WO2005024485A1 - Optical devices particularly for remote viewing applications - Google Patents

Optical devices particularly for remote viewing applications Download PDF

Info

Publication number
WO2005024485A1
WO2005024485A1 PCT/IL2004/000812 IL2004000812W WO2005024485A1 WO 2005024485 A1 WO2005024485 A1 WO 2005024485A1 IL 2004000812 W IL2004000812 W IL 2004000812W WO 2005024485 A1 WO2005024485 A1 WO 2005024485A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
reflecting surfaces
aperture
pair
input aperture
Prior art date
Application number
PCT/IL2004/000812
Other languages
French (fr)
Other versions
WO2005024485B1 (en
Inventor
Yaakov Amitai
Original Assignee
Lumus Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumus Ltd. filed Critical Lumus Ltd.
Publication of WO2005024485A1 publication Critical patent/WO2005024485A1/en
Publication of WO2005024485B1 publication Critical patent/WO2005024485B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to optical devices, and in particular to devices whereby an object is viewed remotely, with a large field-of-view (FOV) and in which the system aperture is limited by various constrains.
  • the invention can advantageously be implemented in a large number of imaging applications, such as periscopes, as well as head-mounted and head-up displays. Background of the Invention There are many applications in which remote viewing is necessary, as the object to be viewed is located in an environment hostile to the viewer, or it is inaccessible to the viewer without causing unacceptable damage to its environment.
  • Periscopes for military applications fall into the former category, while endoscopes, colonoscopes, laryngoscopes and otoscopes, for medical applications, fall into the latter.
  • An additional category is that of see-through imaging systems, such us head-mounted displays (HMDs) and head-up displays (HUDs), wherein the optical combiner is located in front of the eye of the viewer, while the display source is located remotely so as to avoid the blocking of the external view.
  • HMDs head-mounted displays
  • HUDs head-up displays
  • instrumentation is needed to collect light from the object, to transport the light to a location more favorable for viewing, and to dispense the light to the viewing instruments or to the eye of the viewer.
  • image transportation I techniques in common use today.
  • One possible transportation method is to sense the image with a camera and transport the data electronically into a display source that projects the image.
  • the resolution of both the camera and the display source is usually inferior compared to the resolution of the eye.
  • Another method is to transport the light pattern with a coherent fiber optics bundle. This method is, however, adequate for systems with very small apertures only. Furthermore, the resolution of a fiber optics bundle is even more inferior than that of the electronic imaging system mentioned above.
  • An alternative method is to transport the light pattern with a relay lens or a train of relay lenses. While the last mentioned method is the most commonly used for many applications, and can usually supply the user with a sharp and bright image, it still suffers from some drawbacks. Primarily, the optical module becomes complicated and expensive, especially for optical systems, which require high performance.
  • the present invention facilitates the structure and fabrication of very simple and high-performance optical modules for, amongst other applications, periscopes.
  • the invention allows systems to achieve a relatively high FOV while maintaining a compact and simple module.
  • the optical system offered by the present invention is particularly advantageous because it can be readily incorporated even into optical systems having specialized configurations.
  • the invention also enables the construction of improved HUDs in aircrafts, as well as ground vehicles, where they can potentially assist the pilot or driver in navigation and driving tasks. State-of-the-art HUDs, nevertheless, suffer from several significant drawbacks. Since the system stop, which is usually located at the external surface of the collimating lens, is positioned far from the viewer's eyes, the instantaneous field-of-view (IFOV) is significantly reduced.
  • IFOV instantaneous field-of-view
  • the present HUD systems are either bulky and large, requiring considerable installation space which is inconvenient, and at times, even unsafe, or suffer from limited performance.
  • An important application of the present invention relates to its implementation in a compact HUD, which alleviates the aforementioned drawbacks.
  • the total volume of the system is significantly reduced while retaining the achievable IFOV.
  • the overall system is very compact and can readily be installed in a variety of configurations for a wide range of applications.
  • a further application of the present invention provides a compact display with a wide FOV for HMDs, whereby an optical module serves both as an imaging lens and a combiner and a two-dimensional display is imaged to infinity and reflected into the eye of an observer.
  • the display can be obtained directly, either from a cathode ray tube (CRT) or a liquid crystal display (LCD), or indirectly, by means of a relay lens or an optical fiber bundle.
  • the display is comprised of an array of points, imaged to infinity by a collimating lens and transmitted into the eye of a viewer by means of a partially reflecting surface acting as a combiner.
  • a conventional, free-space optical module is used for these purposes.
  • the optical module becomes heavier, bulkier and very complicated to use. This is a major drawback in head-mounted applications wherein the system should be as light and compact as possible.
  • the overall optical systems are usually very complicated and difficult to manufacture with these designs.
  • the eye-motion-box of the optical viewing angles resulting from these designs is usually very small - typically less than 8 mm. Hence, the performance of the optical system is very sensitive even to small movements of the visor relative to the eye of the viewer.
  • the present invention facilitates the structure and fabrication of very compact HMDs. The invention allows relatively wide FOVs together with , relatively large eye-motion-box values.
  • the present- invention is particularly advantageous for substrate-mode configurations, i.e., for a configuration comprising a light-transmitting substrate having at least two major surfaces and edges, optical means for coupling light from the imaging module into the substrate by total internal reflection, and at least one partially reflecting surface located in the substrate for coupling the light onto the viewer's eye.
  • substrate-mode configurations i.e., for a configuration comprising a light-transmitting substrate having at least two major surfaces and edges, optical means for coupling light from the imaging module into the substrate by total internal reflection, and at least one partially reflecting surface located in the substrate for coupling the light onto the viewer's eye.
  • a broad object of the present invention is to alleviate the drawbacks of state-of-the-art optical devices and, in particular, remote viewing display devices, and to provide optical devices and systems with improved performance.
  • the invention therefore provides an optical device for transferring light within a given field-of-view, comprising an input aperture; reflecting surfaces, and an output aperture located in spaced-apart relationship from said input aperture such that light waves, located within the said field-of-view, that enter the optical device through said input aperture, exit the optical device through said output aperture, and characterized in that said reflecting surfaces are at least one pair of parallel reflecting surfaces and that part of said light waves located within said field-of-view that enter the input aperture, pass directly in free space to the output aperture without being reflected, while another part of the light waves within said field-of-view that enters the input aperture, arrives at the output aperture after being twice reflected by said at least one pair of parallel reflecting surfaces.
  • FIG. 1 is a side view of the simplest form of a prior art periscope structure
  • Fig. 2 is a schematic diagram illustrating an unfolded optical layout of a prior art periscope structure
  • Fig. 3 is a side view of a prior art substrate mode folding optical device for HUD and HMD
  • Fig. 4 is a schematic diagram illustrating an optical layout according to the present invention, utilizing two pairs of parallel reflecting mirrors for achieving a wide FOV
  • Fig. 5 is a diagram illustrating a substrate mode folding optical device for HUD and HMD, according to the present invention
  • Figs. 6A and 6B illustrate side and top view of an optical device in accordance with the present invention, showing the light waves as coupled into a substrate-mode element.
  • Remote viewing optical systems are optical systems designed to displace the object space reference point away from the eye space reference point. This allows the observer to look over or around an intervening obstacle, or to view objects in a dangerous location or environment while the observer is in a safer location or environment.
  • a submarine periscope is the typical example, but many other applications, both military and non-military, are envisioned.
  • Fig. 1 illustrates the simplest form of a prior art periscope 2, having a pair of optical elements 4 and 6, e.g., a pair of folding mirrors, which are used to allow a viewer to see over a nearby obstacle.
  • the basic geometry of this embodiment imposes limitations on the performance of the system.
  • EMB eye-motion-box
  • the required input aperture 18 must be 325 mm. This is a relatively large aperture that necessarily increases the size of the entire system. If, however, only a smaller input aperture 20 of 200 mm is used, the obtainable vertical FOV 22 decrease to 23°, which is nearly half of the required FOV.
  • the most common method to achieve both a small aperture and a wide FOV is to transmit the light pattern from the folding-in aperture into the folding-out aperture via a relay lens, or a train of relay lenses, usually having a unity of magnification. While this method is used for many applications and can usually provide the user with a sharp and bright image, it still suffers from some drawbacks, especially for systems where high performance is required.
  • the number of relay stages in the relay train both to maximize transmittance and to minimize the field curvature caused by the large number of positive lenses.
  • the outside diameter of the relay train is typically restricted, which can impose some severe restrictions on the optical design of the system.
  • economic considerations make it desirable to minimize the total number of optical elements.
  • the number of relay stages must be either odd or even to insure the desired output image orientation, which adds to the complexity of the optical design. All in all, the existing systems are either heavy, cumbersome and expensive, or they have poor performance.
  • FIG. 3 schematically illustrates a conventional folding optics arrangement, for both HUDs and HMDs wherein the optical system 2 is illuminated by a display source 24.
  • the display is collimated by a collimating lens 26.
  • the light from the display source 24 is folded by a first reflecting optical element 4, while a second reflecting optical element 6 folds the light out into the EMB 8 of a viewer.
  • a limited FOV As seen in the Figure, the maximum allowed off-axis angle ⁇ inside the substrate is:
  • T is the substrate thickness
  • d eye is the desired exit-pupil diameter
  • / is the distance between reflecting elements 4 and 6.
  • two of the horizontal edges of the mechanical body of a common periscope are replaced with two pairs of parallel reflecting surfaces, 28a, 28b and 30a, 30b, respectively.
  • the reflecting surfaces 28a and 30a converge with respect to each other, while the reflecting services 28b and 30b diverge with respect to. each other, in the direction of the output aperture 20.
  • the two pairs form a continuous surface, namely, the edges of the surfaces 30a and 28b, and respectively, 28a and 30b contact each other, forming two contiguous surfaces in cross-section in the configuration of a bow-tie.
  • the central part of the device is a free-space media and the rays traverse this media from the input aperture to the output aperture 20 without any reflectance.
  • the output image at the EMB 8 is composed of three parts: a central part of the optical waves, which is not reflected by either of the pairs of parallel reflecting surfaces, and two side parts which are reflected twice by the surfaces 28a, 28b; 30a, 30b.
  • the direction of the rays is inverted from the EMB -8 to the input aperture 10.
  • Each ray which is reflected by surfaces 28a and 30b, is also reflected by surface 28b, and respectively, 30a before it impinges on input aperture 20.
  • the two pairs of parallel reflecting surfaces need not necessarily be identical to each other and an asymmetrical system with different pairs can be utilized according to desired.
  • upper and lower angles of the FOV For systems where only one of the FOVs is to be increased (either the upper or the lower), only one pair of parallel reflecting surfaces is required to obtain a desired FOV.
  • not only the vertical FOV can be increased by this method.
  • the FOV can be increased in both the horizontal and the vertical axes, however, special care must be taken to prevent cross-talk between the horizontal and the vertical pairs.
  • the purpose of the optical device according to the present invention is to transfer light within a given field-of-view (FOV) of angles, between a minimal angle ct m i n and a maximal angle ⁇ x .
  • the optical device comprises an input aperture, an output aperture remotely located from said input aperture, such that a light wave, located within the said FOV, that enters the optical device through the input aperture, that is, having an incident angle ⁇ such that O mm ⁇ ⁇ ⁇ ⁇ x , exits said optical device through the output aperture, and having at least one pair of parallel reflecting surfaces.
  • the reflecting surfaces 28a, 28b, 30a, 30b which are illustrated in Fig. 4, are simple mirrors that obey the first Snell law, that is, that the incident angle is equal to the reflected angle at the surface. There are cases, however, where it is preferred to use two parallel diffraction gratings instead, wherein the reflected angle at the surface is not equal to the incident angle. It is true that, for a given incident angle the reflected angle depends on the wavelength of the incident ray.
  • Fig. 4 is an example illustrating a simple implementation of this method.
  • the use of pairs of parallel reflecting surfaces in order to decrease the aperture of the device for a given FOV, or alternatively, to increase the useable FOV for a given aperture is not limited to periscopes and it can be utilized in other optical devices where the input aperture is located far from the output aperture, including, but not limited to, free-space systems such as HUDs, HMDs, and the like.
  • the FOV of the optical system can be increased by using the same structure as described with reference to Fig.
  • Figs. 6A and 6B illustrate a side view and a top view of a substrate-mode optical device 46 of the present invention, comprising a light-transmitting substrate 48 having at least two major parallel surfaces 50, 52, and lateral edges 54, 56, an optical element 4 for coupling the light from the display source 24 via a collimating lens 26 into the substrate 48 by total internal reflection, and one or more at least partially reflecting optical elements 6 located in the substrate, for coupling the light into the EMB 8 of a viewer.
  • part of the two lateral edges 54, 56 of the substrate 48 are provided with two pairs of parallel reflecting surfaces 58a, 58b, 60a, 60b, similar to the two pairs of parallel mirrors 28a, 28b and 30a, 30b of Fig. 4.
  • the angles between the rays trapped inside the substrate 48 and the reflecting surfaces 58a, 58b, 60a, 60b are sufficiently large so as to affect total internal reflection. As such, no special reflecting coating is required for these surfaces and they are merely polished surfaces.
  • the combination of the present invention with a substrate-mode configuration yields a compact and convenient optical system having a satisfactory optical performance with a wide FOV.
  • FIG. 6 A and 6B is an example of a method for coupling the input waves into the substrate.
  • Input waves could, however, also be coupled into the substrate by other optical means, including, but not limited to, folding prisms, fiber optic bundles, diffracting gratings, and others.
  • the input waves and the image waves are located on the same side of the substrate, other configurations are envisioned, in which the input and the image waves are located on opposite sides of the substrate. There may even be applications in which the input waves can be coupled into the substrate through one of the substrate's lateral edges.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

There is provided an optical device for transferring light within a given field-of-view, comprising an input aperture; reflecting surfaces (4, 6), and an output aperture located in spaced-apart relationship from the input aperture such that light waves, located within the field-of-view, that enter the optical device through the input aperture, exit the optical device through the output aperture, wherein the reflecting surfaces are at least one pair of parallel reflecting surfaces (42a, 42b, 44a, 44b) and that part of the light waves located within the field-of-view that enter the input aperture, pass directly to the output aperture without being reflected off the at least one pair of parallel reflecting surfaces, while another part of the light waves within the field-of-view that enters the input aperture, arrives at the output aperture after being twice reflected by the at least one pair of parallel reflecting surfaces.

Description

OPTICAL DEVICES PARTICULARLY FOR REMOTE VIEWING APPLICATIONS Field of the Invention The present invention relates to optical devices, and in particular to devices whereby an object is viewed remotely, with a large field-of-view (FOV) and in which the system aperture is limited by various constrains. The invention can advantageously be implemented in a large number of imaging applications, such as periscopes, as well as head-mounted and head-up displays. Background of the Invention There are many applications in which remote viewing is necessary, as the object to be viewed is located in an environment hostile to the viewer, or it is inaccessible to the viewer without causing unacceptable damage to its environment. Periscopes for military applications fall into the former category, while endoscopes, colonoscopes, laryngoscopes and otoscopes, for medical applications, fall into the latter. An additional category is that of see-through imaging systems, such us head-mounted displays (HMDs) and head-up displays (HUDs), wherein the optical combiner is located in front of the eye of the viewer, while the display source is located remotely so as to avoid the blocking of the external view. For each of these applications, instrumentation is needed to collect light from the object, to transport the light to a location more favorable for viewing, and to dispense the light to the viewing instruments or to the eye of the viewer. There are some image transportation I techniques in common use today. One possible transportation method is to sense the image with a camera and transport the data electronically into a display source that projects the image. Unfortunately, in addition to the relatively high cost of the electronic system, the resolution of both the camera and the display source is usually inferior compared to the resolution of the eye. Another method is to transport the light pattern with a coherent fiber optics bundle. This method is, however, adequate for systems with very small apertures only. Furthermore, the resolution of a fiber optics bundle is even more inferior than that of the electronic imaging system mentioned above. An alternative method is to transport the light pattern with a relay lens or a train of relay lenses. While the last mentioned method is the most commonly used for many applications, and can usually supply the user with a sharp and bright image, it still suffers from some drawbacks. Primarily, the optical module becomes complicated and expensive, especially for optical systems, which require high performance.
Disclosure of the Invention The present invention facilitates the structure and fabrication of very simple and high-performance optical modules for, amongst other applications, periscopes. The invention allows systems to achieve a relatively high FOV while maintaining a compact and simple module. The optical system offered by the present invention is particularly advantageous because it can be readily incorporated even into optical systems having specialized configurations. The invention also enables the construction of improved HUDs in aircrafts, as well as ground vehicles, where they can potentially assist the pilot or driver in navigation and driving tasks. State-of-the-art HUDs, nevertheless, suffer from several significant drawbacks. Since the system stop, which is usually located at the external surface of the collimating lens, is positioned far from the viewer's eyes, the instantaneous field-of-view (IFOV) is significantly reduced. Hence, in order to obtain a more desirable IFOV, a very large collimating lens is required, otherwise a much smaller IFOV will be obtained. As a result, the present HUD systems are either bulky and large, requiring considerable installation space which is inconvenient, and at times, even unsafe, or suffer from limited performance. An important application of the present invention relates to its implementation in a compact HUD, which alleviates the aforementioned drawbacks. In the HUD design of the current invention, the total volume of the system is significantly reduced while retaining the achievable IFOV. Hence, the overall system is very compact and can readily be installed in a variety of configurations for a wide range of applications. A further application of the present invention provides a compact display with a wide FOV for HMDs, whereby an optical module serves both as an imaging lens and a combiner and a two-dimensional display is imaged to infinity and reflected into the eye of an observer. The display can be obtained directly, either from a cathode ray tube (CRT) or a liquid crystal display (LCD), or indirectly, by means of a relay lens or an optical fiber bundle. Typically, the display is comprised of an array of points, imaged to infinity by a collimating lens and transmitted into the eye of a viewer by means of a partially reflecting surface acting as a combiner. Usually, a conventional, free-space optical module is used for these purposes. Unfortunately, as the desired FOV of the system is increased, however, the optical module becomes heavier, bulkier and very complicated to use. This is a major drawback in head-mounted applications wherein the system should be as light and compact as possible. There are other drawbacks of the existing systems. The overall optical systems are usually very complicated and difficult to manufacture with these designs. Furthermore, the eye-motion-box of the optical viewing angles resulting from these designs, is usually very small - typically less than 8 mm. Hence, the performance of the optical system is very sensitive even to small movements of the visor relative to the eye of the viewer. The present invention facilitates the structure and fabrication of very compact HMDs. The invention allows relatively wide FOVs together with , relatively large eye-motion-box values. The resulting optical system offers a large, high-quality image, which also accommodates large movements of the eye. For all of the possible applications, the present- invention is particularly advantageous for substrate-mode configurations, i.e., for a configuration comprising a light-transmitting substrate having at least two major surfaces and edges, optical means for coupling light from the imaging module into the substrate by total internal reflection, and at least one partially reflecting surface located in the substrate for coupling the light onto the viewer's eye. The combination of the present invention with a substrate-mode configuration can yield a very compact and convenient optical system along with a large IFOV and large eye-motion-box. A broad object of the present invention, therefore, is to alleviate the drawbacks of state-of-the-art optical devices and, in particular, remote viewing display devices, and to provide optical devices and systems with improved performance. The invention therefore provides an optical device for transferring light within a given field-of-view, comprising an input aperture; reflecting surfaces, and an output aperture located in spaced-apart relationship from said input aperture such that light waves, located within the said field-of-view, that enter the optical device through said input aperture, exit the optical device through said output aperture, and characterized in that said reflecting surfaces are at least one pair of parallel reflecting surfaces and that part of said light waves located within said field-of-view that enter the input aperture, pass directly in free space to the output aperture without being reflected, while another part of the light waves within said field-of-view that enters the input aperture, arrives at the output aperture after being twice reflected by said at least one pair of parallel reflecting surfaces. Brief Description of the Drawings The invention is described in connection with certain preferred embodiments, with reference to the following illustrative figures so that it may be more fully understood. With specific reference to the figures in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The descriptions taken with the drawings are to serve as direction to those skilled in the art as to how the several forms of the invention may be embodied in practice. In the drawings: Fig. 1 is a side view of the simplest form of a prior art periscope structure; Fig. 2 is a schematic diagram illustrating an unfolded optical layout of a prior art periscope structure; Fig. 3 is a side view of a prior art substrate mode folding optical device for HUD and HMD; Fig. 4 is a schematic diagram illustrating an optical layout according to the present invention, utilizing two pairs of parallel reflecting mirrors for achieving a wide FOV; Fig. 5 is a diagram illustrating a substrate mode folding optical device for HUD and HMD, according to the present invention, and Figs. 6A and 6B illustrate side and top view of an optical device in accordance with the present invention, showing the light waves as coupled into a substrate-mode element. Detailed Description of Preferred Embodiments Remote viewing optical systems, and periscopes in particular, are optical systems designed to displace the object space reference point away from the eye space reference point. This allows the observer to look over or around an intervening obstacle, or to view objects in a dangerous location or environment while the observer is in a safer location or environment. A submarine periscope is the typical example, but many other applications, both military and non-military, are envisioned. Fig. 1 illustrates the simplest form of a prior art periscope 2, having a pair of optical elements 4 and 6, e.g., a pair of folding mirrors, which are used to allow a viewer to see over a nearby obstacle. The basic geometry of this embodiment imposes limitations on the performance of the system. This is especially true for systems with a very wide FOV and a constraint on the distance, /, between the folding-in optical element 4 and the folding-out element 6. Fig. 2 illustrates an unfolded optical system with the following parameters: / = 400 mm, Reye, the distance between the eye of a viewer, or better yet, the eye-motion-box (EMB) 8 and the output aperture 10 is 60 mm, the required EMB 8 is 50 mm and the required vertical FOV is 42°. When the rays from the EMB 8 are traced, it can be seen that the light passes through the projection of the EMB on the output aperture 10,,where 12, 14 and 16 are the projections of the upper, central and lower angles respectively, of the FOV. This means that to achieve the desired FOV, the required input aperture 18 must be 325 mm. This is a relatively large aperture that necessarily increases the size of the entire system. If, however, only a smaller input aperture 20 of 200 mm is used, the obtainable vertical FOV 22 decrease to 23°, which is nearly half of the required FOV. The most common method to achieve both a small aperture and a wide FOV, is to transmit the light pattern from the folding-in aperture into the folding-out aperture via a relay lens, or a train of relay lenses, usually having a unity of magnification. While this method is used for many applications and can usually provide the user with a sharp and bright image, it still suffers from some drawbacks, especially for systems where high performance is required. Firstly, it is desirable to minimize the number of relay stages in the relay train, both to maximize transmittance and to minimize the field curvature caused by the large number of positive lenses. Secondly, the outside diameter of the relay train is typically restricted, which can impose some severe restrictions on the optical design of the system. Thirdly, economic considerations make it desirable to minimize the total number of optical elements. Fourthly, it is desirable to keep internal images well clear of optical surfaces, where dust and scratches can obscure portions of the image, which complicates the mechanical design and the fabrication of the device. Fifthly, the number of relay stages must be either odd or even to insure the desired output image orientation, which adds to the complexity of the optical design. All in all, the existing systems are either heavy, cumbersome and expensive, or they have poor performance. Hence, a compromise between good performance on one hand, and compactness and cost, on the other, must usually be found when designing a remote sensing system. Fig. 3 schematically illustrates a conventional folding optics arrangement, for both HUDs and HMDs wherein the optical system 2 is illuminated by a display source 24. The display is collimated by a collimating lens 26. The light from the display source 24 is folded by a first reflecting optical element 4, while a second reflecting optical element 6 folds the light out into the EMB 8 of a viewer. Despite the compactness of this configuration, it suffers significant drawbacks, specifically, a limited FOV. As seen in the Figure, the maximum allowed off-axis angle α inside the substrate is:
Figure imgf000009_0001
wherein T is the substrate thickness; deye, is the desired exit-pupil diameter, and /, is the distance between reflecting elements 4 and 6. This schematic configuration is true for both HUDs and HMDs and only the scale is different, i.e., distances for HUDs are in the order of few hundreds of millimeters, whereas the distances for HMDs are in the order of a few tens of millimeters. The constraint that the combiner should be located in front of the viewer's eyes while the display source and the collimating lens should be located further away to avoid blocking of the external scene, however, exists in both cases. Fig. 4 illustrates a solution to this problem according to the present invention. Instead of using a simple rectangular box, two of the horizontal edges of the mechanical body of a common periscope are replaced with two pairs of parallel reflecting surfaces, 28a, 28b and 30a, 30b, respectively. The reflecting surfaces 28a and 30a converge with respect to each other, while the reflecting services 28b and 30b diverge with respect to. each other, in the direction of the output aperture 20. The two pairs form a continuous surface, namely, the edges of the surfaces 30a and 28b, and respectively, 28a and 30b contact each other, forming two contiguous surfaces in cross-section in the configuration of a bow-tie. As can be seen, the central part of the device is a free-space media and the rays traverse this media from the input aperture to the output aperture 20 without any reflectance. While the central part of the FOV is projected directly through to the aperture 20 as in Fig. 2, the rays from the lower part of the FOV are reflected from surfaces 28a and 28b, while the rays from the upper part of the FOV are reflected from surfaces 30a and 26b. Since the rays that enter the EMB 8 are either traveling directly from the input aperture or reflected twice from a pair of parallel surfaces, the original direction of each ray is maintained, and the original image is not affected. As can be shown, the output image at the EMB 8 is composed of three parts: a central part of the optical waves, which is not reflected by either of the pairs of parallel reflecting surfaces, and two side parts which are reflected twice by the surfaces 28a, 28b; 30a, 30b. These three parts must be combined properly to form a smooth image to the eyes of the viewer, without any stripe or ghost images. For simplicity, the direction of the rays is inverted from the EMB -8 to the input aperture 10. Each ray which is reflected by surfaces 28a and 30b, is also reflected by surface 28b, and respectively, 30a before it impinges on input aperture 20. To confirm this, it is sufficient to check the path of two rays: the marginal ray of the extreme angle 32 of the FOV, incident on surface 28a at a point 34, must impinge on surface 28b beyond its intersection with surface 30a; and the marginal ray 36, incident on surface 28a adjacent to its intersection 38 with surface 30b, must impinge on surface 28b before it crosses the input aperture 20. As both marginal rays meet the requirement, all rays from the FOV that are incident on surface 28a will necessarily also impinge on surface 28b. Thus, if the direction of the rays is again inverted, a ray located in the FOV that impinges on the EMB at an angle located in the FOV necessarily enters the input aperture at the same angle. The present example provides for an FOV of 42° with a significantly reduced input aperture 20 of 180 mm. Naturally, in cases where / is extremely large, a cascade of two or more pairs of reflecting surfaces can be used to achieve the desired FOV while maintaining an acceptable size of an input aperture. The two pairs of parallel reflecting surfaces that are illustrated in Fig. 4 are identical and symmetrical about the optical axis of the device, however, the two pairs of parallel reflecting surfaces, need not necessarily be identical to each other and an asymmetrical system with different pairs can be utilized according to desired. upper and lower angles of the FOV. Moreover, for systems where only one of the FOVs is to be increased (either the upper or the lower), only one pair of parallel reflecting surfaces is required to obtain a desired FOV. In addition, not only the vertical FOV can be increased by this method. There are systems, especially for navigating and/or driving, wherein the horizontal FOV is more important, and thus, it can be increased. Furthermore, the FOV can be increased in both the horizontal and the vertical axes, however, special care must be taken to prevent cross-talk between the horizontal and the vertical pairs. The purpose of the optical device according to the present invention is to transfer light within a given field-of-view (FOV) of angles, between a minimal angle ctmin and a maximal angle α^x. The optical device comprises an input aperture, an output aperture remotely located from said input aperture, such that a light wave, located within the said FOV, that enters the optical device through the input aperture, that is, having an incident angle α such that Omm < α < α^x, exits said optical device through the output aperture, and having at least one pair of parallel reflecting surfaces. Part of the light waves located within the FOV that enters the input aperture, passes directly in free space to the output aperture without being reflected, while another part of the light waves entering the input aperture within the FOV, arrives at the output aperture after being twice reflected by the pair of parallel reflecting surfaces. The reflecting surfaces 28a, 28b, 30a, 30b, which are illustrated in Fig. 4, are simple mirrors that obey the first Snell law, that is, that the incident angle is equal to the reflected angle at the surface. There are cases, however, where it is preferred to use two parallel diffraction gratings instead, wherein the reflected angle at the surface is not equal to the incident angle. It is true that, for a given incident angle the reflected angle depends on the wavelength of the incident ray. If the grating functions of the two gratings are identical, however, then the reflected angle at the second reflecting surface will be equal to the incident angle at the first reflecting surface for all wavelengths. The embodiment of Fig. 4 is an example illustrating a simple implementation of this method. The use of pairs of parallel reflecting surfaces in order to decrease the aperture of the device for a given FOV, or alternatively, to increase the useable FOV for a given aperture, is not limited to periscopes and it can be utilized in other optical devices where the input aperture is located far from the output aperture, including, but not limited to, free-space systems such as HUDs, HMDs, and the like. As illustrated in Fig. 5, the FOV of the optical system can be increased by using the same structure as described with reference to Fig. 3 by adding to it two pairs of parallel mirrors 42a, 44b, 44a and 42b, as shown in Fig. 4. Figs. 6A and 6B illustrate a side view and a top view of a substrate-mode optical device 46 of the present invention, comprising a light-transmitting substrate 48 having at least two major parallel surfaces 50, 52, and lateral edges 54, 56, an optical element 4 for coupling the light from the display source 24 via a collimating lens 26 into the substrate 48 by total internal reflection, and one or more at least partially reflecting optical elements 6 located in the substrate, for coupling the light into the EMB 8 of a viewer. Instead of using a simple rectangular substrate plate, however, part of the two lateral edges 54, 56 of the substrate 48 are provided with two pairs of parallel reflecting surfaces 58a, 58b, 60a, 60b, similar to the two pairs of parallel mirrors 28a, 28b and 30a, 30b of Fig. 4. Typically, the angles between the rays trapped inside the substrate 48 and the reflecting surfaces 58a, 58b, 60a, 60b are sufficiently large so as to affect total internal reflection. As such, no special reflecting coating is required for these surfaces and they are merely polished surfaces. The combination of the present invention with a substrate-mode configuration yields a compact and convenient optical system having a satisfactory optical performance with a wide FOV. The embodiment in Figs. 6 A and 6B is an example of a method for coupling the input waves into the substrate. Input waves could, however, also be coupled into the substrate by other optical means, including, but not limited to, folding prisms, fiber optic bundles, diffracting gratings, and others. Furthermore, while in the embodiment of Figs. 6A and 6B, the input waves and the image waves are located on the same side of the substrate, other configurations are envisioned, in which the input and the image waves are located on opposite sides of the substrate. There may even be applications in which the input waves can be coupled into the substrate through one of the substrate's lateral edges. It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiments and that the present invention may be embodied in other specific form's without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims

WHAT IS CLAIMED IS:
1. An optical device for transferring light within a given field-of-view, comprising: an input aperture; reflecting surfaces, and an output aperture located in spaced-apart relationship from said input aperture such that light waves, located within the said field-of-view, that enter the optical device through said input aperture, exit the optical device through said output aperture, and characterized in that said reflecting surfaces are at least one pair of parallel reflecting surfaces and that part of said light waves located within said field-of-view that enter the input aperture, pass directly in free space to the output aperture without being reflected, while another part of the light waves within said field-of-view that enters the input aperture, arrives at the output aperture after being twice reflected by said at least one pair of parallel reflecting surfaces.
2. The optical device according to claim 1, wherein another part of the light waves arrives at said output aperture at the same direction that it arrives at said input aperture.
3. The optical device according to claim 1, wherein said at least one pair of reflecting surfaces changes the direction of propagation of at least part of said light waves and then reflects it back to its original direction.
4. The optical device according to claim 1, wherein the location and orientation of said at least one pair of reflecting surfaces and of said output aperture produce the field of view for a given input aperture.
5. The optical device according to claim 1, wherein the location and orientation of said at least one pair of reflecting surfaces and of said output aperture produce said input aperture for a given field of view.
6. The optical device according to claim 1, wherein said at least one pair of reflecting surfaces reflects said light waves into a direction calculated to reach one eye of an observer.
7. The optical device according to claim 1, wherein said at least one pair of reflecting surfaces reflects said light waves into a direction calculated to reach both eyes of an observer.
8. The optical device according to claim 1, comprising at least two pairs of parallel reflecting surfaces.
9. The optical device according to claim 8, wherein said two pairs of reflecting surfaces are identical to each other.
10. The optical device according to claim 1, wherein said at least one pair of reflecting surfaces are symmetrical around the optical axis of the device.
11. The optical device according to claim 8, wherein a first reflecting surface of each pair converges with respect to each other and a second reflecting surface of each pair diverges with respect to each other in the direction of the output aperture.
12. The optical device according to claim 11, wherein the two pairs of reflecting surfaces contact each other to form two contiguous surfaces.
13. The optical device according to claim 1, wherein said reflecting surfaces are mirrors.
14. The optical device according to claim 1, wherein said reflecting surfaces are coatless.
15. The optical device according to claim 1, wherein said two reflecting surfaces are diffractive gratings.
16. The optical device according to claim 15, wherein the grating functions of said diffractive gratings are identical to each other.
PCT/IL2004/000812 2003-09-10 2004-09-09 Optical devices particularly for remote viewing applications WO2005024485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL157836A IL157836A (en) 2003-09-10 2003-09-10 Optical devices particularly for remote viewing applications
IL157836 2003-09-10

Publications (2)

Publication Number Publication Date
WO2005024485A1 true WO2005024485A1 (en) 2005-03-17
WO2005024485B1 WO2005024485B1 (en) 2005-05-06

Family

ID=34131128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2004/000812 WO2005024485A1 (en) 2003-09-10 2004-09-09 Optical devices particularly for remote viewing applications

Country Status (7)

Country Link
US (1) US7021777B2 (en)
EP (1) EP1515173B1 (en)
AT (1) ATE374955T1 (en)
DE (1) DE602004009258T2 (en)
ES (1) ES2295807T3 (en)
IL (1) IL157836A (en)
WO (1) WO2005024485A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162611A1 (en) 2014-04-23 2015-10-29 Lumus Ltd. Compact head-mounted display system
WO2016075689A1 (en) 2014-11-11 2016-05-19 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
WO2016132347A1 (en) 2015-02-19 2016-08-25 Lumus Ltd. Compact head-mounted display system having uniform image
WO2017199232A1 (en) 2016-05-18 2017-11-23 Lumus Ltd. Head-mounted imaging device
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
US10302835B2 (en) 2017-02-22 2019-05-28 Lumus Ltd. Light guide optical assembly
US10437031B2 (en) 2016-11-08 2019-10-08 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US10481319B2 (en) 2017-03-22 2019-11-19 Lumus Ltd. Overlapping facets
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US10564417B2 (en) 2016-10-09 2020-02-18 Lumus Ltd. Aperture multiplier using a rectangular waveguide
US10649214B2 (en) 2005-02-10 2020-05-12 Lumus Ltd. Substrate-guide optical device
EP3715935A1 (en) 2014-12-25 2020-09-30 Lumus Ltd. Substrate-guided optical device
US10895679B2 (en) 2017-04-06 2021-01-19 Lumus Ltd. Light-guide optical element and method of its manufacture
EP3796069A1 (en) 2012-05-21 2021-03-24 Lumus Ltd Head-mounted display with an eyeball-tracker integrated system
US11243434B2 (en) 2017-07-19 2022-02-08 Lumus Ltd. LCOS illumination via LOE
US11262587B2 (en) 2018-05-22 2022-03-01 Lumus Ltd. Optical system and method for improvement of light field uniformity
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US11448816B2 (en) 2019-01-24 2022-09-20 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11523092B2 (en) 2019-12-08 2022-12-06 Lumus Ltd. Optical systems with compact image projector
US11789264B2 (en) 2021-07-04 2023-10-17 Lumus Ltd. Display with stacked light-guide elements providing different parts of field of view
US11796729B2 (en) 2021-02-25 2023-10-24 Lumus Ltd. Optical aperture multipliers having a rectangular waveguide
US11914161B2 (en) 2019-06-27 2024-02-27 Lumus Ltd. Apparatus and methods for eye tracking based on eye imaging via light-guide optical element

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
JP5226528B2 (en) * 2005-11-21 2013-07-03 マイクロビジョン,インク. Display having an image guiding substrate
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US7589901B2 (en) * 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
US7570859B1 (en) 2008-07-03 2009-08-04 Microvision, Inc. Optical substrate guided relay with input homogenizer
US7653268B1 (en) * 2008-07-03 2010-01-26 Microvision, Inc. Substrate guided relay with polarization rotating apparatus
US7613373B1 (en) 2008-07-03 2009-11-03 Microvision, Inc. Substrate guided relay with homogenizing input relay
US7949214B2 (en) 2008-11-06 2011-05-24 Microvision, Inc. Substrate guided relay with pupil expanding input coupler
AU2010240707B2 (en) * 2009-04-20 2014-01-30 Snap Inc. Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
US9329325B2 (en) * 2009-04-20 2016-05-03 Bae Systems Plc Optical waveguides
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US10795160B1 (en) 2014-09-25 2020-10-06 Rockwell Collins, Inc. Systems for and methods of using fold gratings for dual axis expansion
US11300795B1 (en) 2009-09-30 2022-04-12 Digilens Inc. Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
US8659826B1 (en) 2010-02-04 2014-02-25 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US20150309316A1 (en) 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
WO2011106798A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US8477425B2 (en) 2010-02-28 2013-07-02 Osterhout Group, Inc. See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
JP5803082B2 (en) * 2010-10-08 2015-11-04 セイコーエプソン株式会社 Virtual image display device
US8503087B1 (en) 2010-11-02 2013-08-06 Google Inc. Structured optical surface
US8582209B1 (en) 2010-11-03 2013-11-12 Google Inc. Curved near-to-eye display
US8743464B1 (en) 2010-11-03 2014-06-03 Google Inc. Waveguide with embedded mirrors
US8531773B2 (en) 2011-01-10 2013-09-10 Microvision, Inc. Substrate guided relay having a homogenizing layer
US8391668B2 (en) 2011-01-13 2013-03-05 Microvision, Inc. Substrate guided relay having an absorbing edge to reduce alignment constraints
US8189263B1 (en) 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2013027004A1 (en) 2011-08-24 2013-02-28 Milan Momcilo Popovich Wearable data display
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US9599813B1 (en) 2011-09-30 2017-03-21 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
US8634139B1 (en) 2011-09-30 2014-01-21 Rockwell Collins, Inc. System for and method of catadioptric collimation in a compact head up display (HUD)
US9366864B1 (en) * 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US8937772B1 (en) 2011-09-30 2015-01-20 Rockwell Collins, Inc. System for and method of stowing HUD combiners
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US8749890B1 (en) 2011-09-30 2014-06-10 Rockwell Collins, Inc. Compact head up display (HUD) for cockpits with constrained space envelopes
US8773599B2 (en) 2011-10-24 2014-07-08 Google Inc. Near-to-eye display with diffraction grating that bends and focuses light
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US8830588B1 (en) 2012-03-28 2014-09-09 Rockwell Collins, Inc. Reflector and cover glass for substrate guided HUD
CN106125308B (en) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 Device and method for displaying images
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9063331B2 (en) 2013-02-26 2015-06-23 Microsoft Technology Licensing, Llc Optical system for near-eye display
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
WO2014188149A1 (en) 2013-05-20 2014-11-27 Milan Momcilo Popovich Holographic waveguide eye tracker
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US10732407B1 (en) 2014-01-10 2020-08-04 Rockwell Collins, Inc. Near eye head up display system and method with fixed combiner
WO2015114675A1 (en) * 2014-01-28 2015-08-06 オリンパス株式会社 Head-mounted display device and light-guiding prism
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9915823B1 (en) 2014-05-06 2018-03-13 Google Llc Lightguide optical combiner for head wearable display
US9529196B1 (en) 2014-06-05 2016-12-27 Iphysicist Ltd. Image guide optics for near eye displays
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10088675B1 (en) 2015-05-18 2018-10-02 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
CN107873086B (en) 2015-01-12 2020-03-20 迪吉伦斯公司 Environmentally isolated waveguide display
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
JP6867947B2 (en) 2015-01-20 2021-05-12 ディジレンズ インコーポレイテッド Holographic waveguide rider
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
WO2016156776A1 (en) 2015-03-31 2016-10-06 Milan Momcilo Popovich Method and apparatus for contact image sensing
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US10247943B1 (en) 2015-05-18 2019-04-02 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US11366316B2 (en) 2015-05-18 2022-06-21 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10108010B2 (en) 2015-06-29 2018-10-23 Rockwell Collins, Inc. System for and method of integrating head up displays and head down displays
CN108474945B (en) 2015-10-05 2021-10-01 迪吉伦斯公司 Waveguide display
US11099382B2 (en) * 2015-11-26 2021-08-24 Kyocera Corporation Display apparatus, mobile object, and light source device
US10598932B1 (en) 2016-01-06 2020-03-24 Rockwell Collins, Inc. Head up display for integrating views of conformally mapped symbols and a fixed image source
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US9964769B2 (en) 2016-06-10 2018-05-08 Google Llc Head-wearable displays with a tiled field of view using a single microdisplay
US9746632B1 (en) 2016-09-19 2017-08-29 Echostar Technologies L.L.C. Light waveguide apparatus
US10187146B2 (en) 2016-09-19 2019-01-22 DISH Technologies L.L.C. Light converting device
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
EP3574360A4 (en) 2017-01-28 2020-11-11 Lumus Ltd. Augmented reality imaging system
CN116149058A (en) 2017-10-16 2023-05-23 迪吉伦斯公司 System and method for multiplying image resolution of pixellated display
KR20200077511A (en) 2017-10-22 2020-06-30 루머스 리미티드 Head mounted augmented reality device using optical bench
BR112020010057A2 (en) 2017-11-21 2020-11-03 Lumus Ltd. optical device
US11762169B2 (en) 2017-12-03 2023-09-19 Lumus Ltd. Optical device alignment methods
WO2019106636A1 (en) 2017-12-03 2019-06-06 Lumus Ltd. Optical device testing method and apparatus
FI129586B (en) 2017-12-22 2022-05-13 Dispelix Oy Multipupil waveguide display element and display device
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
JP7487109B2 (en) 2018-03-16 2024-05-20 ディジレンズ インコーポレイテッド Holographic waveguides incorporating birefringence control and methods for fabricating same
CN112005091B (en) 2018-04-08 2023-08-11 鲁姆斯有限公司 Apparatus and method for optically testing a sample of optical material, and controller operatively connected to the apparatus
CN112119346B (en) 2018-05-14 2022-08-19 鲁姆斯有限公司 Projector arrangement with subdivided optical aperture for a near-eye display and corresponding optical system
WO2019224764A1 (en) 2018-05-23 2019-11-28 Lumus Ltd. Optical system including light-guide optical element with partially-reflective internal surfaces
CN112313499A (en) 2018-06-21 2021-02-02 鲁姆斯有限公司 Measurement technique for refractive index non-uniformity between plates of light guide optical element (LOE)
US11409103B2 (en) 2018-07-16 2022-08-09 Lumus Ltd. Light-guide optical element employing polarized internal reflectors
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
AU2019335612A1 (en) 2018-09-09 2021-04-08 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
TWM642752U (en) 2018-11-08 2023-06-21 以色列商魯姆斯有限公司 Light-guide display with reflector
US11947130B2 (en) 2018-11-08 2024-04-02 Lumus Ltd. Optical devices and systems with dichroic beamsplitter color combiner
IL264551B1 (en) * 2019-01-29 2024-05-01 Oorym Optics Ltd Highly efficient compact head-mounted display system having small input aperture
WO2020168348A1 (en) 2019-02-15 2020-08-20 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
EP3939246A4 (en) 2019-03-12 2022-10-26 Lumus Ltd. Image projector
CN113728258A (en) 2019-03-12 2021-11-30 迪吉伦斯公司 Holographic waveguide backlight and related methods of manufacture
CN114207492A (en) 2019-06-07 2022-03-18 迪吉伦斯公司 Waveguide with transmission grating and reflection grating and method for producing the same
CA3145818C (en) 2019-07-04 2023-12-12 Lumus Ltd. Image waveguide with symmetric beam multiplication
CN112213855B (en) * 2019-07-11 2022-07-12 苏州苏大维格科技集团股份有限公司 Display device and optical waveguide lens
EP4004646A4 (en) 2019-07-29 2023-09-06 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
KR20220054386A (en) 2019-08-29 2022-05-02 디지렌즈 인코포레이티드. Vacuum Bragg grating and manufacturing method thereof
WO2021105982A1 (en) 2019-11-25 2021-06-03 Lumus Ltd. Method of polishing a surface of a waveguide
IL270991B (en) 2019-11-27 2020-07-30 Lumus Ltd Lightguide optical element for polarization scrambling
US11561335B2 (en) 2019-12-05 2023-01-24 Lumus Ltd. Light-guide optical element employing complementary coated partial reflectors, and light-guide optical element having reduced light scattering
WO2021137228A1 (en) 2019-12-30 2021-07-08 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
EP4325277A2 (en) 2020-05-24 2024-02-21 Lumus Ltd. Method of fabrication of compound light-guide optical elements
EP4237903A4 (en) 2021-03-01 2024-04-24 Lumus Ltd Optical system with compact coupling from a projector into a waveguide
JP2024517804A (en) 2021-05-19 2024-04-23 ルムス エルティーディー. Active Optical Engine
EP4374204A1 (en) 2021-08-23 2024-05-29 Lumus Ltd. Methods of fabrication of compound light-guide optical elements having embedded coupling-in reflectors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1422172B1 (en) * 1961-12-07 1970-11-12 Kopperschmidt & Co Carl W periscope
FR2496905A1 (en) * 1980-12-24 1982-06-25 France Etat EPISCOPE WITH MULTIMODES REFLECTIONS
US4613216A (en) * 1984-03-27 1986-09-23 L'etat Francais Device for observation through a wall in two opposite directions
GB2220081A (en) * 1988-06-21 1989-12-28 Hall & Watts Defence Optics Lt Periscope apparatus
US20030165017A1 (en) * 2000-06-05 2003-09-04 Yaakov Amitai Substrate-guided optical beam expander

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301067A (en) * 1992-05-06 1994-04-05 Plx Inc. High accuracy periscope assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1422172B1 (en) * 1961-12-07 1970-11-12 Kopperschmidt & Co Carl W periscope
FR2496905A1 (en) * 1980-12-24 1982-06-25 France Etat EPISCOPE WITH MULTIMODES REFLECTIONS
US4613216A (en) * 1984-03-27 1986-09-23 L'etat Francais Device for observation through a wall in two opposite directions
GB2220081A (en) * 1988-06-21 1989-12-28 Hall & Watts Defence Optics Lt Periscope apparatus
US20030165017A1 (en) * 2000-06-05 2003-09-04 Yaakov Amitai Substrate-guided optical beam expander

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10649214B2 (en) 2005-02-10 2020-05-12 Lumus Ltd. Substrate-guide optical device
US10962784B2 (en) 2005-02-10 2021-03-30 Lumus Ltd. Substrate-guide optical device
US10598937B2 (en) 2005-11-08 2020-03-24 Lumus Ltd. Polarizing optical system
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
EP3796069A1 (en) 2012-05-21 2021-03-24 Lumus Ltd Head-mounted display with an eyeball-tracker integrated system
EP3495870A1 (en) 2014-04-23 2019-06-12 Lumus Ltd Compact head-mounted display system
US10908426B2 (en) 2014-04-23 2021-02-02 Lumus Ltd. Compact head-mounted display system
US10809528B2 (en) 2014-04-23 2020-10-20 Lumus Ltd. Compact head-mounted display system
WO2015162611A1 (en) 2014-04-23 2015-10-29 Lumus Ltd. Compact head-mounted display system
EP4242515A2 (en) 2014-04-23 2023-09-13 Lumus Ltd. Compact head-mounted display system
EP3654085A1 (en) 2014-11-11 2020-05-20 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
US10520731B2 (en) 2014-11-11 2019-12-31 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
US10782532B2 (en) 2014-11-11 2020-09-22 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
WO2016075689A1 (en) 2014-11-11 2016-05-19 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
EP3715935A1 (en) 2014-12-25 2020-09-30 Lumus Ltd. Substrate-guided optical device
EP3587916A1 (en) 2015-02-19 2020-01-01 Lumus Ltd. Compact head-mounted display system having uniform image
WO2016132347A1 (en) 2015-02-19 2016-08-25 Lumus Ltd. Compact head-mounted display system having uniform image
EP4235238A2 (en) 2015-02-19 2023-08-30 Lumus Ltd. Compact head-mounted display system having uniform image
EP3936762A1 (en) 2015-02-19 2022-01-12 Lumus Ltd. Compact head-mounted display system having uniform image
WO2017199232A1 (en) 2016-05-18 2017-11-23 Lumus Ltd. Head-mounted imaging device
US10739598B2 (en) 2016-05-18 2020-08-11 Lumus Ltd. Head-mounted imaging device
US10564417B2 (en) 2016-10-09 2020-02-18 Lumus Ltd. Aperture multiplier using a rectangular waveguide
US11567316B2 (en) 2016-10-09 2023-01-31 Lumus Ltd. Aperture multiplier with depolarizer
US10437031B2 (en) 2016-11-08 2019-10-08 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US11378791B2 (en) 2016-11-08 2022-07-05 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US10302835B2 (en) 2017-02-22 2019-05-28 Lumus Ltd. Light guide optical assembly
US11194084B2 (en) 2017-02-22 2021-12-07 Lumus Ltd. Light guide optical assembly
US10684403B2 (en) 2017-02-22 2020-06-16 Lumus Ltd. Light guide optical assembly
US11125927B2 (en) 2017-03-22 2021-09-21 Lumus Ltd. Overlapping facets
US10481319B2 (en) 2017-03-22 2019-11-19 Lumus Ltd. Overlapping facets
US10895679B2 (en) 2017-04-06 2021-01-19 Lumus Ltd. Light-guide optical element and method of its manufacture
US11243434B2 (en) 2017-07-19 2022-02-08 Lumus Ltd. LCOS illumination via LOE
US11385393B2 (en) 2018-01-21 2022-07-12 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US11262587B2 (en) 2018-05-22 2022-03-01 Lumus Ltd. Optical system and method for improvement of light field uniformity
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US11448816B2 (en) 2019-01-24 2022-09-20 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11914161B2 (en) 2019-06-27 2024-02-27 Lumus Ltd. Apparatus and methods for eye tracking based on eye imaging via light-guide optical element
US11523092B2 (en) 2019-12-08 2022-12-06 Lumus Ltd. Optical systems with compact image projector
US11796729B2 (en) 2021-02-25 2023-10-24 Lumus Ltd. Optical aperture multipliers having a rectangular waveguide
US11789264B2 (en) 2021-07-04 2023-10-17 Lumus Ltd. Display with stacked light-guide elements providing different parts of field of view

Also Published As

Publication number Publication date
ES2295807T3 (en) 2008-04-16
IL157836A (en) 2009-08-03
EP1515173A1 (en) 2005-03-16
ATE374955T1 (en) 2007-10-15
DE602004009258T2 (en) 2009-04-09
WO2005024485B1 (en) 2005-05-06
US20050078388A1 (en) 2005-04-14
US7021777B2 (en) 2006-04-04
DE602004009258D1 (en) 2007-11-15
EP1515173B1 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US7021777B2 (en) Optical devices particularly for remote viewing applications
US6791760B2 (en) Planar diffractive relay
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
EP3223060B1 (en) Substrate-guided optical devices
JP3865906B2 (en) Image display device
EP3400477B1 (en) Imaging light guide with reflective turning array
US20020176173A1 (en) Wearable display system and process thereof
CN111226157A (en) Waveguide-based optical system and method for augmented reality system
WO2018042844A1 (en) Information display device
EP0790516A1 (en) Image display apparatus
US20020101666A1 (en) Variable focal length optical element and optical system using the same
US20040233488A1 (en) Information display device
Amitai P‐27: A Two‐Dimensional Aperture Expander for Ultra‐Compact, High‐Performance Head‐Worn Displays
JP2002258208A (en) Optical element and composite display device utilizing it
JP2019133132A (en) Display unit
US11422371B2 (en) Augmented reality (AR) display
US20020018185A1 (en) Image display apparatus and optical system
US11281005B2 (en) Compact head-mounted display system with orthogonal panels
US6466383B1 (en) Image pickup optical system
US20230011557A1 (en) Display device
CN117092825B (en) Multi-focal-plane display device and AR near-to-eye display apparatus for resolving AR convergence adjustment conflict
JP4592884B2 (en) Image display device having three-dimensional eccentric optical path
CN117031617A (en) Curved surface holographic waveguide combiner with two-dimensional pupil expansion and application thereof
CN117092812A (en) Viewing device
JP2018189784A (en) Image observation device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

B Later publication of amended claims

Effective date: 20050223

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1239/DELNP/2006

Country of ref document: IN

122 Ep: pct application non-entry in european phase