WO2005027241A2 - Batteriepack mit mitteln zur wärmeableitung - Google Patents

Batteriepack mit mitteln zur wärmeableitung Download PDF

Info

Publication number
WO2005027241A2
WO2005027241A2 PCT/DE2004/001348 DE2004001348W WO2005027241A2 WO 2005027241 A2 WO2005027241 A2 WO 2005027241A2 DE 2004001348 W DE2004001348 W DE 2004001348W WO 2005027241 A2 WO2005027241 A2 WO 2005027241A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
heat
housing
battery cells
battery
Prior art date
Application number
PCT/DE2004/001348
Other languages
English (en)
French (fr)
Other versions
WO2005027241A3 (de
Inventor
Rainer Glauning
Stephan Keller
Wolf Matthias
Marcin Rejman
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP04738795A priority Critical patent/EP1658654A2/de
Priority to US10/560,057 priority patent/US7597993B2/en
Priority to CN2004800240917A priority patent/CN1839510B/zh
Publication of WO2005027241A2 publication Critical patent/WO2005027241A2/de
Publication of WO2005027241A3 publication Critical patent/WO2005027241A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • H01M10/6235Power tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack with means for heat dissipation from a plurality of battery cells arranged in a housing.
  • Rechargeable battery packs are used, for example, to operate power tools. Both during the operation of a battery pack, that is to say during its discharging process, and during the charging process, the currents flowing through the battery cells cause the battery cells to become very hot. So that the temperature of the battery cells does not exceed a maximum permissible threshold during the charging process - which would lead to the destruction of the battery cells - the charging current must be reduced, with the result that the charging time for the battery pack is extended. In order to achieve a higher charging current and, consequently, a shorter charging time for the battery pack, overheating of the battery pack must be avoided. According to the prior art, measures are therefore taken to remove heat from the battery cells from the battery pack.
  • a ventilation system for the battery pack is provided for this purpose, which allows air to flow through the interior of the housing of the battery pack.
  • air inlet and outlet openings are provided in the housing of the battery pack.
  • the disadvantage here is that when the air flows through the housing of the battery pack, dirt particles can also get into the interior of the battery pack. Contamination inside the battery pack can, however, change heat transfers between the battery cells and also impair the electrical function of the battery pack.
  • the ⁇ parts inside the battery pack form a high air resistance, which affects the effectiveness of the heat dissipation.
  • the invention has for its object to provide a battery pack with means for heat dissipation, which have the highest possible heat dissipating effect and also do not affect the function of the battery pack.
  • the wall of the housing surrounding the battery cells of the battery pack is shaped such that it forms at least one bushing for a heat-dissipating medium which is sealed off from the interior of the housing.
  • the heat-dissipating medium is not passed through the interior of the housing of the battery pack. It is thus avoided that dirt can penetrate into the interior of the battery pack and impair its electrical function.
  • the bushings separated from the inside of the battery pack form a very low flow resistance for the heat-dissipating medium flowing through, which results in a high cooling effect.
  • the heat dissipation can be optimized in that the at least one bushing is shaped in such a way that its wall bears positively on the battery cells adjacent to it.
  • a particularly high heat dissipation is possible in that the wall regions forming the at least one bushing consist at least in part of a heat-conducting material.
  • FIG. 1 is a plan view of a battery pack with battery cells located therein
  • Fig. 2 shows a cross section AA through the battery pack, the bushing for the heat-dissipating medium being a separate part inserted into the housing and Fig. 3 shows a cross section through a battery pack, in which the implementation is formed by two housing parts.
  • FIG. 1 shows a plan view of a battery pack in which a plurality of cylindrical battery cells 2 are arranged in a housing 1. In the drawn position of the battery pack, the longitudinal axes of the cylindrical battery cells 2 extend perpendicular to the plane of the drawing.
  • the housing 1 is provided with two bushings 3 and 4 through which a heat-dissipating medium, for example air, can be passed. It is also possible to provide only one bushing or more than two bushings.
  • the bushings 3 and 4 are formed by a corresponding shaping of the housing 1 of the battery pack in such a way that they are completely closed off from the interior of the housing 1.
  • a heat-dissipating medium passed through bushings 3 and 4 cannot penetrate into the interior of the battery pack, with the result that no dirt particles can get into the housing together with the heat-dissipating medium.
  • the smooth wall of the bushings 3 and 4 ensures that the heat-dissipating medium is guided in a fluidically favorable manner, which leads to a very good cooling effect.
  • the heat-dissipating medium can be transported by natural convection or by convection supported by a blower.
  • a blower can for example be part of the battery pack or the charger for the battery pack or the machine in which the battery pack is inserted.
  • the bushings 3, 4 extend parallel to the longitudinal axes of the cylindrical battery cells 2. This position of the bushings 3 and 4 is particularly favorable because the bushings 3 and 4 are arranged in the gussets between the individual battery cells 2. This has the advantage that the walls 5 and 6 of the bushings 3 and 4 can be brought into contact with the adjacent battery cells 2 over a large area in a heat-conducting manner.
  • the bushings can also be arranged transversely or diagonally to the battery cells and also have curved courses. How 1, the walls 5 and 6 of the bushings 3 and 4 are preferably shaped such that they bear positively on the battery cells 2 adjacent to them. If the walls 5 and 6 of the bushings 3 and 4 consist of a particularly good heat-conducting material (e.g. metal), the heat dissipation effect is particularly high.
  • the housing 1 of the battery pack consists of an upper housing shell 11 and a lower housing shell 12.
  • the walls 5 and 6 of the bushings 3 and 4 are made by separate parts 5 inserted between the two housing shells 11 and 12 , 6 formed.
  • these housing parts 5, 6 are set back with respect to the upper housing shell 11 and lower housing shell 12, so that contact by the particularly good heat-conducting material of the walls 5 or 6 is prevented by a user.
  • the walls of the bushings 3, 4 are molded directly onto the housing shells 11, 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Eine hohe Wärmeableitwirkung für einen Batteriepack, der mehrere in einem Gehäuse (1) angeordnete Batteriezellen (2) aufweist, entsteht dadurch, dass die die Batteriezellen (2) umgebende Wandung des Gehäuses (1) so geformt ist, dass sie mindestens eine gegenüber dem Innenraum des Gehäuses (1) abgeschlossene Durchführung (3, 4) für ein wärmeableitendes Medium bildet.

Description

Batteriepack mit Mitteln zur Wärmeableitung
Stand der Technik
Die vorliegende Erfindung betrifft einen Batteriepack mit Mitteln zur Wärmeableitung von mehreren in einem Gehäuse angeordneten Batteriezellen.
Wiederaufladbare Batteriepacks werden beispielsweise für den Betrieb von Elektrowerkzeugen eingesetzt. Sowohl während des Betriebs eines Batteriepacks, also während dessen Entladevorgang, als auch beim Aufladevorgang bewirken die durch die Batteriezellen fließenden Ströme eine starke Erwärmung der Batteriezellen. Damit beim Ladevorgang die Temperatur der Batteriezellen eine höchst zulässige Schwelle nicht überschreitet - was zu einer Zerstörung der Batteriezellen führen würde - muss der Ladestrom verringert werden mit der Folge, dass sich die Ladezeit für den Batteriepack verlängert. Um einen höheren Ladestrom und demzufolge eine kürzere Ladezeit des Batteriepacks zu erzielen, muss eine zu starke Aufwärmung des Batteriepacl s vermieden werden. Gemäß dem Stand der Technik werden deshalb Maßnahmen ergriffen, um Wärme der Batteriezellen aus dem Batteriepack abzuleiten. Beispielsweise wird gemäß der EP 940 864 Bl zu diesem Zweck ein Belüftungssystem für den Batteriepack vorgesehen, welches Luft durch das Innere des Gehäuses des Batteriepacks strömen lässt. Dazu sind Lufteintritts- und Luftaustrittsöffnungen in dem Gehäuse des Batteriepacks vorgesehen. Nachteilig dabei ist, dass mit dem Durchströmen der Luft durch das Gehäuse des Batteriepacks auch Schmutzpartikel in das Innere des Batteriepacks gelangen können. Eine Verschmutzung im Inneren des Batteriepacks kann allerdings Wärmeübergänge zwischen den Batteriezellen verändern und zudem auch die elektrische Funktion des Batteriepacks beeinträchtigen. Die im Inneren des Batteriepacks befindlicheα Teile bilden einen hohen Luftwiderstand, durch den die Wirksamkeit der Wärmeableitung beeinträchtigt wird.
Der Erfindung liegt die Aufgabe zugrunde, einen Batteriepack mit Mitteln zur Wärmeableitung anzugeben, welche eine möglichst hohe wärmeableitende Wirkung haben und außerdem die Funktion des Batteriepacks nicht beeinträchtigen.
Vorteile der Erfindung Die genannte Aufgabe wird mit den Merkmalen des Anspruchs 1 dadurch gelöst, dass die die Batteriezellen des Batteriepacks umgebende Wandung des Gehäuses so geformt ist, dass sie mindestens eine gegenüber dem Innenraum des Gehäuses abgeschlossene Durchführung für ein wärmeableitendes Medium bildet. Gemäß der Erfindung wird also das wärmeableitende Medium nicht durch das Innere des Gehäuses des Batteriepacks geführt. Somit wird veπnieden, dass Schmutz in das Innere des Batteriepacks eindringen und dessen elektrische Funktion beeinträchtigen kann. Außerdem bilden die vom Inneren des Batteriepacks abgetrennten Durchführungen einen sehr geringen Strömungswiderstand für das durchflutende wärmeableitende Medium, wodurch eine hohe Kühlwirkung entsteht.
Vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.
Die Wärmeableitung kann dadurch optimiert werden, dass die mindestens eine Durchführung so geformt ist, dass deren Wand formschlüssig an den zu ihr benachbarten Batteriezellen anliegt. Eine besonders hohe Wärmeableitung wird dadurch möglich, dass die die mindestens eine Durchführung bildenden Wandbereiche zumindest zum Teil aus einem wärmeleitenden Material bestehen.
Es ist zweckmäßig die aus einem wärmeleitenden Material bestehenden Wandbereiche der mindestens einen Durchführung gegenüber den äußeren Wandbereichen des Gehäuses zurückzuversetzen, so dass eine Berührung des wärmeleitenden Materials durch einen Benutzer verhindert wird.
Zeichnung
An Hand mehrer in der Zeichnung dargestellter Ausführungsbeispiele wird nachfolgend die Erfindung näher erläutert. Es zeigen:
Fig. 1 eine Draufsicht auf einen Batteriepack mit darin befindlichen Batteriezellen,
Fig. 2 einen Querschnitt A-A durch den Batteriepack, wobei die Durchführung für das wärmeableitende Medium ein eigenes in das Gehäuse eingesetztes Teil ist und Fig. 3 einen Querschnitt durch einen Batteriepack, bei dem die Durchführung durch zwei Gehäuseteile gebildet wird.
Beschreibung von Ausführungsbeispielen
Die Fig. 1 zeigt eine Draufsicht auf einen Batteriepack, bei dem in einem Gehäuse 1 mehrere zylinderförmige Batteriezellen 2 angeordnet sind. In der gezeichneten Lage des Batteriepacks erstrecken sich die Längsachsen der zylinderförmigen Batteriezellen 2 senkrecht zur Zeichenebene.
Bei dem in der Fig. 1 dargestellten Ausführungsbeispiel ist das Gehäuse 1 mit zwei Durchführungen 3 und 4 versehen, durch die ein wärmeableitendes Medium, beispielsweise Luft, hindurchgeleitet werden kann. Es kann auch nur eine Durchführung bzw. auch mehr als zwei Durchführungen vorgesehen werden. Die Durchführungen 3 und 4 werden durch eine entsprechende Formung des Gehäuses 1 des Batteriepacks so gebildet, dass sie gegenüber dem Innenraum des Gehäuses 1 vollständig abgeschlossen sind. Somit kann ein durch die Durchführungen 3 und 4 durchgeleitetes wärmeableitendes Medium nicht in das Innere des Batteriepacks eindringen mit der Folge, dass auch keine Schmutzpartikel zusammen mit dem wärmeableitenden Medium in das Gehäuse gelangen können. Die glatte Wandung der Durchführungen 3 und 4 gewährleistet eine strömungstechnisch günstige Führung des wärmeableitenden Mediums, was zu einer sehr guten Kühlwirkung führt. Der Transport des wärmeableitenden Mediums kann durch natürliche Konvektion oder durch mittels eines Gebläses unterstützte Konvektion erfolgen. Ein solches Gebläse kann beispielsweise Bestandteil des Batteriepacks oder des Ladegerätes für den Batteriepack oder der Maschine, in die der Batteriepack eingesetzt wird, sein.
Wie auch der in der Fig. 2 dargestellte Querschnitt A-A durch den Batteriepack zeigt, erstrecken sich die Durchführungen 3, 4 parallel zu den Längsachsen der zylinderförmig ausgebildeten Batteriezellen 2. Diese Lage der Durchführungen 3 und 4 ist besonders günstig, weil die Durchführungen 3 und 4 in den Zwickeln zwischen den einzelnen Batteriezellen 2 angeordnet sind. Dies hat den Vorteil, dass die Wandungen 5 und 6 der Durchführungen 3 und 4 großflächig wärmeleitend mit den benachbarten Batteriezellen 2 in Kontakt gebracht werden können. Die Durchführungen können aber auch quer oder diagonal zu den Batteriezellen angeordnet sein und auch gekrümmte Verläufe haben. Wie insbesondere der Fig. 1 zu entnehmen ist, sind die Wandungen 5 und 6 der Durchführungen 3 und 4 vorzugsweise so geformt, dass sie formschlüssig an dem zu ihr benachbarten Batteriezellen 2 anliegen. Wenn nun die Wände 5 und 6 der Durchführungen 3 und 4 aus einem besonders gut wärmeleitenden Material (z. B. Metall) bestehen, ist die Wärmeableitwirkung besonders hoch.
Bei dem in der Fig. 2 dargestellten Ausführungsbeispiel besteht das Gehäuse 1 des Batteriepacks aus einer oberen Gehäuseschale 11 und einer unteren Gehäuseschale 12. Die Wände 5 bzw. 6 der Durchführungen 3 und 4 werden durch eigene zwischen die beiden Gehäuseschalen 11 und 12 eingesetzte Teile 5, 6 gebildet. Wie das Ausführungsbeispiel in Fig. 2 zeigt sind diese Gehäuseteile 5, 6 gegenüber der oberen Gehäuseschale 11 und unteren Gehäuseschale 12 zurückversetzt, so dass eine Berührung des besonders gut wärmeleitenden Materials der Wände 5 bzw. 6 durch einen Benutzer verhindert wird.
Bei einem weiteren in der Fig. 3 dargestellten Ausführungsbeispiel sind die Wände der Durchführungen 3, 4 direkt an die Gehäuseschalen 11, 12 angeformt.

Claims

Ansprüche
1. Batteriepack mit Mitteln zur Wärmeableitung von mehreren in einem Gehäuse (1) angeordneten Batteriezellen (2), dadurch gekennzeichnet, dass die die Batteriezellen (2) umgebende Wandung des Gehäuses (1) so geformt ist, dass sie mindestens eine gegenüber dem Innenraum des Gehäuses (1) abgeschlossene Durchführung (3, 4) für ein wärmeableitendes Medium bildet.
2. Batteriepack nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Durchführung (3, 4) so geformt ist, dass deren Wand (5, 6) formschlüssig an den zu ihr benachbarten Batteriezellen (2) anliegt.
3. Batteriepack nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die die mindestens eine Durchführung (3, 4) bildenden Wandbereiche (5, 6) zumindest zum Teil aus einem wärmeleitenden Material bestehen.
4. Batteriepack nach Anspruch 3, dadurch gekennzeichnet, dass die aus einem wärmeleitenden Material bestehenden Wandbereiche (5, 6) der mindestens einen Durchführung (3, 4) soweit gegenüber den äußeren Wandbereichen (11, 12) des Gehäuses (1) zurückversetzt sind, dass eine Berührung des wärmeleitenden Materials durch einen Benutzer verhindert wird.
PCT/DE2004/001348 2003-08-22 2004-06-25 Batteriepack mit mitteln zur wärmeableitung WO2005027241A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04738795A EP1658654A2 (de) 2003-08-22 2004-06-25 Batteriepack mit mitteln zur wärmeableitung
US10/560,057 US7597993B2 (en) 2003-08-22 2004-06-25 Battery pack comprising heat-diffusing means
CN2004800240917A CN1839510B (zh) 2003-08-22 2004-06-25 带有散热装置的电池块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10338654.8 2003-08-22
DE2003138654 DE10338654A1 (de) 2003-08-22 2003-08-22 Batteriepack mit Mitteln zur Wärmeableitung

Publications (2)

Publication Number Publication Date
WO2005027241A2 true WO2005027241A2 (de) 2005-03-24
WO2005027241A3 WO2005027241A3 (de) 2005-12-01

Family

ID=34201867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001348 WO2005027241A2 (de) 2003-08-22 2004-06-25 Batteriepack mit mitteln zur wärmeableitung

Country Status (5)

Country Link
US (1) US7597993B2 (de)
EP (1) EP1658654A2 (de)
CN (1) CN1839510B (de)
DE (1) DE10338654A1 (de)
WO (1) WO2005027241A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449406B (zh) * 2006-05-17 2011-06-01 丰田自动车株式会社 电池组以及车辆
US11670808B2 (en) 2019-12-03 2023-06-06 Milwaukee Electric Tool Corporation Charger and charger system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820053B (zh) * 2005-12-27 2012-12-19 株式会社Lg化学 电池组间隔件
KR100886571B1 (ko) 2006-08-07 2009-03-05 주식회사 엘지화학 전지팩 케이스
DE102007024870A1 (de) 2007-05-29 2008-12-04 Robert Bosch Gmbh Energiespeichermodul sowie Elektrogerät mit einem Energiespeichermodul
DE102007024869B4 (de) 2007-05-29 2021-05-06 Robert Bosch Gmbh Energiespeichermodul sowie Elektrogerät mit mindestens einem Energiespeichermodul
DE102008011508A1 (de) * 2008-02-22 2009-08-27 Volkswagen Ag Energiespeicher sowie Verfahren zur Herstellung des Energiespeichers
DE102009004543A1 (de) * 2009-01-14 2010-07-15 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Spannungsversorgung eines Kraftfahrzeugs mit optimierter Wärmeabführung
DE102009006080A1 (de) * 2009-01-26 2010-07-29 Behr Gmbh & Co. Kg Kühlvorrichtung für eine galvanische Zelle
JP2011049012A (ja) * 2009-08-26 2011-03-10 Sanyo Electric Co Ltd バッテリパック
DE102012209302A1 (de) 2012-06-01 2013-12-05 Robert Bosch Gmbh Kühlmittelverteilsystem
CN205609608U (zh) 2012-06-12 2016-09-28 米沃奇电动工具公司 电池组
EP3224878B1 (de) 2014-11-26 2023-03-08 Techtronic Industries Co., Ltd. Batteriepack
CN106450566A (zh) * 2016-09-20 2017-02-22 广东工业大学 一种具有防灾害系统的动力电池模组
JP2020095777A (ja) * 2017-03-31 2020-06-18 三洋電機株式会社 電池パック
CN110034252A (zh) 2018-01-11 2019-07-19 开利公司 电池温度控制
CN108899442A (zh) * 2018-06-09 2018-11-27 深圳市逸尘运动科技有限公司 动力锂电池支架

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2638862A1 (de) * 1976-08-28 1978-03-09 Bosch Gmbh Robert Verfahren und vorrichtung zum beheizen der fahrgastzelle eines elektrofahrzeuges
EP0940864A2 (de) * 1998-03-05 1999-09-08 Black & Decker Inc. Kühlsystem für Batteriesatz
EP1035599A1 (de) * 1999-03-12 2000-09-13 Toshiba Battery Co., Ltd. Batteriesatz und Kraftbetriebenes Werkzeug
US6566005B1 (en) * 1999-11-10 2003-05-20 Makita Corporation Battery pack with an improved cooling structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489792A (en) * 1981-05-28 1984-12-25 Fahim Atef E F Hammer drill adapter
US5526404A (en) * 1991-10-10 1996-06-11 Space Systems/Loral, Inc. Worldwide satellite telephone system and a network coordinating gateway for allocating satellite and terrestrial gateway resources
US5511912A (en) * 1994-09-19 1996-04-30 Ellerbrock; Brian E. Hand tool attachment
US6004689A (en) * 1995-09-27 1999-12-21 Bolder Technologies Corporation Battery case
GB0312178D0 (en) 2003-05-28 2003-07-02 Dix Robert J Adapter for rotary hammer action drills

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2638862A1 (de) * 1976-08-28 1978-03-09 Bosch Gmbh Robert Verfahren und vorrichtung zum beheizen der fahrgastzelle eines elektrofahrzeuges
EP0940864A2 (de) * 1998-03-05 1999-09-08 Black & Decker Inc. Kühlsystem für Batteriesatz
EP1035599A1 (de) * 1999-03-12 2000-09-13 Toshiba Battery Co., Ltd. Batteriesatz und Kraftbetriebenes Werkzeug
US6566005B1 (en) * 1999-11-10 2003-05-20 Makita Corporation Battery pack with an improved cooling structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1658654A2 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449406B (zh) * 2006-05-17 2011-06-01 丰田自动车株式会社 电池组以及车辆
US11670808B2 (en) 2019-12-03 2023-06-06 Milwaukee Electric Tool Corporation Charger and charger system
US12015130B2 (en) 2019-12-03 2024-06-18 Milwaukee Electric Tool Corporation Charger and charger system

Also Published As

Publication number Publication date
WO2005027241A3 (de) 2005-12-01
EP1658654A2 (de) 2006-05-24
US7597993B2 (en) 2009-10-06
CN1839510B (zh) 2013-03-27
DE10338654A1 (de) 2005-03-17
CN1839510A (zh) 2006-09-27
US20060141347A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
WO2005027241A2 (de) Batteriepack mit mitteln zur wärmeableitung
DE10055620B4 (de) Batteriepaket mit verbesserter Kühlstruktur
DE69936881T2 (de) Batteriekühlsystem
EP0109543B1 (de) Hochtemperatur-Speicherbatterie
EP0144579B1 (de) Kühlkörper zur Flüssigkeitskühlung von Leistungshalbleiterbauelementen
EP2769426B1 (de) Vorrichtung zur spannungsversorgung
EP3125355B1 (de) Vorrichtung für ein fahrzeug, insbesondere für ein nutzfahrzeug
EP0114233A1 (de) Hochtemperaturspeicherbatterie
WO2013189565A1 (de) Fahrzeug mit einer batterieanordnung
DE102017202768A1 (de) Energiespeicheranordnung und Kraftfahrzeug
DE112007002809T5 (de) Elektrisches Leistungszuführsystem
WO2013164314A1 (de) Heizvorrichtung für ein fahrzeug und verfahren zum betreiben der heizvorrichtung
DE69730601T2 (de) Kühlmittel-Verteiler mit für Elektronik-Komponenten selektiv verteilten Kühlspitzen
EP2149926B1 (de) Akkumulator
DE2342753A1 (de) Gekuehlte flussabschirmung fuer anschlusskasten eines generators
EP0639867A1 (de) Akkumulatorenbatterie
EP3016114A1 (de) Elektrischer widerstand
DE102020200957A1 (de) Cold plate heat exchanger
EP2201639B1 (de) Batteriemodul
WO2019170318A1 (de) Schleifringeinheit mit aktivem kühlsystem
EP4016783B1 (de) Ladegerät mit ladeelektronikeinheit und kühlluftführungsstruktur
DE102018222107A1 (de) Energiespeicheranordnung
EP2088012A2 (de) Ladegerät für eine Batterie eines Fahrzeugs
DE102004020147B4 (de) Anordnung umfassend ein Ladegerät und einen Akkupack
WO2020233732A1 (de) Temperiereinrichtung für einen energiespeicher

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480024091.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DM DZ EC EE EG ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NA NI NO NZ OM PG PH PT RO RU SC SD SE SG SK SL SY TJ TN TR TT TZ UA UG US UZ VC VN ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004738795

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006141347

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10560057

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004738795

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10560057

Country of ref document: US