記電極線に電圧を印加することにより、請求項6〜8のいずれかに記載の導電性高分子複合構造体束を電解伸縮させる導電性高分子複合構造体束の駆動方法。
The conductive substrate as a working electrode,
Driving a conductive polymer composite structure bundle that causes the conductive polymer composite structure bundle according to any one of claims 6 to 8 to be electrostretched by applying a voltage to the conductive substrate and the electrode wire. Method.
請求項1〜8のいずれかに記載の導電性高分子複合構造体束を作動部として用いたアクチュエータ。 An actuator using the conductive polymer composite structure bundle according to any one of claims 1 to 8 as an operating portion. 請求項1〜8のいずれかに記載の導電性高分子複合構造体束を押圧部に用いた加圧装置、握持装置、押出装置、折り曲げ装置、挟持装置、密着装置、または当接装置。 A pressurizing device, a gripping device, an extruding device, a bending device, a clamping device, a close-contact device, or a contact device using the conductive polymer composite structure bundle according to any one of claims 1 to 8 as a pressing portion. 請求項1〜8のいずれかに記載の導電性高分子複合構造体を駆動部に用いた位置決め装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節装置、調整装置、誘導装置、または関節装置。
A positioning device, a posture control device, a lifting device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device using the conductive polymer composite structure according to any one of claims 1 to 8 or Joint device.
JP2004265560A 2003-09-12 2004-09-13 Conductive polymer composite structure bundle, driving method thereof and use thereof Expired - Fee Related JP4717401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265560A JP4717401B2 (en) 2003-09-12 2004-09-13 Conductive polymer composite structure bundle, driving method thereof and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003321681 2003-09-12
JP2003321681 2003-09-12
JP2004265560A JP4717401B2 (en) 2003-09-12 2004-09-13 Conductive polymer composite structure bundle, driving method thereof and use thereof

Publications (2)

Publication Number Publication Date
JP2005110494A JP2005110494A (en) 2005-04-21
JP4717401B2 true JP4717401B2 (en) 2011-07-06

Family

ID=34554392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265560A Expired - Fee Related JP4717401B2 (en) 2003-09-12 2004-09-13 Conductive polymer composite structure bundle, driving method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP4717401B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176412A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Actuator film material, actuator film, and actuator using it
JP5568993B2 (en) * 2010-01-08 2014-08-13 オムロン株式会社 Static induction generator
US10935009B2 (en) 2016-12-08 2021-03-02 Lintec Of America, Inc. Artificial muscle actuators

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779026A (en) * 1993-06-30 1995-03-20 Tokin Corp Piezoelectric actuator and its manufacture
JP2002111089A (en) * 2000-07-24 2002-04-12 Omron Corp Method for manufacturing actuator and strain element
JP2003518752A (en) * 1999-12-21 2003-06-10 1...リミテッド Electro-active device
JP2004512885A (en) * 2000-11-02 2004-04-30 ダンフォス アクチーセルスカブ Actuator and method of manufacturing the same
JP2005083466A (en) * 2003-09-08 2005-03-31 Honda Motor Co Ltd Polymer actuator and clutch device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779026A (en) * 1993-06-30 1995-03-20 Tokin Corp Piezoelectric actuator and its manufacture
JP2003518752A (en) * 1999-12-21 2003-06-10 1...リミテッド Electro-active device
JP2002111089A (en) * 2000-07-24 2002-04-12 Omron Corp Method for manufacturing actuator and strain element
JP2004512885A (en) * 2000-11-02 2004-04-30 ダンフォス アクチーセルスカブ Actuator and method of manufacturing the same
JP2005083466A (en) * 2003-09-08 2005-03-31 Honda Motor Co Ltd Polymer actuator and clutch device

Also Published As

Publication number Publication date
JP2005110494A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
EP0957823B1 (en) Aneurysm patch apparatus
US7943240B2 (en) Conductive polymer composite structure
JP5937044B2 (en) Transducer, actuator, and method of manufacturing transducer
US8237324B2 (en) Bistable electroactive polymers
JP5714200B2 (en) Improved electroactive polymer
US6508775B2 (en) High output therapeutic ultrasound transducer
US11041485B2 (en) Soft actuator using thermoelectric effect
US7064473B2 (en) Actuator film material, actuator film and actuator using the same
US20080226878A1 (en) Dielectric composite and a method of manufacturing a dielectric composite
JP2006520180A (en) Rolled electroactive polymer
KR101967214B1 (en) Apparatus for manufacturing shape memory alloy spring continuously, method of manufacturing shape memory alloy spring continuoulsy and shape memory alloy spring manufactured thereby
JP4717401B2 (en) Conductive polymer composite structure bundle, driving method thereof and use thereof
JP4447343B2 (en) Drive mechanism and operating method thereof
Levard et al. Core-free rolled actuators for Braille displays using P (VDF–TrFE–CFE)
CN114343543A (en) Flexible driver and soft crawling robot
WO2005027333A1 (en) Conductive polymer composite structural body bundle
US20090184605A1 (en) Cnt-based actuator, lens module using same and camera module using same
JP2005006490A (en) Actuator
US20160199976A1 (en) Dry Adhesives for Enhancing Ground Reaction Forces Substantially Beyond Friction
JP2005111245A (en) Cylindrical conductive polymer molding, its manufacturing method, actuator using the same, and its application
JPH05261061A (en) Microactuator
Di Spigna et al. Application of EAP materials toward a refreshable Braille display
JP2022549203A (en) Apparatus for propulsion and steering of microstructures
Mineta et al. Batch fabricated flat winding shape memory alloy actuator for active catheter
WO2004075389A1 (en) Actuator

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees