WO2005026431A1 - Fibrous structure - Google Patents
Fibrous structure Download PDFInfo
- Publication number
- WO2005026431A1 WO2005026431A1 PCT/JP2003/011540 JP0311540W WO2005026431A1 WO 2005026431 A1 WO2005026431 A1 WO 2005026431A1 JP 0311540 W JP0311540 W JP 0311540W WO 2005026431 A1 WO2005026431 A1 WO 2005026431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- weight
- composite oxide
- structure according
- flame retardant
- Prior art date
Links
- 239000000835 fiber Substances 0.000 claims abstract description 120
- 239000002131 composite material Substances 0.000 claims abstract description 62
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims abstract description 44
- 239000010703 silicon Substances 0.000 claims abstract description 35
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 35
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000010936 titanium Substances 0.000 claims abstract description 33
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 33
- -1 nitrogenous heterocyclic compound Chemical class 0.000 claims abstract description 27
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000011347 resin Substances 0.000 claims abstract description 19
- 239000011230 binding agent Substances 0.000 claims abstract description 15
- 150000001875 compounds Chemical class 0.000 claims abstract description 9
- 239000002781 deodorant agent Substances 0.000 claims description 62
- 239000003063 flame retardant Substances 0.000 claims description 46
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 42
- 239000004744 fabric Substances 0.000 claims description 40
- 229920000728 polyester Polymers 0.000 claims description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 15
- 229920000742 Cotton Polymers 0.000 claims description 14
- 239000002759 woven fabric Substances 0.000 claims description 14
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 9
- 229920005749 polyurethane resin Polymers 0.000 claims description 7
- 229920002050 silicone resin Polymers 0.000 claims description 7
- 229920000178 Acrylic resin Polymers 0.000 claims description 6
- 239000004925 Acrylic resin Substances 0.000 claims description 6
- 239000004745 nonwoven fabric Substances 0.000 claims description 5
- 239000011164 primary particle Substances 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 239000004645 polyester resin Substances 0.000 claims description 4
- 229920001225 polyester resin Polymers 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 abstract description 39
- 239000000126 substance Substances 0.000 abstract description 17
- 239000012855 volatile organic compound Substances 0.000 abstract description 16
- 208000008842 sick building syndrome Diseases 0.000 abstract description 3
- 231100000597 Sick building syndrome Toxicity 0.000 abstract 1
- 230000001464 adherent effect Effects 0.000 abstract 1
- 230000005923 long-lasting effect Effects 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 34
- 238000012545 processing Methods 0.000 description 31
- 230000001877 deodorizing effect Effects 0.000 description 26
- 239000007787 solid Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 23
- 239000012530 fluid Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000003795 chemical substances by application Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 10
- 239000002649 leather substitute Substances 0.000 description 10
- 239000008096 xylene Substances 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 9
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 8
- 238000004332 deodorization Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000004753 textile Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 6
- 229920002994 synthetic fiber Polymers 0.000 description 6
- 239000012209 synthetic fiber Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000005871 repellent Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- NHLAPJMCARJFOG-UHFFFAOYSA-N 3-methyl-1,4-dihydropyrazol-5-one Chemical compound CC1=NNC(=O)C1 NHLAPJMCARJFOG-UHFFFAOYSA-N 0.000 description 3
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000986 disperse dye Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920002972 Acrylic fiber Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000003385 bacteriostatic effect Effects 0.000 description 2
- 235000013351 cheese Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- ZNGSVRYVWHOWLX-KHFUBBAMSA-N (1r,2s)-2-(methylamino)-1-phenylpropan-1-ol;hydrate Chemical compound O.CN[C@@H](C)[C@H](O)C1=CC=CC=C1.CN[C@@H](C)[C@H](O)C1=CC=CC=C1 ZNGSVRYVWHOWLX-KHFUBBAMSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- QXFUBAAEKCHBQY-UHFFFAOYSA-N 3-[hydroxy(methyl)phosphoryl]propanoic acid Chemical compound CP(O)(=O)CCC(O)=O QXFUBAAEKCHBQY-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- PHGBTOBVWQJBKT-UHFFFAOYSA-N OC(=O)P(O)=O Chemical compound OC(=O)P(O)=O PHGBTOBVWQJBKT-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- ALHNLFMSAXZKRC-UHFFFAOYSA-N benzene-1,4-dicarbohydrazide Chemical compound NNC(=O)C1=CC=C(C(=O)NN)C=C1 ALHNLFMSAXZKRC-UHFFFAOYSA-N 0.000 description 1
- 239000011218 binary composite Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- DDTBPAQBQHZRDW-UHFFFAOYSA-N cyclododecane Chemical compound C1CCCCCCCCCCC1 DDTBPAQBQHZRDW-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920006239 diacetate fiber Polymers 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 229940042400 direct acting antivirals phosphonic acid derivative Drugs 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- SWRGUMCEJHQWEE-UHFFFAOYSA-N ethanedihydrazide Chemical compound NNC(=O)C(=O)NN SWRGUMCEJHQWEE-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- WLKALBXHGZQMSK-UHFFFAOYSA-N n-dimethoxyphosphoryl-n-(hydroxymethyl)propanamide Chemical compound CCC(=O)N(CO)P(=O)(OC)OC WLKALBXHGZQMSK-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 150000003007 phosphonic acid derivatives Chemical class 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012113 quantitative test Methods 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920006304 triacetate fiber Polymers 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229920006307 urethane fiber Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/77—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
- D06M11/79—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/46—Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/35—Heterocyclic compounds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/402—Amides imides, sulfamic acids
- D06M13/422—Hydrazides
Definitions
- the present invention relates to a fibrous structure having durable deodorant performance against formaldehyde-volatile organic compound which is said to be a causative substance of sick house syndrome.
- beddings such as cotton, cloth, mats, blankets, mattresses, dakimakura, bed mats, curtains, covers, etc. used for sofas, cushions, plushies, cushions, comforters, mattresses
- the present invention relates to a fiber structure that can be widely applied to textiles having a surface layer made of fibers, such as fabrics used for goodwill and slippers, carpets, carpets, mats, and automobile interior materials.
- VOC formaldehyde II, xylene, toluene, ethylbenzene, and styrene
- an object of the present invention is to provide a fiber structure having durable deodorizing performance against formaldehyde VOC in view of the problems of the conventional deodorized processed fiber product. . Disclosure of the invention
- the present invention employs the following means to achieve the above object. That is, the fiber structure of the present invention is characterized in that a composite oxide composed of titanium and silicon and an aldehyde deodorant adhere to the fiber surface via a binder resin. Things. BEST MODE FOR CARRYING OUT THE INVENTION
- the composite oxide containing titanium and silicon used in the present invention is a composite oxide in which both titanium and silicon are contained in a compound, and mainly exhibits a function as a photocatalyst.
- the photocatalytic function is a catalytic function for oxidatively decomposing organic substances by a strong oxidizing power excited by ultraviolet rays.
- a binary composite oxide composed of titanium and silicon is, for example, a solid as described in “Catalyst” Vol. 17, No. 3, page 72 (1975). It is known as an acid, exhibits remarkable acidity not found in the oxides of the constituent metals alone, and has a high surface area. That is, since titanium and silicon form a binary oxide and are complex oxides in which silicon is contained in the crystal lattice of titanium oxide, unique characteristics are exhibited.
- Some of these composite oxides have a crystal structure called anatase type or rutile type.However, from the viewpoint of further improving the deodorizing function of the composite oxide, titanium oxide was analyzed by X-ray diffraction. (4) It is preferable to use an amorphous or near-amorphous microstructure that has a broad diffraction peak without the intrinsic peak of silicon oxide.
- the molar ratio of titanium to silicon in the composite oxide is preferably in the range of 20 to 95 mol% and the silicon in the range of 5 to 80 mol%.
- the photocatalytic activity tends to weaken as the proportion of silicon increases, so determine the optimal proportion according to the purpose of use. Preferably.
- this composite oxide contains a metal element other than titanium and silicon.
- metal elements include tungsten, manganese, molybdenum, cerium, cobanoleto, niobium, eckenole, zinc, dinocononium, tin, tantanole, and lanthanum.
- the composite oxide containing titanium and silicon can be produced, for example, by the method described in Japanese Patent Publication No. 5-515184.
- a sulfuric acid aqueous solution of sulfuric acid titanyl is dropped into a mixed solution of aqueous ammonia and silica gel to form a precipitate.
- the precipitate is filtered, washed, dried, and then dried. To 650 ° C.
- this production method it is possible to obtain an oxidatively decomposable catalyst which is superior in the oxidatively decomposable characteristics of organic substances and has a high deodorizing effect as compared with a generally known titanium oxide photocatalyst.
- the deodorizing reaction by such a composite oxide is performed through a process in which malodorous components are adsorbed by a catalyst and then undergoes oxidative decomposition by ultraviolet rays.
- the average primary particle diameter of the composite oxide is preferably from 1 to 20 nm, and the specific surface area is preferably from 100 to 300 m from the viewpoint of efficiently adsorbing malodorous components.
- the specific surface area of the composite oxide is a value measured using a QUANT ASORBOS-8 device manufactured by QUANT ACHROME, and can be measured by the following method.
- the average primary particle diameter of the composite oxide may be measured by the following method.
- Magnification 10 using a transmission electron microscope JEM-210 manufactured by JEOL Ltd. Measure by a factor of 10,000.
- the amount of the composite oxide attached to the fiber structure is 0.01 to 10 weight per fiber. /. Is preferred.
- the adhesion amount is 0.01 weight. /. If the amount is less, the decomposition rate of the odorous components becomes slow and the deodorizing function becomes insufficient. 10 weight. /. If the amount is larger, there is a concern that the fiber fabric may be deteriorated by the oxidizing action of the composite oxide.
- the aldehyde deodorant used in the present invention is a chemical substance that exhibits a deodorizing function for aldehydes, and among them, a deodorant containing a hydrazide compound or a nitrogen-containing heterocyclic compound is preferable. Used. These compound-based deodorants are preferable because they cause a chemical reaction with and adsorb aldehydes such as formaldehyde, so that re-emission of the aldehyde can be prevented.
- hydrazide compound examples include adipic acid dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, terephthalic acid dihydrazide and the like.
- nitrogen-containing heterocyclic compound azoles and azines are preferable. Specifically, 3-methyl-5-pyrazolone, pyrazole, 6-methyl-8-hydroxytriazolopyridazine, 1, 2,4-triazole and the like. Among them, adipic dihydrazide is particularly preferred.
- a compound having a photocatalytic function which is a composite oxide of titanium and silicon
- an aldehyde deodorant containing a hydrazide compound or a nitrogen-containing heterocyclic compound When these two deodorants are combined and adhered, the deodorant performance against VOC substances such as toluene is dramatically improved. This is because the interaction between the ⁇ electrons present in the molecule of the hydrazide compound and the nitrogen-containing organic heterocyclic compound and the ⁇ electrons present in the aromatic ring of the VOC attracts the VOC substance to the surface of the fiber structure. This is due to the fact that it is oxidatively decomposed and rendered harmless by the composite oxide present on the fiber surface.
- the amount of the aldehyde deodorant attached is preferably 0.5 to 100% by weight based on the amount of the complex oxide containing titanium and silicon. 100 weight. /. If more aldehyde deodorant is attached, VOC is adsorbed to the aldehyde deodorant and is difficult to move to the composite oxide side, so it is difficult for oxidative decomposition to proceed, and 0.5 weight. If the ratio is less than 0/0, the number of VOCs captured by the fiber surface will decrease dramatically, This is because the OC decomposition function cannot be sufficiently exhibited.
- the binder resin used for adhering the composite oxide and the aldehyde deodorant to the fiber surface has good adhesion to the fiber surface and is subject to decomposition by the photocatalytic action of the composite oxide.
- Any resin that is difficult can be used.
- polyurethane resin, silicone resin, fluororesin, acrylic resin, polyester resin, melamine resin, etc. are used.
- the components of polyurethane resin, silicone resin, acryl resin, and polyester resin are used. Those containing one or more are preferably used.
- a water-soluble polyurethane resin is preferable because of less burden on the environment.
- an isocyanate or a silane coupling agent is preferably used as a crosslinking agent.
- the fibrous structure to be processed to adhere the composite oxide and the aldehyde deodorant is short-fiber cotton
- the silicone is less sticky because of the post-processability of cards and the like.
- Resins and / or polyester resins are preferred.
- the amount of the binder resin attached is 0.01 to 5 wt. / 0, preferably 0.1 to 1 weight. / 0 is more preferred. 0.01 weight of resin attached
- the binder effect of adhering the composite oxide and the aldehyde deodorant is weakened, and the weight is 5 wt. If the ratio is more than 0 , the texture of the fiber structure becomes coarse and hard, and the practicality is poor.
- the fiber structure referred to in the present invention is a fiber product composed of fibers, and may have any structure and shape.
- fabrics such as woven fabric, knitted fabric, non-woven fabric, and suede-like artificial leather, band-like materials, string-like materials, cotton-like materials, net-like materials, or intermediate products such as composite materials in which the surface layer is composed of fibers.
- Textiles, or final textiles such as pets, curtains, and moquettes.
- woven fabric, knitted fabric, non-woven fabric and cotton are preferred.
- the fibers constituting the fibrous structure may be fibers having any cross-sectional shape.
- the cross-section of the fiber may be an ordinary round cross-section, but from hollow, H-type, X-type, W-type, Y-type, and star-type. It is preferable that the deformed cross section has at least one selected ⁇ shape.
- the fibers having such a cross-sectional shape can be obtained by changing the shape of the die at the time of spinning, or It can be easily manufactured by a method in which a certain kind of polymer is composite-spun and divided and split in a later step, or one is eluted and removed.
- polyester fibers such as synthetic fibers and natural fibers
- synthetic fibers include polyester fibers, nylon 6 fibers, polyamide fibers such as nylon 66 fibers, polyacryl fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, and polypropylene arrowheads.
- the natural fiber include wool, silk, cotton, hemp, and the like, but are not limited thereto.
- two or more of these fibers may be used as a mixture at an arbitrary ratio, or may be used in combination.
- polyester fibers are preferably used in terms of washing durability and the like.
- polyester fibers polyethylene terephthalate fibers, polypropylene terephthalate fibers, polybutylene terephthalate fibers, and polyhexamethylene terephthalate fibers are preferred. Further, fibers obtained by copolymerizing other components are also preferable. As the other components, isophthalic acid, 5-sodium sulfoisophthalic acid, methoxypolyoxyethylene dalichol, and the like are preferably used.
- the deodorizing function according to the present invention has a weight of 50% of the total fibers constituting the fiber structure. It is preferable that polyester fibers have a ratio of / 0 or more, because particularly excellent effects are exhibited. Polyester fibers have high chemical resistance and are less susceptible to photocatalysis than other fibers.
- the polyester fiber constituting the fiber structure of the present invention preferably contains inert titanium oxide in the fiber.
- This inactive titanium oxide is preferably inactive at a level that is not excited by light of a specific wavelength, particularly ultraviolet light, and is used as a matting agent in the production of ordinary polyester fibers. Titanium oxide is preferably used.
- the addition of the inert titanium oxide increases the inorganicity of the polyester-based fiber, thereby reducing the adverse effect of the redox effect caused by the composite oxide attached to the fiber surface on the polyester-based fiber. be able to'.
- Such inert titanium oxide may be added in the polyester polymerization step for spinning polyester fibers.
- the average particle size of the inert titanium oxide is preferably in the range of 0.1 to 0.7 ⁇ , and more preferably in the range of 0.2 to 0.4 ⁇ m, from the viewpoints of spinning properties and thread properties.
- the amount of the inert titanium oxide is preferably 0.3 to 5.0% by weight, more preferably 0.5 to 4.0% by weight, based on the weight of the fiber. 0.3 weight. /. If it is less than 1, the polyester fiber is easily decomposed by the attached composite oxide, and the photocatalytic function and the durability of the intrinsic physical properties of the fiber tend to be poor. On the other hand, if it exceeds 5.0% by weight, the spinning properties and yarn properties tend to be insufficient.
- polyester fibers into which carbon black has been kneaded are preferably used for applications requiring light-shielding properties, such as strength.
- the fiber constituting the fiber structure of the present invention contains a flame retardant inside the fiber and / or adheres to the fiber surface.
- the flame retardant effect of the flame retardant does not depend much on the location of the flame retardant in the fiber, and is greatly affected by the weight ratio of the flame retardant to the fiber weight.
- a method for containing or adhering a flame retardant to fibers a method of adding a flame retardant to a dyeing solution and performing an adhering treatment at the same time as dyeing, a method of impregnating and impregnating a flame retardant-containing solution, or There is a method in which a synthetic fiber is contained in the fiber by copolymerization or kneading during production.
- Flame retardant is 1 to 30 weight based on fiber weight. /. It is preferred that it be included in the proportion of 1 weight. If it is less than / 0, it is difficult to obtain sufficient flame retardancy, and if it exceeds 30% by weight, the texture tends to be coarse and hard.
- a flame retardant containing at least one of boron, phosphorus, nitrogen, antimony, and halogen is preferable, and particularly, a phosphoric ester flame retardant and a bromine flame retardant are preferably used.
- Flame retardants applied to polyester fibers include phosphoric acid esters, aromatic phosphates, carboxyphosphinic acid and its cyclic anhydrides, cyclic phosphinic acid derivatives, phosphonic acid derivatives, phosphoryl compounds, and halogenated aliphatics.
- Phosphorus compound flame retardants such as phosphate esters, halogenated diols, halogenated glycidyl ethers, Halogen flame retardants such as halogenated cycloalkane, brominated bisphenol A and brominated bisphenol S, metal compounds such as antimony oxide, boron compounds and silicon compounds are preferably used.
- These flame retardants may be incorporated into the fiber by a method of copolymerizing in polyester or kneading in a polyester polymer, or may be exhausted into fibers by post-processing into polyester fabric. Alternatively, it may be attached by impregnation.
- the flame retardant examples include 2-carboxyethyl-methyl-phosphinic acid, its cyclic anhydride, tris (2,3-dibromopropyl) phosphate, and resorcinol'bis (diphenylphospho). Fet) and a mixture of resonoresinol 'bis (dixylenyl phosphate) and triphenyl phosphate, hexaboxime cyclododecan, tetrabrombisphenenole A, 2, 2-bis (4-hydroxyethoxyethoxy) — 3, 5-dibromopheny ⁇ )
- a flame retardant applied to acryl fibers As a flame retardant applied to acryl fibers, a butyl chloride monomer is preferable. Further, a flame-retardant acrylic fiber produced from a polymer obtained by copolymerizing a vinyl chloride monomer with acrylonitrile may be used.
- Preferred flame retardants applied to cotton fibers include tetrakishydroxymethylphosphonium salt and N-methyloldimethylphosphonopropionamide.
- the composite flame retardant and the aldehyde deodorant are attached to the fiber surface simultaneously with the treatment for attaching the flame retardant.
- an aldehyde deodorant is dissolved in water, and then a composite oxide and a binder resin are added and mixed to obtain an aqueous dispersion.
- a flame retardant, a negative ion generator, a water repellent, an antibacterial agent, a form stabilizing agent, a moisture absorbent, a heat insulating agent, and a water absorbent may be further added.
- the obtained aqueous dispersion is used as a working liquid.
- the fabric is squeezed with a mangle roll and dried and cured.
- a viscosity adjusting agent is added to the working fluid to adjust the viscosity to a desired value. After applying it to the fabric surface by means of a coater, gravure coater, printing, spraying, etc., fix it at a temperature of 200 ° C or less.
- the complex oxide and aldehyde deodorant are attached to the fiber surface by the following method.
- the processed fabric thus obtained has a deodorizing performance which has never existed before, and also has durability.
- This processed fabric includes beddings such as comforters, mattresses, mats, blankets, sleepers, dakimakura, bed mats, sofas, cushions, cushions, plush toys, curtains, carpets, mats and covers. It can be applied to interiors such as automobiles, goodwill and slippers, and interior materials for vehicles such as car seats, and can effectively reduce formaldehyde VOCs present in the environment. Wear.
- the formaldehyde deodorization rate (%) was calculated according to the following equation.
- the sample was cotton, the sample was put in a gauze bag in which two squares each having a side of 10 cm were sewn and evaluated for deodorization.
- Deodorization rate (%) ⁇ 1-(residual concentration) Z (initial concentration) ⁇ X 100
- the deodorizing property of xylene was measured as a representative of VOC. Prepare a container containing the sample in the same manner as in the measurement of formaldehyde deodorization described above, put xylene in this container so that the initial concentration is 40 ppm, and seal it, and leave it for 2 hours. And After that, the residual xylene concentration was measured with a gas detector tube. From this residual concentration and the initial concentration, the xylene deodorization rate (%) was calculated according to the above formula for calculating the deodorization rate.
- the fibrous structure was used as a sample, and the formaldehyde deodorizing property and the xylene deodorizing property were measured by the same method as described above.
- the flame retardancy was evaluated according to the JIS L 1091 textile product combustion performance test method. Tests of A-1 and D methods were conducted, and pass / fail judgment was made based on the Fire Service Law (a) label standards.
- the flame retardancy was evaluated by the 45 ° mesenamine basket method.
- JISL—1092 The water repellency was evaluated by the shower method. The higher the number, the better the water repellency.
- the bacteriostatic activity of Staphylococcus aureus was measured by a quantitative test method. The higher the number, the better the antibacterial performance. The bacteriostatic activity value was 2.2 or more, and the antibacterial performance was judged to be acceptable.
- R a water-dispersed chemical solution having a solid content of 20%
- R a water-dispersed chemical solution having a solid content of 20%
- This is an aqueous dispersion in which a composite oxide of titanium and silicon having an average primary particle diameter of 7 ⁇ m and an average specific surface area of 150 m 2 Zg is dispersed in water at a solid concentration of 20%.
- the composite oxide is dispersed in the form of particles having an average particle diameter of 0.3 ⁇ m.
- Adipic dihydrazide was used as the aldehyde deodorant.
- a binder resin As a binder resin, a polyurethane resin “Hydran AP X—101 H” (R) (solid content: 60%) manufactured by Dainippon Ink and Chemicals, Inc., and an isocyanate crosslinking agent “CR— 60 N "(R) (solid content: 100%) manufactured by Dainippon Ink and Chemicals, Incorporated.
- Aldehyde deodorant Adipic dihydrazide 0.2% by weight
- Polyurethane resin "Hydran AP X—101 H” (R) (solid content 60
- Iso-Cross-linking agent "CR-600N” (R) (solid content: 100%) 0.06% by weight, manufactured by Dainippon Ink and Chemicals, Inc.
- Phosphate flame retardant "Bigol GPE—5 1 5" (R) (solids 60
- the flame-retardant fabric is immersed in this processing solution, picked up with a mangle roll at 80% by weight, squeezed at 130 ° C for 2 minutes, and then heat-treated at 170 ° C for 1 minute.
- a woven fabric to which a titanium-silicon composite oxide and an aldehyde deodorant were attached was manufactured.
- the deodorizing properties of the processed fabric were evaluated, and the results are shown in Table 1.
- the flame retardancy of this processed fabric was at an acceptable level.
- Polyethylene terephthalate multifilament yarn (83 dtex) containing 0.35% by weight of inert titanium oxide with an average particle diameter of 0.3 ⁇ m, satin fabric with a basis weight of 200 g Zm 2 was processed under normal processing conditions. The fabric was refined, dried, intermediately set, and dyed with a disperse dye to produce a beige dyed fabric.
- Example 2 As the composite oxide of titanium and silicon and the aldehyde deodorant, the same components as those used in Example 1 were used.
- a binder resin an acrylic resin "Light Epoch T23-M” (R) (solid content: 20%) manufactured by Kyoeisha Chemical Co., Ltd. was used.
- Aldehyde deodorant 0.2 weight of adipic dihydrazide. /.
- Polyester fibers having a round cross section of single yarn fineness of 6.67 dte X were produced by melt spinning in a conventional manner. These were bundled into 556,000 dtex tows, which were mechanically crimped by a crimper to form crimped tows.
- the same components as those used in Example 1 were used.
- the binder resin a silicone resin "BY22-826" (R) (solid content: 45%) manufactured by Toray Dow Corning Silicone Co., Ltd. was used. These components were blended with the following composition to prepare an aqueous dispersion of a processing agent.
- Aldehyde deodorant 2% by weight of adipic dihydrazide
- Silicone resin "BY22-8226" (R) (solid content 45%) 10% by weight manufactured by Toray Dow Corning Silicone Co., Ltd.
- the island component was made of polyethylene terephthalate and the sea component was made of polystyrene.
- a two-component sea-island composite fiber with an island sea component ratio of 80/20 and 16 islands was produced by melt spinning. It was stretched 5 times, crimped, and cut to give a raw cotton of sea-island composite fiber with an island fineness of 0.2 dtex and an elongation rate of ultrafine island fiber of 115%. After using this raw cotton to make a fiber laminated web with carding and cross wrapper, A needle punch of 2000 pieces / cm 2 was performed to produce a felt ground made of short fibers with a basis weight of 400 gZm 2 .
- the thus obtained fiber ground is glued in hot water in which polyvinyl alcohol is dissolved, dried, then immersed in trichlorne and squeezed with a mandal to dissolve and remove sea components. Then, 29% of polyurethane based on the weight of felt was applied by wet coagulation. Thereafter, it brushed processing sliced, stained with disperse dye, to prepare a thick 0. 6 0 mm, basis weight 1 3 5 g / m 2 artificial leather.
- Example 1 The same components as used in Example 1 were used as the composite oxide containing titanium and silicon and the aldehyde deodorant, and the same components as those used in Example 2 were used as the binder resin. These components were mixed with the following composition to prepare an aqueous dispersion of a processing agent.
- Aldehyde deodorant Adipic acid dihydrazide 1.0% by weight Acrylic resin "Light Epoch T23-M” (R) (solid content 20%) Kyoeisha Chemical Co., Ltd. 1.0% by weight water 9 7.0% by weight
- the above-mentioned suede-like artificial leather is immersed in this processing liquid, and picked up with a mangle roll. /. And dried at 100 ° C for 2 minutes to obtain artificial leather having a composite oxide of titanium and silicon and an aldehyde deodorant adhered to the fiber surface.
- this artificial leather was immersed in a water-repellent solution having the following composition, picked up with a mangle roll at 80% by weight, dried at 100 ° C. for 2 minutes to obtain a water-repellent treated artificial leather.
- the same components as used in Example 1 were used as the composite oxide containing titanium and silicon.
- 3-Methyl-5-pyrazolone was used as the aldehyde deodorant.
- As the binder resin a silicone resin “KT710” (R) (solid content: 40%) manufactured by Kyoeisha Chemical Co., Ltd. was used.
- Aldehyde deodorant 7 weight of 3-methyl-5-pyrazolone. / 0 Silicone resin "KT70 14" (R) (solid content 40%) manufactured by Kyoeisha Chemical Co., Ltd.
- Antibacterial agent 1% by weight of 2-pyridylthiol-1-oxide zinc. / 0 water 82% by weight Spraying the above-mentioned working fluid on the tuft surface of the pet by a spray so that the attached amount of the composite oxide of titanium and silicon becomes 5% by weight. ° C Drying was continued for 10 minutes using a continuous dryer to produce a carpet having a composite oxide of titanium and silicon, an aldehyde deodorant, and an antibacterial agent adhered to the fiber surface. This cartridge was evaluated for deodorizing properties, and the results are shown in Table 1. In addition, the antibacterial property of this tuft was at an acceptable level of 6.0 or more.
- Polyester step (2.2 dte XX 51 mm) Use 100% spun yarn (twisted yarn (cheese dyed)) for pile yarn and polyester stable (2.2 dtex X 51 mm) )
- a blended yarn (cheese dyed) consisting of 65% and 35% rayon staple (2.2 dtex X 51 mm) for the ground yarn, brushing under normal conditions, pile length
- a moquette fabric having a thickness of 2.5 mm and a basis weight of 5500 gZm 2 was prepared and subjected to a backing treatment according to a conventional method to produce a moquette.
- Example 1 The same components as those used in Example 1 were used as the complex oxide containing titanium and silicon and the aldehyde deodorant, and the same components as those used in Example 2 were used as the binder resin. . These components were mixed with the following composition to prepare an aqueous dispersion of a processing agent.
- Aldehyde deodorant 0.1% by weight of adipic dihydrazide
- Example 7 The flame retardant fabric prepared in Example 1 was immersed in the working fluid used in Example 2 and picked up with a mangle roll. /. After drying at 130 ° C for 2 minutes, heat-treat at 170 ° C for 1 minute to remove the woven fabric with the composite oxide of titanium and silicon and an aldehyde deodorant attached to the fiber surface. Manufactured. The deodorizing properties of the processed fabric were evaluated, and the results are shown in Table 1. In addition, although the flame retardant was added to the processed fabric at the time of dyeing, the flame retardancy was rejected because the flame retardant was not included in the processing agent containing the composite oxide and the like.
- a fluid was prepared by removing the aldehyde deodorant component from the formulation of the working fluid of Example 1.
- the flame retardant woven fabric prepared in Example 1 was immersed in this processing liquid, and processed in the same manner as in Example 1 to produce a woven fabric having a composite oxide of titanium and silicon adhered to the fiber surface.
- This fabric was evaluated for deodorant properties, and the results are shown in Table 1. The flammability of this fabric was acceptable.
- a liquid was prepared by removing the composite oxide of titanium and silicon from the formulation of the processing liquid of Example 1.
- the flame retardant woven fabric prepared in Example 1 was immersed in this processing liquid, and treated in the same manner as in Example 1 to produce a woven fabric having an aldehyde deodorant adhered to the fiber surface.
- This fabric was evaluated for its deodorant properties, and the results are shown in Table 1. The flammability of this fabric was acceptable.
- Example 1 From the formulation of the working fluid of Example 1, a solution was prepared in which the titanium-silicon composite oxide and the aldehyde deodorant were removed, and the flame retardant fabric prepared in Example 1 was immersed in this working fluid. Processing was performed in the same manner as in Example 1. This fabric was evaluated for deodorizing properties, and the results are shown in Table 1. The flammability of this woven fabric was acceptable.
- Example 5 The crimped tow prepared in Example 3 was cut to a single fiber length of 51 mm without being treated with a processing fluid, and then cut with a card machine to prepare a filling for filling in a wadding shape. . The deodorizing properties of the cotton were evaluated, and the results are shown in Table 1. '[Comparative Example 6]
- Example 4 The artificial leather produced in Example 4 was evaluated for its deodorant properties without being treated with a working fluid, and the results are shown in Table 1. The water repellency of this artificial leather was first class.
- Example 5 With respect to the force and the softness prepared in Example 5, the deodorizing properties without treatment with the working fluid were evaluated, and the results are shown in Table 1. Also, since no machining fluid treatment was applied to this tough surface, the antibacterial property of this surface was 0.3, which was a reject level.
- the fibrous structures such as the flame retardant fabrics treated with the processing agents according to Examples 1 to 7 have excellent deodorization against formaldehyde and xylene which is a kind of VOC. It showed an effect, which persisted after washing.
- the flame retardant fabric treated with the processing agent according to Example 1 had both deodorant performance and flame retardancy.
- the processing agent treatment according to the present invention can be widely applied to fibrous structures composed of fibers, such as semi-finished products such as fabrics, nonwoven fabrics and cotton, and end products such as moquettes and carpets. it can. Therefore, the fiber structure (fabric, non-woven fabric, cotton, etc.) according to the present invention includes sofas, cushions, stuffed animals, cushions, comforters, mattresses, mats, plankets, shells, dakimakura, bed mats, etc. Bedding, curtains, rugs, carpets, mats, covers, goodwill, slippers. It is useful as a material used for interior materials such as sheet materials and vehicle interior materials such as car seats, and can impart excellent deodorizing performance and the like to these materials. In addition, a fibrous structure having flame retardancy and deodorant performance can be obtained by using it together with a flame retardant, which is particularly useful for interiors in public facilities.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
A fibrous structure having the long-lasting ability to remove formaldehyde and volatile organic compounds regarded as substances causative of sick building syndrome. The fibrous structure is characterized in that a composite oxide containing titanium and silicon and an aldehyde remover are adherent to the surface of fibers through a binder resin. The aldehyde remover may be one comprising a hydrazide compound or nitrogenous heterocyclic compound.
Description
明 細 書 繊維構造物 技術分野 Description Textile structure Technical field
本発明は、 シックハウス症候群の原因物質と言われているホルムアルデヒ ドゃ 揮発性有機化合物に対して、 耐久性のある消臭性能を有する繊維構造物に関する ものである。 TECHNICAL FIELD The present invention relates to a fibrous structure having durable deodorant performance against formaldehyde-volatile organic compound which is said to be a causative substance of sick house syndrome.
さらに詳しくは、 ソファー、 クッション、 ぬいぐるみ、 座布団、 掛け布団、 敷 き布団等に用いる中わたや布帛、 敷きマッ ト、 ブランケッ ト、 まく ら、 抱きまく ら、 ベッ ドマッ トなどの寝具類、 カーテン、 カバー、 のれん、 スリ ッパ等に用い る布帛、 カーペッ ト、 じゅうたん、 マッ ト、 自動車内装材等の、 表層が繊維で構 成される繊維製品などに広く適用できる繊維構造物に関するものである。 背景技術 For more details, beddings such as cotton, cloth, mats, blankets, mattresses, dakimakura, bed mats, curtains, covers, etc. used for sofas, cushions, plushies, cushions, comforters, mattresses The present invention relates to a fiber structure that can be widely applied to textiles having a surface layer made of fibers, such as fabrics used for goodwill and slippers, carpets, carpets, mats, and automobile interior materials. Background art
近年、 国民の生活水準の向上に伴い健康に対する意識も高まっており、 新たな 消臭剤の開発や、 消臭加工を施した繊維製品の実用化が次々とすすめられてきて いる。 しかしながら、 あらゆる臭いに対して効力のある消臭剤は未だ開発されて おらず、 特に日常生活では生成されないホルムアルデヒ ドゃ、 キシレン、 トルェ ン、 ェチルベンゼン、 スチレンといった揮発性有機化合物 (以下 V O Cと略す) に対して有効な消臭機能を有する消臭加ェ繊維製品は、 未だ上巿されていないの が実状である。 即ち、 キシレンをはじめとする V O Cは極性の低い芳香族化合物 であるので、 通常の消臭加工が対象と してきた極性官能基をもつ臭気物質に対す る消臭機能では、 V O Cに対し有効な消臭効果を発揮できなかったのである。 これらの臭い物質は建材等に多用されている結果、 新築住宅や新車などの内部 環境中に多く含まれ、 シックハウス症候群の原因物質と言われている。 慢性的に、 ホルムアルデヒ ドゃ V O Cを呼吸により体内に取り込むと、 様々な健康障害が引 き起こされることが近年明らかになつてきており、 これらに対し有効な除去力を 持つ消臭加工繊維製品の登場が待ち望まれていた。
そこで、 本発明は、 かかる従来の消臭加工繊維製品の問題点に鑑み、 ホルムァ ルデヒ ドゃ V O Cに対して、 耐久性のある消臭性能を有する繊維構造物の提供を 目的とするものである。 発明の開示 In recent years, as people's standards of living have improved, their awareness of health has also increased, and the development of new deodorants and the practical application of deodorized textile products are being promoted one after another. However, deodorants that are effective against all kinds of odors have not yet been developed, and volatile organic compounds such as formaldehyde II, xylene, toluene, ethylbenzene, and styrene (hereinafter abbreviated as VOC) that are not produced in daily life. Deodorized textile products having an effective deodorizing function against water have not yet been reported. That is, since VOC such as xylene is an aromatic compound with low polarity, the deodorizing function for odorous substances having polar functional groups, which has been the target of ordinary deodorizing processing, is an effective deodorant for VOC. The odor effect could not be exerted. These odorous substances are used extensively in building materials, etc., and as a result, are contained a lot in the internal environment of new houses and new cars, and are said to be the causative substances of sick house syndrome. In recent years, it has become clear that various forms of health disorders can be caused by the inhalation of formaldehyde VOCs into the body by respiration. The appearance has been awaited. Therefore, an object of the present invention is to provide a fiber structure having durable deodorizing performance against formaldehyde VOC in view of the problems of the conventional deodorized processed fiber product. . Disclosure of the invention
本発明は、 上記目的を達成するために、 次の手段を採用するものである。 すな わち、 本発明の繊維構造物は、 繊維表面に、 チタンとケィ素からなる複合酸化物 とアルデヒ ド消臭剤とが、 バインダー樹脂を介して付着していることを特徴とす るものである。 発明を実施するための最良の形態 The present invention employs the following means to achieve the above object. That is, the fiber structure of the present invention is characterized in that a composite oxide composed of titanium and silicon and an aldehyde deodorant adhere to the fiber surface via a binder resin. Things. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において用いる、 チタンとケィ素を含む複合酸化物は、 チタンとケィ素 がともに化合物中に含まれる複合酸化物であり、 主に光触媒と しての機能を発揮 するものである。 ここで光触媒機能は、 紫外線により励起される強い酸化力によ つて有機物を酸化分解する触媒的機能である。 The composite oxide containing titanium and silicon used in the present invention is a composite oxide in which both titanium and silicon are contained in a compound, and mainly exhibits a function as a photocatalyst. Here, the photocatalytic function is a catalytic function for oxidatively decomposing organic substances by a strong oxidizing power excited by ultraviolet rays.
一般にチタンとケィ素からなる二元系複合酸化物は、 例えば、 「触媒」 第 1 7 卷、 .第 3号、 第 7 2頁 ( 1 9 7 5年) に記載されているように、 固体酸と して知 られ、 構成する各金属単独の酸化物には見られない顕著な酸性を示し、 また、 高 い表面積を有する。 即ち、 チタンとケィ素が二元系酸化物を形成し、 酸化チタン の結晶格子中にケィ素が入った複合酸化物であることから、 特異な特性が発現す るのである。 In general, a binary composite oxide composed of titanium and silicon is, for example, a solid as described in “Catalyst” Vol. 17, No. 3, page 72 (1975). It is known as an acid, exhibits remarkable acidity not found in the oxides of the constituent metals alone, and has a high surface area. That is, since titanium and silicon form a binary oxide and are complex oxides in which silicon is contained in the crystal lattice of titanium oxide, unique characteristics are exhibited.
この複合酸化物には、 アナターゼ型や、 ルチル型と呼ばれる結晶型の構造を持 つものもあるが、 さらに複合酸化物の消臭機能を高める観点からすると、 X線回 折による分析で酸化チタンゃ酸化ケィ素の固有ピークがなくブロードな回折ピ一 クを持つような、 非晶質もしく は非晶質に近い微細構造を有しているものが好ま しい。 Some of these composite oxides have a crystal structure called anatase type or rutile type.However, from the viewpoint of further improving the deodorizing function of the composite oxide, titanium oxide was analyzed by X-ray diffraction. (4) It is preferable to use an amorphous or near-amorphous microstructure that has a broad diffraction peak without the intrinsic peak of silicon oxide.
複合酸化物中におけるチタンとケィ素の割合は、 モル比でチタンが 2 0〜 9 5 モル%、 ケィ素が 5〜 8 0モル%の範囲にあることが好ましい。 ケィ素の割合が 多くなると光触媒活性が弱まる傾向にあるので、 使用目的により最適割合を決め
るのが好ましい。 The molar ratio of titanium to silicon in the composite oxide is preferably in the range of 20 to 95 mol% and the silicon in the range of 5 to 80 mol%. The photocatalytic activity tends to weaken as the proportion of silicon increases, so determine the optimal proportion according to the purpose of use. Preferably.
またこの複合酸化物に、 チタン、 ケィ素以外の金属元素が含まれるのも好まし い。 他の金属元素の種類としては、 タングステン、 マンガン、 モリブデン、 セリ ゥム、 コバノレト、 ニオブ、 エッケノレ、 亜鉛、 ジノレコニゥム、 スズ、 タンタノレ、 ラ ンタンなどが好ましい。 It is also preferable that this composite oxide contains a metal element other than titanium and silicon. Preferable examples of other metal elements include tungsten, manganese, molybdenum, cerium, cobanoleto, niobium, eckenole, zinc, dinocononium, tin, tantanole, and lanthanum.
このチタンとケィ素とを含む複合酸化物は、 例えば、 特公平 5— 5 5 1 8 4号 公報に記載された方法によって製造することができる。 The composite oxide containing titanium and silicon can be produced, for example, by the method described in Japanese Patent Publication No. 5-515184.
その好ましい製造方法と しては、 硫ィ'匕チタニルの硫酸水溶液を、 アンモニア水 とシリカゲルの混合溶液中に滴下して沈殿を生成させ、 この沈殿を濾過、 洗浄、 乾燥した後、 3 0 0〜 6 5 0°Cで焼成する方法が挙げられる。 この製法によれば、 一般的に知られている酸化チタン光触媒と比較して、 有機物の酸化分解特性に優 れ、 高い消臭効果のある酸化分解性触媒を得ることができる。 As a preferable production method, a sulfuric acid aqueous solution of sulfuric acid titanyl is dropped into a mixed solution of aqueous ammonia and silica gel to form a precipitate. The precipitate is filtered, washed, dried, and then dried. To 650 ° C. According to this production method, it is possible to obtain an oxidatively decomposable catalyst which is superior in the oxidatively decomposable characteristics of organic substances and has a high deodorizing effect as compared with a generally known titanium oxide photocatalyst.
かかる複合酸化物による消臭反応は、 悪臭成分が触媒に吸着され、 その後、 紫 外線による酸化分解を受ける過程を経ると考えられるので、 高い消臭効果を発揮 するためには複合酸化物の形状は粒子状であることが好ましく、 特に多孔質の粒 子状であることが好ましい。 粒子径が大きすぎたり、 また、 比表面積が小さすぎ たりすると、 有機物に対する分解速度が低下する傾向にある。 複合酸化物の平均 一次粒子径は 1〜 2 0 n mであること、 比表面積が 1 0 0〜 3 0 0 m である ことが、 悪臭成分を効率よく吸着する上から好ましい。 It is considered that the deodorizing reaction by such a composite oxide is performed through a process in which malodorous components are adsorbed by a catalyst and then undergoes oxidative decomposition by ultraviolet rays. Is preferably in the form of particles, particularly preferably in the form of porous particles. If the particle diameter is too large or the specific surface area is too small, the decomposition rate for organic substances tends to decrease. The average primary particle diameter of the composite oxide is preferably from 1 to 20 nm, and the specific surface area is preferably from 100 to 300 m from the viewpoint of efficiently adsorbing malodorous components.
ここで複合酸化物の比表面積は、 QU ANT ACHROME社製 QUANT A S O R B O S— 8の装置を用いて測定した値であり、 次の方法によって測定 すればよレ、。 Here, the specific surface area of the composite oxide is a value measured using a QUANT ASORBOS-8 device manufactured by QUANT ACHROME, and can be measured by the following method.
[複合酸化物の比表面積の測定法] [Method for measuring specific surface area of composite oxide]
QUANTA CHROME社製の QUANTA SORB OS- 8を用いて、 次の条件で測定する。 Measure using QUANTA SORB OS-8 manufactured by QUANTA CHROME under the following conditions.
測定条件 : DE T— 1点法、 流通法、 TDC検出 Measurement conditions: DE T—one-point method, distribution method, TDC detection
前処理条件 : N2下 2 5 0°CX 1 5分 Pretreatment conditions: N 2 under 250 ° C X 15 minutes
また、 複合酸化物の平均一次粒子径は次の方法によって測定すればよい。 The average primary particle diameter of the composite oxide may be measured by the following method.
[複合酸化物の平均一次粒子径の測定法] [Method for measuring average primary particle diameter of composite oxide]
日本電子 (株) 製の透過型電子顕微鏡 J EM— 2 0 1 0を用いて、 倍率 : 1 0
万倍でもって測定する。 Magnification: 10 using a transmission electron microscope JEM-210 manufactured by JEOL Ltd. Measure by a factor of 10,000.
かかる複合酸化物の繊維構造物に対する付着量は、 繊維に対して 0 . 0 1〜 1 0重量。 /。が好ましい。 付着量が 0 . 0 1重量。 /。より少ないと、 悪臭成分の分解 速度が遅くなり消臭機能が不十分となる。 1 0重量。 /。より多いと、 繊維布帛が複 合酸化物による酸化作用によって劣化したりすることが懸念される。 The amount of the composite oxide attached to the fiber structure is 0.01 to 10 weight per fiber. /. Is preferred. The adhesion amount is 0.01 weight. /. If the amount is less, the decomposition rate of the odorous components becomes slow and the deodorizing function becomes insufficient. 10 weight. /. If the amount is larger, there is a concern that the fiber fabric may be deteriorated by the oxidizing action of the composite oxide.
本発明において用いるアルデヒ ド消臭剤は、 アルデヒ ド類に対して消臭機能を 発揮する化学物質であり、 なかでも、 ヒ ドラジド系化合物又は窒素含有複素環化 合物を含む消臭剤が好ましく用いられる。 これら化合物系の消臭剤は、 ホルムァ ルデヒ ドを始めとするアルデヒ ド類に対して化学反応を起こ してこれを吸着する ため、 アルデヒ ドの再放散を防止することができるので、 好ましい。 The aldehyde deodorant used in the present invention is a chemical substance that exhibits a deodorizing function for aldehydes, and among them, a deodorant containing a hydrazide compound or a nitrogen-containing heterocyclic compound is preferable. Used. These compound-based deodorants are preferable because they cause a chemical reaction with and adsorb aldehydes such as formaldehyde, so that re-emission of the aldehyde can be prevented.
上記ヒ ドラジド化合物としては、 例えば、 アジピン酸ジヒ ドラジド、 シユウ酸 ジヒ ドラジド、 マロン酸ジヒ ドラジド、 テレフタル酸ジヒ ドラジドなどが挙げら れる。 また、 上記窒素含有複素環化合物と しては、 ァゾール類、 ァジン類が好ま しく、 具体的には、 3—メチルー 5—ピラゾロン、 ピラゾール、 6—メチルー 8 ーヒ ドロキシトリァゾロピリダジン、 1 , 2, 4ー トリアゾールなどが挙げられ る。 中でもアジピン酸ジヒ ドラジドが特に好ましい。 Examples of the hydrazide compound include adipic acid dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, terephthalic acid dihydrazide and the like. Further, as the nitrogen-containing heterocyclic compound, azoles and azines are preferable. Specifically, 3-methyl-5-pyrazolone, pyrazole, 6-methyl-8-hydroxytriazolopyridazine, 1, 2,4-triazole and the like. Among them, adipic dihydrazide is particularly preferred.
本発明においては、 チタンとケィ素の複合酸化物という光触媒機能を有する化 合物と、 ヒ ドラジド系化合物や窒素含有複素環化合物等を含むアルデヒ ド消臭剤 との同時付与が肝要である。 この 2つの消臭剤を組み合わせて付着させると、 ト ルェンをはじめとする V O C物質に対しての消臭性能が飛躍的に向上するのであ る。 これは、 ヒ ドラジド系化合物や窒素含有有機複素環化合物の分子内に存在す る π電子と V O Cの芳香環内に存在する π電子との相互作用により、 V O C物質 が繊維構造物の表面に引きつけられ、 さらに繊維表面に存在する複合酸化物によ つて酸化分解されて無害化することによるものである。 In the present invention, it is important to simultaneously provide a compound having a photocatalytic function, which is a composite oxide of titanium and silicon, and an aldehyde deodorant containing a hydrazide compound or a nitrogen-containing heterocyclic compound. When these two deodorants are combined and adhered, the deodorant performance against VOC substances such as toluene is dramatically improved. This is because the interaction between the π electrons present in the molecule of the hydrazide compound and the nitrogen-containing organic heterocyclic compound and the π electrons present in the aromatic ring of the VOC attracts the VOC substance to the surface of the fiber structure. This is due to the fact that it is oxidatively decomposed and rendered harmless by the composite oxide present on the fiber surface.
この消臭機構から、 アルデヒ ド消臭剤の付着量は、 チタンとケィ素を含む複合 酸化物の付着量に対して 0 . 5〜 1 0 0重量%であることが好ましい。 1 0 0重 量。 /。より も多いアルデヒ ド消臭剤が付着していると V O Cはアルデヒ ド消臭剤に 吸着して複合酸化物側に移動し難いため酸化分解が進み難いし、 また、 0 . 5重 量。 /0より少ないと、 繊維表面による V O Cの捕捉回数が激減して複合酸化物が V
O C分解機能を十分に発揮できないからである。 From this deodorizing mechanism, the amount of the aldehyde deodorant attached is preferably 0.5 to 100% by weight based on the amount of the complex oxide containing titanium and silicon. 100 weight. /. If more aldehyde deodorant is attached, VOC is adsorbed to the aldehyde deodorant and is difficult to move to the composite oxide side, so it is difficult for oxidative decomposition to proceed, and 0.5 weight. If the ratio is less than 0/0, the number of VOCs captured by the fiber surface will decrease dramatically, This is because the OC decomposition function cannot be sufficiently exhibited.
本発明において、 複合酸化物とアルデヒ ド消臭剤とを繊維表面に付着させるた めに使われるバインダー樹脂は、 繊維表面との接着性が良く、 かつ、 複合酸化物 の光触媒作用による分解を受けにくい樹脂であればよい。 例えば、 ポリ ウレタン 樹脂、 シリ コーン樹脂、 フッ素樹脂、 アク リル樹脂、 ポリエステル樹脂、 メラミ ン樹脂などが使用されるが、 中でもポリ ウレタン樹脂、 シリ コーン樹脂、 アタ リ ル樹脂、 ポリエステル榭脂の成分を 1つ以上含有しているものが好ましく用いら れる。 ポリ ウレタン樹脂の中では水溶性ポリ ウレタン樹脂が、 環境への負荷が少 ないので、 好ましい。 また、 その場合の架橋剤と しては、 イソシァネート、 シラ ンカツプリ ング剤が好ましく用いられる。 In the present invention, the binder resin used for adhering the composite oxide and the aldehyde deodorant to the fiber surface has good adhesion to the fiber surface and is subject to decomposition by the photocatalytic action of the composite oxide. Any resin that is difficult can be used. For example, polyurethane resin, silicone resin, fluororesin, acrylic resin, polyester resin, melamine resin, etc. are used.In particular, the components of polyurethane resin, silicone resin, acryl resin, and polyester resin are used. Those containing one or more are preferably used. Among the polyurethane resins, a water-soluble polyurethane resin is preferable because of less burden on the environment. Further, as a crosslinking agent in that case, an isocyanate or a silane coupling agent is preferably used.
複合酸化物とアルデヒ ド消臭剤とを付着させるための加工処理を行う繊維構造 物が短繊維わたである場合には、 カード等の後工程の通過性の点から、 粘着性の 少ないシリ コーン樹脂及び 又はポリエステル樹脂が好ましい。 If the fibrous structure to be processed to adhere the composite oxide and the aldehyde deodorant is short-fiber cotton, the silicone is less sticky because of the post-processability of cards and the like. Resins and / or polyester resins are preferred.
かかるバインダー樹脂の付着量は、 繊維重量に対して 0 . 0 1〜 5重量。 /0であ るのが好ましく、 0 . 1〜 1重量。 /0がより好ましい。 樹脂付着量が 0 . 0 1重量The amount of the binder resin attached is 0.01 to 5 wt. / 0, preferably 0.1 to 1 weight. / 0 is more preferred. 0.01 weight of resin attached
%より少ないと、 複合酸化物とアルデヒ ド消臭剤とを付着させるバインダー効果 が弱くなり、 5重量。 /0より多いと、 繊維構造物の風合いが粗硬となり、 実用性に 劣るからである。 If less than 5%, the binder effect of adhering the composite oxide and the aldehyde deodorant is weakened, and the weight is 5 wt. If the ratio is more than 0 , the texture of the fiber structure becomes coarse and hard, and the practicality is poor.
本発明でいう繊維構造物は、 繊維から構成される繊維製品類であって、 その構 造や形状はいかなるものであってもよい。 例えば、 織物、 編物、 不織布、 スエー ド調人工皮革のような布帛状物、 帯状物、 紐状物、 わた状物、 網状物、 或いは、 表層が繊維で構成される複合材のような中間製品的な繊維製品類でもよいし、 ま た、 力一ペッ ト、 カーテン、 モケッ トのような最終製品的な繊維製品類でもよレ、。 なかでも、 織物、 編物、 不織布、 わたが好ましい。 The fiber structure referred to in the present invention is a fiber product composed of fibers, and may have any structure and shape. For example, fabrics such as woven fabric, knitted fabric, non-woven fabric, and suede-like artificial leather, band-like materials, string-like materials, cotton-like materials, net-like materials, or intermediate products such as composite materials in which the surface layer is composed of fibers. Textiles, or final textiles such as pets, curtains, and moquettes. Among them, woven fabric, knitted fabric, non-woven fabric and cotton are preferred.
この繊維構造物を構成する繊維は、 如何なる横断面形状をもつ繊維であっても よい。 該繊維の種類が合成繊維もしくは半合成繊維、 再生繊維の場合、 その繊維 横断面は、 通常の丸形断面でもよいが、 中空、 H型、 X型、 W型、 Y型、 星型か ら選ばれた少なく とも 1つの^状を有する変形断面であることが好ましい。 かか る横断面形状の繊維は、 紡糸の際の口金形状を変更する方法により、 或いは、 異
なる種類のポリマーを複合紡糸し、 後工程で分割割繊したり、 一方を溶出させて 除去する方法により、 容易に製造することができる。 The fibers constituting the fibrous structure may be fibers having any cross-sectional shape. When the type of the fiber is a synthetic fiber, a semi-synthetic fiber, or a regenerated fiber, the cross-section of the fiber may be an ordinary round cross-section, but from hollow, H-type, X-type, W-type, Y-type, and star-type. It is preferable that the deformed cross section has at least one selected ^ shape. The fibers having such a cross-sectional shape can be obtained by changing the shape of the die at the time of spinning, or It can be easily manufactured by a method in which a certain kind of polymer is composite-spun and divided and split in a later step, or one is eluted and removed.
この繊維としては、 合成繊維、 天然繊維など、 特に限定することなく種々の繊 維を用いることができる。 合成繊維と しては、 ポリエステル繊維、 ナイロン 6繊 維、 ナイロン 6 6繊維などのポリアミ ド繊維、 ポリアク リル繊維、 ポリアク リ ロ 二 ト リル繊維、 ポリ ビニルアルコール繊維、 ポリ塩化ビニル繊維、 ポリプロピレ ン鏃維、 ポリ ウレタン繊維、 ポリ乳酸繊維等が挙げられ、 半合成繊維と しては、 ジアセテート繊維、 ト リアセテート繊維等が挙げられ、 再生繊維と しては、 レー ヨン繊維、 キュブラ繊維、 テンセル繊維等が挙げられ、 天然繊維と しては、 羊毛、 絹、 木綿、 麻等が挙げられるが、 これらに限定されるものではない。 また、 これ ら繊維の 2種以上を任意の割合で混合して用いてもよいし、 或いは、 組合せて用 いてもよい。 中でも洗濯耐久性等の点から、 ポリエステル系繊維が好ましく用い られる。 Various fibers such as synthetic fibers and natural fibers can be used without particular limitation. Examples of synthetic fibers include polyester fibers, nylon 6 fibers, polyamide fibers such as nylon 66 fibers, polyacryl fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, and polypropylene arrowheads. Fiber, urethane fiber, polylactic acid fiber, etc .; semi-synthetic fiber, diacetate fiber, triacetate fiber, etc .; and regenerated fiber, rayon fiber, cuvula fiber, Tencel Examples of the natural fiber include wool, silk, cotton, hemp, and the like, but are not limited thereto. In addition, two or more of these fibers may be used as a mixture at an arbitrary ratio, or may be used in combination. Among them, polyester fibers are preferably used in terms of washing durability and the like.
かかるポリエステル系繊維と しては、 ポリエチレンテレフタレート繊維、 ポリ プロ ピレンテレフタレー ト繊維、 ポリブチレンテレフタレート繊維、 ポリへキサ メチレンテレフタレート繊維などが好ましい。 また、 他成分を共重合させた繊維 も好ましい。 他成分と しては、 イソフタル酸、 5—ナト リ ウムスルホイソフタル 酸、 メ トォキシポリオキシエチレンダリ コールなどが好ましく使用される。 As such polyester fibers, polyethylene terephthalate fibers, polypropylene terephthalate fibers, polybutylene terephthalate fibers, and polyhexamethylene terephthalate fibers are preferred. Further, fibers obtained by copolymerizing other components are also preferable. As the other components, isophthalic acid, 5-sodium sulfoisophthalic acid, methoxypolyoxyethylene dalichol, and the like are preferably used.
本発明による消臭機能は、 繊維構造物を構成する全繊維中の 5 0重量。 /0以上が ポリエステル系繊維である場合に、 特に優れた効果を示すので、 好ましい。 ポリ エステル系繊維は化学耐性が強く、 他の繊維よりも光触媒作用に対して影響を受 けにくいからである。 The deodorizing function according to the present invention has a weight of 50% of the total fibers constituting the fiber structure. It is preferable that polyester fibers have a ratio of / 0 or more, because particularly excellent effects are exhibited. Polyester fibers have high chemical resistance and are less susceptible to photocatalysis than other fibers.
また、 本発明の繊維構造物を構成するポリエステル系繊維は、 その繊維中に不 活性酸化チタンを含有することが好ましい。 この不活性酸化チタンは、 特定波長 の光、 特に紫外線に対して励起されることのない水準の不活性であることが好ま しく、 通常のポリエステル系繊維の製造において艷消し剤と して用いられる酸化 チタンが好ましく使用される。 このように不活性酸化チタンを添加すると、 ポリ エステル系繊維中の無機性が高められるので、 繊維表面に付着させた複合酸化物 によって生じる酸化還元作用がポリエステル系繊維に及ぼす悪影響を減少させる
ことができる'。 Further, the polyester fiber constituting the fiber structure of the present invention preferably contains inert titanium oxide in the fiber. This inactive titanium oxide is preferably inactive at a level that is not excited by light of a specific wavelength, particularly ultraviolet light, and is used as a matting agent in the production of ordinary polyester fibers. Titanium oxide is preferably used. The addition of the inert titanium oxide increases the inorganicity of the polyester-based fiber, thereby reducing the adverse effect of the redox effect caused by the composite oxide attached to the fiber surface on the polyester-based fiber. be able to'.
かかる不活性酸化チタンは、 ポリエステル系繊維の紡糸に供するポリエステル の重合工程で添加すればよい。 製糸性や糸物性の点から、 不活性酸化チタンの平 均粒子径は、 好ましくは 0 · 1 ~ 0 . 7 μ τη、 さらに好ましくは 0 . 2 ~ 0 · 4 μ mの範囲である。 Such inert titanium oxide may be added in the polyester polymerization step for spinning polyester fibers. The average particle size of the inert titanium oxide is preferably in the range of 0.1 to 0.7 μτη, and more preferably in the range of 0.2 to 0.4 μm, from the viewpoints of spinning properties and thread properties.
また、 かかる不活性酸化チタンの添加量は、 繊維重量に対して好ましくは 0 . 3〜 5 . 0重量%、 より好ましくは 0 . 5〜4 . 0重量%である。 0 . 3重 量。 /。未満であれば、 ポリエステル系繊維が、 付着した複合酸化物によって分解さ れ易くなり、 光触媒機能や繊維本来の物性の耐久性が劣る傾向にある。 また 5 . 0重量%を越えると、 製糸性や糸物性が不十分となる傾向にある。 The amount of the inert titanium oxide is preferably 0.3 to 5.0% by weight, more preferably 0.5 to 4.0% by weight, based on the weight of the fiber. 0.3 weight. /. If it is less than 1, the polyester fiber is easily decomposed by the attached composite oxide, and the photocatalytic function and the durability of the intrinsic physical properties of the fiber tend to be poor. On the other hand, if it exceeds 5.0% by weight, the spinning properties and yarn properties tend to be insufficient.
また、 カーボンブラックを練り込んだポリエステル系繊維は、 力一テンなどの 遮光性が要求される用途に好ましく用いられる。 In addition, polyester fibers into which carbon black has been kneaded are preferably used for applications requiring light-shielding properties, such as strength.
本発明の繊維構造物を構成する繊維は、 難燃剤を繊維内部に含有すること、 及 び/又は繊維表面に付着することが好ましい。 難燃剤による難燃効果は、 繊維中 における難燃剤の所在場所にはあまり左右されず、 繊維重量に対する難燃剤の重 量比に大きく影響される。 難燃剤を繊維に含有又は付着させるための方法と して は、 染色液中に難燃剤を添加して染色と同時に付着処理する方法、 難燃剤含有液 を含浸させて付着処理する方法、 或いは、 合成繊維の製造時に共重合や練り込み によって繊維内部に含有させる方法等が挙げられる。 It is preferable that the fiber constituting the fiber structure of the present invention contains a flame retardant inside the fiber and / or adheres to the fiber surface. The flame retardant effect of the flame retardant does not depend much on the location of the flame retardant in the fiber, and is greatly affected by the weight ratio of the flame retardant to the fiber weight. As a method for containing or adhering a flame retardant to fibers, a method of adding a flame retardant to a dyeing solution and performing an adhering treatment at the same time as dyeing, a method of impregnating and impregnating a flame retardant-containing solution, or There is a method in which a synthetic fiber is contained in the fiber by copolymerization or kneading during production.
難燃剤は、 繊維重量に対して 1〜 3 0重量。 /。の割合で含まれていることが好ま しい。 1重量。 /0未満では難燃性能が十分に得られ難く、 また、 3 0重量%を超え ると風合いが粗硬となり易いからである。 Flame retardant is 1 to 30 weight based on fiber weight. /. It is preferred that it be included in the proportion of 1 weight. If it is less than / 0, it is difficult to obtain sufficient flame retardancy, and if it exceeds 30% by weight, the texture tends to be coarse and hard.
かかる難燃剤と しては、 ホウ素、 リ ン、 窒素、 アンチモン、 ハロゲンのうちの 少なく とも 1種以上を含む難燃剤が好ましく、 特に、 リ ン酸エステル系難燃剤や 臭素系難燃剤が好ましく用いられる。 As such a flame retardant, a flame retardant containing at least one of boron, phosphorus, nitrogen, antimony, and halogen is preferable, and particularly, a phosphoric ester flame retardant and a bromine flame retardant are preferably used. Can be
ポリエステル繊維に適用する難燃剤と しては、 リ ン酸ヱステル、 芳香族リン酸 エステル、 カルボキシホスフィン酸やその環状無水物、 環状のホスフィン酸誘導 体、 ホスホン酸誘導体、 ホスホリル化合物、 ハロゲン化脂肪族リ ン酸エステルな どのリ ン化合物系難燃剤、 ハロゲン化ジオール、 ハロゲン化グリ シジルエーテル、
ハロゲンィ匕シク ロアルカン、 臭素化ビスフエノーノレ A、 臭素化ビスフエノール S などのハロゲン系難燃剤、 酸化アンチモン、 ホウ素化合物、 ケィ素化合物の金属 化合物が好ましく用いられる。 これら難燃剤は、 ポリエステル中に共重合させる 方法や、 ポリエステルのポリマ一中に練り込む方法によって繊維内部に含有させ てもよいし、 また、 ポリエステル布帛に後加工することによって繊維に吸尽させ たり、 含浸処理で付着させたりするのでもよい。 Flame retardants applied to polyester fibers include phosphoric acid esters, aromatic phosphates, carboxyphosphinic acid and its cyclic anhydrides, cyclic phosphinic acid derivatives, phosphonic acid derivatives, phosphoryl compounds, and halogenated aliphatics. Phosphorus compound flame retardants such as phosphate esters, halogenated diols, halogenated glycidyl ethers, Halogen flame retardants such as halogenated cycloalkane, brominated bisphenol A and brominated bisphenol S, metal compounds such as antimony oxide, boron compounds and silicon compounds are preferably used. These flame retardants may be incorporated into the fiber by a method of copolymerizing in polyester or kneading in a polyester polymer, or may be exhausted into fibers by post-processing into polyester fabric. Alternatively, it may be attached by impregnation.
その難燃剤の具体例と しては、 2—カルボキシェチルーメチルーホスフィ ン酸、 その環状無水物、 ト リ ス ( 2, 3—ジブロモプロ ピル) ホスフェート、 レゾルシ ォーノレ ' ビス (ジフエニルフォスフェー ト) と レゾノレシノール ' ビス (ジキシレ ニルフォスフェート) と リン酸ト リ フエニルの混合物、 へキサブ口ムシクロ ドデ カン、 テ トラブロムビスフエノーノレ A、 2、 2 —ビス (4ーヒ ドロキシエ トキシ — 3 , 5—ジブロモフェニ^^) ス^^ホンが挙げられる。 Specific examples of the flame retardant include 2-carboxyethyl-methyl-phosphinic acid, its cyclic anhydride, tris (2,3-dibromopropyl) phosphate, and resorcinol'bis (diphenylphospho). Fet) and a mixture of resonoresinol 'bis (dixylenyl phosphate) and triphenyl phosphate, hexaboxime cyclododecan, tetrabrombisphenenole A, 2, 2-bis (4-hydroxyethoxyethoxy) — 3, 5-dibromopheny ^^)
アタ リル繊維に適用する難燃剤と しては、 塩化ビュル系モノマーが好ましい。 また、 塩化ビニル系モノマーをァク リ ロニト リルに共重合させたポリマーから製 糸された難燃性ァク リル繊維を用いてもよい。 As a flame retardant applied to acryl fibers, a butyl chloride monomer is preferable. Further, a flame-retardant acrylic fiber produced from a polymer obtained by copolymerizing a vinyl chloride monomer with acrylonitrile may be used.
木綿繊維に適用する難燃剤と しては、 テトラキスヒ ドロキシメチルホスホニゥ ム塩や、 N—メチロールジメチルホスノプロピオンアミ ドなどが好ま しい。 Preferred flame retardants applied to cotton fibers include tetrakishydroxymethylphosphonium salt and N-methyloldimethylphosphonopropionamide.
難燃効果をさらに向上させるためには、 複合酸化物とアルデヒ ド消臭剤を繊維 表面に付着させる処理と同時に前記難燃剤を付着させることが好ましい。 In order to further improve the flame retardant effect, it is preferable to attach the composite flame retardant and the aldehyde deodorant to the fiber surface simultaneously with the treatment for attaching the flame retardant.
次に、 布帛を加工処理することによって本発明の繊維構造物を製造する場合の 一例について説明する。 Next, an example in the case where the fiber structure of the present invention is manufactured by processing a fabric will be described.
まず、 アルデヒ ド消臭剤を水に溶解させた後、 さらに、 複合酸化物とバインダ 一樹脂とを加えて混合し、 水分散液とする。 この際、 必要に応じて、 難燃剤、 マ ィナスイオン発生剤、 撥水剤、 抗菌剤、 形態安定加工剤、 吸湿剤、 保温剤、 吸水 剤をさらに加えてもよい。 得られた水分散液を加工液とする。 First, an aldehyde deodorant is dissolved in water, and then a composite oxide and a binder resin are added and mixed to obtain an aqueous dispersion. At this time, if necessary, a flame retardant, a negative ion generator, a water repellent, an antibacterial agent, a form stabilizing agent, a moisture absorbent, a heat insulating agent, and a water absorbent may be further added. The obtained aqueous dispersion is used as a working liquid.
次いで、 この加工液中に布帛を含浸させた後、 マングルロールで絞り、 ドライ 一キュアの工程を経る方法により、 あるいは、 この加工液に粘度調整剤を加えて 所望の粘度に調整して、 ナイフコーター、 グラビアコーター、 捺染、 スプレーな どの手段で布帛表面に塗布した後、 2 0 0 °C以下の温度により固着させる工程を
経る方法により、 繊維表面に複合酸化物とアルデヒ ド消臭剤を付着させる。 Then, after impregnating the fabric with the working fluid, the fabric is squeezed with a mangle roll and dried and cured. Alternatively, a viscosity adjusting agent is added to the working fluid to adjust the viscosity to a desired value. After applying it to the fabric surface by means of a coater, gravure coater, printing, spraying, etc., fix it at a temperature of 200 ° C or less. The complex oxide and aldehyde deodorant are attached to the fiber surface by the following method.
かく して得られた加工処理布帛は、 従来になかった消臭性能を持ち、 耐久性も 兼ね備えたものとなる。 The processed fabric thus obtained has a deodorizing performance which has never existed before, and also has durability.
この加工処理布帛は、 掛け布団、 敷き布団、 敷きマッ ト、 ブランケッ ト、 まく ら、 抱きまく ら、 ベッ ドマツ トなどの寝具類、 ソファー、 クッショ ン、 座布団、 ぬいぐるみ、 カーテン、 カーペッ ト、 マッ ト、 カバー、 のれん、 スリ ッパなどの インテリ ア類、 また、 カーシートなどの乗物用内装材類などに適用することがで き、 環境中に存在するホルムアルデヒ ドゃ V O Cを効果的に低減させることがで きる。 This processed fabric includes beddings such as comforters, mattresses, mats, blankets, sleepers, dakimakura, bed mats, sofas, cushions, cushions, plush toys, curtains, carpets, mats and covers. It can be applied to interiors such as automobiles, goodwill and slippers, and interior materials for vehicles such as car seats, and can effectively reduce formaldehyde VOCs present in the environment. Wear.
また、 病院やホテルなどの公共施設内で使用されるィンテリァ類に適用するた めには、 繊維表面にさらに難燃剤を付着させることによって難燃性能を併せ持つ 加工処理布帛とすることが好ましい。 以下、 本発明を実施例により更に詳細に説明する。 In addition, in order to apply to interiors used in public facilities such as hospitals and hotels, it is preferable to apply a flame retardant to the fiber surface to obtain a processed fabric having flame retardancy. Hereinafter, the present invention will be described in more detail with reference to Examples.
以下の実施例、 比較例において得られた繊維構造物の特性は、 次の方法で測定 して評価した。 The properties of the fiber structures obtained in the following Examples and Comparative Examples were measured and evaluated by the following methods.
(検知管によるホルムアルデヒ ド消臭性の測定) (Measurement of formaldehyde deodorant using a detector tube)
5 0 0 m l の容器中に試料を 3 g入れ、 初期濃度が 4 p p mとなるようにホル ムアルデヒ ド水溶液を入れて密閉し、 3 0分間放置した後、 ガス検知管で残留ホ ルムアルデヒ ド濃度を測定した。 この残留濃度と初期濃度とから、 下記の式に従 いホルムアルデヒ ド消臭率 (%) を算出した。 なお、 試料がわたの場合は、 一辺 が 1 0 c mの正方形を 2つ縫い合わせたガーゼの袋に試料を入れて、 消臭評価を 行った。 Pour 3 g of the sample into a 500 ml container, add an aqueous solution of formaldehyde so that the initial concentration is 4 ppm, seal the mixture, allow it to stand for 30 minutes, and use a gas detector tube to measure the residual formaldehyde concentration. It was measured. From this residual concentration and the initial concentration, the formaldehyde deodorization rate (%) was calculated according to the following equation. When the sample was cotton, the sample was put in a gauze bag in which two squares each having a side of 10 cm were sewn and evaluated for deodorization.
消臭率 (%) = { 1— (残留濃度) Z (初期濃度) } X 1 0 0 Deodorization rate (%) = {1-(residual concentration) Z (initial concentration)} X 100
(検知管によるキシレン消臭性の測定) (Measurement of xylene deodorant by detector tube)
V O Cの代表と してキシレンについての消臭性を測定した。 上記したホルムァ ルデヒ ド消臭性の測定の場合と同様に、 試料を入れた容器を準備し、 この容器中 に、 初期濃度が 4 0 p p mとなるようにキシレンを入れて密閉し、 2時間放置し
た後、 ガス検知管で残留キシレン濃度を測定した。 この残留濃度と初期濃度とか ら、 上記した消臭率の算出式に従いキシレン消臭率 (%) を算出した。 The deodorizing property of xylene was measured as a representative of VOC. Prepare a container containing the sample in the same manner as in the measurement of formaldehyde deodorization described above, put xylene in this container so that the initial concentration is 40 ppm, and seal it, and leave it for 2 hours. And After that, the residual xylene concentration was measured with a gas detector tube. From this residual concentration and the initial concentration, the xylene deodorization rate (%) was calculated according to the above formula for calculating the deodorization rate.
(洗濯 5回後のホルムアルデヒ ド消臭性、 キシレン消臭性の測定) (Measurement of formaldehyde deodorant and xylene deodorant after 5 washes)
自動反転渦巻き式電気洗濯機 V H— 3 4 1 0 (東芝 (株) 製) を用い、 市販洗 剤濃度 0 . 2 %、 温度 4 0 ± 2 °C、 浴比 1 : 5 0の条件下で 5分間強反転で洗濯 し、 その後排水し、 オーバーフローさせながらのすすぎを 2分間行う操作を 2回 繰り返し、 これを洗濯 1回と した。 Using a self-reversing spiral electric washing machine VH-340 (manufactured by Toshiba Corporation), under the conditions of a commercially available detergent concentration of 0.2%, a temperature of 40 ± 2 ° C, and a bath ratio of 1:50. Washing was performed with strong inversion for 5 minutes, then draining, and rinsing for 2 minutes while overflowing was repeated twice, and this was defined as one washing.
この洗濯を 5回繰り返した後の繊維構造物を試料と して、 上記と同様の方法に より、 ホルムアルデヒ ド消臭性、 キシレン消臭性を測定した。 After the washing was repeated 5 times, the fibrous structure was used as a sample, and the formaldehyde deodorizing property and the xylene deodorizing property were measured by the same method as described above.
(難燃性の評価) (Evaluation of flame retardancy)
試料が織物の場合は、 J I S L 1 0 9 1 繊維製品の燃焼性能試験法に準 じて難燃性の評価を行った。 A— 1法と D法の試験を行い、 消防法 (ィ) ラベル 基準での合否判定を行なった。 When the sample was a woven fabric, the flame retardancy was evaluated according to the JIS L 1091 textile product combustion performance test method. Tests of A-1 and D methods were conducted, and pass / fail judgment was made based on the Fire Service Law (a) label standards.
試料がわたの場合は、 4 5 ° メセナミンバスケッ ト法により難燃性の評価を行 つた。 In the case of a sample, the flame retardancy was evaluated by the 45 ° mesenamine basket method.
(撥水性の測定) (Measurement of water repellency)
J I S L— 1 0 9 2 シャワー法で、 撥水度の級判定を行った。 数字が大き いほど、 撥水性が良好なことを示す。 JISL—1092 The water repellency was evaluated by the shower method. The higher the number, the better the water repellency.
(抗菌性の測定及び評価) (Measurement and evaluation of antibacterial properties)
J I S L - 1 9 0 2に記載された方法に基づき、 黄色ぶどう球菌について定 量試験法による静菌活性値の測定を行った。 数字が大きいほど抗菌性能が良好な ことを表し、 静菌活性値が 2 . 2以上で抗菌性能が合格と判定した。 Based on the method described in JIS L-1990, the bacteriostatic activity of Staphylococcus aureus was measured by a quantitative test method. The higher the number, the better the antibacterial performance. The bacteriostatic activity value was 2.2 or more, and the antibacterial performance was judged to be acceptable.
[実施例 1 ] [Example 1]
平均粒子径 0 . 3 μ mの不活性酸化チタンを 0 . 3 5重量。 /。含むポリエチレン
テレフタレ一トマルチフィラメ ント糸 ( 8 3 d t e x) からなる、 目付 2 0 0 g Zm2のサテン織物を、 通常の加工条件により精鍊、 乾燥、 中間セッ トを行った後 に、 臭素系難燃剤 "30 ?— 1 改良8" (R) (大京化学 (株) 製) を含有する 染色液によって分散染料による染色を行ない、 難燃剤が 1 2%owf付着したページ ュ色の難燃織物と した。 0.35 weight of inert titanium oxide having an average particle diameter of 0.3 μm. /. Containing polyethylene Satin woven fabric of terephthalate multifilament yarn (83 dtex) with a basis weight of 200 g Zm 2 is refined, dried and intermediately set under normal processing conditions, and then a brominated flame retardant. 30? — 1 Improve 8 "(R) (manufactured by Daikyo Chemical Co., Ltd.) and stain with a disperse dye to obtain a flame retardant fabric with a 12% owf of flame retardant. .
チタンとケィ素を含む複合酸化物と して、 大京化学(株)製の "TR— T 2" (R) (固形分 2 0%の水分散薬液) を用いた。 これは、 平均一次粒子径が 7 η m、 平均比表面積が 1 5 0m2Zgである、 チタンとケィ素の複合酸化物を水中に 固形分濃度 20%で分散させた水分散液であって、 複合酸化物が平均粒子径 0. 3 μ mの粒子状態で分散している。 As a composite oxide containing titanium and silicon, "TR-T2" (R) (a water-dispersed chemical solution having a solid content of 20%) manufactured by Daikyo Chemical Co., Ltd. was used. This is an aqueous dispersion in which a composite oxide of titanium and silicon having an average primary particle diameter of 7 ηm and an average specific surface area of 150 m 2 Zg is dispersed in water at a solid concentration of 20%. The composite oxide is dispersed in the form of particles having an average particle diameter of 0.3 μm.
アルデヒ ド消臭剤と してアジピン酸ジヒ ドラジドを用いた。 Adipic dihydrazide was used as the aldehyde deodorant.
また、 バインダー樹脂と して、 ポリ ウレタン樹脂 "ハイ ドラン AP X— 1 0 1 H" (R) (固形分 6 0%) 大日本インキ化学工業 (株) 製を、 イソシァネー ト架橋剤 " CR— 6 0 N" (R) (固形分 1 0 0%) 大日本インキ化学工業 (株) 製、 とともに用いた。 As a binder resin, a polyurethane resin “Hydran AP X—101 H” (R) (solid content: 60%) manufactured by Dainippon Ink and Chemicals, Inc., and an isocyanate crosslinking agent “CR— 60 N "(R) (solid content: 100%) manufactured by Dainippon Ink and Chemicals, Incorporated.
これら成分、 及び下記のリ ン酸エステル系難燃剤を、 下記組成で調合して加工 剤の水分散液を準備した。 These components and the following phosphoric ester-based flame retardant were prepared in the following composition to prepare an aqueous dispersion of a processing agent.
(加工液の組成) (Composition of processing fluid)
チタンとケィ素の複合酸化物 : "T R— T 2" (R) (固形分 2 0%) 大京化 学(株)製 0. 3重量% Composite oxide of titanium and silicon: "TR-T2" (R) (solid content 20%) 0.3% by weight, manufactured by Daikyo Chemical Co., Ltd.
アルデヒ ド消臭剤 : アジピン酸ジヒ ドラジド 0. 2重量% Aldehyde deodorant: Adipic dihydrazide 0.2% by weight
ポリ ウレタン樹脂 : "ハイ ドラン AP X— 1 0 1 H" (R) (固形分 6 0 Polyurethane resin: "Hydran AP X—101 H" (R) (solid content 60
%) 大日本インキ化学工業 (株) 製 0. 2重量% %) 0.2% by weight manufactured by Dainippon Ink and Chemicals, Inc.
イ ソシァネ一ト架橋剤 : "C R— 6 0 N" (R) (固形分 1 0 0 %) 大日本ィ ンキ化学工業 (株) 製 0. 0 0 6重量% リ ン酸エステル系難燃剤 : "ビゴ一ル G P E— 5 1 5" (R) (固形分 6 0 Iso-Cross-linking agent: "CR-600N" (R) (solid content: 100%) 0.06% by weight, manufactured by Dainippon Ink and Chemicals, Inc. Phosphate flame retardant: "Bigol GPE—5 1 5" (R) (solids 60
%) 大京化学 (株) 製 0. 5重量% %) 0.5% by weight manufactured by Daikyo Chemical Co., Ltd.
水 9 8. 7 9 4重量%
この加工液に、 前記難燃織物を浸し、 マングルロールでピックアップ 8 0重量 %で絞り、 1 3 0°Cで 2分乾燥した後、 1 7 0°Cで 1分間熱処理し、 繊維表面に、 チタンとケィ素の複合酸化物とアルデヒ ド消臭剤とが付着した織物を製造した。 この加工処理した織物について消臭性を評価し、 その結果を表 1に示した。 また、 この加工処理織物の難燃性は合格水準にあった。 Water 9 8. 7 9 4% by weight The flame-retardant fabric is immersed in this processing solution, picked up with a mangle roll at 80% by weight, squeezed at 130 ° C for 2 minutes, and then heat-treated at 170 ° C for 1 minute. A woven fabric to which a titanium-silicon composite oxide and an aldehyde deodorant were attached was manufactured. The deodorizing properties of the processed fabric were evaluated, and the results are shown in Table 1. In addition, the flame retardancy of this processed fabric was at an acceptable level.
[実施例 2] [Example 2]
平均粒子径 0. 3 μ mの不活性酸化チタンを 0 · 3 5重量%含むポリエチレン テレフタレートマルチフィラメント糸 ( 8 3 d t e x) からなる、 目付 2 0 0 g Zm2のサテン織物を、 通常の加工条件によ り精練、 乾燥、 中間セッ ト、 分散染料 による染色を行ない、 ベージュ色の染色織物と した。 Polyethylene terephthalate multifilament yarn (83 dtex) containing 0.35% by weight of inert titanium oxide with an average particle diameter of 0.3 μm, satin fabric with a basis weight of 200 g Zm 2 was processed under normal processing conditions. The fabric was refined, dried, intermediately set, and dyed with a disperse dye to produce a beige dyed fabric.
チタンとケィ素の複合酸化物、 アルデヒ ド消臭剤と しては、 実施例 1で用いた と同じ成分を用いた。 また、 バインダー樹脂と して、 アク リル樹脂 "ライ トェポ ック T 2 3—M" (R) (固形分 2 0%) 共栄社化学(株)製、 を用いた。 As the composite oxide of titanium and silicon and the aldehyde deodorant, the same components as those used in Example 1 were used. In addition, as a binder resin, an acrylic resin "Light Epoch T23-M" (R) (solid content: 20%) manufactured by Kyoeisha Chemical Co., Ltd. was used.
これら成分を下記組成で調合して加工剤の水分散液を準備した。 These components were mixed with the following composition to prepare an aqueous dispersion of a processing agent.
(加工液の組成) (Composition of processing fluid)
チタンとケィ素の複合酸化物 : "TR— T 2" (R) (固形分 2 0%) 大京化 学(株)製 0. 3重量。/。 Composite oxide of titanium and silicon: "TR-T2" (R) (solid content: 20%) 0.3 weight, manufactured by Daikyo Chemical Co., Ltd. /.
アルデヒ ド消臭剤 : アジピン酸ジヒ ドラジド 0. 2重量。 /。 Aldehyde deodorant: 0.2 weight of adipic dihydrazide. /.
アク リル樹脂 "ライ トエポック T 2 3— M" (R) (固形分 2 0%) 共栄社 化学(株)製 0. 2重量% Acrylic resin "Light Epoch T 23-M" (R) (solid content 20%) Kyoeisha Chemical Co., Ltd. 0.2% by weight
水 9 9. 3重量。 /。 この加工液に、 前記染色織物を浸し、 マングルロールでピックアップ 8 0重量 %で絞り、 1 3 0°Cで 2分乾燥した後、 1 7 0°Cで 1分間熱処理し、 繊維表面に、 チタンとケィ素の複合酸化物とアルデヒ ド消臭剤とが付着した織物を製造した。 この加工した織物について消臭性を評価し、 その結果を表 1に示した。 99.3 weight of water. /. The dyed fabric is immersed in this processing solution, squeezed with a mangle roll at 80% by weight, dried at 130 ° C for 2 minutes, and then heat-treated at 170 ° C for 1 minute. A woven fabric to which a composite oxide of iron and silicon and an aldehyde deodorant were attached was manufactured. The deodorant properties of the processed fabric were evaluated, and the results are shown in Table 1.
[実施例 3]
単糸繊度 6. 6 7 d t e Xの丸形横断面を有するポリエステル繊維を、 常法に より溶融紡糸によって製造した。 これを束ねて 5 5. 6万 d t e xのトウと し、 ク リ ンパーにより機械捲縮を与え、 捲縮トウと した。 [Example 3] Polyester fibers having a round cross section of single yarn fineness of 6.67 dte X were produced by melt spinning in a conventional manner. These were bundled into 556,000 dtex tows, which were mechanically crimped by a crimper to form crimped tows.
チタンとケィ素を含む複合酸化物、 アルデヒ ド消臭剤と しては実施例 1で用い たと同じ成分を用いた。 また、 バインダー樹脂と しては、 シリ コーン樹脂 "BY 2 2 - 8 2 6 " (R) (固形分 4 5 %) 東レ · ダウコ一ニング · シリ コーン (株) 製を用いた。 これら成分を下記組成で調合して加工剤の水分散液を準備し た。 As the composite oxide containing titanium and silicon and the aldehyde deodorant, the same components as those used in Example 1 were used. As the binder resin, a silicone resin "BY22-826" (R) (solid content: 45%) manufactured by Toray Dow Corning Silicone Co., Ltd. was used. These components were blended with the following composition to prepare an aqueous dispersion of a processing agent.
(加工液の組成) (Composition of processing fluid)
チタンとケィ素の複合酸化物 : "TR— T 2" (R) (固形分 2 0%) 大京化 学(株)製 1 0重量% Composite oxide of titanium and silicon: "TR-T2" (R) (solid content 20%) 10% by weight, manufactured by Daikyo Chemical Co., Ltd.
アルデヒ ド消臭剤 : アジピン酸ジヒ ドラジド 2重量% Aldehyde deodorant: 2% by weight of adipic dihydrazide
シリ コーン樹脂 " B Y 2 2— 8 2 6 " (R) (固形分 4 5 %) 東レ · ダウコー ニング · シリ コーン (株) 製 1 0重量% Silicone resin "BY22-8226" (R) (solid content 45%) 10% by weight manufactured by Toray Dow Corning Silicone Co., Ltd.
水 7 8重量% 前記捲縮トウに、 スプレーによって、 チタンとケィ素の複合酸化物の付着量が 2重量。 /0となるように上記加工液を付与し、 1 5 0°Cに設定した連続乾燥機で 1 0分間乾燥した。 この加工トゥを単繊維長が 5 1 mmになるようにカツ トした 後、 カード機にかけ、 繊維表面に、 チタンとケィ素の複合酸化物とアルデヒ ド消 臭剤とが付着したわた状の詰物用中わたを製造した。 この中わたについて消臭性 を評価し、 その結果を表 1に示した。 Water 78% by weight Sprayed onto the crimped tow, 2% by weight of composite oxide of titanium and silicon. The working fluid was applied so as to be / 0, and dried with a continuous dryer set at 150 ° C for 10 minutes. After cutting this processed toe so that the single fiber length is 51 mm, it is set on a card machine, and a wadding-like filling with a titanium-silicon composite oxide and an aldehyde deodorant attached to the fiber surface. Manufactured cotton for use. The deodorizing properties of the cotton were evaluated, and the results are shown in Table 1.
[実施例 4] [Example 4]
島成分がポリエチレンテレフタレ一ト、 海成分がポリ スチレンからなり、 島海 の成分比 8 0/ 2 0 , 島数 1 6の 2成分系海島型複合繊維を溶融紡糸法にて作製 し、 2. 5倍に延伸し、 捲縮付与し、 カッ ト処理を行うことにより、 島繊度 0. 2 d t e x、 極細島繊維の伸び率が 1 1 5 %の海島型複合繊維の原綿と した。 この原綿を用い、 カーディング及びクロスラッパーにて繊維積層ウェブと した後、
2 0 0 0本/ c m2 のニー ドルパンチを行い、 目付 4 0 0 gZm2 の、 短繊維よ りなるフェルト地を作製した。 かく して得られたフ-ルト地を、 ポリ ビニルアル コールを溶かした熱水中で糊付けして乾燥させた後、 ト リクレン中に浸漬してマ ンダルで絞ることにより海成分を溶解 ' 除去し、 その後、 フェルト地重量に対し 2 9 %のポリ ウレタンを湿式凝固法により付与した。 その後、 スライス後起毛処 理し、 分散染料で染色し、 厚さ 0. 6 0 mm、 目付 1 3 5 g /m2 のスエード調 人工皮革を作製した。 The island component was made of polyethylene terephthalate and the sea component was made of polystyrene.A two-component sea-island composite fiber with an island sea component ratio of 80/20 and 16 islands was produced by melt spinning. It was stretched 5 times, crimped, and cut to give a raw cotton of sea-island composite fiber with an island fineness of 0.2 dtex and an elongation rate of ultrafine island fiber of 115%. After using this raw cotton to make a fiber laminated web with carding and cross wrapper, A needle punch of 2000 pieces / cm 2 was performed to produce a felt ground made of short fibers with a basis weight of 400 gZm 2 . The thus obtained fiber ground is glued in hot water in which polyvinyl alcohol is dissolved, dried, then immersed in trichlorne and squeezed with a mandal to dissolve and remove sea components. Then, 29% of polyurethane based on the weight of felt was applied by wet coagulation. Thereafter, it brushed processing sliced, stained with disperse dye, to prepare a thick 0. 6 0 mm, basis weight 1 3 5 g / m 2 artificial leather.
チタンとケィ素を含む複合醆化物、 アルデヒ ド消臭剤と しては実施例 1で用い たと同じ成分を用い、 バインダー樹脂と しては実施例 2で用いたと同じ成分を用 いた。 これら成分を下記組成で調合して加工剤の水分散液を準備した。 The same components as used in Example 1 were used as the composite oxide containing titanium and silicon and the aldehyde deodorant, and the same components as those used in Example 2 were used as the binder resin. These components were mixed with the following composition to prepare an aqueous dispersion of a processing agent.
(加工液の組成) (Composition of processing fluid)
チタンとケィ素の複合酸化物 : "T R— T 2" (R) (固形分 2 0%) 大京化 学(株)製 1. 0重量。/。 Composite oxide of titanium and silicon: "TR-T2" (R) (solid content: 20%) 1.0 weight, manufactured by Daikyo Chemical Co., Ltd. /.
アルデヒ ド消臭剤 : アジピン酸ジヒ ドラジド 1. 0重量% アク リル樹脂 "ライ トエポック T 2 3— M" (R) (固形分 2 0%) 共栄社 化学(株)製 1. 0重量% 水 9 7. 0重量% この加工液に、 前記スエー ド調人工皮革を浸し、 マングルロールでピックアツ プ 8 0重量。 /。で絞り、 1 00°Cで 2分間乾燥し、 繊維表面に、 チタンとケィ素の 複合酸化物とアルデヒ ド消臭剤とが付着した人工皮革と した。 Aldehyde deodorant: Adipic acid dihydrazide 1.0% by weight Acrylic resin "Light Epoch T23-M" (R) (solid content 20%) Kyoeisha Chemical Co., Ltd. 1.0% by weight water 9 7.0% by weight The above-mentioned suede-like artificial leather is immersed in this processing liquid, and picked up with a mangle roll. /. And dried at 100 ° C for 2 minutes to obtain artificial leather having a composite oxide of titanium and silicon and an aldehyde deodorant adhered to the fiber surface.
続いて、 この人工皮革を下記組成の撥水加工液に浸し、 マングルロールでピッ クアップ 8 0重量%で絞り、 1 0 0°Cで 2分間乾燥して、 撥水加工処理人工皮革 と した。 Subsequently, this artificial leather was immersed in a water-repellent solution having the following composition, picked up with a mangle roll at 80% by weight, dried at 100 ° C. for 2 minutes to obtain a water-repellent treated artificial leather.
(撥水加工液の組成) (Composition of water-repellent processing liquid)
撥水剤 : "E C— 4 0 0" (R) (固形分 2 0%) (株) 京絹化成製 Water repellent: "E C—400” (R) (solid content: 20%) manufactured by Keishin Kasei Co., Ltd.
1. 0重量% メラ ミ ン樹脂 "スミテックスレジン M 3 " (R) (固形分 8 0%) 住友化学ェ 業 (株) 製 0. 2重量。/。
架橋剤 "スミテックスァクセラレイター AC X (固形分 3 5 %) 住友 化学工業 (株) 製 0. 0 4重量% 水 8. 7 6重量% 得られた人工皮革について消臭性を評価した。 その結果は表 1に示したとおり、 撥水処理後でも消臭性は良好であった。 また、 この加工処理した人工皮革の撥水 性は 4級と良好であった。 1.0% by weight Melamine resin "Sumitec Resin M3" (R) (solid content: 80%) 0.2 weight, manufactured by Sumitomo Chemical Co., Ltd. /. Crosslinking agent "Sumitex Axelareiter AC X (solid content: 35%) manufactured by Sumitomo Chemical Co., Ltd. 0.04% by weight Water 8.76% by weight The deodorant property of the obtained artificial leather was evaluated. The results showed that the deodorant was good even after the water repellency treatment as shown in Table 1. The water repellency of the processed artificial leather was as good as grade 4.
[実施例 5] [Example 5]
総繊度 1 1 7 0 d t e x、 8 1 フイラメントの Y型断面ナイロン 6マルチフィ ラメント捲縮糸を通常の条件で基布にタフ トして、 目付 4 5 0 g /m2のタフ ト加 ェ布と し、 常法に従って染色し、 バッキング処理してカーペッ トを作製した。 チタンとケィ素を含む複合酸化物と しては実施例 1で用いたと同じ成分を用い た。 アルデヒ ド消臭剤と しては 3—メチルー 5—ピラゾロンを用いた。 また、 パ インダー樹脂と しては、 ジリ コーン樹脂 " KT 7 0 1 4" (R) (固形分 4 0 %) 共栄社化学(株)製を用いた。 The total fineness 1 1 7 0 dtex, 8 1 filament Y-shaped cross-section nylon 6 Maruchifi Lament crimped yarn of TOUGH bets based fabric under normal conditions, and tough preparative pressurizing E fabric having a basis weight of 4 5 0 g / m 2 Then, it was dyed according to a conventional method and backed to prepare a carpet. The same components as used in Example 1 were used as the composite oxide containing titanium and silicon. 3-Methyl-5-pyrazolone was used as the aldehyde deodorant. As the binder resin, a silicone resin “KT710” (R) (solid content: 40%) manufactured by Kyoeisha Chemical Co., Ltd. was used.
これら成分、 及び下記の抗菌剤を、 下記組成で調合して加工剤の水分散液を準 備した。 These components and the following antibacterial agent were prepared in the following composition to prepare an aqueous dispersion of a processing agent.
(加工液の組成) (Composition of processing fluid)
チタンとケィ素の複合酸化物 : "TR— T 2" (R) (固形分 2 0%) 大京化 学(株)製) 5重量% Composite oxide of titanium and silicon: "TR-T 2" (R) (solid content 20%, manufactured by Daikyo Chemical Co., Ltd.) 5% by weight
アルデヒ ド消臭剤 : 3—メチルー 5—ピラゾロン 7重量。 /0 シリ コーン樹脂 " KT 7 0 1 4" (R) (固形分 4 0%) 共栄社化学(株)製 Aldehyde deodorant: 7 weight of 3-methyl-5-pyrazolone. / 0 Silicone resin "KT70 14" (R) (solid content 40%) manufactured by Kyoeisha Chemical Co., Ltd.
5重量% 5% by weight
抗菌剤 : 2—ピリ ジルチオ一ル— 1—ォキシド亜鉛 1重量。 /0 水 8 2重量% 前記力一ペッ トのタフ ト面に、 スプレーによって、 チタンとケィ素の複合酸化 物の付着量が 5重量%となるように上記加工液を付与し、 1 5 0°Cに設定した連
続乾燥機で 1 0分間乾燥し、 繊維表面に、 チタンとケィ素の複合酸化物とアルデ t ド消臭剤と抗菌剤とが付着したカーぺッ トを製造した。 このカーぺッ トについ て消臭性を評価し、 その結果を表 1に示した。 また、 このタフ ト面の抗菌性は 6. 0以上と合格水準にあった。 Antibacterial agent: 1% by weight of 2-pyridylthiol-1-oxide zinc. / 0 water 82% by weight Spraying the above-mentioned working fluid on the tuft surface of the pet by a spray so that the attached amount of the composite oxide of titanium and silicon becomes 5% by weight. ° C Drying was continued for 10 minutes using a continuous dryer to produce a carpet having a composite oxide of titanium and silicon, an aldehyde deodorant, and an antibacterial agent adhered to the fiber surface. This cartridge was evaluated for deodorizing properties, and the results are shown in Table 1. In addition, the antibacterial property of this tuft was at an acceptable level of 6.0 or more.
[実施例 6] [Example 6]
ポリエステルステ一プノレ ( 2. 2 d t e X X 5 1 mm) 1 0 0%使いの 2 0番 手紡績糸双糸 (チーズ染め) をパイル糸に用い、 ポリエステルステーブル ( 2. 2 d t e x X 5 1 mm) 6 5 %と レーヨンステープノレ ( 2. 2 d t e x X 5 1 mm) 3 5 %とからなる混紡糸 (チーズ染め) を地糸に用いて製織し、 通常 条件で起毛処理を行い、 パイル長さが 2. 5 mm、 目付が 5 5 0 gZm2 のモケ ッ ト織物を作製し、 更に常法に従ってバッキング処理し、 モケッ トを製造した。 チタンとケィ素を含む複合酸化物、 アルデヒ ド消臭剤と しては実施例 1で用い たと同じ成分を用い、 バインダ一樹脂と しては実施例 2で用いたものと同じ成分 を用いた。 これら成分を下記組成で調合して加工剤の水分散液を準備した。 Polyester step (2.2 dte XX 51 mm) Use 100% spun yarn (twisted yarn (cheese dyed)) for pile yarn and polyester stable (2.2 dtex X 51 mm) ) Weave using a blended yarn (cheese dyed) consisting of 65% and 35% rayon staple (2.2 dtex X 51 mm) for the ground yarn, brushing under normal conditions, pile length A moquette fabric having a thickness of 2.5 mm and a basis weight of 5500 gZm 2 was prepared and subjected to a backing treatment according to a conventional method to produce a moquette. The same components as those used in Example 1 were used as the complex oxide containing titanium and silicon and the aldehyde deodorant, and the same components as those used in Example 2 were used as the binder resin. . These components were mixed with the following composition to prepare an aqueous dispersion of a processing agent.
(加工液の組成) (Composition of processing fluid)
チタンとケィ素の複合酸化物 : "TR— T 2" (R) (固形分 2 0%) 大京化 学(株)製 1. 0重量% Composite oxide of titanium and silicon: "TR-T 2" (R) (solid content 20%) 1.0% by weight, manufactured by Daikyo Chemical Co., Ltd.
アルデヒ ド消臭剤 : アジピン酸ジヒ ドラジド 0. 1重量% Aldehyde deodorant: 0.1% by weight of adipic dihydrazide
アク リル樹脂 "ライ トエポック T 2 3— M" (R) (固形分 2 0%) 共栄社 化学(株)製 1. 0重量% Acrylic resin "Light Epoch T23-M" (R) (solid content 20%) Kyoeisha Chemical Co., Ltd. 1.0% by weight
水 9 7. 9重量% この加工液に、 前記モケッ トを浸し、 マングルロールでピックアップ 1 0 0重 量。 /0で絞り、 1 3 0°Cで 2分間乾燥した後、 1 5 0°Cで 1分間熱処理し、 繊維表 面に、 チタンとケィ素の複合酸化物とアルデヒ ド消臭剤とが付着したモケッ トと した。 この加工処理モケッ トについて消臭性を評価し、 その結果を表 1に示した。 Water 97.9% by weight The moquette is immersed in this processing fluid and picked up by a mangle roll. / 0 squeezed in, after drying for 2 minutes at 1 3 0 ° C, then heat-treated for 1 minute in 1 5 0 ° C, the fiber sheet surface, adhesion composite oxide and aldehyde deodorant of titanium and Kei-containing It was a moquette. The deodorizing properties of this processed moquette were evaluated, and the results are shown in Table 1.
[実施例 7 ]
実施例 2で用いた加工液に、 実施例 1で作製した難燃織物を浸し、 マングルロ ールでピックアップ 8 0重量。 /。で絞り、 1 3 0 °Cで 2分間乾燥した後、 1 7 0 °C で 1分間熱処理し、 繊維表面に、 チタンとケィ素の複合酸化物とアルデヒ ド消臭 剤とが付着した織物を製造した。 この加工処理した織物について消臭性を評価し、 その結果を表 1に示した。 また、 この加工処理織物は染色時に難燃剤が付与され ていたが、 複合酸化物等を含む加工剤中に難燃剤を含まなかったので、 難燃性は 不合格であった。 [Example 7] The flame retardant fabric prepared in Example 1 was immersed in the working fluid used in Example 2 and picked up with a mangle roll. /. After drying at 130 ° C for 2 minutes, heat-treat at 170 ° C for 1 minute to remove the woven fabric with the composite oxide of titanium and silicon and an aldehyde deodorant attached to the fiber surface. Manufactured. The deodorizing properties of the processed fabric were evaluated, and the results are shown in Table 1. In addition, although the flame retardant was added to the processed fabric at the time of dyeing, the flame retardancy was rejected because the flame retardant was not included in the processing agent containing the composite oxide and the like.
[比較例 1 ] [Comparative Example 1]
実施例 1の加工液の処方からアルデヒ ド消臭剤成分を除いた液を準備した。 こ の加工液に、 実施例 1で作製した難燃織物を浸し、 実施例 1 と同様に加工処理し て、 繊維表面に、 チタンとケィ素の複合酸化物が付着した織物を製造した。 この 織物について消臭性を評価し、 その結果を表 1に示した。 また、 この織物の難燃 性は合格水準にあった。 A fluid was prepared by removing the aldehyde deodorant component from the formulation of the working fluid of Example 1. The flame retardant woven fabric prepared in Example 1 was immersed in this processing liquid, and processed in the same manner as in Example 1 to produce a woven fabric having a composite oxide of titanium and silicon adhered to the fiber surface. This fabric was evaluated for deodorant properties, and the results are shown in Table 1. The flammability of this fabric was acceptable.
[比較例 2 ] [Comparative Example 2]
実施例 1の加工液の処方から、 チタンとケィ素の複合酸化物を除いた液を準備 した。 この加工液に、 実施例 1で作製した難燃織物を浸し、 実施例 1 と同様に加 ェ処理して、 繊維表面に、 アルデヒ ド消臭剤が付着した織物を製造した。 この織 物について消臭性を評価し、 その結果を表 1に示した。 また、 この織物の難燃性 は合格水準にあった。 A liquid was prepared by removing the composite oxide of titanium and silicon from the formulation of the processing liquid of Example 1. The flame retardant woven fabric prepared in Example 1 was immersed in this processing liquid, and treated in the same manner as in Example 1 to produce a woven fabric having an aldehyde deodorant adhered to the fiber surface. This fabric was evaluated for its deodorant properties, and the results are shown in Table 1. The flammability of this fabric was acceptable.
[比較例 3 ] [Comparative Example 3]
実施例 1の加工液の処方から、 チタンとケィ素の複合酸化物もアルデヒ ド消臭 剤も除いた液を準備し、 この加工液に、 実施例 1で作製した難燃織物を浸し、 実 施例 1 と同様に加工した。 この織物について消臭性を評価し、 その結果を表 1に 示した。 また、 この織物の難燃性は合格水準にあった。 From the formulation of the working fluid of Example 1, a solution was prepared in which the titanium-silicon composite oxide and the aldehyde deodorant were removed, and the flame retardant fabric prepared in Example 1 was immersed in this working fluid. Processing was performed in the same manner as in Example 1. This fabric was evaluated for deodorizing properties, and the results are shown in Table 1. The flammability of this woven fabric was acceptable.
[比較例 4 ] [Comparative Example 4]
実施例 1で作製した難燃織物について、 加工液での処理をしない状態で消臭性 を評価し、 その結果を表 1に示した。 The deodorant properties of the flame-retardant woven fabric produced in Example 1 were evaluated without being treated with a working fluid, and the results are shown in Table 1.
[比較例 5 ]
実施例 3で作製した捲縮トウを、 加工液での処理をせずに、 単繊維長が 5 1 m mになるようにカッ ト した後、 カード機にかけ、 わた状の詰物用中綿を作製した。 この中わたについて消臭性を評価し、 その結果を表 1に示した。 ' [比較例 6 ] [Comparative Example 5] The crimped tow prepared in Example 3 was cut to a single fiber length of 51 mm without being treated with a processing fluid, and then cut with a card machine to prepare a filling for filling in a wadding shape. . The deodorizing properties of the cotton were evaluated, and the results are shown in Table 1. '[Comparative Example 6]
実施例 4で作製した人工皮革について、 加工液での処理をしない状態で消臭性 を評価し、 その結果を表 1に示した。 また、 この人工皮革の撥水性は 1級であつ た。 The artificial leather produced in Example 4 was evaluated for its deodorant properties without being treated with a working fluid, and the results are shown in Table 1. The water repellency of this artificial leather was first class.
[比較例 7 ] [Comparative Example 7]
実施例 5で作製した力一^ °、、ソ トについて、 加工液での処理をしない状態での消 臭性を評価し、 その結果を表 1に示した。 また、 このタフ ト面には加工液処理を しなかったので、 この面の抗菌性は 0 . 3と不合格水準であった。 With respect to the force and the softness prepared in Example 5, the deodorizing properties without treatment with the working fluid were evaluated, and the results are shown in Table 1. Also, since no machining fluid treatment was applied to this tough surface, the antibacterial property of this surface was 0.3, which was a reject level.
[比較例 8 ] [Comparative Example 8]
実施例 6で作製したモケッ トについて、 加工液での処理をしない状態で消臭性 を評価し、 その結果を表 1に示した。
The deodorant properties of the moquette prepared in Example 6 were evaluated without treatment with a machining fluid, and the results are shown in Table 1.
表 table
(*) 複合酸化物とアルデヒ ド消臭剤の付与時におけるバイ ンダー樹脂付着量
(*) Binder resin adhesion when applying complex oxide and aldehyde deodorant
表 1から明らかなように、 実施例 1 〜 7によって加工剤処理された難燃織物等 の繊維構造物は、 ホルムアルデヒ ドに対しても、 V O Cの一種であるキシレンに 対しても優れた消臭効果を示し、 その効果は洗濯後も持続していた。 特に実施例 1によって加工剤処理された難燃織物は、 消臭性能と難燃性能の両方を持つもの であった。 As is clear from Table 1, the fibrous structures such as the flame retardant fabrics treated with the processing agents according to Examples 1 to 7 have excellent deodorization against formaldehyde and xylene which is a kind of VOC. It showed an effect, which persisted after washing. In particular, the flame retardant fabric treated with the processing agent according to Example 1 had both deodorant performance and flame retardancy.
一方、 比較例 1 と 2から明らかなように、 複合酸化物とアルデヒ ド消臭剤のど ちらか 1つのみの付着では、 十分な消臭効果を得られなかった。 また、 消臭剤を 含まない比較例 3〜 8では消臭効果がほとんどなかった。 産業上の利用可能性 On the other hand, as is clear from Comparative Examples 1 and 2, a sufficient deodorizing effect could not be obtained by attaching only one of the composite oxide and the aldehyde deodorant. In Comparative Examples 3 to 8 containing no deodorant, there was almost no deodorizing effect. Industrial applicability
本発明による加工剤処理は、 布帛、 不織布、 わたのような半製品類や、 モケッ ト、 カーペッ トのような最終製品類のように、 繊維から構成される繊維構造物に 広く適用することができる。 従って、 本発明による繊維構造物 (布帛、 不織布、 わた等) は、 ソファー、 クッショ ン、 ぬいぐるみ、 座布団、 掛け布団、 敷き布団、 敷きマッ ト、 プランケッ ト、 まく ら、 抱きまく ら、 ベッ ドマツ トなどの寝具類、 カーテン、 力一ペッ ト、 じゅうたん、 マッ ト、 カバー、 のれん、 スリ ツノヽ。、 シ一 ト材などのィンテリァ類、 カーシートなどの乗物用内装材類などに用いる素材と して有用であり、 これらに優れた消臭性能等を付与することができる。 また、 難 燃剤との併用によって難燃性能と消臭性能とを有する繊維構造物とすることもで き、 公共施設内のインテリア用と して特に有用である。
The processing agent treatment according to the present invention can be widely applied to fibrous structures composed of fibers, such as semi-finished products such as fabrics, nonwoven fabrics and cotton, and end products such as moquettes and carpets. it can. Therefore, the fiber structure (fabric, non-woven fabric, cotton, etc.) according to the present invention includes sofas, cushions, stuffed animals, cushions, comforters, mattresses, mats, plankets, shells, dakimakura, bed mats, etc. Bedding, curtains, rugs, carpets, mats, covers, goodwill, slippers. It is useful as a material used for interior materials such as sheet materials and vehicle interior materials such as car seats, and can impart excellent deodorizing performance and the like to these materials. In addition, a fibrous structure having flame retardancy and deodorant performance can be obtained by using it together with a flame retardant, which is particularly useful for interiors in public facilities.
Claims
1. 繊維表面に、 チタンとケィ素を含む複合酸化物とアルデヒ ド消臭剤と力 バインダ一樹脂を介して付着していることを特徴とする繊維構造物。 1. A fibrous structure characterized by being adhered to the fiber surface via a composite oxide containing titanium and silicon, an aldehyde deodorant, and a binder resin.
2. 複合酸化物が、 平均一次粒子径 1〜 20 n mの粒子状であることを特徴 とする請求項 1に記載の繊維構造物。 2. The fiber structure according to claim 1, wherein the composite oxide is in the form of particles having an average primary particle diameter of 1 to 20 nm.
3. 複合酸化物が、 1 0 0〜 3 0 0 m2Z gの比表面積を有することを特徴と する、 請求項 1又は 2に記載の繊維構造物。 3. composite oxide, 1 0 0~ 3 0 0 m and having a specific surface area of 2 Z g, a fiber structure according to claim 1 or 2.
4. 複合酸化物の付着量が、 繊維に対して 0. 0 1〜 1 0重量。 /。であること を特徴とする請求項 1〜 3のいずれかに記載の繊維構造物。 4. The attached amount of the composite oxide is 0.01 to 10 weight per fiber. /. The fibrous structure according to any one of claims 1 to 3, wherein
5. アルデヒ ド消臭剤が、 ヒ ドラジド系化合物又は窒素含有複素環化合物を 含む消臭剤であることを特徴とする請求項 1〜4のいずれかに記載の繊維構造物。 5. The fiber structure according to claim 1, wherein the aldehyde deodorant is a hydrazide-based compound or a nitrogen-containing heterocyclic compound.
6. アルデヒ ド消臭剤の付着量が、 複合酸化物の付着量に対して 0. 5〜 6. The adhesion amount of aldehyde deodorant is 0.5 ~
1 0 0重量%であること.を特徴とする、 請求項 1〜 5のいずれかに記載の繊維構 The fiber structure according to any one of claims 1 to 5, which is 100% by weight.
7. 繊維構造物の形状が、 織物、 編物、 不織布、 わたのいずれかであること を特徴とする、 請求項 1〜 6のいずれかに記載の繊維構造物。 7. The fiber structure according to any one of claims 1 to 6, wherein the shape of the fiber structure is one of a woven fabric, a knitted fabric, a nonwoven fabric, and a cotton.
8. 繊維構造物を構成する繊維の 5 0重量%以上がポリエステル系繊維であ ることを特徴とする請求項 1〜 7のいずれかに記載の繊維構造物。 8. The fibrous structure according to any one of claims 1 to 7, wherein 50% by weight or more of the fibers constituting the fibrous structure are polyester fibers.
9. ポリエステル系繊維が、 不活性酸化チタンを 0. 3〜 5. 0重量%含む 繊維であることを特徴とする請求項 8に記載の繊維構造物。 9. The fiber structure according to claim 8, wherein the polyester fiber is a fiber containing 0.3 to 5.0% by weight of inert titanium oxide.
1 0. 繊維構造物が、 繊維の内部及び Z又は表面に難燃剤を有する繊維から 構成されることを特徴とする請求項 1〜 9のいずれかに記載の繊維構造物。 10. The fibrous structure according to any one of claims 1 to 9, wherein the fibrous structure is made of a fiber having a flame retardant inside and / or at the surface of the fiber.
1 1. 難燃剤が、 繊維重量に対して 1〜 3 0重量。 /0の割合で含まれることを 特徴とする、 請求項 1 0に記載の繊維構造物。 1 1. Flame retardant is 1 to 30 weight based on fiber weight. The fibrous structure according to claim 10, wherein the fibrous structure is contained at a ratio of / 0 .
1 2. 難燃剤が、 リ ン酸エステル系難燃剤又は臭素系難燃剤であることを特 徴とする請求項 1 0に記載の繊維構造物。 12. The fibrous structure according to claim 10, wherein the flame retardant is a phosphate ester flame retardant or a bromine flame retardant.
1 3 · バインダー樹脂が、 ポリ ウレタン樹脂、 シリ コーン樹脂、 アク リル樹 脂、 ポリエステル榭脂のいずれか 1種以上を含有することを特徴とする請求項 1 〜 1 2のいずれかに記載の繊維構造物。
13.The fiber according to any one of claims 1 to 12, wherein the binder resin contains at least one of a polyurethane resin, a silicone resin, an acrylic resin, and a polyester resin. Structure.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/011540 WO2005026431A1 (en) | 2003-09-10 | 2003-09-10 | Fibrous structure |
AU2003262037A AU2003262037A1 (en) | 2003-09-10 | 2003-09-10 | Fibrous structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/011540 WO2005026431A1 (en) | 2003-09-10 | 2003-09-10 | Fibrous structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005026431A1 true WO2005026431A1 (en) | 2005-03-24 |
Family
ID=34308195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/011540 WO2005026431A1 (en) | 2003-09-10 | 2003-09-10 | Fibrous structure |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2003262037A1 (en) |
WO (1) | WO2005026431A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2243498A1 (en) * | 2008-02-15 | 2010-10-27 | Toray Opelontex Co., Ltd. | Deodorizing material |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0212622A2 (en) * | 1985-08-29 | 1987-03-04 | Teijin Limited | Flameproofing synthetic fiber |
JPH02289185A (en) * | 1989-04-26 | 1990-11-29 | Unitika Ltd | Production of deodorizing textile product |
EP0638320A1 (en) * | 1992-12-28 | 1995-02-15 | Nippon Steel Corporation | Air cleaning agent and production thereof |
JPH0928778A (en) * | 1995-07-14 | 1997-02-04 | Mitsubishi Rayon Co Ltd | Deodorant and deodorant fiber and its production |
EP0812948A2 (en) * | 1996-06-11 | 1997-12-17 | Toray Industries, Inc. | Deodorant fibrous material and method of producing the same |
JPH11302975A (en) * | 1998-04-24 | 1999-11-02 | Unitika Ltd | Deodorant fiber and deodorant processing of fiber |
JP2000312809A (en) * | 1999-04-28 | 2000-11-14 | Toray Ind Inc | Filter material |
JP2001247175A (en) * | 2000-03-06 | 2001-09-11 | Toray Ind Inc | Bags |
JP2001245781A (en) * | 2000-03-07 | 2001-09-11 | Toray Ind Inc | Curtains |
JP2002115180A (en) * | 2000-10-11 | 2002-04-19 | Suminoe Textile Co Ltd | Deodorizing liquid for laid carpet and method for deodorizing laid carpet |
JP2003336170A (en) * | 2002-03-14 | 2003-11-28 | Toray Ind Inc | Textile structure |
-
2003
- 2003-09-10 AU AU2003262037A patent/AU2003262037A1/en not_active Abandoned
- 2003-09-10 WO PCT/JP2003/011540 patent/WO2005026431A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0212622A2 (en) * | 1985-08-29 | 1987-03-04 | Teijin Limited | Flameproofing synthetic fiber |
JPH02289185A (en) * | 1989-04-26 | 1990-11-29 | Unitika Ltd | Production of deodorizing textile product |
EP0638320A1 (en) * | 1992-12-28 | 1995-02-15 | Nippon Steel Corporation | Air cleaning agent and production thereof |
JPH0928778A (en) * | 1995-07-14 | 1997-02-04 | Mitsubishi Rayon Co Ltd | Deodorant and deodorant fiber and its production |
EP0812948A2 (en) * | 1996-06-11 | 1997-12-17 | Toray Industries, Inc. | Deodorant fibrous material and method of producing the same |
JPH11302975A (en) * | 1998-04-24 | 1999-11-02 | Unitika Ltd | Deodorant fiber and deodorant processing of fiber |
JP2000312809A (en) * | 1999-04-28 | 2000-11-14 | Toray Ind Inc | Filter material |
JP2001247175A (en) * | 2000-03-06 | 2001-09-11 | Toray Ind Inc | Bags |
JP2001245781A (en) * | 2000-03-07 | 2001-09-11 | Toray Ind Inc | Curtains |
JP2002115180A (en) * | 2000-10-11 | 2002-04-19 | Suminoe Textile Co Ltd | Deodorizing liquid for laid carpet and method for deodorizing laid carpet |
JP2003336170A (en) * | 2002-03-14 | 2003-11-28 | Toray Ind Inc | Textile structure |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2243498A1 (en) * | 2008-02-15 | 2010-10-27 | Toray Opelontex Co., Ltd. | Deodorizing material |
EP2243498A4 (en) * | 2008-02-15 | 2011-04-27 | Toray Opelontex Co Ltd | Deodorizing material |
US8691201B2 (en) | 2008-02-15 | 2014-04-08 | Toray Opelontex Co., Ltd. | Deodorant material |
Also Published As
Publication number | Publication date |
---|---|
AU2003262037A1 (en) | 2005-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4917047B2 (en) | Deodorant fabric and method for producing the same | |
JP2004052208A (en) | Deodorizing textile product | |
KR20080077634A (en) | Substrate having photocatalytic and activated carbon constituents and process for producing | |
JP2003336170A (en) | Textile structure | |
JP2014000292A (en) | Deodorant composition and deodorant fabric | |
JP4698930B2 (en) | Fiber structures containing nanofibers | |
JP3806491B2 (en) | Deodorant fiber material and method for producing the same | |
KR20070001246A (en) | Deodorant suede-tone-leather-like sheet | |
JP3629871B2 (en) | Odor prevention material | |
WO2005026431A1 (en) | Fibrous structure | |
JP2000119958A (en) | Functional fiber structure | |
JP2005213686A (en) | Fiber material containing regenerated cellulose fiber | |
JP2002194642A (en) | Paper yarn woven/knitted fabric | |
TW200409675A (en) | Photocatalyst-containing base material | |
JP2000354535A (en) | Deodorant carpet and its manufacture | |
JP2006200082A (en) | Functional fibrous structural material | |
JP3220782B2 (en) | Deodorant processing agent and deodorant fiber | |
JP2000119971A (en) | Stainproof fiber structure | |
JP4057981B2 (en) | Method for producing flameproof and deodorant antibacterial fiber product and flameproof and deodorant antibacterial fiber product obtained by the method | |
JP2006225780A (en) | Antimicrobial fiber | |
EP0962584A1 (en) | Fabric having deodorizing function and method of deodorizing fabric | |
JP3651132B2 (en) | Polyester fiber material and method for producing the same | |
JP2000096430A (en) | Multifunctional nonwoven cloth | |
JP4092554B2 (en) | Deodorant fiber structure | |
JP2005198684A (en) | Deodorant carpet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CN KR |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR HU IE IT LU MC NL PT RO SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |