WO2005024233A1 - Variable displacement swash plate type compressor - Google Patents

Variable displacement swash plate type compressor Download PDF

Info

Publication number
WO2005024233A1
WO2005024233A1 PCT/JP2004/011373 JP2004011373W WO2005024233A1 WO 2005024233 A1 WO2005024233 A1 WO 2005024233A1 JP 2004011373 W JP2004011373 W JP 2004011373W WO 2005024233 A1 WO2005024233 A1 WO 2005024233A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
piston
outer peripheral
dead center
shoe
Prior art date
Application number
PCT/JP2004/011373
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Kurita
Takayuki Imai
Masakazu Murase
Tetsuhiko Fukanuma
Masaki Ota
Fuminobu Enokijima
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to US10/570,482 priority Critical patent/US20070081904A1/en
Priority to EP04771372A priority patent/EP1669600A1/en
Priority to JP2005513610A priority patent/JPWO2005024233A1/en
Publication of WO2005024233A1 publication Critical patent/WO2005024233A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1063Actuating-element bearing means or driving-axis bearing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1018Cylindrical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a variable displacement type swash plate type compressor that forms a refrigeration circuit and compresses refrigerant gas, for example.
  • a swash plate 92 is connected to a drive shaft 91 so as to be rotatable.
  • a single-headed piston 94 is moored around the outer periphery of the swash plate 92 via a pair of hemispherical shoes 93A and 93B. Accordingly, when the swash plate 92 is rotated by the rotation of the drive shaft 91, the swash plate 92 slides with respect to each of the shoes 93A and 93B, and the piston 94 reciprocates linearly to compress the refrigerant gas.
  • the shears 93A and 93B center on their own axis S (the line passing through the center of curvature P of the spherical surface and perpendicular to the sliding surface with the swash plate 92) in accordance with the relative rotation with the swash plate 92.
  • a rotational movement will be performed.
  • the rotation of the shafts 93A and 93B about the axis S is, as a whole, in one direction around the axis S with respect to the shafts 93A and 93B due to the difference in peripheral speed between the inner and outer peripheries of the swash plate 92 on the outer peripheral side. This is performed in a state equivalent to the application of a rotational force to the motor.
  • the swash plate type compressor shown in FIG. 9 has a configuration in which the shoes 93A and 93B slide directly on the swash plate 92. Therefore, the slides 93A and 93B had to wastefully perform the rotational movement about the axis S by sliding based on the relative rotation with the swash plate 92. Therefore, there is a problem in that mechanical loss is particularly large in a sliding portion between the piston 94 and the shoe 93B on the side receiving the compression reaction force, and problems such as seizure occur in the sliding portion. .
  • a step portion 90a is provided in the center of the rear surface of the swash plate (hereinafter referred to as a first swash plate 90) (facing surface on the right side in the drawing) in an annular shape.
  • a second swash plate 95 is supported so as to be rotatable relative to the first swash plate 90 at a coaxial position.
  • 2nd swashplate 95 The outer peripheral portion is slidably provided between the first swash plate 90 and the second shoe 93B between the first swash plate 90 and the second shoe 93B.
  • the first swash plate structure includes a first swash plate 93A and a second swash plate 93B. It becomes thicker. Therefore, the first swash plate 90 inclined with respect to the drive shaft 91 is provided at the outer peripheral edge corresponding to the vicinity of the piston 94 (the state in FIG. 10) at the top dead center position, on the side opposite to the second swash plate 95.
  • the convex corner portion 90b protrudes largely in the radial direction of the drive shaft 91 (upward in the drawing).
  • the second swash plate 95 inclined with respect to the drive shaft 91 has a convex portion on the opposite side to the first swash plate 90 at an outer peripheral edge corresponding to the vicinity of a piston 94 (not shown) at the bottom dead center position.
  • the corner portion 95b protrudes largely in the radial direction of the drive shaft 91.
  • Patent document 1 JP-A-8-338363 (page 4, FIG. 1)
  • Patent Document 2 JP-A-8-28447 (page 3, FIG. 1)
  • An object of the present invention is to provide a variable displacement type swash plate type compressor capable of improving the durability of a swash plate and a shroud while suppressing a decrease in the durability and an increase in size of a piston.
  • the invention provides a drive shaft, wherein a swash plate is integrally rotatably connected to the drive shaft, and a piston is moored to the swash plate via a shoe. With the rotation of the swash plate, the piston is reciprocated linearly to compress the gas, and the displacement is changed by changing the inclination angle of the swash plate.
  • the present invention provides a variable displacement type swash plate compressor in which an inclined surface is provided on a part of the entire outer peripheral edge of the swash plate.
  • the diameter of the swash plate can be increased while suppressing the decrease in the durability and the size of the piston. be able to. Therefore, a large compression reaction force acting on the swash plate via the shoe can be suitably received. This leads to improved durability of the swash plate and the shoe.
  • a slope corresponding to the piston located at the top dead center position is provided at an outer peripheral edge of the swash plate at a convex corner opposite to the piston.
  • an inclined surface is provided at a convex corner on the side opposite to the piston in a portion of an outer peripheral edge of the swash plate corresponding to a circumferential range of the swash plate in which the piston is disposed at the top dead center position.
  • a slope corresponding to the piston at the bottom dead center position is provided at a convex corner on the piston side at an outer peripheral edge of the swash plate. That is, at the outer peripheral edge of the swash plate corresponding to the circumferential range of the swash plate in which the piston is disposed at the bottom dead center position, a slope is provided at the convex corner on the piston side.
  • the convex portion on the piston side protrudes largely in the radial direction of the drive shaft. Therefore, by chamfering the protruding portion of the swash plate, it is possible to increase the diameter of the first swash plate while suppressing the decrease in the durability and the size of the piston.
  • the swash plate includes a first swash plate integrally rotatably connected to a drive shaft, and a second swash plate supported by the first swash plate.
  • a piston is moored to the second swash plate via a first shoe in contact with the first swash plate and a second shoe on a side receiving a compression reaction force in contact with the second swash plate.
  • On the outer peripheral edge of the first swash plate a portion corresponding to the piston at the top dead center position is provided with an inclined surface at a convex corner opposite to the second swash plate.
  • the slope is inclined to a convex corner opposite to the first swash plate.
  • the first swash plate inclined with respect to the drive shaft has a convex corner on the outer peripheral edge corresponding to the piston at the top dead center position, which is opposite to the second swash plate, in the radial direction of the drive shaft. It will protrude greatly toward it. Therefore, by chamfering the protruding portion of the first swash plate, it is possible to increase the diameter of the first swash plate while suppressing the durability and the size of the piston from being reduced. Therefore, the support of the second swash plate by the first swash plate is preferable, and the second shot of the piston near the top dead center position is suitable. A large compression reaction force acting on the second swash plate via the first swash plate can be suitably received by the first swash plate via the second swash plate. This leads to improved durability of the second swash plate and the second shoe.
  • a slope corresponding to the piston at the bottom dead center position is provided on the outer peripheral edge portion of the first swash plate at a convex corner on the second swash plate side. ing. That is, in the outer peripheral portion of the first swash plate corresponding to the circumferential range of the first swash plate in which the piston is arranged at the bottom dead center position, a slope is provided at the convex corner on the second swash plate side. ing.
  • the convex portion on the piston side protrudes largely in the radial direction of the drive shaft. Therefore, by chamfering the protruding portion of the swash plate, it is possible to increase the diameter of the first swash plate while suppressing the decrease in the durability and the size of the piston.
  • the gas is a refrigerant used in a refrigeration circuit, and carbon dioxide is used as the refrigerant.
  • FIG. 1 is a longitudinal sectional view of a variable displacement swash plate type compressor according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged view of a main part of FIG. 1, without a cross section of first and second swash plates.
  • FIG. 3 is a longitudinal sectional view of a variable displacement swash plate type compressor according to a second embodiment of the present invention.
  • FIG. 4 is an enlarged view of a main part of FIG. 3, in which the first and second swash plates are not cross-sectioned (partially broken), and some of the first and second shows are cross-sections.
  • FIG. 5 is an enlarged view of a main part showing a swash plate structure according to a third embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view of a variable displacement swash plate type compressor according to a fourth embodiment of the present invention.
  • FIG. 7 is a sectional view taken along line A—A in FIG. 6.
  • FIG. 8 is an enlarged sectional view of a main part of FIG. 6.
  • FIG. 9 is a longitudinal sectional view of a conventional variable displacement swash plate type compressor.
  • FIG. 10 is a partial sectional view showing a conventional technique.
  • FIG. 1 is a longitudinal sectional view of a variable capacity swash plate compressor (hereinafter simply referred to as a compressor 10).
  • a compressor 10 a variable capacity swash plate compressor
  • the left side is the front of the compressor
  • the right side is the rear of the compressor.
  • the housing of the compressor 10 includes a cylinder block 11, a front bar and a housing 12 joined and fixed to the front end of the cylinder block 11, and a valve port at the rear end of the cylinder block 11. And a rear housing 14 joined and fixed via a formed body 13.
  • a crank chamber 15 is defined between the cylinder block 11 and the front housing 12.
  • a drive shaft 16 is rotatably disposed between the cylinder block 11 and the front housing 12 so as to pass through the crank chamber 15.
  • the drive shaft 16 is operatively connected via a power transmission mechanism PT of an engine E force clutchless type (constant transmission type) which is a traveling drive source of the vehicle. Therefore, during the operation of the engine E, the drive shaft 16 is constantly rotated by receiving the power supply from the engine E.
  • a rotor 17 is fixed to the drive shaft 16 in the crank chamber 15 so as to be able to rotate.
  • a first swash plate 18 having a substantially disk shape is accommodated.
  • a through hole 18a is formed.
  • the drive shaft 16 is passed through the through hole 18a of the first swash plate 18.
  • the first swash plate 18 is slidably and tiltably supported on the drive shaft 16 via a through hole 18a.
  • a hinge mechanism 19 is interposed between the rotor 17 and the first swash plate 18.
  • the hinge mechanism 19 includes two rotor-side projections 41 (one of which is not shown on the front side of the drawing) projecting from the rear surface of the rotor 17, and a rotor projection 41 on the front surface of the first swash plate 18. And a swash plate side projection 42 protruding toward the 17th side.
  • the swash plate side projection 42 has two It enters between the protrusions 41 on the data side. Therefore, the rotational force of the rotor 17 is transmitted to the first swash plate 18 via the rotor-side protrusion 41 and the swash-plate-side protrusion 42.
  • a substantially cylindrical support portion 39 is provided so as to surround the drive shaft 16.
  • a disc-shaped second swash plate 51 is disposed in a state where the support portion 39 is inserted through a support hole 51a formed through the center thereof. ing.
  • the second swash plate 51 one having a radius substantially equal to that of the first swash plate 18 is used.
  • a radial bearing 52 is interposed between the outer peripheral surface of the support portion 39 and the inner peripheral surface of the support hole 51a of the second swash plate 51.
  • a thrust bearing 53 is interposed between the rear surface of the first swash plate 18 and the front surface of the second swash plate 51.
  • the thrust bearing 53 has a plurality of rollers 53a as rolling elements, and the plurality of rollers 53a are rotatably held by a retainer 53b.
  • the second swash plate 51 is supported via the radial bearing 52 and the thrust bearing 53, so that the second swash plate 18 can be rotated relative to the first swash plate 18 and tilted integrally therewith. Supported by Part 39).
  • a cam portion 43 is formed at the base of the rotor-side projection 41.
  • a cam surface 43a is formed on a rear end surface of the cam portion 43 facing the first swash plate 18.
  • the tip of the swash plate side projection 42 is slidably abutted against the cam surface 43a of the force portion 43. Accordingly, the hinge mechanism 19 moves the first swash plate 18 and the second swash plate 51 by moving the tip of the swash plate-side protrusion 42 on the cam surface 43a of the cam portion 43 in the direction of contact with and separation from the drive shaft 16. Guide the tilt.
  • a plurality of cylinder bores 22 are formed in the cylinder block 11 around the axis L of the drive shaft 16 at equal angular intervals in the front-rear direction (lateral direction on the paper).
  • the single-headed piston 23 is accommodated in each cylinder bore 22 so as to be movable in the front-rear direction.
  • the front-rear opening of the cylinder bore 22 is closed by the front end face of the valve / port forming body 13 and the piston 23, and a compression chamber 24 whose volume changes in accordance with the movement of the piston 23 in the front-rear direction is defined in the cylinder bore 22. Have been.
  • the piston 23 has a cylindrical head 37 inserted into the cylinder bore 22 and a neck 38 located outside the cylinder bore 22 and located in the crank chamber 15 connected in the front-rear direction.
  • Head 37 The neck 38 is made of an aluminum-based metallic material (pure aluminum or an aluminum alloy). Inside the neck portion 38, a pair of shoe seats 38a are recessed. Inside the neck portion 38, a first show 25A and a second show 25B that form a hemisphere are provided.
  • the first shoe 25A and the second shoe 25B are made of an iron-based metal material.
  • the term “hemisphere” refers to a sphere having a part of the spherical surface, which does not mean only a bisected sphere.
  • the first shoe 25A and the second shoe 25B are each spherically received by the corresponding shoe seat 38a with a hemispherical surface 25a.
  • the hemispherical surface 25a of the first show 25A and the hemispherical surface 25a of the second show 25B exist on the same spherical surface with the point P as the center.
  • Each piston 23 is moored to the outer periphery of the first swash plate 18 and the second swash plate 51 via the first shower 25A and the second shower 25B.
  • the first shoe 25A located on the opposite side to the compression chamber 24 is in contact with the front surface of the first swash plate 18 with a planar sliding contact surface 25b on the opposite side to the hemispherical surface 25a.
  • the second shoe 25B on the compression chamber 24 side that is, on the side receiving the compression reaction force, is in contact with the rear surface of the second swash plate 51 with a sliding contact surface 25b opposite to the hemispheric surface 25a.
  • the piston 23 reciprocates linearly in the front-rear direction.
  • a slip occurs between the first swash plate 18 and the second swash plate 51 due to the action of the radial bearing 52 and the thrust bearing 53, and the rotation of the second swash plate 51
  • the speed is lower than the rotation speed of the first swash plate 18. Therefore, the relative rotation speed between the second swash plate 51 and the second swash plate 18 is lower than the relative rotation speed between the second swash plate 25B and the first swash plate 18.
  • the second shot centered on the axis S (the line passing through the center point P of curvature of the hemispherical surface 25a and perpendicular to the sliding surface 25b) caused by the relative rotation between the second swash plate 51 and the second shot 25B.
  • the rotation movement of the 25B can be suppressed, and the occurrence of mechanical loss and malfunction due to the rotation movement can be suppressed.
  • a suction chamber 26 and a discharge chamber 27 are separately formed between the valve / port forming body 13 and the rear housing 14.
  • the valve port forming body 13 is formed with a suction port 28 and a suction valve 29 so as to be located between the compression chamber 24 and the suction chamber 26.
  • the discharge port 30 and the discharge valve 31 are respectively formed in the valve port forming body 13 so as to be located between the compression chamber 24 and the discharge chamber 27.
  • Carbon dioxide is used as a refrigerant in the refrigeration circuit.
  • External circuit (not shown) Force Refrigerant gas introduced into the suction chamber 26 moves from the top dead center position to the bottom dead center position side of each piston 23, and is sucked into the compression chamber 24 via the suction port 28 and the suction valve 29. Is done.
  • the refrigerant gas sucked into the compression chamber 24 is compressed to a predetermined pressure by moving from the bottom dead center position of the piston 23 to the top dead center position side, and is discharged through the discharge port 30 and the discharge valve 31 to the discharge chamber 27. Is discharged.
  • the refrigerant gas in the discharge chamber 27 is led to an external circuit.
  • a bleed passage 32 In the housing of the compressor 10, a bleed passage 32, an air supply passage 33, and a control valve 34 are provided.
  • the bleed passage 32 connects the crank chamber 15 and the suction chamber 26.
  • the air supply passage 33 connects the discharge chamber 27 and the crank chamber 15.
  • a well-known control valve 34 composed of a solenoid valve is provided.
  • the opening of the control valve 34 By adjusting the opening of the control valve 34 by external power supply control, the amount of high-pressure discharge gas introduced into the crank chamber 15 through the air supply passage 33 and the crank through the bleed passage 32 The balance with the amount of gas led out from the chamber 15 is controlled, and the internal pressure of the crank chamber 15 is determined. The difference between the internal pressure of the crank chamber 15 and the internal pressure of the compression chamber 24 is changed in accordance with the change in the internal pressure of the crank chamber 15, and as a result, the inclination angles of the first swash plate 18 and the second swash plate 51 are changed. The stroke of the piston 23 or the displacement of the compressor is adjusted.
  • the support portion 39 that supports the second swash plate 51 in the first swash plate 18 is located at the top dead center with respect to the center axis Ml of the first swash plate 18. It is eccentrically provided on the piston 23A side at the position. Stated another way, the support portion 39 is provided eccentrically on the side (the hinge mechanism 19 side) that brings the piston 23 to the top dead center position when the radial direction of the first swash plate 18 is viewed from the center axis Ml. Has been. Therefore, the second swash plate 51, the radial bearing 52, and the thrust bearing 53 (retainer 53b) are located at the top dead center with respect to the first swash plate 18. It is eccentric to the piston 23A side.
  • the center axis M2 of the second swash plate 51, the radial bearing 52, and the thrust bearing 53 is, with respect to the center axis Ml of the first swash plate 18, the first shoe 25A of the piston 23A at the top dead center position and It is slightly parallel (for example, 0.055 mm; exaggerated in the drawing) to the center point P side of the second show 25B.
  • the portion corresponding to the vicinity of the piston 23 A at the top dead center position is from the outer peripheral edge of the first swash plate 18 in the radial direction of the first swash plate 18. Slightly protruding. Therefore, for example, compared to the case where the second swash plate 51 is not eccentric with respect to the first swash plate 18, the second show 25B of the piston 23 near the top dead center position and the second swash plate 51 The contact area is increasing.
  • the portion corresponding to the vicinity of the piston 23 B at the bottom dead center position has a larger diameter than the outer peripheral edge of the first swash plate 18. It will be located inside the direction. That is, the portion of the outer peripheral edge of the second swash plate 51 corresponding to the vicinity of the hinge mechanism 19 is located radially inward of the first swash plate 18 from the outer peripheral edge of the first swash plate 18. Therefore, for example, as compared with the case where the second swash plate 51 is not eccentric with respect to the first swash plate 18, the second shoe 25B of the piston 23 near the bottom dead center position and the second swash plate 51 The contact area becomes smaller.
  • the compression reaction force acting on the second shoe 25B of the piston 23 near the bottom dead center position is much smaller than the compression reaction force acting on the second shoe 25B of the piston 23 near the top dead center position. Les ,. For this reason, even if the contact area between the second shoe 25B of the piston 23 near the bottom dead center position and the second swash plate 51 becomes smaller, there is no limitation on the durability of the second swash plate 51 and the second shoe 25B. No problem.
  • a portion corresponding to the piston 23A at the top dead center position and a portion located in front and rear of the portion in the circumferential direction are opposite to the second swash plate 51.
  • An inclined surface (chamfered) is provided on the convex corner portion 18b. That is, in the outer peripheral edge portion of the second swash plate 51 corresponding to the vicinity of the hinge mechanism 19, a slope (chamfer) is provided at the convex corner 18b opposite to the second swash plate 51.
  • the convex angle portion 18b opposite to the piston 23A is formed at the outer peripheral edge portion of the first swash plate 18 corresponding to the circumferential range of the first swash plate 18 in which the piston 23 is arranged at the top dead center position.
  • An inclined surface is provided at the outer peripheral edge portion of the first swash plate 18 corresponding to the circumferential range of the first swash plate 18 in which the piston 23 is arranged at the top dead center position.
  • An inclined surface is provided.
  • the slope (chamfer) of the convex corner 18b is The portion corresponding to the piston 23A at the top dead center position is provided so as to become gradually smaller as it becomes circumferentially farther from the largest portion.
  • the inclined surface (chamfer) of the convex corner portion 18b is provided within a quarter-peripheral region with a portion corresponding to the piston 23A at the top dead center position being in the middle.
  • the inclined surface (chamfer) is provided so that a portion corresponding to the piston 23B at the bottom dead center position is the largest, and gradually becomes smaller as the portion is circumferentially separated from the portion.
  • the inclined surface (chamfered) of the convex corner portion 18c is provided within a quarter-peripheral region with a portion corresponding to the piston 23B at the bottom dead center position as a center.
  • the inclined surface (chamfer) of the convex corner portion 18c is provided with substantially the same size as the inclined surface (chamfer) of the convex corner portion 18b in consideration of the weight balance around the center axis Ml of the first swash plate 18. Has been.
  • the present embodiment having the above configuration has the following effects.
  • the first shower 25A and the The thickness between 2 SHU and 25B becomes thicker.
  • the second swash plate 51 is eccentric with respect to the first swash plate 18 so that the second shroud 25B and the second swash plate 51 of the piston 23 near the top dead center position are connected to each other.
  • the contact area of the second swash plate 51 and the second shoe 25B can be improved while suppressing the decrease in the durability and the size of the piston 23. It is effective for
  • a convex corner portion 18c on the second swash plate 51 side protrudes largely in the radial direction of the drive shaft 16 at an outer peripheral edge corresponding to the piston 23B at the bottom dead center position. It will be.
  • Carbon dioxide is used as the refrigerant in the refrigeration circuit.
  • a carbon dioxide refrigerant When a carbon dioxide refrigerant is used, the pressure in the refrigeration circuit is much higher than when a chlorofluorocarbon refrigerant (for example, R134a) is used. Therefore, also in the compressor, the compression reaction force acting on the piston 23 increases, and the pressing force between the second swash plate 51 and the second shoe 25B increases.
  • embodying the present invention is particularly effective in improving the durability of the second swash plate 51 and the second shoe 25B while suppressing the decrease in the durability and the size of the piston 23. Becomes effective.
  • the first shoe 25A located on the hinge mechanism 19 side, that is, on the side opposite to the compression chamber 24, has a first sliding contact surface 25b opposite to the hemispheric surface 25a.
  • the swash plate 18 is slidably abutted against the front surface of the outer peripheral portion 18-1.
  • hinge machine The second shoe 25B on the side opposite to the structure 19, that is, on the compression chamber 24 side and receiving the compression reaction force has an outer peripheral portion 51-2 of the second swash plate 51 on a sliding contact surface 25b opposite to the hemispheric surface 25a. It is slidably abutted against the rear surface of the.
  • the sliding surface 25b of the first shoe 25A has a middle-high shape whose central portion protrudes toward the first swash plate 18 (see FIG. 4.
  • the middle-high shape is exaggerated in FIG. 4).
  • the sliding surface 25b of the second shoe 25B has a planar shape.
  • a radial bearing 52A composed of a rolling bearing is interposed between the support hole 51a and the inner peripheral surface of the support hole 51a.
  • the radial bearing 52A has an outer race 52a attached to the inner peripheral surface of the support hole 51a in the second swash plate 51, and an inner race 52b attached to the outer peripheral surface of the support portion 39 in the first swash plate 18.
  • a plurality of rollers 52c as rolling elements interposed between the outer race 52a and the inner race 52b.
  • a thrust made of a rolling bearing is provided between the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 51-2 of the second swash plate 51 between the first shoe 25A and the second shoe 25B.
  • Bearing 53 is interposed.
  • the thrust bearing 53 has a plurality of rollers 53a as rolling elements, and the plurality of rollers 53a are rotatably held by a retainer 53b.
  • an annular race 55 is interposed between the roller 53a and the first swash plate 18.
  • the race 55 is formed by subjecting a base material made of mild steel such as SPC to a carburizing heat treatment.
  • the corners at both ends of the roller 53a are chamfered to prevent the roller 53a from hitting the second swash plate 51 and the race 55 to damage the second swash plate 51 and the race 55. .
  • an annular locking portion 18 d protrudes from the outermost periphery of the outer peripheral portion 18-1 toward the second swash plate 51.
  • the race 55 is disposed inside the locking portion 18d, and the race 55 is locked to the first swash plate 18 on the radially outer side by abutment of the outer peripheral edge thereof with the locking portion 18d.
  • the race 55 is rotatable relative to the first swash plate 18 by being guided by the locking portion 18d.
  • the second swash plate 51 is supported by the first swash plate 18 via the radial bearing 52A and the thrust bearing 53 so that the second swash plate 51 can rotate relative to the first swash plate 18 and can be tilted integrally. Is held. Therefore, when the first swash plate 18 rotates, the radial bearing 52A and the thrust bearing 53 act to cause a rolling between the first swash plate 18 and the second swash plate 51, thereby causing the surfaces to face each other. Mechanical loss due to slippage is replaced by mechanical loss due to rolling, and the occurrence of mechanical loss in the compressor can be greatly suppressed.
  • the thickness Y1 of the inner peripheral portion 51-1 which is supported by the radial bearing 52A in the second swash plate 51, is the thickness Y2 of the outer peripheral portion 51-2, which is supported by the thrust bearing 53 in the second swash plate 51. It is thicker than it is.
  • the thickness Y2 of the outer peripheral portion 51-2 of the second swash plate 51 is at least half the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 18- of the first swash plate 18. It is set thinner than the thickness of 1.
  • the thickness Y1 of the inner peripheral portion 51-1 of the second swash plate 51 is larger than the thickness X of the outer peripheral portion 18-1 of the first swash plate 18.
  • the inner peripheral portion 51-1 of the second swash plate 51 has a cylindrical first protruding portion 56 protruding from the first swash plate 18 side and a protruding portion on the opposite side to the first swash plate 18.
  • the second swash plate 51 has a greater thickness than the outer peripheral portion 51-2 of the second swash plate 51 by providing the cylindrical second projecting portion 57 (Y1> Y2).
  • the first protrusion 56 and the second protrusion 57 are disposed coaxially with the support hole 51a, and the inner peripheral surfaces of the first protrusion 56 and the second protrusion 57 are formed on the inner periphery of the support hole 51a. Form a part of the surface.
  • the outer diameter Z2 of the second protrusion 57 is smaller than the outer diameter Z1 of the first protrusion 56. Further, the outer peripheral angle 57a of the distal end surface of the second projecting portion 57 is chamfered in a tapered shape as a whole.
  • a second swash plate 18 is provided between the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 51-2 of the second swash plate 51.
  • a thrust bearing 53 that supports the plate 51 so as to be rotatable relative to the first swash plate 18 is provided.
  • the second swash plate 51 is rotated relative to the first swash plate 18 between the inner peripheral portion (support portion 39) of the first swash plate 18 and the inner peripheral portion 51-1 of the second swash plate 51.
  • a radial bearing 52A is provided for supporting as much as possible.
  • the force S can effectively reduce the rotational resistance generated between the inner peripheral portion (support portion 39) and the inner peripheral portion 51-1 of the second swash plate 51. Therefore, even in the compressor 10 used for the refrigeration circuit using carbon dioxide as a refrigerant, the slip between the first swash plate 18 and the second swash plate 51 can be a mechanical loss due to rolling. As a result, it is possible to effectively suppress problems such as mechanical loss and seizure. Wear.
  • the thickness Y2 of the outer peripheral portion 51-2 of the second swash plate 51 is equal to or more than half the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 and the thickness of the outer peripheral portion 18_1. It is thinner than thickness X.
  • the space between the first shoe 25 ⁇ and the second shoe 25 ⁇ will be limited. In this limited space, if the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 is increased, the thickness ⁇ 2 of the outer peripheral portion 51-2 of the second swash plate 51 must be reduced.
  • the thickness ⁇ 2 of the outer peripheral portion 51-2 of the swash plate 51 is increased, the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 needs to be reduced.
  • the first swash plate 18 and the second swash plate 51 both secure the strength by increasing the thicknesses X and ⁇ 2 of the outer peripheral portions 18-1, 51-2 as much as possible.
  • the thickness X of the outer peripheral portion 18-1 can be secured by sliding with respect to the first swash plate 18. The priority should be given to securing the thickness 51 of the outer peripheral portion 51-2 of the plate 51.
  • the force of the second swash plate 51 is set such that the thickness ⁇ 2 of the outer peripheral portion 51-2 is equal to or more than half the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 18-1 It is to be set thinner than the sheet thickness X of.
  • the plate thickness Y1 of the inner peripheral portion 51-1 is larger than the plate thickness ⁇ 2 of the outer peripheral portion 51-2.
  • the thick inner peripheral portion 51-1 stabilizes the support of the second swash plate 51 by the radial bearing 52 °, and can further improve the sliding between the first swash plate 18 and the second swash plate 51.
  • the outer peripheral portion 51-2 of the second swash plate 51 which is relatively thinner than the inner peripheral portion 51-1, allows the outer peripheral portion 18- of the first swash plate 18 to be stronger in strength than the second swash plate 51. (1) It is easy to secure the plate thickness.
  • the thickness ⁇ 2 of the outer peripheral portion 51-2 of the second swash plate 51 is smaller than the thickness X of the outer peripheral portion 18-1 of the first swash plate 18. Therefore, the thin outer peripheral portion 51-2 of the second swash plate 51 facilitates securing the thickness of the outer peripheral portion 18-1 of the first swash plate 18, which is stricter in strength than the second swash plate 51.
  • the thickness Y1 of the inner peripheral portion 51-1 is larger than the thickness X of the outer peripheral portion 18-1 of the first swash plate 18. Therefore, the support of the second swash plate 51 by the radial bearing 52 ° is further stabilized.
  • the outer diameter of the second projecting portion 57 ⁇ 2 Is smaller than the outer diameter Z1 of the first protrusion 56.
  • Part of the second protruding portion 57 comes extremely close to the piston 23B at the bottom dead center position, for example, in a state where the discharge capacity of the compressor 10 is maximum (the state in FIG. 3). Therefore, making the second projecting portion 57 smaller in diameter than the first projecting portion 56 and separating it from the piston 23 avoids the interference between the second swash plate 51 and the bistone 23 and reduces the second swash plate. This is effective in increasing the thickness Y1 of the inner peripheral portion 51-1 of the plate 51.
  • a chamfer is provided at an outer peripheral angle 57a of the tip end surface.
  • a part of the outer peripheral angle 57a of the distal end surface is extremely close to the piston 23B at the bottom dead center position. Therefore, providing a chamfer at the outer peripheral angle 57a of the distal end surface of the second projecting portion 57 avoids interference between the second swash plate 51 and the piston 23 and reduces the inner peripheral portion 51a of the second swash plate 51. This is effective in achieving a balance between increasing the thickness of Y1.
  • a portion of the outer peripheral edge of the first swash plate 18 corresponding to the piston 23A at the top dead center position has an inclined surface (a convex corner portion 18b opposite to the second swash plate 51). Chamfer). Therefore, the diameter of the first swash plate 18 and the second swash plate 51 can be increased while suppressing a decrease in durability and an increase in size of the piston 23. Accordingly, the contact slidability between the second swash plate 51 and the second shoe 25B is improved, and the durability of the second swash plate 51 and the second shoe 25B is reduced while suppressing the decrease in the durability and the size of the piston 23. Can be improved.
  • the first swash plate 18 inclined with respect to the drive shaft 16 has a convex corner 18b (chamfered) opposite to the second swash plate 51 at the outer peripheral edge corresponding to the piston 23A at the top dead center position.
  • a neck 38 of the piston 23 corresponding to the protruding portion is formed in order to avoid interference with the protruding portion. It is conceivable to reduce the wall thickness or increase the diameter of the neck 38 in the radial direction. However, reducing the thickness of the neck 38 reduces the durability of the piston 23, and increasing the size of the neck 38 leads to an increase in the size of the compressor.
  • the roller 52c is used as a rolling element of the radial bearing 52A.
  • a rolling bearing using the roller 52c as a rolling element has better load resistance than, for example, a case using a ball as a rolling element. This leads to a reduction in the size of the radial bearing 52A and a reduction in the size of the compressor 10.
  • the race 55 is interposed between the roller 53a of the thrust bearing 53 and the first swash plate 18.
  • the race 55 is rotatable relative to the first swash plate 18.
  • the race 55 is interposed between the roller 53a and the first swash plate 18, and the compression reaction force acting on the roller 53a reduces the surface pressure through the race 55. Then, since the first swash plate 18 acts on the first swash plate 18, it is possible to suppress the first swash plate 18 from being locally worn and deteriorated. Further, in the race 55 that rotates relative to the first swash plate 18, the portions where a large compression reaction force acts via the rollers 53a are sequentially switched, so that it is possible to prevent the race 55 from being locally worn and deteriorated.
  • a locking portion 18d protrudes from the outer peripheral portion 18-1 of the first swash plate 18 toward the second swash plate 51, and abuts against the locking portion 18d. As a result, the race 55 is locked to the first swash plate 18 on the radially outer side.
  • the first swash plate 18 When the lubricating oil (refrigerant oil) attached to the cylinder moves radially outward due to the action of centrifugal force, the lubricating oil enters between the first swash plate 18 and the race 55 at the locking portion. It will be hindered. According to the present embodiment in which the race 55 is locked to the first swash plate 18 on the radial outside, the lubricating oil enters between the first swash plate 18 and the race 55 by the locking portion 18d.
  • the lubricating oil refrigerant oil
  • the locking portion 18d has an annular shape. Accordingly, the locking of the race 55 by the locking portion 18d is performed stably, and the sliding between the race 55 and the first swash plate 18 is further improved.
  • the support portion 39 is not eccentric with respect to the center axis Ml of the first swash plate 18. That is, the second swash plate 51, the radial bearing 52A (see FIG. 3) and the thrust bearing 53 (including the race 55) are not eccentric with respect to the first swash plate 18.
  • a portion corresponding to the piston 23B at the bottom dead center position is such that the convex corner portion 18c on the second swash plate 51 side is radially larger than the second swash plate 51. Since it does not protrude, there is no problem if the chamfered portion 18c is not chamfered as shown in FIG.
  • the PCD force of the thrust bearing 53 is set at the center point of the first shoe 25A and the second shoe 25B about the central axis Ml, M2 of the first swash plate 18 and the second swash plate 51. It is made larger than the diameter of the virtual cylinder passing through P. In this way, the thrust bearing 53 (the roller 53a) can suitably receive the compression reaction force transmitted through the second swash plate 51, and the durability is improved.
  • the “PCD” of the thrust bearing 53 means that the center of the thrust bearing 53 (the center axes Ml and M2 of the first swash plate 18 and the second swash plate 51) is the center axis, and the roller 53a is on the rotation center axis. Refers to the diameter of the virtual cylinder passing through the intermediate point.
  • the drive shaft 16 has the rotor 17 fixed thereto, and the swash plate 58 supported so as to be slidable and tiltable in the axial direction of the drive shaft 16.
  • Connecting pieces 59 and 60 are fixed to the swash plate 58, and guide pins 61 and 62 are fixed to the connecting pieces 59 and 60.
  • the rotor 17 has a pair of guide holes 171 (only one is shown).
  • the heads of the guide pins 61 and 62 are slidably fitted into the guide holes 171.
  • the swash plate 58 can be tilted in the axial direction of the drive shaft 16 and rotates integrally with the drive shaft 16 by linking the guide hole 171 and the guide pins 61 and 62. It is possible.
  • the tilt of the swash plate 58 is guided by the slide guide relationship between the guide hole 171 and the guide pins 61 and 62 and the slide support action of the drive shaft 16.
  • the connecting pieces 59 and 60, the guide pins 61 and 62, and the guide hole 171 constitute a hinge mechanism 19A.
  • the solid line position of the swash plate 58 in Fig. 6 indicates the maximum inclination state of the swash plate 58.
  • the dashed line position of the swash plate 58 in FIG. 6 indicates the minimum inclination state of the swash plate 58.
  • a portion corresponding to the piston 23A at the top dead center position and a portion located in the front and rear direction with respect to the portion are provided with a convex corner portion 58a opposite to the piston 23.
  • an inclined surface is provided at the convex corner 58a opposite to the piston 23. ing. As shown in FIG. 7, the inclined surface of the convex corner portion 58a is provided so that the portion corresponding to the piston 23 at the top dead center position becomes gradually smaller as it is further away in the circumferential direction from the largest portion. Have been.
  • the inclined surface provided at the convex corner portion 58a is a virtual cylinder having a central axis M3 parallel to the axis L of the drive shaft 16. It is on the circumference of C.
  • the center axis M3 is shifted from the piston 23A at the top dead center position to the drive shaft 16 with respect to the axis L.
  • the diameter of the virtual cylinder C is equal to or larger than the diameter of the swash plate 58.
  • the swash plate 58 inclined with respect to the drive shaft 16 has a convex corner portion 58a opposite to the piston 23 at the outer peripheral edge corresponding to the piston 23A at the top dead center position. Will protrude greatly. Therefore, by providing an inclined surface at a protruding portion (a part of the convex corner portion 58a) of the swash plate 58, it is possible to increase the diameter of the swash plate 58 while suppressing a decrease in durability and an increase in size of the piston 23. . Therefore, a large compression reaction force acting on the swash plate 58 can be suitably received through the second shoe 25B of the piston 23 near the top dead center position. This leads to improved durability of the swash plate 58.
  • the radial bearing 52 and the thrust bearing 53 are omitted, and the second swash plate 51 is fixed to the first swash plate 18 so that the second swash plate 51 is connected to the first swash plate 18. Be able to rotate integrally.
  • a slope is formed at the convex corner on the first swash plate 18 side with respect to the portion corresponding to the piston 23A at the top dead center position.
  • a slope is provided at a convex corner opposite to the first swash plate 18 with respect to a portion corresponding to the piston 23B at the bottom dead center position.
  • the second swash plate 51 inclined with respect to the drive shaft 16 has a convex angle on the first swash plate 18 side at the outer peripheral edge corresponding to the piston 23A at the top dead center position.
  • the portion protrudes largely in the radial direction of the drive shaft 16.
  • the swash plate structure to which the present invention can be applied is not limited to the structure using only the first swash plate and the second swash plate. It may have a plurality of swash plates.
  • the present invention is applied to a variable displacement swash plate type compressor having a double-headed piston.
  • the second swash plate may be arranged only on one side of the front and rear surfaces of the first swash plate, or the second swash plate may be arranged on both sides of the front and rear surfaces of the first swash plate. Is also good.
  • the present invention is not limited to application to a refrigerant compressor used in a refrigeration circuit, but may be applied to, for example, an air compressor.
  • the second embodiment is changed, for example, as shown in FIG. 5, the sliding surface 25b of the first shoe 25A is made flat.
  • the second embodiment is changed, for example, as shown in Fig. 5, the sliding contact surface 25b of the second shoe 25B is formed in a concave shape with a concave central portion.
  • the weight of the second shoe 25B reciprocating linearly with the piston 23 can be reduced, the inertia force of the second shoe 25B can be reduced, and the first swash plate 18 and the second swash plate 51 can be reduced.
  • the change of the inclination angle that is, the change of the displacement of the compressor, can be performed smoothly.
  • the thrust bearing 53 is changed to a rolling bearing provided with balls as rolling elements.
  • the thrust bearing 53 is changed to a plain bearing.
  • the radial bearing 52A is configured to receive only a radial load (a load in a direction orthogonal to the center axis M2) acting on the second swash plate 51.
  • a radial load a load in a direction orthogonal to the center axis M2
  • the roller 52c By changing this, for example, by arranging the roller 52c so as to be inclined with respect to the center axis M2 of the second swash plate 51, not only the radial load but also the thrust load (in the direction along the center axis M2) can be adjusted. Load).
  • the thrust bearing 53 is configured to receive only the thrust load acting on the second swash plate 51.
  • the rollers 53a By changing this, for example, by arranging the rollers 53a so as to be inclined with respect to the board surface of the second swash plate 51, a configuration in which not only a thrust load but also a radial load can be received.
  • the locking portion 18d is omitted, and a locking portion is provided on the inner peripheral portion of the first swash plate 18 (for example, the base of the support portion 39 also serves as the locking portion).
  • the swash plate 55 is to be locked to the first swash plate 18 on the radial inside.

Abstract

A variable displacement swash plate type compressor, wherein a first swash plate (18) is connected to a drive shaft (16) so as to be rotated integrally with each other and double-head pistons (23) are anchored to the first swash plate (18) through shoes (25A) and (25B). The pistons (23) are reciprocatingly moved in the linear direction by the rotation of the first swash plate (18) according to the rotation of the drive shaft (16) to compress refrigerant gas. An annular second swash plate (51) is supported on the first swash plate (18) rotatably relative to each other through a ball bearing (52). The second swash plate (51) is disposed between the first swash plate (18) and the shoes (25B) on a compressive load receiving side slidably on the first swash plate (18) and the shoes (25B). Sloped faces (chamfered parts) are formed at the projected corner parts (18b) and (18c) of the first swash plate (18). Accordingly, the durability of the swash plates and the shoes can be increased.

Description

明 細 書  Specification
容量可変型斜板式圧縮機  Variable capacity swash plate compressor
技術分野  Technical field
[0001] 本発明は、例えば冷凍回路を構成して冷媒ガスの圧縮を行う容量可変型斜板式圧 縮機に関する。  The present invention relates to a variable displacement type swash plate type compressor that forms a refrigeration circuit and compresses refrigerant gas, for example.
背景技術  Background art
[0002] 図 9に示すように、この種の斜板式圧縮機は、駆動軸 91に対して斜板 92がー体回 転可能に連結されている。斜板 92の外周部には、それぞれ半球状をなす一対のシ ユー 93A, 93Bを介して、片頭型のピストン 94が係留されている。従って、駆動軸 91 の回転によって斜板 92が回転すると、斜板 92は、各シユー 93A, 93Bに対して摺動 し、ピストン 94が往復直線運動されて、冷媒ガスの圧縮が行われる。  As shown in FIG. 9, in this type of swash plate compressor, a swash plate 92 is connected to a drive shaft 91 so as to be rotatable. A single-headed piston 94 is moored around the outer periphery of the swash plate 92 via a pair of hemispherical shoes 93A and 93B. Accordingly, when the swash plate 92 is rotated by the rotation of the drive shaft 91, the swash plate 92 slides with respect to each of the shoes 93A and 93B, and the piston 94 reciprocates linearly to compress the refrigerant gas.
[0003] シユー 93A, 93Bは、斜板 92との相対回転に応じて自身の軸線 S (球面の曲率中 心 Pを通りかつ斜板 92との摺動面に垂直な線)を中心とした回転運動を行うこととなる 。軸線 Sを中心としたシユー 93A, 93Bの回転運動は、斜板 92の内外周における外 周側が大となる周速の差から、トータルとして、シユー 93A, 93Bに対して軸線 S周り の一方向への回転力が付与されることと同義な状態となって行われる。  [0003] The shears 93A and 93B center on their own axis S (the line passing through the center of curvature P of the spherical surface and perpendicular to the sliding surface with the swash plate 92) in accordance with the relative rotation with the swash plate 92. A rotational movement will be performed. The rotation of the shafts 93A and 93B about the axis S is, as a whole, in one direction around the axis S with respect to the shafts 93A and 93B due to the difference in peripheral speed between the inner and outer peripheries of the swash plate 92 on the outer peripheral side. This is performed in a state equivalent to the application of a rotational force to the motor.
[0004] つまり、図 9に示す斜板式圧縮機は、斜板 92に対してシユー 93A, 93Bが直接摺 動される構成を有している。従って、シユー 93A, 93Bは、斜板 92との相対回転に基 づく摺動によって、軸線 Sを中心とした回転運動を無駄に行わざるを得なかった。よつ て、特に、ピストン 94と、圧縮反力を受ける側のシユー 93Bとの摺動部分における機 械損失が大きくなるし、該摺動部分において焼付き等の不具合を発生する問題があ つた。  [0004] That is, the swash plate type compressor shown in FIG. 9 has a configuration in which the shoes 93A and 93B slide directly on the swash plate 92. Therefore, the slides 93A and 93B had to wastefully perform the rotational movement about the axis S by sliding based on the relative rotation with the swash plate 92. Therefore, there is a problem in that mechanical loss is particularly large in a sliding portion between the piston 94 and the shoe 93B on the side receiving the compression reaction force, and problems such as seizure occur in the sliding portion. .
[0005] このような問題を解決するために、例えば図 10に示すような技術が提案されている 〔例えば特許文献 1参照〕。即ち、斜板 (以下第 1斜板 90とする)の後面(図面右方側 に向力 面)において中央部には、段差部 90aが円環状に設けられている。第 1斜板 90において段差部 90aの外側には、円環状をなす摺動板(以下第 2斜板 95という) 、第 1斜板 90に対して同軸位置で相対回転可能に支持されている。第 2斜板 95の 外周部は、第 1斜板 90と第 2シユー 93Bとの間において、第 1斜板 90及び第 2シユー 93Bに対して摺動可能に配設されている。 [0005] In order to solve such a problem, for example, a technique as shown in FIG. 10 has been proposed (for example, see Patent Document 1). That is, a step portion 90a is provided in the center of the rear surface of the swash plate (hereinafter referred to as a first swash plate 90) (facing surface on the right side in the drawing) in an annular shape. Outside the stepped portion 90a of the first swash plate 90, an annular sliding plate (hereinafter referred to as a second swash plate 95) is supported so as to be rotatable relative to the first swash plate 90 at a coaxial position. . 2nd swashplate 95 The outer peripheral portion is slidably provided between the first swash plate 90 and the second shoe 93B between the first swash plate 90 and the second shoe 93B.
[0006] 従って、第 1斜板 90が回転すると、第 1斜板 90と第 2斜板 95との間に滑りが生じ、 第 2斜板 95の回転速度は第 1斜板 90の回転速度よりも低下される。よって、第 2斜板 95と第 2シユー 93Bとの相対回転速度力 第 2シユー 93Bと第 1斜板 90との相対回 転速度よりも低下される。その結果、第 2斜板 95と第 2シユー 93Bとの相対回転に起 因する、軸線 Sを中心とした第 2シユー 93Bの回転運動を抑制することができ、前述し た機械損失や不具合の発生を抑制することができる。  [0006] Therefore, when the first swash plate 90 rotates, a slippage occurs between the first swash plate 90 and the second swash plate 95, and the rotation speed of the second swash plate 95 becomes the rotation speed of the first swash plate 90. Lower than. Therefore, the relative rotational speed between the second swash plate 95 and the second swash plate 93B is lower than the relative rotational speed between the second swash plate 93B and the first swash plate 90. As a result, the rotational movement of the second shoe 93B about the axis S, which is caused by the relative rotation between the second swash plate 95 and the second shoe 93B, can be suppressed. Generation can be suppressed.
[0007] ここで、第 1シユー 93Aと第 2シユー 93Bとの間において、第 1斜板 90と第 2斜板 95 との間に転動素子を介在させることも提案されている〔例えば特許文献 2参照〕。なお 、特許文献 2においては、スラストベアリングが有する第 2シユー 93B側のレースを、 第 2斜板 95として把握することができる。このようにすれば、第 1斜板 90と第 2斜板 95 との間の滑りが良好となり、第 2斜板 95と第 2シユー 93Bとの相対回転速度を、第 2シ ユー 93Bと第 1斜板 90との相対回転速度よりも大きく低下させることができる。  [0007] Here, it has also been proposed to interpose a rolling element between the first swash plate 90 and the second swash plate 95 between the first shoe 93A and the second shoe 93B [for example, see Patent Reference 2). In Patent Document 2, the race on the second shoe 93B side of the thrust bearing can be grasped as the second swash plate 95. By doing so, the sliding between the first swash plate 90 and the second swash plate 95 is improved, and the relative rotation speed between the second swash plate 95 and the second swash plate 93B is reduced. The rotation speed relative to the one swash plate 90 can be greatly reduced.
[0008] ところが、第 1斜板 90に加え、第 2斜板 95、さらには転動素子を備える斜板構造で は、斜板構造における第 1シユー 93Aと第 2シユー 93Bとの間での厚みが厚くなつて しまう。従って、駆動軸 91に対して傾斜する第 1斜板 90は、上死点位置にあるピスト ン 94 (図 10の状態)付近に対応する外周縁部において、第 2斜板 95と反対側の凸 角部 90bが、駆動軸 91の径方向(図面上方)へ向かって大きく突出することとなる。ま た、駆動軸 91に対して傾斜する第 2斜板 95は、下死点位置にあるピストン 94 (図示 しない状態)付近に対応する外周縁部において、第 1斜板 90と反対側の凸角部 95b が、駆動軸 91の径方向へ向かって大きく突出することとなる。  [0008] However, in the swash plate structure including the second swash plate 95 and the rolling elements in addition to the first swash plate 90, the first swash plate structure includes a first swash plate 93A and a second swash plate 93B. It becomes thicker. Therefore, the first swash plate 90 inclined with respect to the drive shaft 91 is provided at the outer peripheral edge corresponding to the vicinity of the piston 94 (the state in FIG. 10) at the top dead center position, on the side opposite to the second swash plate 95. The convex corner portion 90b protrudes largely in the radial direction of the drive shaft 91 (upward in the drawing). Further, the second swash plate 95 inclined with respect to the drive shaft 91 has a convex portion on the opposite side to the first swash plate 90 at an outer peripheral edge corresponding to the vicinity of a piston 94 (not shown) at the bottom dead center position. The corner portion 95b protrudes largely in the radial direction of the drive shaft 91.
[0009] 第 1斜板 90の凸角部 90b及び第 2斜板 95の凸角部 95bが駆動軸 91の径方向へ 大きく突出すると、該突出部分との干渉を回避するために、ピストン 94において該突 出部分に対応する部分の肉厚を薄くするか、ピストン 94を径方向に大型化する必要 がある。ピストン 94の薄肉化は耐久性低下につながるし、ピストン 94の大型化は斜板 式圧縮機が大型化することにつながってしまう。従って、従来においては、斜板構造 の厚みを厚くせざるを得ない場合には、第 1斜板 90及び第 2斜板 95の半径を小さく して、前述した凸角部 90b, 95bとピストン 94との干渉を回避するようにしていた。 [0009] When the convex corner portion 90b of the first swash plate 90 and the convex corner portion 95b of the second swash plate 95 protrude greatly in the radial direction of the drive shaft 91, the piston 94 is moved in order to avoid interference with the protruding portion. In this case, it is necessary to reduce the thickness of the portion corresponding to the protruding portion or to increase the size of the piston 94 in the radial direction. Reducing the thickness of the piston 94 leads to a decrease in durability, and increasing the size of the piston 94 leads to an increase in the size of the swash plate compressor. Therefore, conventionally, when the thickness of the swash plate structure must be increased, the radius of the first swash plate 90 and the second swash plate 95 is reduced. Thus, the interference between the convex corners 90b and 95b and the piston 94 described above is avoided.
[0010] しかし、第 1斜板 90及び第 2斜板 95の半径を小さくすると、特に、上死点位置付近 [0010] However, when the radius of the first swash plate 90 and the second swash plate 95 is reduced, especially near the top dead center position,
(圧縮行程)にあるピストン 94において、大きな圧縮反力を受ける第 2シユー 93Bと第 2斜板 95との接触面積が狭くなり、第 2斜板 95及び第 2シユー 93Bの耐久性が低下 する問題があった。  At the piston 94 in the (compression stroke), the contact area between the second shoe 93B, which receives a large compression reaction force, and the second swash plate 95 is reduced, and the durability of the second swash plate 95 and the second shoe 93B is reduced. There was a problem.
[0011] 近年、冷凍回路の冷媒として、二酸化炭素を用いることが一般化されつつある。二 酸化炭素冷媒を用いた場合には、フロン冷媒 (例えば R134a)を用いた場合よりも冷 凍回路内の圧力が非常に高くなる。従って、斜板式圧縮機においてもピストン 94に 作用する圧縮反力が大きくなり、前述した問題 (第 2斜板 95及び第 2シユー 93Bの耐 久性が低下する)が大きく取り上げられるようになつてきた。  In recent years, the use of carbon dioxide as a refrigerant in a refrigeration circuit has been generalized. When a carbon dioxide refrigerant is used, the pressure in the refrigeration circuit becomes much higher than when a chlorofluorocarbon refrigerant (eg, R134a) is used. Therefore, even in a swash plate compressor, the compression reaction force acting on the piston 94 becomes large, and the above-mentioned problem (the durability of the second swash plate 95 and the second shoe 93B is reduced) has been widely taken up. Was.
特許文献 1 :特開平 8-338363号公報 (第 4頁、第 1図)  Patent document 1: JP-A-8-338363 (page 4, FIG. 1)
特許文献 2 :特開平 8 - 28447号公報 (第 3頁、第 1図)  Patent Document 2: JP-A-8-28447 (page 3, FIG. 1)
発明の開示  Disclosure of the invention
[0012] 本発明の目的は、ピストンの耐久性低下及び大型化を抑制しつつ、斜板及びシュ 一の耐久性を向上させることが可能な容量可変型斜板式圧縮機を提供することにあ る。  An object of the present invention is to provide a variable displacement type swash plate type compressor capable of improving the durability of a swash plate and a shroud while suppressing a decrease in the durability and an increase in size of a piston. You.
[0013] 上記目的を達成するために発明は、駆動軸には斜板が一体回転可能に連結され 、前記斜板にはシユーを介してピストンが係留されており、前記駆動軸の回転にとも なう前記斜板の回転によって、前記ピストンが往復直線運動されてガスの圧縮が行わ れ、前記斜板の傾斜角度が変更されることによって吐出容量が変更される容量可変 型斜板式圧縮機であって、前記斜板の外周縁部の全周の一部に傾斜面が設けられ てレ、る容量可変型斜板式圧縮機を提供する。  [0013] In order to achieve the above object, the invention provides a drive shaft, wherein a swash plate is integrally rotatably connected to the drive shaft, and a piston is moored to the swash plate via a shoe. With the rotation of the swash plate, the piston is reciprocated linearly to compress the gas, and the displacement is changed by changing the inclination angle of the swash plate. In addition, the present invention provides a variable displacement type swash plate compressor in which an inclined surface is provided on a part of the entire outer peripheral edge of the swash plate.
[0014] 駆動軸に対して傾斜する斜板における外周縁部の突出する凸角部に傾斜面を設 けることで、ピストンの耐久性低下及び大型化を抑制しつつ斜板を大径化することが できる。従って、シユーを介して斜板に作用する大きな圧縮反力を好適に受承するこ とができる。これは斜板及びシユーの耐久性向上につながる。  [0014] By providing an inclined surface at the projecting corner of the outer peripheral edge of the swash plate that is inclined with respect to the drive shaft, the diameter of the swash plate can be increased while suppressing the decrease in the durability and the size of the piston. be able to. Therefore, a large compression reaction force acting on the swash plate via the shoe can be suitably received. This leads to improved durability of the swash plate and the shoe.
[0015] 好適な例では、前記斜板の外周縁部において、上死点位置にある前記ピストンに 対応する部分には、前記ピストンと反対側の凸角部に傾斜面が設けられている。つま り、ピストンを上死点位置に配置する斜板の周方向の範囲に対応する斜板の外周縁 部の部分において、ピストンと反対側の凸角部に傾斜面が設けられている。 [0015] In a preferred example, a slope corresponding to the piston located at the top dead center position is provided at an outer peripheral edge of the swash plate at a convex corner opposite to the piston. Toes In other words, an inclined surface is provided at a convex corner on the side opposite to the piston in a portion of an outer peripheral edge of the swash plate corresponding to a circumferential range of the swash plate in which the piston is disposed at the top dead center position.
[0016] 駆動軸に対して傾斜する斜板は、上死点位置にあるピストンに対応する外周縁部 において、ピストンと反対側の凸角部が、駆動軸の径方向へ向かって大きく突出する こととなる。従って、上死点位置付近にあるピストンのシユーを介して斜板に作用する 大きな圧縮反力を好適に受承することができる。これは斜板及びシユーの耐久性向 上につながる。  [0016] In the swash plate inclined with respect to the drive shaft, at the outer peripheral edge portion corresponding to the piston at the top dead center position, a convex corner opposite to the piston protrudes largely in the radial direction of the drive shaft. It will be. Therefore, a large compression reaction force acting on the swash plate can be suitably received through the piston shaft near the top dead center position. This leads to improved durability of the swash plate and the shoe.
[0017] 好適な例では、前記斜板の外周縁部において、下死点位置にある前記ピストンに 対応する部分には、前記ピストン側の凸角部に傾斜面が設けられている。つまり、ピ ストンを下死点位置に配置する斜板の周方向の範囲に対応する斜板の外周縁部の 部分において、ピストン側の凸角部に傾斜面が設けられている。  [0017] In a preferred example, a slope corresponding to the piston at the bottom dead center position is provided at a convex corner on the piston side at an outer peripheral edge of the swash plate. That is, at the outer peripheral edge of the swash plate corresponding to the circumferential range of the swash plate in which the piston is disposed at the bottom dead center position, a slope is provided at the convex corner on the piston side.
[0018] 斜板は、下死点位置にあるピストンに対応する外周縁部において、ピストン側の凸 角部が駆動軸の径方向へ向かって大きく突出することとなる。従って、斜板における 突出部分を面取りすることで、ピストンの耐久性低下及び大型化を抑制しつつ第 1斜 板を大径化することができる。  [0018] In the swash plate, at the outer peripheral portion corresponding to the piston at the bottom dead center position, the convex portion on the piston side protrudes largely in the radial direction of the drive shaft. Therefore, by chamfering the protruding portion of the swash plate, it is possible to increase the diameter of the first swash plate while suppressing the decrease in the durability and the size of the piston.
[0019] 好適な例では、前記斜板は、駆動軸に一体回転可能に連結された第 1斜板と、該 第 1斜板に支持された第 2斜板とからなり、前記第 1及び第 2斜板には、前記第 1斜板 に当接する第 1シユー、及び前記第 2斜板に当接する圧縮反力を受ける側の第 2シュ 一を介してピストンが係留されており、前記第 1斜板の外周縁において、上死点位置 にある前記ピストンに対応する部分には、前記第 2斜板と反対側の凸角部に傾斜面 が設けられている。つまり、ピストンを上死点位置に配置する第 1斜板の周方向の範 囲に対応する第 1斜板の外周縁部の部分において、第 1斜板と反対側の凸角部に傾 斜面が設けられている。  [0019] In a preferred example, the swash plate includes a first swash plate integrally rotatably connected to a drive shaft, and a second swash plate supported by the first swash plate. A piston is moored to the second swash plate via a first shoe in contact with the first swash plate and a second shoe on a side receiving a compression reaction force in contact with the second swash plate. On the outer peripheral edge of the first swash plate, a portion corresponding to the piston at the top dead center position is provided with an inclined surface at a convex corner opposite to the second swash plate. In other words, at the outer peripheral edge portion of the first swash plate corresponding to the circumferential range of the first swash plate in which the piston is disposed at the top dead center position, the slope is inclined to a convex corner opposite to the first swash plate. Is provided.
[0020] 駆動軸に対して傾斜する第 1斜板は、上死点位置にあるピストンに対応する外周縁 部において、第 2斜板と反対側の凸角部が、駆動軸の径方向へ向かって大きく突出 することとなる。従って、第 1斜板における突出部分を面取りすることで、ピストンの耐 久性低下及び大型化を抑制しつつ第 1斜板を大径化することができる。従って、第 1 斜板による第 2斜板の支持が好適となり、上死点位置付近にあるピストンの第 2シユー を介して第 2斜板に作用する大きな圧縮反力を、第 2斜板を介して第 1斜板によって 好適に受承することができる。これは第 2斜板及び第 2シユーの耐久性向上につなが る。 [0020] The first swash plate inclined with respect to the drive shaft has a convex corner on the outer peripheral edge corresponding to the piston at the top dead center position, which is opposite to the second swash plate, in the radial direction of the drive shaft. It will protrude greatly toward it. Therefore, by chamfering the protruding portion of the first swash plate, it is possible to increase the diameter of the first swash plate while suppressing the durability and the size of the piston from being reduced. Therefore, the support of the second swash plate by the first swash plate is preferable, and the second shot of the piston near the top dead center position is suitable. A large compression reaction force acting on the second swash plate via the first swash plate can be suitably received by the first swash plate via the second swash plate. This leads to improved durability of the second swash plate and the second shoe.
[0021] 好適な例では、前記第 1斜板の外周縁部において、下死点位置にある前記ピストン に対応する部分には、前記第 2斜板側の凸角部に傾斜面が設けられている。つまり、 ピストンを下死点位置に配置する第 1斜板の周方向の範囲に対応する第 1斜板の外 周縁部の部分において、第 2斜板側の凸角部に傾斜面が設けられている。  [0021] In a preferred example, a slope corresponding to the piston at the bottom dead center position is provided on the outer peripheral edge portion of the first swash plate at a convex corner on the second swash plate side. ing. That is, in the outer peripheral portion of the first swash plate corresponding to the circumferential range of the first swash plate in which the piston is arranged at the bottom dead center position, a slope is provided at the convex corner on the second swash plate side. ing.
[0022] 斜板は、下死点位置にあるピストンに対応する外周縁部において、ピストン側の凸 角部が駆動軸の径方向へ向かって大きく突出することとなる。従って、斜板における 突出部分を面取りすることで、ピストンの耐久性低下及び大型化を抑制しつつ第 1斜 板を大径化することができる。  [0022] In the swash plate, at the outer peripheral edge corresponding to the piston at the bottom dead center position, the convex portion on the piston side protrudes largely in the radial direction of the drive shaft. Therefore, by chamfering the protruding portion of the swash plate, it is possible to increase the diameter of the first swash plate while suppressing the decrease in the durability and the size of the piston.
[0023] 好適な例では、前記ガスは冷凍回路に用いられる冷媒であって、該冷媒としては二 酸化炭素が用いられている。  [0023] In a preferred example, the gas is a refrigerant used in a refrigeration circuit, and carbon dioxide is used as the refrigerant.
[0024] 二酸化炭素冷媒を用いた場合には、フロン冷媒 (例えば R134a)を用いた場合より も冷凍回路内の圧力が非常に高くなる。従って、容量可変型斜板式圧縮機において もピストンに作用する圧縮反力が大きくなり、よって斜板とシユーとの圧接力が強くな る。このような態様において請求項 1一 5のいずれ力 1項に記載の発明を具体化する ことは、ピストンの耐久性低下及び大型化を抑制しっ斜板及びシユーの耐久性を向 上させる上で特に有効となる。  [0024] When a carbon dioxide refrigerant is used, the pressure in the refrigeration circuit is significantly higher than when a chlorofluorocarbon refrigerant (for example, R134a) is used. Therefore, also in the variable displacement type swash plate type compressor, the compression reaction force acting on the piston increases, and the pressing force between the swash plate and the shoe increases. In such an embodiment, embodying the invention described in claim 1 in any one of claims 1 to 5 is to improve the durability of the swash plate and the shoe by suppressing the decrease in the durability and the size of the piston. Is particularly effective.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明を具体化した第 1実施形態の容量可変型斜板式圧縮機の縦断面図。  FIG. 1 is a longitudinal sectional view of a variable displacement swash plate type compressor according to a first embodiment of the present invention.
[図 2]図 1の要部拡大図であり第 1及び第 2斜板を断面としない図。  FIG. 2 is an enlarged view of a main part of FIG. 1, without a cross section of first and second swash plates.
[図 3]本発明の第 2実施形態の容量可変型斜板式圧縮機の縦断面図。  FIG. 3 is a longitudinal sectional view of a variable displacement swash plate type compressor according to a second embodiment of the present invention.
[図 4]図 3の要部拡大図であり、第 1及び第 2斜板を断面とせず (一部破断)、一部の 第 1及び第 2シユーを断面とした図。  FIG. 4 is an enlarged view of a main part of FIG. 3, in which the first and second swash plates are not cross-sectioned (partially broken), and some of the first and second shows are cross-sections.
[図 5]本発明の第 3実施形態の斜板構造を示す要部拡大図。  FIG. 5 is an enlarged view of a main part showing a swash plate structure according to a third embodiment of the present invention.
[図 6]本発明の第 4実施形態の容量可変型斜板式圧縮機の縦断面図。  FIG. 6 is a longitudinal sectional view of a variable displacement swash plate type compressor according to a fourth embodiment of the present invention.
[図 7]図 6の A— A線断面図。 [図 8]図 6の要部拡大断面図。 FIG. 7 is a sectional view taken along line A—A in FIG. 6. FIG. 8 is an enlarged sectional view of a main part of FIG. 6.
[図 9]従来の容量可変型斜板式圧縮機の縦断面図。  FIG. 9 is a longitudinal sectional view of a conventional variable displacement swash plate type compressor.
[図 10]従来の技術を示す断面部分図。  FIG. 10 is a partial sectional view showing a conventional technique.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明を、車両用空調装置の冷凍回路を構成する容量可変型の斜板式圧 縮機に具体化した第 1一第 4の実施形態について説明する。  Hereinafter, first to fourth embodiments in which the present invention is embodied in a variable capacity swash plate type compressor constituting a refrigeration circuit of a vehicle air conditioner will be described.
[0027] 第 1実施形態について、図 1及び図 2を参照して説明する。図 1は、容量可変型の 斜板式圧縮機 (以下単に圧縮機 10とする)の縦断面図を示す。図 1において左方を 圧縮機の前方とし、右方を圧縮機の後方とする。  The first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a longitudinal sectional view of a variable capacity swash plate compressor (hereinafter simply referred to as a compressor 10). In FIG. 1, the left side is the front of the compressor, and the right side is the rear of the compressor.
[0028] 図 1に示すように、圧縮機 10のハウジングは、シリンダブロック 11と、シリンダブロッ ク 11の前端に接合固定されたフロントノ、ウジング 12と、シリンダブロック 11の後端に 弁'ポート形成体 13を介して接合固定されたリャハウジング 14とを備えている。  As shown in FIG. 1, the housing of the compressor 10 includes a cylinder block 11, a front bar and a housing 12 joined and fixed to the front end of the cylinder block 11, and a valve port at the rear end of the cylinder block 11. And a rear housing 14 joined and fixed via a formed body 13.
[0029] 圧縮機 10のハウジング内において、シリンダブロック 11とフロントハウジング 12との 間には、クランク室 15が区画形成されている。シリンダブロック 11とフロントハウジング 12との間には、クランク室 15を通過するようにして、駆動軸 16が回転可能に配設さ れている。駆動軸 16には、車両の走行駆動源であるエンジン E力 クラッチレスタイプ (常時伝達型)の動力伝達機構 PTを介して作動連結されている。従って、エンジン E の稼動時においては、該エンジン Eから動力の供給を受けて駆動軸 16が常時回転さ れる。  [0029] In the housing of the compressor 10, a crank chamber 15 is defined between the cylinder block 11 and the front housing 12. A drive shaft 16 is rotatably disposed between the cylinder block 11 and the front housing 12 so as to pass through the crank chamber 15. The drive shaft 16 is operatively connected via a power transmission mechanism PT of an engine E force clutchless type (constant transmission type) which is a traveling drive source of the vehicle. Therefore, during the operation of the engine E, the drive shaft 16 is constantly rotated by receiving the power supply from the engine E.
[0030] クランク室 15内において駆動軸 16には、ロータ 17がー体回転可能に固定されてい る。クランク室 15内には、実質的に円盤状をなす第 1斜板 18が収容されている。第 1 斜板 18の中央部には、揷通孔 18aが貫通形成されている。第 1斜板 18の揷通孔 18 aには駆動軸 16が揷通されている。第 1斜板 18は、揷通孔 18aを介して駆動軸 16に 、スライド移動可能でかつ傾動可能に支持されている。ロータ 17と第 1斜板 18との間 にはヒンジ機構 19が介在されている。  [0030] A rotor 17 is fixed to the drive shaft 16 in the crank chamber 15 so as to be able to rotate. In the crank chamber 15, a first swash plate 18 having a substantially disk shape is accommodated. At the center of the first swash plate 18, a through hole 18a is formed. The drive shaft 16 is passed through the through hole 18a of the first swash plate 18. The first swash plate 18 is slidably and tiltably supported on the drive shaft 16 via a through hole 18a. A hinge mechanism 19 is interposed between the rotor 17 and the first swash plate 18.
[0031] ヒンジ機構 19は、ロータ 17の後面に突設された二つ(紙面手前側の一方は図示さ れていなレ、)のロータ側突起 41と、第 1斜板 18の前面においてロータ 17側に向かつ て突設された斜板側突起 42とからなっている。斜板側突起 42は、先端側が二つの口 ータ側突起 41間に入り込んでいる。従って、ロータ 17の回転力は、ロータ側突起 41 及び斜板側突起 42を介して第 1斜板 18に伝達される。 [0031] The hinge mechanism 19 includes two rotor-side projections 41 (one of which is not shown on the front side of the drawing) projecting from the rear surface of the rotor 17, and a rotor projection 41 on the front surface of the first swash plate 18. And a swash plate side projection 42 protruding toward the 17th side. The swash plate side projection 42 has two It enters between the protrusions 41 on the data side. Therefore, the rotational force of the rotor 17 is transmitted to the first swash plate 18 via the rotor-side protrusion 41 and the swash-plate-side protrusion 42.
[0032] 第 1斜板 18の後面中央部には、実質的に円筒状をなす支持部 39が、駆動軸 16を 取り囲むようにして突設されている。第 1斜板 18において支持部 39の外側には、円 盤状をなす第 2斜板 51が、その中央部に貫通形成された支持孔 51aに支持部 39が 揷通された状態で配置されている。第 2斜板 51としては、第 1斜板 18とほぼ同じ半径 のものが用いられている。  [0032] At the center of the rear surface of the first swash plate 18, a substantially cylindrical support portion 39 is provided so as to surround the drive shaft 16. Outside the support portion 39 of the first swash plate 18, a disc-shaped second swash plate 51 is disposed in a state where the support portion 39 is inserted through a support hole 51a formed through the center thereof. ing. As the second swash plate 51, one having a radius substantially equal to that of the first swash plate 18 is used.
[0033] 支持部 39の外周面と第 2斜板 51の支持孔 51aの内周面との間には、ラジアルベア リング 52が介在されている。第 1斜板 18の後面と第 2斜板 51の前面との間には、スラ ストベアリング 53が介在されている。スラストベアリング 53は、転動素子としてのコロ 5 3aを複数有しており、複数のコロ 53aは保持器 53bによって回転可能に保持されて いる。  [0033] A radial bearing 52 is interposed between the outer peripheral surface of the support portion 39 and the inner peripheral surface of the support hole 51a of the second swash plate 51. A thrust bearing 53 is interposed between the rear surface of the first swash plate 18 and the front surface of the second swash plate 51. The thrust bearing 53 has a plurality of rollers 53a as rolling elements, and the plurality of rollers 53a are rotatably held by a retainer 53b.
[0034] 第 2斜板 51は、ラジアルベアリング 52及びスラストベアリング 53を介することで、第 1斜板 18と相対回転可能でかつ一体的に傾動可能となるように、第 1斜板 18 (支持 部 39)によって支持されている。  [0034] The second swash plate 51 is supported via the radial bearing 52 and the thrust bearing 53, so that the second swash plate 18 can be rotated relative to the first swash plate 18 and tilted integrally therewith. Supported by Part 39).
[0035] ロータ側突起 41の基部にはカム部 43が形成されている。カム部 43において第 1斜 板 18を臨む後端面にはカム面 43aが形成されている。斜板側突起 42の先端は、力 ム部 43のカム面 43aに対して摺動可能に当接されている。従って、ヒンジ機構 19は、 斜板側突起 42の先端がカム部 43のカム面 43a上を駆動軸 16に対する接離方向へ 移動されることで、第 1斜板 18及び第 2斜板 51の傾動を案内する。  A cam portion 43 is formed at the base of the rotor-side projection 41. A cam surface 43a is formed on a rear end surface of the cam portion 43 facing the first swash plate 18. The tip of the swash plate side projection 42 is slidably abutted against the cam surface 43a of the force portion 43. Accordingly, the hinge mechanism 19 moves the first swash plate 18 and the second swash plate 51 by moving the tip of the swash plate-side protrusion 42 on the cam surface 43a of the cam portion 43 in the direction of contact with and separation from the drive shaft 16. Guide the tilt.
[0036] シリンダブロック 11におレ、て駆動軸 16の軸線 L周りには、複数のシリンダボア 22が 等角度間隔で前後方向(紙面左右方向)に貫通形成されている。片頭型のピストン 2 3は、各シリンダボア 22内に前後方向へ移動可能に収容されている。シリンダボア 22 の前後開口は、弁 ·ポート形成体 13の前端面及びピストン 23によって閉塞されており 、このシリンダボア 22内にはピストン 23の前後方向への移動に応じて容積変化する 圧縮室 24が区画されている。  [0036] A plurality of cylinder bores 22 are formed in the cylinder block 11 around the axis L of the drive shaft 16 at equal angular intervals in the front-rear direction (lateral direction on the paper). The single-headed piston 23 is accommodated in each cylinder bore 22 so as to be movable in the front-rear direction. The front-rear opening of the cylinder bore 22 is closed by the front end face of the valve / port forming body 13 and the piston 23, and a compression chamber 24 whose volume changes in accordance with the movement of the piston 23 in the front-rear direction is defined in the cylinder bore 22. Have been.
[0037] ピストン 23は、シリンダボア 22に揷入される円柱状の頭部 37と、シリンダボア 22の 外方でクランク室 15に位置する首部 38とが前後方向に連接されてなる。頭部 37及 び首部 38は、アルミニウム系の金属材料(純アルミニウム又はアルミニウム合金のこと を指す)よりなつている。首部 38の内側には、一対のシュ一座 38aが凹設されている 。首部 38内には、半球状をなす第 1シユー 25A及び第 2シユー 25Bが内装されてい る。第 1シユー 25Aと第 2シユー 25Bとは鉄系の金属材料よりなっている。なお、本明 細書において「半球」とは、球体を二等分したもののみを意味するものではなぐ球体 の球面の一部を備えたもののことを指す。 [0037] The piston 23 has a cylindrical head 37 inserted into the cylinder bore 22 and a neck 38 located outside the cylinder bore 22 and located in the crank chamber 15 connected in the front-rear direction. Head 37 The neck 38 is made of an aluminum-based metallic material (pure aluminum or an aluminum alloy). Inside the neck portion 38, a pair of shoe seats 38a are recessed. Inside the neck portion 38, a first show 25A and a second show 25B that form a hemisphere are provided. The first shoe 25A and the second shoe 25B are made of an iron-based metal material. In this specification, the term “hemisphere” refers to a sphere having a part of the spherical surface, which does not mean only a bisected sphere.
[0038] 第 1シユー 25A及び第 2シユー 25Bは、それぞれ半球面 25aを以て対応するシユー 座 38aによって球面受けされている。第 1シユー 25Aの半球面 25aと第 2シユー 25B の半球面 25aとは、点 Pを中心とした同一球面上に存在する。各ピストン 23は、第 1シ ユー 25A及び第 2シユー 25Bを介して第 1斜板 18及び第 2斜板 51の外周部に係留 されている。圧縮室 24と反対側に位置する第 1シユー 25Aは、半球面 25aと反対側 の平面形状の摺接面 25bを以て、第 1斜板 18の前面に当接されている。圧縮室 24 側つまり圧縮反力を受ける側の第 2シユー 25Bは、半球面 25aと反対側の摺接面 25 bを以て、第 2斜板 51の後面に当接されている。  [0038] The first shoe 25A and the second shoe 25B are each spherically received by the corresponding shoe seat 38a with a hemispherical surface 25a. The hemispherical surface 25a of the first show 25A and the hemispherical surface 25a of the second show 25B exist on the same spherical surface with the point P as the center. Each piston 23 is moored to the outer periphery of the first swash plate 18 and the second swash plate 51 via the first shower 25A and the second shower 25B. The first shoe 25A located on the opposite side to the compression chamber 24 is in contact with the front surface of the first swash plate 18 with a planar sliding contact surface 25b on the opposite side to the hemispherical surface 25a. The second shoe 25B on the compression chamber 24 side, that is, on the side receiving the compression reaction force, is in contact with the rear surface of the second swash plate 51 with a sliding contact surface 25b opposite to the hemispheric surface 25a.
[0039] 駆動軸 16の回転によって第 1斜板 18が回転すると、ピストン 23が前後方向に往復 直線運動される。ここで、第 1斜板 18が回転すると、ラジアルベアリング 52及びスラス トベアリング 53の作用によって、第 1斜板 18と第 2斜板 51との間に滑りが生じ、第 2斜 板 51の回転速度は第 1斜板 18の回転速度よりも低下される。従って、第 2斜板 51と 第 2シユー 25Bとの相対回転速度が、第 2シユー 25Bと第 1斜板 18との相対回転速 度よりも低下される。よって、第 2斜板 51と第 2シユー 25Bとの相対回転に起因する、 軸線 S (半球面 25aの曲率中心点 Pを通りかつ摺接面 25bに垂直な線)を中心とした 第 2シユー 25Bの回転運動を抑制することができ、該回転運動に起因した機械損失 や不具合の発生を抑制することができる。  When the first swash plate 18 rotates by the rotation of the drive shaft 16, the piston 23 reciprocates linearly in the front-rear direction. Here, when the first swash plate 18 rotates, a slip occurs between the first swash plate 18 and the second swash plate 51 due to the action of the radial bearing 52 and the thrust bearing 53, and the rotation of the second swash plate 51 The speed is lower than the rotation speed of the first swash plate 18. Therefore, the relative rotation speed between the second swash plate 51 and the second swash plate 18 is lower than the relative rotation speed between the second swash plate 25B and the first swash plate 18. Therefore, the second shot centered on the axis S (the line passing through the center point P of curvature of the hemispherical surface 25a and perpendicular to the sliding surface 25b) caused by the relative rotation between the second swash plate 51 and the second shot 25B. The rotation movement of the 25B can be suppressed, and the occurrence of mechanical loss and malfunction due to the rotation movement can be suppressed.
[0040] 圧縮機 10のハウジング内において、弁.ポート形成体 13とリャハウジング 14との間 には、吸入室 26及び吐出室 27がそれぞれ区画形成されている。弁'ポート形成体 1 3には、圧縮室 24と吸入室 26との間に位置するようにして、吸入ポート 28及び吸入 弁 29がそれぞれ形成されている。弁 ·ポート形成体 13には、圧縮室 24と吐出室 27と の間に位置するようにして、吐出ポート 30及び吐出弁 31がそれぞれ形成されている [0041] 前記冷凍回路の冷媒としては二酸化炭素が用いられている。図示しない外部回路 力 吸入室 26に導入された冷媒ガスは、各ピストン 23の上死点位置から下死点位置 側への移動により、吸入ポート 28及び吸入弁 29を介して圧縮室 24に吸入される。圧 縮室 24に吸入された冷媒ガスは、ピストン 23の下死点位置から上死点位置側への 移動により所定の圧力にまで圧縮され、吐出ポート 30及び吐出弁 31を介して吐出 室 27に吐出される。吐出室 27の冷媒ガスは外部回路へと導出される。 [0040] In the housing of the compressor 10, a suction chamber 26 and a discharge chamber 27 are separately formed between the valve / port forming body 13 and the rear housing 14. The valve port forming body 13 is formed with a suction port 28 and a suction valve 29 so as to be located between the compression chamber 24 and the suction chamber 26. The discharge port 30 and the discharge valve 31 are respectively formed in the valve port forming body 13 so as to be located between the compression chamber 24 and the discharge chamber 27. [0041] Carbon dioxide is used as a refrigerant in the refrigeration circuit. External circuit (not shown) Force Refrigerant gas introduced into the suction chamber 26 moves from the top dead center position to the bottom dead center position side of each piston 23, and is sucked into the compression chamber 24 via the suction port 28 and the suction valve 29. Is done. The refrigerant gas sucked into the compression chamber 24 is compressed to a predetermined pressure by moving from the bottom dead center position of the piston 23 to the top dead center position side, and is discharged through the discharge port 30 and the discharge valve 31 to the discharge chamber 27. Is discharged. The refrigerant gas in the discharge chamber 27 is led to an external circuit.
[0042] 圧縮機 10のハウジング内には、抽気通路 32及び給気通路 33並びに制御弁 34が 設けられている。抽気通路 32は、クランク室 15と吸入室 26とを接続する。給気通路 3 3は、吐出室 27とクランク室 15とを接続する。給気通路 33の途中には、電磁弁よりな る周知の制御弁 34が配設されてレ、る。  [0042] In the housing of the compressor 10, a bleed passage 32, an air supply passage 33, and a control valve 34 are provided. The bleed passage 32 connects the crank chamber 15 and the suction chamber 26. The air supply passage 33 connects the discharge chamber 27 and the crank chamber 15. In the middle of the air supply passage 33, a well-known control valve 34 composed of a solenoid valve is provided.
[0043] 制御弁 34の開度を、外部からの給電制御によって調節することで、給気通路 33を 介したクランク室 15への高圧な吐出ガスの導入量と、抽気通路 32を介したクランク室 15からのガス導出量とのバランスが制御され、クランク室 15の内圧が決定される。ク ランク室 15の内圧の変更に応じてクランク室 15の内圧と圧縮室 24の内圧との差が変 更され、第 1斜板 18及び第 2斜板 51の傾斜角度が変更される結果、ピストン 23のスト ローク即ち圧縮機の吐出容量が調節される。  By adjusting the opening of the control valve 34 by external power supply control, the amount of high-pressure discharge gas introduced into the crank chamber 15 through the air supply passage 33 and the crank through the bleed passage 32 The balance with the amount of gas led out from the chamber 15 is controlled, and the internal pressure of the crank chamber 15 is determined. The difference between the internal pressure of the crank chamber 15 and the internal pressure of the compression chamber 24 is changed in accordance with the change in the internal pressure of the crank chamber 15, and as a result, the inclination angles of the first swash plate 18 and the second swash plate 51 are changed. The stroke of the piston 23 or the displacement of the compressor is adjusted.
[0044] 例えば、制御弁 34の弁開度が減少すると、クランク室 15の内圧が低下される。従つ て、第 1斜板 18及び第 2斜板 51の傾斜角度が増大してピストン 23のストロークが増 大し、圧縮機 10の吐出容量が増大される。逆に、制御弁 34の弁開度が増大すると、 クランク室 15の内圧が上昇される。従って、第 1斜板 18及び第 2斜板 51の傾斜角度 が減少してピストン 23のストロークが減少し、圧縮機 10の吐出容量が減少される。  For example, when the valve opening of the control valve 34 decreases, the internal pressure of the crank chamber 15 decreases. Therefore, the inclination angles of the first swash plate 18 and the second swash plate 51 increase, the stroke of the piston 23 increases, and the discharge capacity of the compressor 10 increases. Conversely, when the valve opening of the control valve 34 increases, the internal pressure of the crank chamber 15 increases. Therefore, the inclination angle of the first swash plate 18 and the second swash plate 51 decreases, the stroke of the piston 23 decreases, and the displacement of the compressor 10 decreases.
[0045] さて、図 1及び図 2に示すように、第 1斜板 18において第 2斜板 51を支持する支持 部 39は、第 1斜板 18の中心軸線 Mlに対して、上死点位置にあるピストン 23A側に 偏心して設けられている。別の言い方をすれば、支持部 39は、中心軸線 Mlから第 1 斜板 18の径方向を見たとき、ピストン 23を上死点位置にもたらす部位側(ヒンジ機構 19側)に偏心して設けられている。従って、第 2斜板 51及びラジアルベアリング 52並 びにスラストベアリング 53 (保持器 53b)は、第 1斜板 18に対して、上死点位置にある ピストン 23A側に偏心されている。よって、第 2斜板 51及びラジアルベアリング 52並 びにスラストベアリング 53の中心軸線 M2は、第 1斜板 18の中心軸線 Mlに対して、 上死点位置にあるピストン 23Aが備える第 1シユー 25A及び第 2シユー 25Bの中心 点 P側に若干量 (例えば、 0. 05 5mm。図面では誇張して描いてある。)だけ平行 にずれている。 Now, as shown in FIGS. 1 and 2, the support portion 39 that supports the second swash plate 51 in the first swash plate 18 is located at the top dead center with respect to the center axis Ml of the first swash plate 18. It is eccentrically provided on the piston 23A side at the position. Stated another way, the support portion 39 is provided eccentrically on the side (the hinge mechanism 19 side) that brings the piston 23 to the top dead center position when the radial direction of the first swash plate 18 is viewed from the center axis Ml. Has been. Therefore, the second swash plate 51, the radial bearing 52, and the thrust bearing 53 (retainer 53b) are located at the top dead center with respect to the first swash plate 18. It is eccentric to the piston 23A side. Therefore, the center axis M2 of the second swash plate 51, the radial bearing 52, and the thrust bearing 53 is, with respect to the center axis Ml of the first swash plate 18, the first shoe 25A of the piston 23A at the top dead center position and It is slightly parallel (for example, 0.055 mm; exaggerated in the drawing) to the center point P side of the second show 25B.
[0046] よって、第 2斜板 51の外周縁部において、上死点位置にあるピストン 23A付近に対 応する部分は、第 1斜板 18の外周縁部から第 1斜板 18の径方向に若干はみ出して いる。従って、例えば、第 2斜板 51が第 1斜板 18に対して偏心していない場合と比較 して、上死点位置付近にあるピストン 23の第 2シユー 25Bと、第 2斜板 51との接触面 積は広くなつている。  Therefore, in the outer peripheral edge of the second swash plate 51, the portion corresponding to the vicinity of the piston 23 A at the top dead center position is from the outer peripheral edge of the first swash plate 18 in the radial direction of the first swash plate 18. Slightly protruding. Therefore, for example, compared to the case where the second swash plate 51 is not eccentric with respect to the first swash plate 18, the second show 25B of the piston 23 near the top dead center position and the second swash plate 51 The contact area is increasing.
[0047] なお、第 2斜板 51の外周縁部において、下死点位置にあるピストン 23B付近に対 応する部分は、第 1斜板 18の外周縁部よりも第 1斜板 18の径方向内側に位置するこ ととなる。つまり、ヒンジ機構 19付近に対応する第 2斜板 51の外周縁部の部分は、第 1斜板 18の外周縁部よりも第 1斜板 18の径方向の内側に位置することとなる。従って 、例えば、第 2斜板 51が第 1斜板 18に対して偏心していない場合と比較して、下死 点位置付近にあるピストン 23の第 2シユー 25Bと、第 2斜板 51との接触面積は狭くな る。しかし、下死点位置付近にあるピストン 23の第 2シユー 25Bに作用する圧縮反力 は、上死点位置付近にあるピストン 23の第 2シユー 25Bに作用する圧縮反力よりも遙 力に小さレ、。このため、下死点位置付近にあるピストン 23の第 2シユー 25Bと、第 2斜 板 51との接触面積が狭くなつても、第 2斜板 51及び第 2シユー 25Bの耐久性に関し て何ら問題が生じることはなレ、。  In the outer peripheral edge of the second swash plate 51, the portion corresponding to the vicinity of the piston 23 B at the bottom dead center position has a larger diameter than the outer peripheral edge of the first swash plate 18. It will be located inside the direction. That is, the portion of the outer peripheral edge of the second swash plate 51 corresponding to the vicinity of the hinge mechanism 19 is located radially inward of the first swash plate 18 from the outer peripheral edge of the first swash plate 18. Therefore, for example, as compared with the case where the second swash plate 51 is not eccentric with respect to the first swash plate 18, the second shoe 25B of the piston 23 near the bottom dead center position and the second swash plate 51 The contact area becomes smaller. However, the compression reaction force acting on the second shoe 25B of the piston 23 near the bottom dead center position is much smaller than the compression reaction force acting on the second shoe 25B of the piston 23 near the top dead center position. Les ,. For this reason, even if the contact area between the second shoe 25B of the piston 23 near the bottom dead center position and the second swash plate 51 becomes smaller, there is no limitation on the durability of the second swash plate 51 and the second shoe 25B. No problem.
[0048] 第 1斜板 18の外周縁部において、上死点位置にあるピストン 23Aに対応する部分 及び該部分に対して周方向前後に位置する部分には、第 2斜板 51と反対側の凸角 部 18bに傾斜面(面取り)が設けられている。つまり、ヒンジ機構 19付近に対応する第 2斜板 51の外周縁部の部分において、第 2斜板 51と反対側の凸角部 18bには傾斜 面(面取り)が設けられている。つまり、ピストン 23を上死点位置に配置する第 1斜板 1 8の周方向の範囲に対応する第 1斜板 18の外周縁部の部分において、ピストン 23A と反対側の凸角部 18bに傾斜面が設けられている。凸角部 18bの傾斜面(面取り)は 、上死点位置にあるピストン 23Aに対応する部分が最も大きぐ該部分から周方向へ 離れるにつれて徐々に小さくなるようにして設けられている。凸角部 18bの傾斜面(面 取り)は、上死点位置にあるピストン 23Aに対応する部分を中間とした、四半周領域 一半周領域の範囲内で設けられている。 [0048] In the outer peripheral edge of the first swash plate 18, a portion corresponding to the piston 23A at the top dead center position and a portion located in front and rear of the portion in the circumferential direction are opposite to the second swash plate 51. An inclined surface (chamfered) is provided on the convex corner portion 18b. That is, in the outer peripheral edge portion of the second swash plate 51 corresponding to the vicinity of the hinge mechanism 19, a slope (chamfer) is provided at the convex corner 18b opposite to the second swash plate 51. That is, at the outer peripheral edge portion of the first swash plate 18 corresponding to the circumferential range of the first swash plate 18 in which the piston 23 is arranged at the top dead center position, the convex angle portion 18b opposite to the piston 23A is formed. An inclined surface is provided. The slope (chamfer) of the convex corner 18b is The portion corresponding to the piston 23A at the top dead center position is provided so as to become gradually smaller as it becomes circumferentially farther from the largest portion. The inclined surface (chamfer) of the convex corner portion 18b is provided within a quarter-peripheral region with a portion corresponding to the piston 23A at the top dead center position being in the middle.
[0049] 第 1斜板 18の外周縁部において、下死点位置にあるピストン 23Bに対応する部分 及び該部分に対して周方向前後に位置する部分には、第 2斜板 51側の凸角部 18c に傾斜面(面取り)が設けられている。つまり、ピストン 23Bを下死点位置に配置する 第 1斜板 18の周方向の範囲に対応する第 1斜板 18の外周縁部の部分において、ピ ストン 23Bと反対側の凸角部 18cに傾斜面が設けられている。  [0049] In the outer peripheral edge of the first swash plate 18, a portion corresponding to the piston 23B at the bottom dead center position and a portion located in front and rear of the portion in the circumferential direction are provided with a protrusion on the second swash plate 51 side. An inclined surface (chamfer) is provided at the corner 18c. In other words, in the portion of the outer peripheral edge of the first swash plate 18 corresponding to the circumferential range of the first swash plate 18 in which the piston 23B is arranged at the bottom dead center position, the protrusion 23c on the opposite side to the piston 23B is formed. An inclined surface is provided.
該傾斜面(面取り)は、下死点位置にあるピストン 23Bに対応する部分が最も大きぐ 該部分から周方向へ離れるにつれて徐々に小さくなるようにして設けられている。凸 角部 18cの傾斜面(面取り)は、下死点位置にあるピストン 23Bに対応する部分を中 間とした、四半周領域一半周領域の範囲内で設けられている。なお、凸角部 18cの 傾斜面(面取り)は、第 1斜板 18の中心軸線 Ml周りでの重量バランスを考慮して、凸 角部 18bの傾斜面(面取り)とほぼ同じ大きさで設けられている。  The inclined surface (chamfer) is provided so that a portion corresponding to the piston 23B at the bottom dead center position is the largest, and gradually becomes smaller as the portion is circumferentially separated from the portion. The inclined surface (chamfered) of the convex corner portion 18c is provided within a quarter-peripheral region with a portion corresponding to the piston 23B at the bottom dead center position as a center. The inclined surface (chamfer) of the convex corner portion 18c is provided with substantially the same size as the inclined surface (chamfer) of the convex corner portion 18b in consideration of the weight balance around the center axis Ml of the first swash plate 18. Has been.
[0050] 上記構成の本実施形態においては次のような効果を奏する。  The present embodiment having the above configuration has the following effects.
(1-1)第 2斜板 51を、第 1斜板 18に対して上死点位置にあるピストン 23A側に偏 心させて配置することで、第 1斜板 18及び第 2斜板 51を大径化しなくとも、上死点位 置付近にあるピストン 23の第 2シユー 25Bと第 2斜板 51との接触面積を広くすること ができる。従って、第 2斜板 51と第 2シユー 25Bとの接触摺動性が良好となり、ピスト ン 23の耐久性低下及び大型化を抑制しつつ、第 2斜板 51及び第 2シユー 25Bの耐 久性を向上させることができる。  (1-1) By disposing the second swash plate 51 eccentrically on the piston 23A side located at the top dead center position with respect to the first swash plate 18, the first swash plate 18 and the second swash plate 51 are arranged. The contact area between the second shoe 25B of the piston 23 near the top dead center position and the second swash plate 51 can be increased without increasing the diameter of the piston. Therefore, the contact slidability between the second swash plate 51 and the second shoe 25B is improved, and the durability of the second swash plate 51 and the second shoe 25B is reduced while the durability and the size of the piston 23 are reduced. Performance can be improved.
[0051] (1_2)本実施形態のように、第 1斜板 18及び第 2斜板 51に加えてスラストべアリン グ 53を備える斜板構造では、該斜板構造における第 1シユー 25Aと第 2シユー 25Bと の間での厚みが厚くなつてしまう。このような条件的に厳しい構成において、第 2斜板 51を第 1斜板 18に対して偏心させて、上死点位置付近にあるピストン 23の第 2シュ 一 25Bと第 2斜板 51との接触面積を広くできることは、ピストン 23の耐久性低下及び 大型化を抑制しつつ第 2斜板 51及び第 2シユー 25Bの耐久性を向上させる上で特 に有効となる。 (1_2) As in the present embodiment, in the swash plate structure including the thrust bearing 53 in addition to the first swash plate 18 and the second swash plate 51, the first shower 25A and the The thickness between 2 SHU and 25B becomes thicker. In such a conditionally strict configuration, the second swash plate 51 is eccentric with respect to the first swash plate 18 so that the second shroud 25B and the second swash plate 51 of the piston 23 near the top dead center position are connected to each other. The contact area of the second swash plate 51 and the second shoe 25B can be improved while suppressing the decrease in the durability and the size of the piston 23. It is effective for
[0052] (1-3)第 1斜板 18の外周縁部において、上死点位置にあるピストン 23Aに対応す る部分には、第 2斜板 51と反対側の凸角部 18bに傾斜面が設けられている。また、 第 1斜板 18の外周縁部において、下死点位置にあるピストン 23Bに対応する部分に は、第 2斜板 51側の凸角部 18cに傾斜面が設けられている。駆動軸 16に対して傾斜 する第 1斜板 18は、上死点位置にあるピストン 23Aに対応する外周縁部において、 第 2斜板 51と反対側の凸角部 18bが、駆動軸 16の径方向へ向かって大きく突出す ることとなる。また、第 1斜板 18は、下死点位置にあるピストン 23Bに対応する外周縁 部において、第 2斜板 51側の凸角部 18cが駆動軸 16の径方向へ向かって大きく突 出することとなる。  (1-3) At the outer peripheral edge of the first swash plate 18, a portion corresponding to the piston 23 A at the top dead center position is inclined to a convex corner 18 b opposite to the second swash plate 51. A surface is provided. In the outer peripheral edge of the first swash plate 18, a portion corresponding to the piston 23B at the bottom dead center is provided with a slope at the convex corner 18c on the second swash plate 51 side. The first swash plate 18 inclined with respect to the drive shaft 16 has a convex corner 18b opposite to the second swash plate 51 at the outer peripheral edge corresponding to the piston 23A at the top dead center position. It will protrude greatly in the radial direction. Further, in the first swash plate 18, a convex corner portion 18c on the second swash plate 51 side protrudes largely in the radial direction of the drive shaft 16 at an outer peripheral edge corresponding to the piston 23B at the bottom dead center position. It will be.
[0053] 従って、これら第 1斜板 18における突出部分(凸角部 18b, 18cの全周の一部)に 傾斜面を設けることで、ピストン 23の耐久性低下及び大型化を抑制しつつ、第 1斜板 18を大径化することができる。従って、第 1斜板 18による第 2斜板 51の支持が好適と なり、上死点位置付近にあるピストン 23の第 2シユー 25Bを介して第 2斜板 51に作用 する大きな圧縮反力を、第 2斜板 51を介して第 1斜板 18によって好適に受承すること ができる。これは第 2斜板 51の耐久性向上につながる。  [0053] Accordingly, by providing an inclined surface at the protruding portion (a part of the entire circumference of the convex corners 18b, 18c) of the first swash plate 18, it is possible to suppress a decrease in the durability and an increase in size of the piston 23, The diameter of the first swash plate 18 can be increased. Therefore, the support of the second swash plate 51 by the first swash plate 18 becomes preferable, and a large compression reaction force acting on the second swash plate 51 via the second shoe 25B of the piston 23 near the top dead center position is obtained. It can be suitably received by the first swash plate 18 via the second swash plate 51. This leads to an improvement in the durability of the second swash plate 51.
[0054] (1-4)冷凍回路の冷媒としては二酸化炭素が用レ、られている。二酸化炭素冷媒を 用いた場合には、フロン冷媒 (例えば R134a)を用いた場合よりも冷凍回路内の圧力 が非常に高くなる。従って、圧縮機においてもピストン 23に作用する圧縮反力が大き くなり、よって第 2斜板 51と第 2シユー 25Bとの圧接力が強くなる。このような態様にお レ、て本発明を具体化することは、ピストン 23の耐久性低下及び大型化を抑制しつ第 2斜板 51及び第 2シユー 25Bの耐久性を向上させる上で特に有効となる。  (1-4) Carbon dioxide is used as the refrigerant in the refrigeration circuit. When a carbon dioxide refrigerant is used, the pressure in the refrigeration circuit is much higher than when a chlorofluorocarbon refrigerant (for example, R134a) is used. Therefore, also in the compressor, the compression reaction force acting on the piston 23 increases, and the pressing force between the second swash plate 51 and the second shoe 25B increases. In this embodiment, embodying the present invention is particularly effective in improving the durability of the second swash plate 51 and the second shoe 25B while suppressing the decrease in the durability and the size of the piston 23. Becomes effective.
[0055] 次に、本発明の第 2実施形態について、図 3及び図 4を参照して説明する。なお、 本実施形態では、第 1実施形態との相違点についてのみ説明し、同一又は相当部 材には同じ符号を付して詳細な説明を省略する。  Next, a second embodiment of the present invention will be described with reference to FIG. 3 and FIG. In the present embodiment, only differences from the first embodiment will be described, and the same or corresponding parts will be denoted by the same reference characters and detailed description thereof will be omitted.
[0056] 第 1シユー 25A及び第 2シユー 25Bにおいて、ヒンジ機構 19側つまり圧縮室 24と反 対側に位置する第 1シユー 25Aは、半球面 25aと反対側の摺接面 25bにおいて、第 1斜板 18の外周部 18-1の前面に対して摺動可能に当接されている。また、ヒンジ機 構 19と反対側つまり圧縮室 24側であって圧縮反力を受ける側の第 2シユー 25Bは、 半球面 25aと反対側の摺接面 25bにおいて、第 2斜板 51の外周部 51-2の後面に対 して摺動可能に当接されている。第 1シユー 25Aの摺接面 25bは、中央部が第 1斜 板 18側に突出された中高形状をなしている(図 4参照。図 4において中高形状は誇 張して描いてある)。第 2シユー 25Bの摺接面 25bは平面状をなしている。 [0056] In the first shoe 25A and the second shoe 25B, the first shoe 25A located on the hinge mechanism 19 side, that is, on the side opposite to the compression chamber 24, has a first sliding contact surface 25b opposite to the hemispheric surface 25a. The swash plate 18 is slidably abutted against the front surface of the outer peripheral portion 18-1. Also hinge machine The second shoe 25B on the side opposite to the structure 19, that is, on the compression chamber 24 side and receiving the compression reaction force, has an outer peripheral portion 51-2 of the second swash plate 51 on a sliding contact surface 25b opposite to the hemispheric surface 25a. It is slidably abutted against the rear surface of the. The sliding surface 25b of the first shoe 25A has a middle-high shape whose central portion protrudes toward the first swash plate 18 (see FIG. 4. The middle-high shape is exaggerated in FIG. 4). The sliding surface 25b of the second shoe 25B has a planar shape.
[0057] 第 1斜板 18の内周部を構成する支持部 39と第 2斜板 51の内周部 51—1との間、詳 しくは支持部 39の外周面と第 2斜板 51の支持孔 51aの内周面との間には、転がり軸 受よりなるラジアル軸受 52Aが介在されている。ラジアル軸受 52Aは、第 2斜板 51に おいて支持孔 51aの内周面に取り付けられた外側レース 52aと、第 1斜板 18におい て支持部 39の外周面に取り付けられた内側レース 52bと、外側レース 52aと内側レ ース 52bとの間に複数介在された、転動素子としてのコロ 52cとからなっている。  [0057] Between the support portion 39 constituting the inner peripheral portion of the first swash plate 18 and the inner peripheral portion 51-1 of the second swash plate 51, specifically, the outer peripheral surface of the support portion 39 and the second swash plate 51 A radial bearing 52A composed of a rolling bearing is interposed between the support hole 51a and the inner peripheral surface of the support hole 51a. The radial bearing 52A has an outer race 52a attached to the inner peripheral surface of the support hole 51a in the second swash plate 51, and an inner race 52b attached to the outer peripheral surface of the support portion 39 in the first swash plate 18. And a plurality of rollers 52c as rolling elements interposed between the outer race 52a and the inner race 52b.
[0058] 第 1シユー 25Aと第 2シユー 25Bとの間において第 1斜板 18の外周部 18—1と第 2 斜板 51の外周部 51-2との間には、転がり軸受よりなるスラストベアリング 53が介在さ れている。スラストベアリング 53は、転動素子としてのコロ 53aを複数有しており、複数 のコロ 53aは保持器 53bによって自転可能に保持されている。スラストべァリング 53 においてコロ 53aと第 1斜板 18との間には、円環状をなすレース 55が介在されている 。レース 55は、 SPC等の軟鋼よりなる基材に浸炭熱処理が施されてなる。コロ 53aに おいて両端の角部には面取りが施されており、コロ 53aが第 2斜板 51及びレース 55 に角当たりして第 2斜板 51及びレース 55を損傷しないようになっている。  [0058] Between the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 51-2 of the second swash plate 51 between the first shoe 25A and the second shoe 25B, a thrust made of a rolling bearing is provided. Bearing 53 is interposed. The thrust bearing 53 has a plurality of rollers 53a as rolling elements, and the plurality of rollers 53a are rotatably held by a retainer 53b. In the thrust bearing 53, an annular race 55 is interposed between the roller 53a and the first swash plate 18. The race 55 is formed by subjecting a base material made of mild steel such as SPC to a carburizing heat treatment. The corners at both ends of the roller 53a are chamfered to prevent the roller 53a from hitting the second swash plate 51 and the race 55 to damage the second swash plate 51 and the race 55. .
[0059] 第 1斜板 18の後面において外周部 18-1の最外周には、第 2斜板 51側に向かって 円環状をなす係止部 18dが突設されてレ、る。レース 55は係止部 18dの内側に配置さ れており、レース 55はその外周縁と係止部 18dとの当接によって径方向外側で第 1 斜板 18に係止されている。レース 55は、係止部 18dに案内されることで、第 1斜板 1 8に対して相対回転可能となっている。  At the rear surface of the first swash plate 18, an annular locking portion 18 d protrudes from the outermost periphery of the outer peripheral portion 18-1 toward the second swash plate 51. The race 55 is disposed inside the locking portion 18d, and the race 55 is locked to the first swash plate 18 on the radially outer side by abutment of the outer peripheral edge thereof with the locking portion 18d. The race 55 is rotatable relative to the first swash plate 18 by being guided by the locking portion 18d.
[0060] 第 2斜板 51は、ラジアル軸受 52A及びスラストベアリング 53を介することで、第 1斜 板 18と相対回転可能でかつ一体的に傾動可能となるように、第 1斜板 18によって支 持されている。従って、第 1斜板 18が回転すると、ラジアル軸受 52A及びスラストベア リング 53の作用によって、第 1斜板 18と第 2斜板 51との間に転がりが生じ、面同士の 滑りに起因した機械損失が転がりによる機械損失に換わり、圧縮機における機械損 失の発生を大幅に抑制することができる。 [0060] The second swash plate 51 is supported by the first swash plate 18 via the radial bearing 52A and the thrust bearing 53 so that the second swash plate 51 can rotate relative to the first swash plate 18 and can be tilted integrally. Is held. Therefore, when the first swash plate 18 rotates, the radial bearing 52A and the thrust bearing 53 act to cause a rolling between the first swash plate 18 and the second swash plate 51, thereby causing the surfaces to face each other. Mechanical loss due to slippage is replaced by mechanical loss due to rolling, and the occurrence of mechanical loss in the compressor can be greatly suppressed.
[0061] 第 2斜板 51においてラジアル軸受 52Aの支持を受ける内周部 51-1の板厚 Y1は、 第 2斜板 51においてスラストベアリング 53の支持を受ける外周部 51— 2の板厚 Y2より も厚くされている。詳しくは、第 2斜板 51の外周部 51—2の板厚 Y2は、第 1斜板 18の 外周部 18 - 1の板厚 Xの半分以上でかつ第 1斜板 18の外周部 18 - 1の板厚 よりも 薄く設定されている。また、第 2斜板 51の内周部 51— 1の板厚 Y1は、第 1斜板 18の 外周部 18—1の板厚 Xよりも厚くされている。  The thickness Y1 of the inner peripheral portion 51-1, which is supported by the radial bearing 52A in the second swash plate 51, is the thickness Y2 of the outer peripheral portion 51-2, which is supported by the thrust bearing 53 in the second swash plate 51. It is thicker than it is. Specifically, the thickness Y2 of the outer peripheral portion 51-2 of the second swash plate 51 is at least half the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 18- of the first swash plate 18. It is set thinner than the thickness of 1. The thickness Y1 of the inner peripheral portion 51-1 of the second swash plate 51 is larger than the thickness X of the outer peripheral portion 18-1 of the first swash plate 18.
[0062] 第 2斜板 51の内周部 51— 1は、第 1斜板 18側に突設された円筒状の第 1突状部 56 、及び第 1斜板 18と反対側に突設された円筒状の第 2突状部 57を備えることで、第 2 斜板 51の外周部 51—2よりも板厚が厚くされている(Y1 >Y2)。第 1突状部 56及び 第 2突状部 57は支持孔 51aと同軸位置に配置されており、第 1突状部 56及び第 2突 状部 57の内周面は支持孔 51aの内周面の一部を構成する。第 2突状部 57の外径 Z 2は、第 1突状部 56の外径 Z1よりも小さくされている。また、第 2突状部 57において 先端面の外周角 57aには、全体にテーパ形状の面取りが施されている。  [0062] The inner peripheral portion 51-1 of the second swash plate 51 has a cylindrical first protruding portion 56 protruding from the first swash plate 18 side and a protruding portion on the opposite side to the first swash plate 18. The second swash plate 51 has a greater thickness than the outer peripheral portion 51-2 of the second swash plate 51 by providing the cylindrical second projecting portion 57 (Y1> Y2). The first protrusion 56 and the second protrusion 57 are disposed coaxially with the support hole 51a, and the inner peripheral surfaces of the first protrusion 56 and the second protrusion 57 are formed on the inner periphery of the support hole 51a. Form a part of the surface. The outer diameter Z2 of the second protrusion 57 is smaller than the outer diameter Z1 of the first protrusion 56. Further, the outer peripheral angle 57a of the distal end surface of the second projecting portion 57 is chamfered in a tapered shape as a whole.
[0063] 第 2実施形態においては、第 1実施形態と同様の効果が得られる上、次のような効 果を奏する。  In the second embodiment, the same effects as those of the first embodiment can be obtained, and the following effects can be obtained.
(2-1)第 1シユー 25Aと第 2シユー 25Bとの間において第 1斜板 18の外周部 18-1 と第 2斜板 51の外周部 51-2との間には、第 2斜板 51を第 1斜板 18に対して相対回 転可能に支持するスラストベアリング 53が配置されている。第 1斜板 18の内周部(支 持部 39)と第 2斜板 51の内周部 51— 1との間には、第 2斜板 51を第 1斜板 18に対し て相対回転可能に支持するラジアル軸受 52Aが配置されている。  (2-1) Between the first shoe 25A and the second shoe 25B, a second swash plate 18 is provided between the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 51-2 of the second swash plate 51. A thrust bearing 53 that supports the plate 51 so as to be rotatable relative to the first swash plate 18 is provided. The second swash plate 51 is rotated relative to the first swash plate 18 between the inner peripheral portion (support portion 39) of the first swash plate 18 and the inner peripheral portion 51-1 of the second swash plate 51. A radial bearing 52A is provided for supporting as much as possible.
[0064] 従って、スラストベアリング 53及びラジアル軸受 52Aの作用によって、第 1斜板 18 の外周部 18-1と第 2斜板 51の外周部 51—2との間、及び第 1斜板 18の内周部(支 持部 39)と第 2斜板 51の内周部 51— 1との間に生じる回転抵抗を効果的に低減する こと力 Sできる。よって、二酸化炭素を冷媒とする冷凍回路に用いられる圧縮機 10であ つても、第 1斜板 18と第 2斜板 51との間の滑りを転がりによる機械損失とすることがで きる。その結果、機械損失や焼付き等の不具合の発生を効果的に抑制することがで きる。 Therefore, by the action of the thrust bearing 53 and the radial bearing 52A, between the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 51-2 of the second swash plate 51 and the first swash plate 18 The force S can effectively reduce the rotational resistance generated between the inner peripheral portion (support portion 39) and the inner peripheral portion 51-1 of the second swash plate 51. Therefore, even in the compressor 10 used for the refrigeration circuit using carbon dioxide as a refrigerant, the slip between the first swash plate 18 and the second swash plate 51 can be a mechanical loss due to rolling. As a result, it is possible to effectively suppress problems such as mechanical loss and seizure. Wear.
[0065] (2-2)第 2斜板 51において外周部 51-2の板厚 Y2は、第 1斜板 18における外周 部 18— 1の板厚 Xの半分以上でかつ外周部 18_1の板厚 Xよりも薄くされてレ、る。ビス トン 23の大型化つまりは圧縮機の大型化を避けようとすると、第 1シユー 25Αと第 2シ ユー 25Βとの間のスペースが限られることとなる。この限られたスペースにおいて、第 1斜板 18の外周部 18— 1の板厚 Xを厚くすると第 2斜板 51の外周部 51—2の板厚 Υ2 を薄くする必要があり、逆に第 2斜板 51の外周部 51—2の板厚 Υ2を厚くすると第 1斜 板 18の外周部 18— 1の板厚 Xを薄くする必要がある。  (2-2) The thickness Y2 of the outer peripheral portion 51-2 of the second swash plate 51 is equal to or more than half the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 and the thickness of the outer peripheral portion 18_1. It is thinner than thickness X. In order to avoid increasing the size of the bistone 23, that is, increasing the size of the compressor, the space between the first shoe 25Α and the second shoe 25Β will be limited. In this limited space, if the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 is increased, the thickness Υ2 of the outer peripheral portion 51-2 of the second swash plate 51 must be reduced. (2) When the thickness Υ2 of the outer peripheral portion 51-2 of the swash plate 51 is increased, the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 needs to be reduced.
[0066] 圧縮反力の受承の観点からは、第 1斜板 18及び第 2斜板 51ともできるだけ外周部 18-1, 51—2の板厚 X, Υ2を厚くして強度を確保する必要がある力 S、駆動軸 16から 動力が伝達される第 1斜板 18において、外周部 18— 1の板厚 Xの確保は、第 1斜板 1 8に対して滑ればよい第 2斜板 51における、外周部 51—2の板厚 Υ2の確保よりも優 先すべきである。そういった意味において好適なの力 第 2斜板 51において外周部 5 1-2の板厚 Υ2を、第 1斜板 18における外周部 18-1の板厚 Xの半分以上でかつ外 周部 18— 1の板厚 Xよりも薄く設定することなのである。  [0066] From the standpoint of receiving the compression reaction force, the first swash plate 18 and the second swash plate 51 both secure the strength by increasing the thicknesses X and Υ2 of the outer peripheral portions 18-1, 51-2 as much as possible. In the first swash plate 18 to which the necessary force S is transmitted from the drive shaft 16, the thickness X of the outer peripheral portion 18-1 can be secured by sliding with respect to the first swash plate 18. The priority should be given to securing the thickness 51 of the outer peripheral portion 51-2 of the plate 51. In this sense, the force of the second swash plate 51 is set such that the thickness Υ2 of the outer peripheral portion 51-2 is equal to or more than half the thickness X of the outer peripheral portion 18-1 of the first swash plate 18 and the outer peripheral portion 18-1 It is to be set thinner than the sheet thickness X of.
[0067] (2— 3)第 2斜板 51は、内周部 51— 1の板厚 Y1が外周部 51—2の板厚 Υ2よりも厚く されている。厚い内周部 51-1によって、ラジアル軸受 52Αによる第 2斜板 51の支持 が安定し、第 1斜板 18と第 2斜板 51との間の滑りをさらに良好とすることができる。ま た、内周部 51— 1に対して相対的に薄い第 2斜板 51の外周部 51-2によって、第 2斜 板 51よりも強度的に厳しい第 1斜板 18の外周部 18-1の板厚確保が容易となる。  (2-3) In the second swash plate 51, the plate thickness Y1 of the inner peripheral portion 51-1 is larger than the plate thickness Υ2 of the outer peripheral portion 51-2. The thick inner peripheral portion 51-1 stabilizes the support of the second swash plate 51 by the radial bearing 52 °, and can further improve the sliding between the first swash plate 18 and the second swash plate 51. Further, the outer peripheral portion 51-2 of the second swash plate 51, which is relatively thinner than the inner peripheral portion 51-1, allows the outer peripheral portion 18- of the first swash plate 18 to be stronger in strength than the second swash plate 51. (1) It is easy to secure the plate thickness.
[0068] (2— 4)第 2斜板 51の外周部 51-2の板厚 Υ2は、第 1斜板 18の外周部 18— 1の板 厚 Xよりも薄くされている。従って、第 2斜板 51の薄い外周部 51—2によって、第 2斜 板 51よりも強度的に厳しい第 1斜板 18の外周部 18-1の板厚確保が容易となる。第 2斜板 51において内周部 51—1の板厚 Y1は、第 1斜板 18の外周部 18— 1の板厚 X よりも厚くされている。従って、ラジアル軸受 52Αによる第 2斜板 51の支持がさらに安 定する。  (2-4) The thickness Υ2 of the outer peripheral portion 51-2 of the second swash plate 51 is smaller than the thickness X of the outer peripheral portion 18-1 of the first swash plate 18. Therefore, the thin outer peripheral portion 51-2 of the second swash plate 51 facilitates securing the thickness of the outer peripheral portion 18-1 of the first swash plate 18, which is stricter in strength than the second swash plate 51. In the second swash plate 51, the thickness Y1 of the inner peripheral portion 51-1 is larger than the thickness X of the outer peripheral portion 18-1 of the first swash plate 18. Therefore, the support of the second swash plate 51 by the radial bearing 52 ° is further stabilized.
[0069] (2— 5)第 2斜板 51の内周部 51— 1を構成する第 1突状部 56及び第 2突状部 57に おいて、第 2突状部 57の外径 Ζ2は第 1突状部 56の外径 Z1よりも小さくされている。 第 2突状部 57は、例えば、圧縮機 10の吐出容量が最大の状態(図 3の状態)にて、 下死点位置にあるピストン 23Bに対して一部が至極接近する。従って、第 2突状部 5 7を第 1突状部 56よりも小径としてピストン 23から離間させることは、第 2斜板 51とビス トン 23との干渉を回避することと、第 2斜板 51の内周部 51— 1の板厚 Y1を厚くするこ ととを両立する上で有効となる。 [0069] (2-5) In the first projecting portion 56 and the second projecting portion 57 constituting the inner peripheral portion 51-1 of the second swash plate 51, the outer diameter of the second projecting portion 57 Ζ2 Is smaller than the outer diameter Z1 of the first protrusion 56. Part of the second protruding portion 57 comes extremely close to the piston 23B at the bottom dead center position, for example, in a state where the discharge capacity of the compressor 10 is maximum (the state in FIG. 3). Therefore, making the second projecting portion 57 smaller in diameter than the first projecting portion 56 and separating it from the piston 23 avoids the interference between the second swash plate 51 and the bistone 23 and reduces the second swash plate. This is effective in increasing the thickness Y1 of the inner peripheral portion 51-1 of the plate 51.
[0070] (2—6)第 2斜板 51の内周部 51—1を構成する第 2突状部 57において、先端面の外 周角 57aには面取りが設けられている。第 2突状部 57は、例えば、圧縮機の吐出容 量が最大の状態にて、下死点位置にあるピストン 23Bに対して先端面の外周角 57a の一部が至極接近する。従って、第 2突状部 57の先端面の外周角 57aに面取りを設 けることは、第 2斜板 51とピストン 23との干渉を回避することと、第 2斜板 51の内周部 51—1の板厚 Y1を厚くすることとを両立する上で有効となる。  [0070] (2-6) In the second protruding portion 57 constituting the inner peripheral portion 51-1 of the second swash plate 51, a chamfer is provided at an outer peripheral angle 57a of the tip end surface. In the second protruding portion 57, for example, when the discharge capacity of the compressor is at a maximum, a part of the outer peripheral angle 57a of the distal end surface is extremely close to the piston 23B at the bottom dead center position. Therefore, providing a chamfer at the outer peripheral angle 57a of the distal end surface of the second projecting portion 57 avoids interference between the second swash plate 51 and the piston 23 and reduces the inner peripheral portion 51a of the second swash plate 51. This is effective in achieving a balance between increasing the thickness of Y1.
[0071] (2—7)第 1斜板 18の外周縁において、上死点位置にあるピストン 23Aに対応する 部分には、第 2斜板 51と反対側の凸角部 18bに傾斜面(面取り)が施されている。従 つて、ピストン 23の耐久性低下及び大型化を抑制しつつ第 1斜板 18及び第 2斜板 5 1を大径化することができる。よって、第 2斜板 51と第 2シユー 25Bとの接触摺動性が 良好となり、ピストン 23の耐久性低下及び大型化を抑制しつつ、第 2斜板 51及び第 2シユー 25Bの耐久性を向上させることができる。  [0071] (2-7) A portion of the outer peripheral edge of the first swash plate 18 corresponding to the piston 23A at the top dead center position has an inclined surface (a convex corner portion 18b opposite to the second swash plate 51). Chamfer). Therefore, the diameter of the first swash plate 18 and the second swash plate 51 can be increased while suppressing a decrease in durability and an increase in size of the piston 23. Accordingly, the contact slidability between the second swash plate 51 and the second shoe 25B is improved, and the durability of the second swash plate 51 and the second shoe 25B is reduced while suppressing the decrease in the durability and the size of the piston 23. Can be improved.
[0072] 即ち、駆動軸 16に対して傾斜する第 1斜板 18は、上死点位置にあるピストン 23A に対応する外周縁において、第 2斜板 51と反対側の凸角部 18b (面取り無しの状態) 力 駆動軸 16の径方向へ向かって大きく突出することとなる。第 1斜板 18において第 2斜板 51と反対側の凸角部 18bが径方向へ大きく突出すると、該突出部分との干渉 を回避するために、ピストン 23において該突出部分に対応する首部 38の肉厚を薄く するか、首部 38を径方向に大型化することが考えられる。しかし、首部 38の薄肉化 はピストン 23の耐久性低下につながるし、首部 38の大型化は圧縮機が大型化するこ とにつながってしまう。  [0072] That is, the first swash plate 18 inclined with respect to the drive shaft 16 has a convex corner 18b (chamfered) opposite to the second swash plate 51 at the outer peripheral edge corresponding to the piston 23A at the top dead center position. (No state) Force Forcedly protrudes radially of drive shaft 16. When the convex corner 18b on the first swash plate 18 opposite to the second swash plate 51 protrudes largely in the radial direction, a neck 38 of the piston 23 corresponding to the protruding portion is formed in order to avoid interference with the protruding portion. It is conceivable to reduce the wall thickness or increase the diameter of the neck 38 in the radial direction. However, reducing the thickness of the neck 38 reduces the durability of the piston 23, and increasing the size of the neck 38 leads to an increase in the size of the compressor.
[0073] このような問題を解決するために、第 1斜板 18の半径を小さくして、前述した凸角部 18bとピストン 23との干渉を回避することが考えられる。しかし、第 1斜板 18の半径を 小さくすると、第 1斜板 18による支持が必要な第 2斜板 51の半径も小さくせざるを得 なレ、。従って、特に、上死点位置付近 (圧縮行程)にあるピストン 23において、大きな 圧縮反力を受ける第 2シユー 25Bと第 2斜板 51との接触面積が狭くなり、第 2斜板 51 及び第 2シユー 25Bの耐久性が低下する問題がある。 In order to solve such a problem, it is conceivable to reduce the radius of the first swash plate 18 to avoid the above-mentioned interference between the convex corner 18b and the piston 23. However, if the radius of the first swash plate 18 is reduced, the radius of the second swash plate 51 which needs to be supported by the first swash plate 18 must be reduced. What? Therefore, in particular, in the piston 23 near the top dead center position (compression stroke), the contact area between the second swash plate 51 and the second swash plate 51 receiving a large compression reaction force is reduced, and the second swash plate 51 and the second swash plate 51 There is a problem that the durability of the 2 SH 25B is reduced.
[0074] (2—8)ラジアル軸受 52Aの転動素子として、コロ 52cが用いられている。転動素子 としてコロ 52cを用いた転がり軸受は、例えば転動素子としてボールを用いた場合と 比較して耐荷重性に優れることとなる。これはラジアル軸受 52Aの小型化ひレ、ては 圧縮機 10の小型化につながる。  (2-8) The roller 52c is used as a rolling element of the radial bearing 52A. A rolling bearing using the roller 52c as a rolling element has better load resistance than, for example, a case using a ball as a rolling element. This leads to a reduction in the size of the radial bearing 52A and a reduction in the size of the compressor 10.
[0075] (2— 9)スラストベアリング 53のコロ 53aと第 1斜板 18との間にはレース 55が介在さ れている。レース 55は、第 1斜板 18に対して相対回転可能となっている。  (2-9) The race 55 is interposed between the roller 53a of the thrust bearing 53 and the first swash plate 18. The race 55 is rotatable relative to the first swash plate 18.
[0076] ここで、例えば、スラストベアリング 53のコロ 53aを第 1斜板 18上で直接転動させる 構成の場合、第 1斜板 18の一部(上死点位置付近にあるピストン 23に対応する部分 )に集中して大きな圧縮反力が作用されることとなり、当該部位が局部的に摩耗劣化 する問題がある。しかし、本実施形態においては、コロ 53aと第 1斜板 18との間にレ ース 55が介在されており、コロ 53aに作用する圧縮反力は、レース 55を介することで 面圧を低くして第 1斜板 18に作用するため、第 1斜板 18が局部的に摩耗劣化するこ とを抑制できる。また、第 1斜板 18に対して相対回転するレース 55においては、大き な圧縮反力がコロ 53aを介して作用する部位が順次入れ替わり、レース 55が局部的 に摩耗劣化することを防止できる。  Here, for example, in a configuration in which the roller 53a of the thrust bearing 53 is directly rolled on the first swash plate 18, a part of the first swash plate 18 (corresponding to the piston 23 near the top dead center position) is used. However, a large compression reaction force is concentrated on the portion where the heat is applied, and there is a problem that the portion is locally worn and deteriorated. However, in the present embodiment, the race 55 is interposed between the roller 53a and the first swash plate 18, and the compression reaction force acting on the roller 53a reduces the surface pressure through the race 55. Then, since the first swash plate 18 acts on the first swash plate 18, it is possible to suppress the first swash plate 18 from being locally worn and deteriorated. Further, in the race 55 that rotates relative to the first swash plate 18, the portions where a large compression reaction force acts via the rollers 53a are sequentially switched, so that it is possible to prevent the race 55 from being locally worn and deteriorated.
[0077] (2-10)第 1斜板 18の外周部 18-1には、第 2斜板 51側に向かって係止部 18dが 突設されており、係止部 18dとの当接によってレース 55が径方向外側で第 1斜板 18 に係止されている。  [0077] (2-10) A locking portion 18d protrudes from the outer peripheral portion 18-1 of the first swash plate 18 toward the second swash plate 51, and abuts against the locking portion 18d. As a result, the race 55 is locked to the first swash plate 18 on the radially outer side.
[0078] ここで、例えば、第 1斜板 18の内周部に係止部を設けることで、レース 55を径方向 内側で第 1斜板 18に係止する構成では、第 1斜板 18に付着された潤滑油(冷凍機 油)が遠心力の作用によって径方向外側に移動する際、該潤滑油の第 1斜板 18とレ ース 55との間への入り込みが係止部で阻害されてしまう。し力し、レース 55を径方向 外側で第 1斜板 18に係止する本実施形態によれば、第 1斜板 18とレース 55との間 への潤滑油の入り込みが係止部 18dによって阻害されることを防止でき、第 1斜板 18 とレース 55との間の滑りを良好とすることができる。 [0079] (2-11)係止部 18dは円環状をなしている。従って、係止部 18dによるレース 55の 係止が安定して行われ、レース 55と第 1斜板 18との間の滑りがさらに良好となる。 Here, for example, in a configuration in which a locking portion is provided on the inner peripheral portion of the first swash plate 18 to lock the race 55 to the first swash plate 18 on the radial inside, the first swash plate 18 When the lubricating oil (refrigerant oil) attached to the cylinder moves radially outward due to the action of centrifugal force, the lubricating oil enters between the first swash plate 18 and the race 55 at the locking portion. It will be hindered. According to the present embodiment in which the race 55 is locked to the first swash plate 18 on the radial outside, the lubricating oil enters between the first swash plate 18 and the race 55 by the locking portion 18d. It is possible to prevent the swash plate from being hindered and to make the sliding between the first swash plate 18 and the race 55 good. (2-11) The locking portion 18d has an annular shape. Accordingly, the locking of the race 55 by the locking portion 18d is performed stably, and the sliding between the race 55 and the first swash plate 18 is further improved.
[0080] 次に、本発明の第 3実施形態について、図 5を参照して説明する。なお、本実施形 態では、第 2実施形態との相違点についてのみ説明し、同一又は相当部材には同じ 符号を付して詳細な説明を省略する。  Next, a third embodiment of the present invention will be described with reference to FIG. Note that, in the present embodiment, only differences from the second embodiment will be described, and the same or corresponding members will be denoted by the same reference characters and detailed description thereof will be omitted.
[0081] 本実施形態では、支持部 39が第 1斜板 18の中心軸線 Mlに対して偏心されてい なレ、。つまり、第 2斜板 51及びラジアル軸受 52A (図 3参照)並びにスラストベアリング 53 (レース 55も含む)が第 1斜板 18に対して偏心されていない。この場合、第 1斜板 18の外周縁において、下死点位置にあるピストン 23Bに対応する部分は、第 2斜板 51側の凸角部 18cが径方向へ第 2斜板 51よりも大きく突出することがないため、図 5 に示すように、凸角部 18cに面取りを施さなくても差し支えはない。  In the present embodiment, the support portion 39 is not eccentric with respect to the center axis Ml of the first swash plate 18. That is, the second swash plate 51, the radial bearing 52A (see FIG. 3) and the thrust bearing 53 (including the race 55) are not eccentric with respect to the first swash plate 18. In this case, on the outer peripheral edge of the first swash plate 18, a portion corresponding to the piston 23B at the bottom dead center position is such that the convex corner portion 18c on the second swash plate 51 side is radially larger than the second swash plate 51. Since it does not protrude, there is no problem if the chamfered portion 18c is not chamfered as shown in FIG.
[0082] また、本実施形態においては、スラストベアリング 53の PCD力 第 1斜板 18及び第 2斜板 51の中心軸線 Ml, M2を中心として第 1シユー 25A及び第 2シユー 25Bの中 心点 Pを通る仮想円筒の直径よりも大きくされている。このようにすれば、スラストベア リング 53 (コロ 53a)は、第 2斜板 51を介して伝達される圧縮反力を好適に受承するこ とができ、耐久性が向上されることとなる。なお、スラストベアリング 53の「PCD」とは、 スラストベアリング 53の中心(第 1斜板 18及び第 2斜板 51の中心軸線 Ml , M2)を中 心軸線とし、コロ 53aにおいて自転中心軸線上の中間点を通る仮想円筒の直径のこ とを指す。  In the present embodiment, the PCD force of the thrust bearing 53 is set at the center point of the first shoe 25A and the second shoe 25B about the central axis Ml, M2 of the first swash plate 18 and the second swash plate 51. It is made larger than the diameter of the virtual cylinder passing through P. In this way, the thrust bearing 53 (the roller 53a) can suitably receive the compression reaction force transmitted through the second swash plate 51, and the durability is improved. The “PCD” of the thrust bearing 53 means that the center of the thrust bearing 53 (the center axes Ml and M2 of the first swash plate 18 and the second swash plate 51) is the center axis, and the roller 53a is on the rotation center axis. Refers to the diameter of the virtual cylinder passing through the intermediate point.
[0083] 次に、本発明の第 4実施形態について、図 6—図 8を参照して説明する。なお、本 実施形態では、第 1, 2実施形態との相違点についてのみ説明し、同一又は相当部 材には同じ符号を付して詳細な説明を省略する。  Next, a fourth embodiment of the present invention will be described with reference to FIGS. In the present embodiment, only the differences from the first and second embodiments will be described, and the same or corresponding parts will be denoted by the same reference numerals and detailed description thereof will be omitted.
[0084] 駆動軸 16にはロータ 17が止着されていると共に、斜板 58が駆動軸 16の軸方向へ スライド可能かつ傾動可能に支持されている。斜板 58には連結片 59, 60が止着さ れており、連結片 59, 60にはガイドピン 61, 62が止着されている。ロータ 17には一 対のガイド孔 171 (—方のみ図示)が形成されている。ガイドピン 61 , 62の頭部は、ガ イド孔 171にスライド可能に嵌入されている。斜板 58は、ガイド孔 171とガイドピン 61 , 62との連係により駆動軸 16の軸方向へ傾動可能かつ駆動軸 16と一体的に回転 可能である。斜板 58の傾動は、ガイド孔 171とガイドピン 61, 62とのスライドガイド関 係、及び駆動軸 16のスライド支持作用により案内される。連結片 59, 60、ガイドピン 61 , 62及びガイド孔 171は、ヒンジ機構 19 Aを構成する。 The drive shaft 16 has the rotor 17 fixed thereto, and the swash plate 58 supported so as to be slidable and tiltable in the axial direction of the drive shaft 16. Connecting pieces 59 and 60 are fixed to the swash plate 58, and guide pins 61 and 62 are fixed to the connecting pieces 59 and 60. The rotor 17 has a pair of guide holes 171 (only one is shown). The heads of the guide pins 61 and 62 are slidably fitted into the guide holes 171. The swash plate 58 can be tilted in the axial direction of the drive shaft 16 and rotates integrally with the drive shaft 16 by linking the guide hole 171 and the guide pins 61 and 62. It is possible. The tilt of the swash plate 58 is guided by the slide guide relationship between the guide hole 171 and the guide pins 61 and 62 and the slide support action of the drive shaft 16. The connecting pieces 59 and 60, the guide pins 61 and 62, and the guide hole 171 constitute a hinge mechanism 19A.
[0085] 図 6の斜板 58の実線位置は、斜板 58の最大傾角状態を示す。斜板 58の中心部が シリンダブロック 11側へ移動すると、斜板 58の傾角が減少する。図 6の斜板 58の鎖 線位置は、斜板 58の最小傾角状態を示す。  [0085] The solid line position of the swash plate 58 in Fig. 6 indicates the maximum inclination state of the swash plate 58. When the center of the swash plate 58 moves toward the cylinder block 11, the inclination angle of the swash plate 58 decreases. The dashed line position of the swash plate 58 in FIG. 6 indicates the minimum inclination state of the swash plate 58.
[0086] 斜板 58の外周縁部において、上死点位置にあるピストン 23Aに対応する部分及び 該部分に対して周方向前後に位置する部分には、ピストン 23と反対側の凸角部 58a に傾斜面が設けられている。つまり、ヒンジ機構 19A付近に対応する斜板 58の外周 縁部の部分において、ヒンジ機構 19A側の凸角部 58aには傾斜面が設けられている 。つまり、ピストン 23Aを上死点位置に配置する斜板 58の周方向の範囲に対応する 斜板 58の外周縁部の部分において、ピストン 23と反対側の凸角部 58aに傾斜面が 設けられている。図 7に示すように、凸角部 58aの傾斜面は、上死点位置にあるピスト ン 23に対応する部分が最も大きぐ該部分から周方向へ離れるにつれて徐々に小さ くなるようにして設けられている。  [0086] In the outer peripheral edge of the swash plate 58, a portion corresponding to the piston 23A at the top dead center position and a portion located in the front and rear direction with respect to the portion are provided with a convex corner portion 58a opposite to the piston 23. Is provided with an inclined surface. That is, in the outer peripheral edge portion of the swash plate 58 corresponding to the vicinity of the hinge mechanism 19A, an inclined surface is provided at the convex corner portion 58a on the hinge mechanism 19A side. In other words, at the outer peripheral edge of the swash plate 58 corresponding to the circumferential range of the swash plate 58 in which the piston 23A is arranged at the top dead center position, an inclined surface is provided at the convex corner 58a opposite to the piston 23. ing. As shown in FIG. 7, the inclined surface of the convex corner portion 58a is provided so that the portion corresponding to the piston 23 at the top dead center position becomes gradually smaller as it is further away in the circumferential direction from the largest portion. Have been.
[0087] 図 8に示すように、凸角部 58aに設けられた傾斜面は、斜板 58が最大傾角状態に あるときにおいて、駆動軸 16の軸線 Lと平行な中心軸線 M3を有する仮想円筒 Cの 周面上にある。図示の例では、中心軸線 M3は、軸線 Lに対して、上死点位置にある ピストン 23A側から駆動軸 16側へずらされている。仮想円筒 Cの直径は、斜板 58の 直径以上にしてある。  As shown in FIG. 8, when the swash plate 58 is in the maximum inclined state, the inclined surface provided at the convex corner portion 58a is a virtual cylinder having a central axis M3 parallel to the axis L of the drive shaft 16. It is on the circumference of C. In the illustrated example, the center axis M3 is shifted from the piston 23A at the top dead center position to the drive shaft 16 with respect to the axis L. The diameter of the virtual cylinder C is equal to or larger than the diameter of the swash plate 58.
[0088] 駆動軸 16に対して傾斜する斜板 58は、上死点位置にあるピストン 23Aに対応する 外周縁部において、ピストン 23と反対側の凸角部 58aが、駆動軸 16の径方向へ向 力、つて大きく突出することとなる。従って、斜板 58における突出部分(凸角部 58aの 一部)に傾斜面を設けることで、ピストン 23の耐久性低下及び大型化を抑制しつつ、 斜板 58を大径化することができる。従って、上死点位置付近にあるピストン 23の第 2 シユー 25Bを介して斜板 58に作用する大きな圧縮反力を好適に受承することができ る。これは斜板 58の耐久性向上につながる。  [0088] The swash plate 58 inclined with respect to the drive shaft 16 has a convex corner portion 58a opposite to the piston 23 at the outer peripheral edge corresponding to the piston 23A at the top dead center position. Will protrude greatly. Therefore, by providing an inclined surface at a protruding portion (a part of the convex corner portion 58a) of the swash plate 58, it is possible to increase the diameter of the swash plate 58 while suppressing a decrease in durability and an increase in size of the piston 23. . Therefore, a large compression reaction force acting on the swash plate 58 can be suitably received through the second shoe 25B of the piston 23 near the top dead center position. This leads to improved durability of the swash plate 58.
[0089] なお、本発明の趣旨から逸脱しない範囲で、例えば以下の態様でも実施可能であ る。 [0089] Note that, for example, the following embodiments can be implemented without departing from the spirit of the present invention. The
(1)第 1実施形態において、ラジアルベアリング 52を削除し、第 2斜板 51を支持部 39によって滑り受けすること。  (1) In the first embodiment, the radial bearing 52 is deleted, and the second swash plate 51 is slid by the support portion 39.
[0090] (2)第 1実施形態において、スラストベアリング 53を削除し、第 2斜板 51を第 1斜板 (2) In the first embodiment, the thrust bearing 53 is omitted, and the second swash plate 51 is replaced with the first swash plate.
18に直接摺動させること。  Slide directly to 18.
(3)第 1実施形態において、ラジアルベアリング 52及びスラストベアリング 53を削除 するとともに、第 2斜板 51を第 1斜板 18に固定することで、第 2斜板 51を第 1斜板 18 と一体回転可能とすること。  (3) In the first embodiment, the radial bearing 52 and the thrust bearing 53 are omitted, and the second swash plate 51 is fixed to the first swash plate 18 so that the second swash plate 51 is connected to the first swash plate 18. Be able to rotate integrally.
[0091] この場合、第 2斜板 51の外周縁部において、上死点位置にあるピストン 23Aに対 応する部分に対し、第 1斜板 18側の凸角部に傾斜面(面取り)を設けること。それに 加え、第 2斜板 51の外周縁部において、下死点位置にあるピストン 23Bに対応する 部分に対し、第 1斜板 18と反対側の凸角部に傾斜面(面取り)を設けること。  [0091] In this case, on the outer peripheral edge of the second swash plate 51, a slope (chamfer) is formed at the convex corner on the first swash plate 18 side with respect to the portion corresponding to the piston 23A at the top dead center position. To be provided. In addition, on the outer peripheral edge of the second swash plate 51, a slope (chamfer) is provided at a convex corner opposite to the first swash plate 18 with respect to a portion corresponding to the piston 23B at the bottom dead center position. .
[0092] 図 2を参照すれば、駆動軸 16に対して傾斜する第 2斜板 51は、上死点位置にある ピストン 23Aに対応する外周縁部において、第 1斜板 18側の凸角部が駆動軸 16の 径方向へ向かって大きく突出することとなる。また、第 2斜板 51は、下死点位置にある ピストン 23Bに対応する外周縁部において、第 1斜板 18と反対側の凸角部が、駆動 軸 16の径方向へ向かって大きく突出することとなる。従って、これら第 2斜板 51にお ける突出部分(凸角部の一部)に傾斜面(面取り)を設けることで、ピストン 23の耐久 性低下及び大型化を抑制しつつ第 2斜板 51を大型化することができる。よって、上死 点位置付近にあるピストン 23の第 2シユー 25Bと第 2斜板 51との接触面積をさらに広 くすることができ、第 2斜板 51及び第 2シユー 25Bの耐久性をさらに向上させることが できる。  [0092] Referring to FIG. 2, the second swash plate 51 inclined with respect to the drive shaft 16 has a convex angle on the first swash plate 18 side at the outer peripheral edge corresponding to the piston 23A at the top dead center position. The portion protrudes largely in the radial direction of the drive shaft 16. In the second swash plate 51, a convex corner on the outer peripheral edge corresponding to the piston 23B at the bottom dead center position, opposite to the first swash plate 18, protrudes largely in the radial direction of the drive shaft 16. Will be done. Therefore, by providing an inclined surface (chamfer) at the protruding portion (a part of the convex corner portion) of the second swash plate 51, it is possible to suppress the durability and size of the piston 23 from being reduced and increase the size of the second swash plate 51. Can be increased in size. Therefore, the contact area between the second shoe 25B of the piston 23 near the top dead center position and the second swash plate 51 can be further increased, and the durability of the second swash plate 51 and the second shoe 25B can be further increased. Can be improved.
[0093] (4)第 1実施形態においては、第 1斜板 18及び第 2斜板 51の二枚が用いられてい たが、これを変更し、例えば、第 2斜板 51と第 2シユー 25Bとの間に第 3斜板を配置 するようにしてもよレ、。つまり、本発明を適用可能な斜板構造は、第 1斜板及び第 2斜 板の二枚のみを用いたものに限定されるものではなぐ前述した三枚や、四枚或いは 五枚等、複数枚の斜板を備えたものであつてもよい。  [0093] (4) In the first embodiment, two sheets, the first swash plate 18 and the second swash plate 51, are used. However, this is changed to, for example, the second swash plate 51 and the second swash plate 51. The third swash plate may be placed between the swash plate and the 25B. In other words, the swash plate structure to which the present invention can be applied is not limited to the structure using only the first swash plate and the second swash plate. It may have a plurality of swash plates.
[0094] (5)両頭型のピストンを備えた容量可変型斜板式圧縮機に本発明を適用すること。 この場合、第 1斜板において前後面の一方側にのみ第 2斜板を配置するようにしても よいし、第 1斜板において前後面の両側にそれぞれ第 2斜板を配置するようにしても よい。 (5) The present invention is applied to a variable displacement swash plate type compressor having a double-headed piston. In this case, the second swash plate may be arranged only on one side of the front and rear surfaces of the first swash plate, or the second swash plate may be arranged on both sides of the front and rear surfaces of the first swash plate. Is also good.
[0095] (6)本発明は、冷凍回路に用いられる冷媒圧縮機に適用することに限定されるもの ではなぐ例えばエア圧縮機に適用してもよい。  [0095] (6) The present invention is not limited to application to a refrigerant compressor used in a refrigeration circuit, but may be applied to, for example, an air compressor.
(7)第 2実施形態を変更し、例えば図 5に示すように、第 1シユー 25Aの摺接面 25b を平面状とすること。  (7) The second embodiment is changed, for example, as shown in FIG. 5, the sliding surface 25b of the first shoe 25A is made flat.
[0096] (8)第 2実施形態を変更し、例えば図 5に示すように、第 2シユー 25Bの摺接面 25b を、中央部が窪んだ中凹状とすること。このようにすれば、ピストン 23とともに往復直 線運動する第 2シユー 25Bを軽量化することができ、第 2シユー 25Bの慣性力を低減 できて、第 1斜板 18及び第 2斜板 51の傾斜角度の変更つまり圧縮機の吐出容量の 変更をスムーズに行レ、得る。  [0096] (8) The second embodiment is changed, for example, as shown in Fig. 5, the sliding contact surface 25b of the second shoe 25B is formed in a concave shape with a concave central portion. In this way, the weight of the second shoe 25B reciprocating linearly with the piston 23 can be reduced, the inertia force of the second shoe 25B can be reduced, and the first swash plate 18 and the second swash plate 51 can be reduced. The change of the inclination angle, that is, the change of the displacement of the compressor, can be performed smoothly.
[0097] (9)第 2, 3実施形態において、スラストベアリング 53を、転動素子としてのボールを 備えた転がり軸受に変更すること。  (9) In the second and third embodiments, the thrust bearing 53 is changed to a rolling bearing provided with balls as rolling elements.
(10)第 2, 3実施形態において、スラストべァリング 53を、滑り軸受に変更すること。  (10) In the second and third embodiments, the thrust bearing 53 is changed to a plain bearing.
[0098] (11)第 2, 3実施形態において、ラジアル軸受 52Aは、第 2斜板 51に作用するラジ アル荷重(中心軸線 M2と直交方向の荷重)のみを受ける構成であった。これを変更 し、例えばコロ 52cを第 2斜板 51の中心軸線 M2に対して傾斜させて配置することで 、ラジアル軸受 52Aを、ラジアル荷重のみならずスラスト荷重(中心軸線 M2に沿う方 向の荷重)も受けられる構成とすること。  (11) In the second and third embodiments, the radial bearing 52A is configured to receive only a radial load (a load in a direction orthogonal to the center axis M2) acting on the second swash plate 51. By changing this, for example, by arranging the roller 52c so as to be inclined with respect to the center axis M2 of the second swash plate 51, not only the radial load but also the thrust load (in the direction along the center axis M2) can be adjusted. Load).
[0099] (12)第 2, 3実施形態において、スラストベアリング 53は、第 2斜板 51に作用するス ラスト荷重のみを受ける構成であった。これを変更し、例えばコロ 53aを第 2斜板 51の 盤面に対して傾斜させて配置することで、スラスト荷重のみならずラジアル荷重も受け られる構成とすること。  (12) In the second and third embodiments, the thrust bearing 53 is configured to receive only the thrust load acting on the second swash plate 51. By changing this, for example, by arranging the rollers 53a so as to be inclined with respect to the board surface of the second swash plate 51, a configuration in which not only a thrust load but also a radial load can be received.
[0100] (13)第 2, 3実施形態において、レース 55を削除し、スラストベアリング 53のコロ 53 aを第 1斜板 18上で直接転動させる構成とすること。  (13) In the second and third embodiments, the race 55 is eliminated, and the roller 53 a of the thrust bearing 53 is directly rolled on the first swash plate 18.
(14)第 2, 3実施形態において、係止部 18dを削除するとともに、第 1斜板 18の内 周部に係止部を設ける(例えば支持部 39の基部に係止部を兼ねさせる)ことで、レー ス 55を径方向内側で第 1斜板 18に係止すること。 (14) In the second and third embodiments, the locking portion 18d is omitted, and a locking portion is provided on the inner peripheral portion of the first swash plate 18 (for example, the base of the support portion 39 also serves as the locking portion). By that, The swash plate 55 is to be locked to the first swash plate 18 on the radial inside.

Claims

請求の範囲 The scope of the claims
[1] 駆動軸には斜板が一体回転可能に連結され、前記斜板にはシユーを介してピスト ンが係留されており、前記駆動軸の回転にともなう前記斜板の回転によって、前記ピ ストンが往復直線運動されてガスの圧縮が行われ、前記斜板の傾斜角度が変更され ることによって吐出容量が変更される容量可変型斜板式圧縮機において、  [1] A swash plate is integrally rotatably connected to the drive shaft, and a piston is moored to the swash plate via a shoe. The rotation of the swash plate with the rotation of the drive shaft causes the swash plate to rotate. The gas is compressed by the reciprocating linear movement of the ston, and the displacement of the swash plate is changed by changing the inclination angle of the swash plate.
前記斜板の外周縁部の全周の一部に傾斜面が設けられていることを特徴とする容 量可変型斜板式圧縮機。  A swash plate type variable capacity compressor, wherein an inclined surface is provided on a part of the entire outer peripheral edge of the swash plate.
[2] 前記斜板の外周縁部において、上死点位置にある前記ピストンに対応する部分に は、前記ピストンと反対側の凸角部に傾斜面が設けられている請求項 1に記載の容 量可変型斜板式圧縮機。  2. The slope according to claim 1, wherein, at an outer peripheral edge of the swash plate, a portion corresponding to the piston at a top dead center position is provided with an inclined surface at a convex corner opposite to the piston. Variable capacity swash plate compressor.
[3] 前記斜板の外周縁部において、下死点位置にある前記ピストンに対応する部分に は、前記ピストン側の凸角部に傾斜面が設けられている請求項 1及び請求項 2のい ずれか 1項に記載の容量可変型斜板式圧縮機。  3. The outer peripheral edge of the swash plate, wherein a portion corresponding to the piston at a bottom dead center position is provided with a slope at a convex corner on the piston side. The variable displacement type swash plate type compressor according to any one of the preceding items.
[4] 前記斜板は、駆動軸に一体回転可能に連結された第 1斜板と、該第 1斜板に支持 された第 2斜板とからなり、前記第 1及び第 2斜板には、前記第 1斜板に当接する第 1 シユー、及び前記第 2斜板に当接する圧縮反力を受ける側の第 2シユーを介してビス トンが係留されており、前記第 1斜板の外周縁において、上死点位置にある前記ピス トンに対応する部分には、前記第 2斜板と反対側の凸角部に傾斜面が設けられてい る請求項 1乃至請求項 3のいずれか 1項に記載の容量可変型斜板式圧縮機。  [4] The swash plate includes a first swash plate connected to a drive shaft so as to be integrally rotatable, and a second swash plate supported by the first swash plate. The biston is moored through a first shoe that contacts the first swash plate and a second shoe that receives a compression reaction force that contacts the second swash plate. 4. A part of the outer peripheral edge corresponding to the piston at the top dead center position is provided with an inclined surface at a convex corner opposite to the second swash plate. 2. The variable displacement type swash plate type compressor according to item 1.
[5] 前記第 1斜板の外周縁部において、下死点位置にある前記ピストンに対応する部 分には、前記第 2斜板側の凸角部に傾斜面が設けられている請求項 4に記載の容量 可変型斜板式圧縮機。  [5] The outer peripheral edge of the first swash plate, a portion corresponding to the piston at the bottom dead center position is provided with an inclined surface at a convex corner on the second swash plate side. 4. The variable capacity swash plate compressor described in 4.
[6] 前記ガスは冷凍回路に用いられる冷媒であって、該冷媒としては二酸化炭素が用 いられている請求項 1乃至請求項 5のいずれか 1項に記載の容量可変型斜板式圧縮  6. The variable displacement swash plate compression according to claim 1, wherein the gas is a refrigerant used in a refrigeration circuit, and carbon dioxide is used as the refrigerant.
PCT/JP2004/011373 2003-09-02 2004-08-06 Variable displacement swash plate type compressor WO2005024233A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/570,482 US20070081904A1 (en) 2003-09-02 2004-08-06 Variable displacement type compressor
EP04771372A EP1669600A1 (en) 2003-09-02 2004-08-06 Variable displacement swash plate type compressor
JP2005513610A JPWO2005024233A1 (en) 2003-09-02 2004-08-06 Variable capacity swash plate compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-310291 2003-09-02
JP2003310291 2003-09-02
JP2003-326962 2003-09-18
JP2003326962 2003-09-18

Publications (1)

Publication Number Publication Date
WO2005024233A1 true WO2005024233A1 (en) 2005-03-17

Family

ID=34277688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011373 WO2005024233A1 (en) 2003-09-02 2004-08-06 Variable displacement swash plate type compressor

Country Status (5)

Country Link
US (1) US20070081904A1 (en)
EP (1) EP1669600A1 (en)
JP (1) JPWO2005024233A1 (en)
KR (1) KR20060057626A (en)
WO (1) WO2005024233A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050147503A1 (en) * 2002-08-07 2005-07-07 Hajime Kurita Variable displacement compressor
JP2009062856A (en) * 2007-09-05 2009-03-26 Toyota Industries Corp Swash plate type compressor
DE102010021708A1 (en) * 2010-05-27 2011-12-01 Claas Selbstfahrende Erntemaschinen Gmbh Hydrostatic machine
US20140345449A1 (en) * 2013-05-23 2014-11-27 Gholamali Kyoumars Saham Variable displacement devices and related methods
US9453459B2 (en) * 2013-12-09 2016-09-27 Joachim Horsch Internal combustion engine
WO2018022642A1 (en) 2016-07-25 2018-02-01 Caire Inc. Wobble plate compressor and oxygen concentrator using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676659U (en) * 1993-04-08 1994-10-28 サンデン株式会社 Swash plate type compressor
JPH0828447A (en) * 1994-05-13 1996-01-30 Toyota Autom Loom Works Ltd Power reducing structure in piston type compressor
JP2003003954A (en) * 2001-06-21 2003-01-08 Sanden Corp Swash plate type compressor
JP2003042065A (en) * 2001-07-26 2003-02-13 Toyota Industries Corp Piston type capacity variable fluid machine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790942B2 (en) * 1997-05-26 2006-06-28 株式会社ヴァレオサーマルシステムズ Swash plate compressor
JP2001336477A (en) * 2000-05-24 2001-12-07 Sanden Corp Compressor
US6582200B2 (en) * 2000-07-14 2003-06-24 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate compressor having shoes made of a magnesium-based material
JP2002039062A (en) * 2000-07-26 2002-02-06 Toyota Industries Corp Compressor
JP2002089437A (en) * 2000-09-13 2002-03-27 Toyota Industries Corp Film forming objective part for lubrication in compressor
JP2002180964A (en) * 2000-12-12 2002-06-26 Toyota Industries Corp Sliding component of compressor and compressor
JP2002257042A (en) * 2001-02-28 2002-09-11 Toyota Industries Corp Object component for forming lubricating surface in compressor
JP4496662B2 (en) * 2001-04-20 2010-07-07 株式会社豊田自動織機 Swash plate in swash plate compressor
JP3890966B2 (en) * 2001-12-06 2007-03-07 株式会社豊田自動織機 Lubrication structure in fixed displacement piston compressor
US6705841B2 (en) * 2002-03-01 2004-03-16 Visteon Global Technologies, Inc. Variable displacement compressor with stepped shaft
DE10318626A1 (en) * 2002-04-25 2003-11-13 Sanden Corp Variable capacity compressor
JP4130566B2 (en) * 2002-09-25 2008-08-06 株式会社テージーケー Capacity control valve for variable capacity compressor
JP2004251256A (en) * 2003-02-21 2004-09-09 Sanden Corp Swash plate compressor
JP4107141B2 (en) * 2003-02-21 2008-06-25 株式会社デンソー Limiter device
JP4025832B2 (en) * 2003-04-14 2007-12-26 株式会社豊田自動織機 Compressor
JP2005188406A (en) * 2003-12-25 2005-07-14 Toyota Industries Corp Swash plate type compressor
JP4062265B2 (en) * 2004-02-24 2008-03-19 株式会社豊田自動織機 Variable capacity compressor
JP2006291881A (en) * 2005-04-13 2006-10-26 Toyota Industries Corp Swash plate type compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676659U (en) * 1993-04-08 1994-10-28 サンデン株式会社 Swash plate type compressor
JPH0828447A (en) * 1994-05-13 1996-01-30 Toyota Autom Loom Works Ltd Power reducing structure in piston type compressor
JP2003003954A (en) * 2001-06-21 2003-01-08 Sanden Corp Swash plate type compressor
JP2003042065A (en) * 2001-07-26 2003-02-13 Toyota Industries Corp Piston type capacity variable fluid machine

Also Published As

Publication number Publication date
JPWO2005024233A1 (en) 2006-11-02
EP1669600A1 (en) 2006-06-14
US20070081904A1 (en) 2007-04-12
KR20060057626A (en) 2006-05-26

Similar Documents

Publication Publication Date Title
US9228573B2 (en) Wabble plate type variable displacement compressor
WO2005024233A1 (en) Variable displacement swash plate type compressor
JP2005113907A (en) Swash plate type compressor
JP2004068757A (en) Variable displacement compressor
EP1092872A2 (en) Piston for swash plate compressor
US7455008B2 (en) Swash plate compressor
JP2000337250A (en) Swash plate type compressor
US7168359B2 (en) Swash plate compressor
JP2000356185A (en) Piston for swash plate type compressor
US20010042438A1 (en) Piston for swash plate type compressor
JP2006242120A (en) Variable displacement type swash plate compressor
JPH08109875A (en) Swash plate type compressor
US6912948B2 (en) Swash plate compressor
JP2001032768A (en) Variable displacement swash plate compressor
JP2003262185A (en) Variable displacement cam plate type compressor
EP1039128A2 (en) Swash plate type compressor
US20140241925A1 (en) Swash plate compressor
JP2000087848A (en) Variable displacement type compressor
WO2003067087A1 (en) Variable capacity swash plate type compressor
JPH1089246A (en) Compressor
JP2003328931A (en) Oscillating swash plate type compressor
JP2001159392A (en) Single head piston for swash plate type compressor
JP2005069085A (en) Variable displacement type swash plate compressor
JP2006009626A (en) Variable displacement compressor
JP2006009628A (en) Variable displacement compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032734.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513610

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067004239

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004771372

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067004239

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004771372

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007081904

Country of ref document: US

Ref document number: 10570482

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10570482

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004771372

Country of ref document: EP