WO2005023918A1 - Thermoplastic resin composition for foamed product and foamed product therefrom - Google Patents

Thermoplastic resin composition for foamed product and foamed product therefrom Download PDF

Info

Publication number
WO2005023918A1
WO2005023918A1 PCT/JP2003/010825 JP0310825W WO2005023918A1 WO 2005023918 A1 WO2005023918 A1 WO 2005023918A1 JP 0310825 W JP0310825 W JP 0310825W WO 2005023918 A1 WO2005023918 A1 WO 2005023918A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
foam
thermoplastic resin
weight
polycarbonate
Prior art date
Application number
PCT/JP2003/010825
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kawato
Kazuhiro Okuyama
Satoru Kinouchi
Hiroaki Tatematsu
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to TW092123660A priority Critical patent/TW200508299A/en
Priority to AU2003261746A priority patent/AU2003261746A1/en
Priority to PCT/JP2003/010825 priority patent/WO2005023918A1/en
Publication of WO2005023918A1 publication Critical patent/WO2005023918A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients

Definitions

  • the present invention relates to a thermoplastic resin composition for foaming containing a thermoplastic resin and a porous filler, and a foam thereof. Height
  • Plastics are lighter in weight than metals, etc., so their use is expanding in electronic equipment, sundries and automotive parts, but they are lighter and have better physical properties such as strength and impact resistance. There is a further need for materials.
  • One of these technologies is resin foam technology.
  • Methods for producing a resin foam include a method of mixing a foaming agent (chemical foaming) and a method of foaming by heating (physical foaming).
  • foams have been developed to reduce the weight by forming a void called a cell in the resin by degassing the supercritical fluid after infiltrating the supercritical fluid gas into the thermoplastic resin. ing.
  • the mold temperature in order to increase the weight reduction rate (expansion ratio), the mold temperature must be raised to the glass transition or near the crystallization temperature, which takes time to cool in the mold and the molding cycle. There has been a problem of a decrease in productivity such as a longer time.
  • an object of the present invention is to provide a thermoplastic resin composition for foaming having a high foaming ratio and a uniform foamed structure, and a foamed product thereof. Disclosure of the invention
  • the present inventors have found that, by adding a porous filler to a thermoplastic resin in a foaming composition, the solubility of a foaming agent in a molten resin is improved. It has been found that a highly foamed and uniform foam can be obtained.
  • thermoplastic resin composition for foaming foaming, foam, and the like are provided.
  • thermoplastic resin 45-99.9% by weight of thermoplastic resin
  • thermoplastic resin composition for foaming A thermoplastic resin composition for foaming.
  • the foam according to the pore volume value of the porous filler is 0. 01 c cZg more or specific surface area is 10 m 2 Zg more [2] or [3].
  • porous filler is silica, activated carbon, zeolite, silica gel having an average particle diameter of 50 or less, or fibrous activated carbon having a fiber diameter of 20 zm or less. body.
  • the self-melting tension IS ⁇ iJ is (5) fiber reinforced reinforced material or (6) high ⁇ 3 ⁇ 4 polyethylene.
  • the thermoplastic resin may be a polypropylene resin, a polyethylene resin, a polypropylene resin, an acrylonitrile butadiene-styrene copolymer (ABS resin), a polystyrene resin, polyethylene terephthalate, Polybutylene terephthalate, acrylonitrile styrene copolymer (AS resin), syndiotactic polystyrene, polyphenylene oxide, polyacetal, polymethyl methyl resin, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene
  • ABS resin acrylonitrile butadiene-styrene copolymer
  • AS resin acrylonitrile styrene copolymer
  • syndiotactic polystyrene polyphenylene oxide
  • polyacetal polymethyl methyl resin
  • polyphenylene sulfide polyether sulfone
  • thermoplastic resin according to any one of [2] to [7], wherein the thermoplastic resin is a polymer blend comprising a combination of a polyketone-based resin and a resin selected from any of the following. Foam.
  • ABS resin Butadiene styrene copolymer
  • AS resin Acrylonitrile ⁇ Styrene copolymer
  • Syndiotactic polystyrene bolifenylene oxide, polyacetal, polymethacrylmethyl, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene naphthylate
  • FIG. 1 is a schematic view of an injection molding machine for producing the foam of the present invention.
  • thermoplastic resin composition for foaming of the present invention will be described.
  • thermoplastic resin composition for foaming of the present invention comprises a thermoplastic resin and a porous filler, or a thermoplastic resin, a porous filler, and a melt tension controller Ij.
  • the thermoplastic resin is not particularly limited, and is preferably a resin having a high melt tension at a temperature and a shear rate during molding from the viewpoint of foamability.
  • ABS resin polyacrylonitrile-butadiene-styrene copolymer
  • AS resin polyacrylonitrile-styrene copolymer
  • syndiotactic polystyrene polyphenylene resin
  • polyethylene resin polypropylene resin
  • examples include dilenoxide, polyacetal, polymethyl methacrylate, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene naphtholate.
  • polycarbonate resins polystyrene resins, polypropylene resins, syndiotactic polystyrene, polyphenylene oxide, and polyphenylene sulfide are preferred, and poly-polycarbonate is particularly preferred from the viewpoint of flame retardancy.
  • a system resin a polymer blend may be used as the thermoplastic resin.
  • a polymer blend composed of a combination of a polycarbonate-based concept and a translation selected from any of the following can be used.
  • Polyethylene resin polypropylene resin, acrylonitrile butadiene styrene copolymer (ABS resin), polystyrene resin, polyethylene terephthalate, polybutylene terephthalate 1 / ", acrylonitrile styrene consolidation (AS resin), syndio Polystyrene, polyphenylene oxide, polyacetal, polymethyl methacrylate, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene naphthalate
  • ABS resin acrylonitrile butadiene styrene copolymer
  • AS resin acrylonitrile styrene consolidation
  • syndio Polystyrene polyphenylene oxide, polyacetal, polymethyl methacrylate, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene naphthalate
  • polycarbonate-based resins and crystalline thermoplastic resins polyethylene-based resins, polypropylene-based syllables, syndiotactic polystyrene, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide
  • Preferred is a polymer blend which is a combination of a polyamide and a stereocomplex methyl methacrylate.
  • polymer blends other than the polycapone-based resin examples include polyphenylene sulfide and branched polyphenylene sulfide, syndiotactic polystyrene and rag-resistant raw polystyrene, or syndiotactic polystyrene and «»
  • Polymer blends such as polyphenylene oxide are preferred.
  • polycarbonate resins include linear type, branched type, long chain branched resin, linear polycarbonate polydimethylsiloxane copolymer (hereinafter, PC-PDMS), and long-chain branched PC-PDMS copolymer. Coalescence and the like.
  • these polycarbonates may be blended and used, for example, a blend of a branched polycarbonate and a linear polycarbonate may be used.
  • branched polycarbonate refers to a product obtained by polymerizing a divalent phenol and phosgene or a carbonate compound typically in the presence of a branching agent and, if necessary, a terminal stopper.
  • the linear polycarboxylic acid is typically obtained by polymerizing a divalent phenol and phosgene or a carbonate compound in the presence of a terminal stopper as required. In other words, except that no branching agent is used, it is the same as the branched poly-one-ponate resin.
  • a long-chain branched type polycarbonate is preferred from the viewpoint of foaming properties, and a straight-chain PC-PDMS copolymer is preferred from the viewpoint of flame retardancy. From both viewpoints, the long-chain branched PC-PDMS copolymer is preferred. Particularly preferred.
  • the porous FILLER scratch, pore volume of 0.01 cc / g or more, preferably 0. 2 cc / g or more, and particularly preferably either at 0. 3 c cZg above, or specific surface area is 10 m 2 Zg above, preferably 400 meters 2 / g or more, more preferably 500 m 2 Roh g or more, particularly preferably 1000 m 2 Zg above.
  • the pore volume is less than 0.01 cc / g or the specific surface area value is less than 10 m 2 Zg, the ability to retain the foaming agent is reduced, the foam cells are enlarged, the foam becomes inhomogeneous, and the physical properties of the foam may be reduced. .
  • the pore volume and the specific surface area are values measured by the BET method (nitrogen adsorption method).
  • the shape of the porous filler may be plate-like, powdery or fibrous. Preferably, it is in the form of powder or fiber.
  • the particle diameter is preferably 1011111 to 50/111, particularly preferably 100 nm to 30 Atm in terms of average particle diameter. If the average particle diameter is less than 1 Onm, secondary aggregation is severe and dispersion becomes difficult. If the average particle diameter exceeds 50 m, mechanical strength may be reduced.
  • its fiber diameter is preferably 2 ⁇ ! 2020 m, particularly preferably 10 nm ⁇ 10 xm. If the fiber diameter is less than 2 nm, it is difficult to disperse due to entanglement, and if the fiber diameter exceeds 20 m, the mechanical strength may decrease.
  • porous filler examples include porous silica, activated carbon, zeolite, silica gel, and fibrous activated carbon (Adil, Dekin: manufactured by Unitika Ltd.) and the like.
  • the surface of the porous filler may be treated with a reactive compound such as a silane coupling agent, a titanate coupling agent, or an organosiloxane, if necessary.
  • a reactive compound such as a silane coupling agent, a titanate coupling agent, or an organosiloxane, if necessary.
  • the amount of the surface treatment agent to be added is 0.1 to 5% by weight, more preferably 0.2 to 3% by weight, and particularly preferably 0.3 to 1% by weight, based on the thermoplastic resin component. If it exceeds 5% by weight, mechanical strength and heat resistance may be impaired.
  • a supercritical fluid When a supercritical fluid is used as the foaming agent, it is more effective to make the foam cells uniform if the porous filler does not absorb water.
  • the amount of water absorption is 5 times for one porous filler %, Preferably at most 2% by weight, particularly preferably at most 1% by weight.
  • a melt tension adjuster may be added to adjust the melt tension of the thermoplastic resin and control the size of the foam cells of the foam. The following are the melt tension modifiers.
  • thermoplastic resin having a branched chain structure may be used as the thermoplastic resin
  • thermoplastic resin having a branched chain structure may be appropriately mixed with a normal linear type thermoplastic resin.
  • the branching agent may have a skeleton that is the same as or similar to the basic skeleton of the thermoplastic resin molecule and has a reactive group having three or more functional groups.
  • a branching agent such as trivinylbenzene may be used, and a polymer obtained by polymerizing a styrene monomer containing about 0 to 5% by weight of these may be used.
  • 1,1,1-tris (4-hydroxyphenyl) ethane can be suitably used as a branching agent.
  • a similar high melt tension can be exhibited by adding a high molecular weight acryl-based resin in addition to the thermoplastic resin having a branched structure in its molecular structure.
  • the weight average molecular weight of the high molecular weight acryl-based resin is preferably 300,000 or more, more preferably 2,000,000 or more.
  • P53 OA, P 551 A, etc., manufactured by Mirishi Rayon Co., Ltd. can be applied.
  • A3000 manufactured by Mitsubishi Rayon Co., Ltd. or the like can be used.
  • High melt polyethylene melt mouth-rate MFR (190 ° C, load 2.16 kg) is preferably about 0.01 to 5 g / 10 minutes, more preferably about 0.03 to 3 g 10 minutes. It is about. It can be appropriately selected according to the desired degree of foaming. Fiber reinforcing material and polyethylene also improve the melt tension, suppress cell enlargement, foam breakage and open cells, and contribute to the formation of fine cells.
  • the above (1) to (6) may be used alone or in combination.
  • the amount of the thermoplastic resin in the thermoplastic resin composition is preferably from 50 to 99.9% by weight, more preferably from 70 to 99.9% by weight. It is 99.9% by weight, particularly preferably 90 to 99.9% by weight. If the amount of the thermoplastic resin is too small, there is a possibility that the fluidity is insufficient or the mechanical strength is reduced.
  • the amount of the porous filler to be added depends on the application, required characteristics, the type of the porous filler and the specific surface area, but is preferably 0.1 to 50% by weight, more preferably 0.1 to 30% by weight. It is particularly preferably 0.1 to 10% by weight. If the amount is less than 0.1% by weight, no foaming effect is observed, and if the amount exceeds 50% by weight, the foam cells become large and the mechanical strength of the foam decreases.
  • the amount of the thermoplastic resin in the thermoplastic resin composition is preferably the same as the above, for the same reason as described above. 45 to 99.9% by weight, more preferably 65 to 99.9% by weight, particularly preferably 87 to 99.9% by weight.
  • the amount of the porous filler is preferably 0.1 to 50% by weight, more preferably 0.1 to 30% by weight, and particularly preferably 0.1 to 10% by weight.
  • the amount of the melt tension modifiers (1) to (4) may be appropriately selected according to the thermoplastic resin serving as the resin matrix, the application, and the required characteristics, but is preferably 0.1 to 10% by weight, more preferably. Is 0.2 to 5% by weight, particularly preferably 0.5 to 3% by weight. If the added amount is less than 0.1% by weight, the cells may be united and enlarged, depending on the molecular weight of the matrix resin and the presence or absence of a branched structure. If the added amount exceeds 0.1% by weight, the cost increases. In addition, the inherent properties of the matrix resin may be impaired.
  • the amount of the melt tension modifiers (5) and (6) to be added may be appropriately selected according to the thermoplastic resin serving as the resin matrix, the application, and the required characteristics, but is preferably 0.5 to 50% by weight, more preferably. Is from 3 to 40% by weight. If the amount is less than 0.5% by weight, the melt tension may not be improved. If the amount is more than 50% by weight, the melt tension is too high. In addition to inhibiting bubbles, the residual stress increases, and the warpage and deformation of the molded body are not reduced, that is, the moldability may be deteriorated.
  • an antioxidant may be added to the thermoplastic resin composition.
  • thermoplastic resin is a polycarbonate-based resin
  • a phosphite-based or aromatic phosphine-based antioxidant is preferable, and the compounding amount is preferably 0.01 to 0.5% by weight. Selection can be made according to the application and required characteristics.
  • inorganic fillers such as alumina, silicon nitride, talc, My power, titanium oxide, carbon black, fused silica, clay compounds (montmorillonite, kaolinite, etc.), glass beads, glass flakes and the like may be added.
  • the particle size and shape There is no particular limitation on the particle size and shape, and the amount is preferably 0.1 to 5% by weight, but can be selected according to the application and required characteristics.
  • reinforcing fibers such as glass fiber and carbon fiber may be added.
  • flame retardancy use phosphorous Z polytetrafluoroethylene, metal salt Z polytetrafluoroethylene, organopolysiloxane / polytetrafluoroethylene, non-decabrom, A flame retardant such as magnesium oxide may be added.
  • thermoplastic resin composition can be melt-kneaded by a single-screw extruder, a twin-screw extruder, or the like, and can be molded, granulated (pelletized), and the like.
  • thermoplastic resin composition or a composition obtained by melt-kneading and granulating the composition in advance can be foamed into a foam.
  • the maximum cell diameter of the foam cell of the foam of the present invention is preferably 50 / zm or less, more preferably 20 or less. If the maximum cell diameter is larger than 50, the mechanical strength of the foam may decrease.
  • foaming agents such as fluids such as water, air, nitrogen, carbon dioxide, and other gases inert to molding materials, supercritical fluids, and subcritical fluids Is used.
  • an ordinary resin molding machine such as an injection molding machine or an extrusion molding machine can be used as a resin foam production apparatus.
  • thermoplastic resin composition in an undried state or a pellet obtained by previously melting and kneading the thermoplastic resin composition is absorbed by a method such as putting into a constant temperature and humidity chamber, It is put into an extruder, melt-kneaded and molded.
  • the moisture absorption of water is preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight, with the total weight of the porous filler being 100 parts by weight. If the 7_K content is less than 1 part by weight, the function as a foaming agent is not exhibited. If the content exceeds 10 parts by weight, coarse foamed cells are formed, and the mechanical properties of the obtained thermoplastic resin composition may be reduced. There is.
  • thermoplastic resin composition When a supercritical fluid is used as a blowing agent, the supercritical fluid is supplied, and the supercritical fluid is dissolved and impregnated in the thermoplastic resin composition.
  • the apparatus for this is not particularly limited, but for example, an injection molding machine, an extrusion molding machine, an autoclave and the like can be used.
  • a supercritical fluid for example, as in the case of injection molding or extrusion molding, a supercritical fluid can be supplied and impregnated during melt-kneading of a thermoplastic resin composition.
  • thermoplastic resin composition may be impregnated with a supercritical fluid.
  • a molded thermoplastic resin composition is placed in a autoclave and impregnated with a supercritical fluid (batch type).
  • the supercritical fluid acting as a foaming agent is not particularly limited as long as it can be dissolved in the thermoplastic resin composition and is inert, but from the viewpoint of safety, cost, etc.
  • a mixed gas is preferred.
  • thermoplastic resin composition As a method of infiltrating the supercritical fluid into the thermoplastic resin composition, there are a method of injecting the supercritical fluid in a pressurized or depressurized state, a method of injecting a liquid inert gas by a pump, etc. There is.
  • the pressure at which the supercritical gas is permeated into the thermoplastic resin composition must be equal to or higher than the critical pressure of the supercritical fluid to be permeated.To further improve the permeation rate, 15 MPa or more, more preferably Is not less than 2 O MPa.
  • the supercritical fluid is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the thermoplastic resin composition, depending on the type thereof. In particular Preferably, 1 to 5 parts by weight are permeated. If the supercritical fluid is less than 0.1 part by weight, fine foam cells cannot be obtained. If the supercritical fluid is more than 20 parts by weight, the appearance of the foam surface is poor, and coarse foam cells are formed. There is a risk of getting better.
  • the supercritical state is released by lowering the temperature and / or the pressure to foam.
  • the supercritical fluid is expanded to obtain a foam.
  • the temperature drops and the supercritical state is released.
  • Foams produced by the above-mentioned method provide excellent solubility and excellent diffusivity of the supercritical fluid, and the porous filler adsorbs the supercritical fluid so that the supercritical fluid can be added to the thermoplastic resin composition. Since the impregnation amount is improved, fine and uniform foam cells can be formed, and as a result, a resin foam having high mechanical strength and light weight can be obtained. In particular, in a batch system, the time of being placed in a supercritical fluid can be considerably reduced by using the composition of the present invention.
  • the foam of the present invention has a satisfactory cell density and uniformity of cells, it can be used for OA electronics, automobiles, construction and other fields, high reflection materials, heat insulation materials, sound insulation materials, cushioning materials, low specific gravity materials, and separation. It can be used for membranes, fuel cell separators, low dielectrics, various lightweight structures, optical equipment bases, optical connectors, optical pickups, lamp reflectors, etc.
  • a foam is manufactured by injection molding using a supercritical fluid.
  • FIG. 1 is a schematic view of an injection molding machine for producing the foam of the present invention.
  • This injection molding machine 1 is a machine for producing an injection molded product that is a foam of a predetermined shape from the thermoplastic resin composition and a supercritical fluid, and includes an injection molding machine main body 11, a mold 12, Is provided. Further, in order to introduce the supercritical fluid into the injection molding machine, a supercritical fluid introduction device 21 is provided in the cylinder 11 of the injection molding machine main body 11.
  • the supercritical fluid introducing device 21 is a gas cylinder 21 filled with a raw material gas. 1, a pressure booster 2 1 2 that pressurizes the source gas from the gas cylinder 2 1 1 to the critical pressure, and a control pump that controls the amount of supercritical gas pressurized to the critical pressure into the cylinder 1 1 1 2 1 and 3 are provided.
  • thermoplastic resin composition and various additives as required are charged into the cylinder 111 from the hopper 113.
  • the raw material in the cylinder 11 is moved by the screw 11 and introduced into the gap 12 1 in the mold 12 (introduction step).
  • the supercritical fluid may be subjected to mold clamping or counter pressure in order to maintain the supercritical state until the introduction of the raw material into the mold 12 is completed.
  • Critical state maintaining step may be subjected to mold clamping or counter pressure in order to maintain the supercritical state until the introduction of the raw material into the mold 12 is completed.
  • the movable mold 12 B of the mold 12 is retracted and decompressed to foam. (Pressure drop process).
  • the mold 12 is opened and the molded product is taken out.
  • thermoplastic resin composition for foaming (Production of thermoplastic resin composition for foaming)
  • Example 21 to 39 Pellets of each comparative example were obtained in the same manner as in Example 1 at the composition and kneading temperature shown in Table 1.
  • Example 21 to 39 Pellets of each comparative example were obtained in the same manner as in Example 1 at the composition and kneading temperature shown in Table 1.
  • Pellets of each example were obtained in the same manner as in Example 1 at the composition and kneading temperature shown in Table 2.
  • Table 3 shows the details of the porous filler.
  • Melt tension regulator 2 Polytetrafluoroethylene-containing composite powder
  • Teflon FN1700A manufactured by Idemitsu Petrochemical Co., Ltd.
  • Branch PC Branch Poly-Polyone
  • PPS Polyphenylene sulfide
  • LF3G PPO Polyphenylene oxide, General Electric Co., Ltd., 646 HI PS: Impact resistant polystyrene, Idemitsu Petrochemical Co., Ltd., I T44 Idemitsu Petrochemical Co., Ltd., Zarek 130 ZC
  • Branched PP Branched polypropylene, manufactured by San-Alomer Co., Ltd., PF814
  • Teflon FN1700A manufactured by Idemitsu Petrochemical Co., Ltd.
  • PC-PDMS Polycarbonate polydimethylsiloxane copolymer
  • PPS Polyphenylene sulfide
  • PPO Polyphenylene oxide, manufactured by General Electric, 646 HI PS: Impact-resistant polystyrene, Idemitsu Petrochemical Co., Ltd., IT44 SPS: Syndiotactic polystyrene
  • PP polypropylene, manufactured by Idemitsu Petrochemical Co., Ltd., E—150GK
  • Porous filler 9 Silica 7K Sawa Chemical Industry Co., Ltd. P—740 T 387 3.8 1.65 Porous filler 10 Calcium phosphate Maruo Calcium Co., Ltd. HAF—30NP 110 2.9
  • Example 1 to 17 The pellets described in Examples 1 to 17 were subjected to microcellular foaming using a microcellular foaming injection molding machine (manufactured by JSW, 180 tons) and a 140 mm square X 2 mm thick plate-shaped mold. A test piece was obtained by molding.
  • the injection condition of the nitrogen gas into the cylinder of the injection molding machine was under a pressure of 15 MPa, and the injection amount of the nitrogen gas was 0.3 part by weight.
  • Table 4 shows the expansion molding conditions and expansion ratios of Examples 40 to 56, Example 57 shown below, and Comparative Examples 5 to 8.
  • the expansion ratio was determined by dividing the density before foaming by the density after foaming.
  • the cross section of the sample was observed with a scanning electron microscope at a magnification of 500 times, and the foam cell diameter was measured.
  • the observation range was about 0.25 mm X 0.20 mm, and the minimum to maximum cell diameter of the flow end of the test piece of Example 43 in that range was 2 to 13 m.
  • Test pieces were prepared under the same conditions as in Example 40 except that the pellets prepared in Comparative Examples 1 to 4 were used.
  • the pellets prepared in Example 2 were absorbed in a constant temperature and humidity chamber at 120 ° C and a humidity of 90% RH for 24 hours, and nitrogen gas was injected by the microcellular foaming injection molding machine. Without molding. At this time, the amount of water absorbed by the pellets was 0.25 parts by weight.
  • Test pieces were prepared under the same conditions as in Example 40 except that the pellets prepared in Examples 21 to 36 were used.
  • Table 5 shows the expansion molding conditions and expansion ratios.
  • Table 6 shows the expansion molding conditions and expansion ratios.
  • press films (thickness: 300 m) were produced at the same temperature as the molding temperature in the above-mentioned injection molding method.
  • the obtained film was cut into a width of 10 mm and a length of 50 mm, put into an autoclave, and carbon dioxide in a supercritical fluid state at an arbitrary impregnation temperature at 15 MPa for 30 minutes. After impregnation, the pressure was rapidly reduced at an arbitrary foaming temperature, and then cooled to room temperature to obtain a foam. The appearance of this foam was observed and its expansion ratio was measured.
  • Table 7 shows the foaming molding conditions, appearance observations, and expansion ratios of Examples 77 to 86 and Comparative Examples 9 to 12 shown below.
  • “good” means a state where the entire molded product is uniformly whitened
  • “defective” means a state where the degree of whitening varies depending on the part.
  • the minimum to maximum cell diameter of Example 80 was measured in the same manner as in Example 43, and as a result, the minimum to maximum cell diameter at the flow end of the test piece was less than 1 im to 7.
  • Test pieces were prepared under the same conditions as in Example 77 except that the kneading bellets prepared in Comparative Examples 1 to 4 were used. However, Comparative Example 12 was performed under the conditions of an impregnation temperature of 200 ° C. and a foaming temperature of 165 T :.
  • thermoplastic resin composition for foaming having a high foaming ratio and a uniform foamed structure, and a foam thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A thermoplastic resin composition for a foamed product which comprises (a) 45 to 99.9 wt % of a thermoplastic resin, (b) 0.1 to 50 wt % of a porous filler and (c) 0 to 10 wt % of a melt strength adjusting agent; and a foamed product produced by the foaming of the resin composition. A porous filler added to a thermoplastic resin enhances the easiness in the impregnation of a molten resin with a foaming agent and also acts as a nucleating agent, which allows the formation of a uniform foamed structure with a high expansion ratio.

Description

明 細 書 発泡用熱可塑性樹脂組成物及びその発泡体 技術分野  Description Thermoplastic composition for foaming and foamed body
本発明は、 熱可塑性樹脂及び多孔質フィラーを含む発泡用熱可塑性樹脂組成物 及びその発泡体に関する。 背  The present invention relates to a thermoplastic resin composition for foaming containing a thermoplastic resin and a porous filler, and a foam thereof. Height
プラスチックは金属等と比較して軽量であるため、 電子機器、 雑貨及び自動車 用の部品等に使用範囲が拡大しているが、 より軽量で且つ強度ゃ耐衝撃性等の物 性が優れている材料がさらに求められている。 その技術の 1つとして樹脂発泡体 技術がある。  Plastics are lighter in weight than metals, etc., so their use is expanding in electronic equipment, sundries and automotive parts, but they are lighter and have better physical properties such as strength and impact resistance. There is a further need for materials. One of these technologies is resin foam technology.
樹脂発泡体を作製する方法には発泡剤を混合する方法 (化学発泡) 、 加熱等に より発泡する方法 (物理発泡) がある。  Methods for producing a resin foam include a method of mixing a foaming agent (chemical foaming) and a method of foaming by heating (physical foaming).
また、 近年、 熱可塑性樹脂に超臨界流体ガスを浸透させた後に、 この超臨界状 流体を脱ガスする方法によって樹脂内にセルと呼ばれる空隙を形成し、 軽量化す る発泡体の開発が行われている。  In recent years, foams have been developed to reduce the weight by forming a void called a cell in the resin by degassing the supercritical fluid after infiltrating the supercritical fluid gas into the thermoplastic resin. ing.
しかし、 上記の物理発泡及び化学発泡方法では、 特に、 超臨界発泡法による方 法では、 容易に均一な発泡構造を得ることが困難であった。  However, with the above-mentioned physical foaming and chemical foaming methods, it has been difficult to easily obtain a uniform foamed structure, particularly by a method using a supercritical foaming method.
とりわけ、 射出成形において樹脂への超臨界状流体の溶解 ·含浸が困難な上に、 射出圧力の分布により未発泡部位が生じ易いという欠点があつた。  In particular, there were drawbacks that it was difficult to dissolve and impregnate the supercritical fluid into the resin during injection molding, and that non-foamed parts were easily formed due to the distribution of injection pressure.
さらには、 軽量化率 (発泡倍率) を向上させようとすると、 金型温度をガラス 転移あるいは、 結晶化温度付近まで上昇させねばならず、 金型内での冷却に時間 を要し、 成形サイクルタイムが長くなるという生産性低下の問題があった。  Furthermore, in order to increase the weight reduction rate (expansion ratio), the mold temperature must be raised to the glass transition or near the crystallization temperature, which takes time to cool in the mold and the molding cycle. There has been a problem of a decrease in productivity such as a longer time.
また、 バッチ法や押出成形においては、 発泡倍率が高くても 1 . 4倍程度まで しか得られず、 これ以上発泡倍率を向上させると外観が極めて悪く、 発泡セルが 破泡したものしか得られないという欠点があつた。  In addition, in the batch method or extrusion molding, even if the expansion ratio is high, only about 1.4 times can be obtained, and if the expansion ratio is further improved, the appearance is extremely poor, and only foams with broken cells can be obtained. There was a disadvantage that there was no.
本発明は上記課題に鑑み、 発泡倍率が高く発泡構造が均一な発泡用熱可塑性樹 脂組成物及びその発泡体を提供することを目的とする。 発明の開示 In view of the above problems, an object of the present invention is to provide a thermoplastic resin composition for foaming having a high foaming ratio and a uniform foamed structure, and a foamed product thereof. Disclosure of the invention
この課題を解決するために本発明者らは、 発泡用組成物において、 熱可塑性樹 脂に多孔質フィラ一を添加することにより、 発泡剤の溶融樹脂への溶解性が向上 するため、 発泡倍率が高く均一な発泡の発泡体が得られることを見出した。  In order to solve this problem, the present inventors have found that, by adding a porous filler to a thermoplastic resin in a foaming composition, the solubility of a foaming agent in a molten resin is improved. It has been found that a highly foamed and uniform foam can be obtained.
本発明のによれば、 以下の発泡用熱可塑性樹脂組成物、 発泡体等が提供される。  According to the present invention, the following thermoplastic resin composition for foaming, foam, and the like are provided.
[1] (a) 熱可塑性樹脂 45〜99. 9重量%、  [1] (a) 45-99.9% by weight of thermoplastic resin,
(b) 多孔質フイラ一 0. :!〜 50重量%、 及び  (b) Porous filler 0.:! ~ 50% by weight, and
(c) 溶融張力調整剤 0〜10重量%、  (c) melt tension modifier 0-10% by weight,
を含む、 発泡用熱可塑性樹脂組成物。 A thermoplastic resin composition for foaming.
[2] (A) 熱可塑性樹脂 45〜 99. 9重量%、  [2] (A) thermoplastic resin 45 ~ 99.9% by weight,
(B) 多孔質フイラ一 0. 1〜50重量%、  (B) Porous filler 0.1 to 50% by weight,
(C) 溶融張力調整剤 0〜10重量%、 及び  (C) a melt tension modifier: 0 to 10% by weight, and
(D) 発泡セル、  (D) foam cells,
を含む発泡体。 Including foam.
[3] 前記発泡セルの最大セル径が 50 以下である [2] に記載の発泡体。  [3] The foam according to [2], wherein a maximum cell diameter of the foam cell is 50 or less.
[4] 前記多孔質フィラーの細孔容積値が 0. 01 c cZg以上又は比表面積値 が 10m2Zg以上である [2] 又は [3] に記載の発泡体。 [4] The foam according to the pore volume value of the porous filler is 0. 01 c cZg more or specific surface area is 10 m 2 Zg more [2] or [3].
[5] 前記多孔質フイラ一が、 平均粒子径 50 以下のシリカ、 活性炭、 ゼ オライト、 シリカゲル又は繊維径 20 zm以下の繊維状活性炭である [2] 〜 [4] のいずれかに記載の発泡体。  [5] The foaming according to any one of [2] to [4], wherein the porous filler is silica, activated carbon, zeolite, silica gel having an average particle diameter of 50 or less, or fibrous activated carbon having a fiber diameter of 20 zm or less. body.
[6] 嫌 3§S虫張力調靈 IIが、 下記のいず^^である [2] 〜 [5] のいずれかに記 載の発泡体。  [6] The foam according to any of [2] to [5], wherein 3§S insect tension II is the following:
(1) 分誦觀を Wる熱可塑'隱旨  (1) thermoplasticity
(2) 高 ^f*アクリル樹脂  (2) High ^ f * acrylic resin
(3) フイブリリ 細 gを^ Tるポリテトラフルォロエチレン  (3) Polytetrafluoroethylene with fine g
(4) ポリテトラフルォロエチレンとアクリル樹脂の複合体  (4) Composite of polytetrafluoroethylene and acrylic resin
(5)纖隨 才  (5) Fiber
(6) 高^ *ポリエチレン  (6) High ^ * polyethylene
[7] 爾己溶融張力 IS^iJが、 (5)繊隹強化材又は(6)高 ^¾ポリエチレンであ る [6] に記載の発泡体。 [7] The self-melting tension IS ^ iJ is (5) fiber reinforced reinforced material or (6) high ^ ¾ polyethylene. The foam according to [6].
[8] 前記熱可塑性樹脂が、 ポリ力一ポネート系樹脂、 ポリエチレン系樹脂、 ポリプロ ピレン系樹脂、 ァクリロニトリ ^ "ブタジエン一スチレン共重合体(ABS樹脂) 、 ポ リスチレン系樹脂、 ポリエチレンテレフ夕レー卜、 ポリブチレンテレフ夕レート、 ァクリ ロニトリ スチレン共重合体(AS樹脂) 、 シンジオタクチックポリスチレン、 ポリフ ェニレンォキシド、 ポリアセタール、 ポリメタクリ 礮メチル樹脂、 ポリフエ二レンスル フイド、 ポリエーテルスルホン、 ポリアリレート、 ポリアミド、 ポリイミド又はポリェチ レンナフタレートである [2] 〜 [7] のいずれかに記載の発泡体。  [8] The thermoplastic resin may be a polypropylene resin, a polyethylene resin, a polypropylene resin, an acrylonitrile butadiene-styrene copolymer (ABS resin), a polystyrene resin, polyethylene terephthalate, Polybutylene terephthalate, acrylonitrile styrene copolymer (AS resin), syndiotactic polystyrene, polyphenylene oxide, polyacetal, polymethyl methyl resin, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene The foam according to any one of [2] to [7], which is phthalate.
[9] 膽 3熱可塑性樹脂が、 ポリ力一ポネート系棚旨と下記のいずれかより選ばれる樹 脂との組み合わせからなるポリマ一ブレンドである [2] 〜 [7] のいずれかに記載 の発泡体。  [9] The thermoplastic resin according to any one of [2] to [7], wherein the thermoplastic resin is a polymer blend comprising a combination of a polyketone-based resin and a resin selected from any of the following. Foam.
ポリエチレン系樹脂、 ポリプロピレン系樹脂、 ァクリロニト > ~ブタジエンースチ レン共重合体(ABS樹脂) 、 ポリスチレン系樹脂、 ポリエチレンテレフ夕レート、 ポリ プチレンテレフタレ一ト、 アクリロニトリ^) スチレン共重合体(AS樹脂) 、 シンジォ タクチックポリスチレン、 ボリフエ二レン才キシド、 ポリアセタール、 ポリメタクリリ メチル、 ポリフエ二レンスルフィド、 ポリエーテルスルホン、 ポリアリレート、 ポリアミ ド、 ポリイミド又はポリエチレンナフ夕レート  Polyethylene resin, Polypropylene resin, Acrylonite> ~ Butadiene styrene copolymer (ABS resin), Polystyrene resin, Polyethylene terephthalate, Polybutylene terephthalate, Acrylonitrile ^) Styrene copolymer (AS resin), Syndiotactic polystyrene, bolifenylene oxide, polyacetal, polymethacrylmethyl, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene naphthylate
[10] 前記ポリ力一ポネ一卜系樹脂が、 下記のいずれかより選ばれる樹脂である [8] 又は [9] に記載の発泡体。  [10] The foam according to [8] or [9], wherein the poly-resin-based resin is a resin selected from any of the following.
(1) 分嚇リカ一ポネート職  (1) Intimate recovery
( 2 ) 分!^リカーボネートと ポリカーボネートとのポリマープレンド  (2) Min! ^ Polymer blend of carbonate and polycarbonate
(3) ポリ力一ポネート一ポリジメチルシロキサン共重合体  (3) Poly-Polyone-Polydimethylsiloxane Copolymer
[11] 嫌 3熱可塑性樹脂が下記のいずれかより選ばれるポリマーブレンドである、 [2] 〜 [7] のいずれかに記載の発泡体。  [11] The foam according to any one of [2] to [7], wherein the negative thermoplastic resin is a polymer blend selected from any of the following.
(1) ポリフエ二レンスルフイド及び分岐ポリフエ二レンスルフイド  (1) Polyphenylene sulfide and branched polyphenylene sulfide
( 2 ) シンジオタクチックポリスチレン及び耐 »1生ポリスチレン  (2) Syndiotactic polystyrene and anti- »1 raw polystyrene
(3) シンジオタクチックポリスチレン、 耐衝搫 I生ポリスチレン及びポリフエ二レンォ キシド  (3) Syndiotactic polystyrene, anti-impact I raw polystyrene and polyphenylene oxide
[12] [1] に記載の発泡用熱可塑性樹脂組成物に発泡剤を含浸させ、 前記多 孔質フイラ一に前記発泡剤を吸着させて、 前記発泡剤を発泡させる発泡体の製造 方法。 [12] Production of a foam in which the foaming thermoplastic resin composition according to [1] is impregnated with a foaming agent, the foaming agent is adsorbed on the porous filter, and the foaming agent is foamed. Method.
[13] 前記発?誠 ijが、 水分、 超臨界状流体又は亜臨界状流体である [12] に 記載の発泡体の製造方法。  [13] The method for producing a foam according to [12], wherein the essence ij is water, a supercritical fluid, or a subcritical fluid.
[14] 押出成形による [12] 又は [13] に記載の発泡体の製造方法。  [14] The method for producing a foam according to [12] or [13] by extrusion molding.
[15] [12] 〜 [14] のいずれかに記載の製造方法により製造される発泡 体。 図面の簡単な説明  [15] A foam produced by the production method according to any one of [12] to [14]. Brief Description of Drawings
図 1は、 本発明の発泡体を製造するための射出成形機の模式図である。 発明を実施するための最良の形態  FIG. 1 is a schematic view of an injection molding machine for producing the foam of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
まず、 本発明の発泡用熱可塑性樹脂組成物について説明する。  First, the thermoplastic resin composition for foaming of the present invention will be described.
本発明の発泡用熱可塑性樹脂組成物は、 熱可塑性樹脂及び多孔質フイラ一、 又 は熱可塑性樹脂、 多孔質フィラー及び溶融張力調^ Ijより構成される。  The thermoplastic resin composition for foaming of the present invention comprises a thermoplastic resin and a porous filler, or a thermoplastic resin, a porous filler, and a melt tension controller Ij.
上記熱可塑性樹脂としては、 特に限定はなく、 発泡性の観点から、 成形加工時 の温度、 剪断速度下において高溶融張力のものが好ましい。  The thermoplastic resin is not particularly limited, and is preferably a resin having a high melt tension at a temperature and a shear rate during molding from the viewpoint of foamability.
例えば、 ポリ力一ポネート系樹脂、 ポリエチレン系樹脂、 ポリプロピレン系樹 脂、 アクリロニトリル一ブタジエン一スチレン共重合体 (ABS樹脂) 、 ポリ アクリロニトリル一スチレン共重合体 (AS樹脂) 、 シンジオタクチックポリ スチレン、 ポリフエ二レンォキシド、 ポリアセタール、 ポリメタクリル酸メチル、 ポリフエ二レンスルフイド、 ポリエーテルスルホン、 ポリアリレート、 ポリアミ ド、 ポリイミド又はポリエチレンナフ夕レート等が挙げられる。 この中で好まし くは、 ポリカーボネート系樹脂、 ポリスチレン系樹脂、 ポリプロピレン系樹脂、 シ ンジオタクチックポリスチレン、 ポリフエ二レンォキシド、 ポリフエ二レンスル フィドであり、 特に好ましくは難燃性の観点からポリ力一ポネート系樹脂である。 また、 上記熱可塑性樹脂として、 ポリマーブレンドを用いてもよい。 好ましく は、 ポリカーボネート系綳旨と下記のいず ゝより選ばれる翻旨との組み合わせからな るポリマープレンドを用いることができる。 ポリエチレン系樹脂、 ポリプロピレン系樹脂、 ァクリロ二トリ ブタジエンースチ レン共重合体(AB S樹脂) 、 ポリスチレン系樹脂、 ポリエチレンテレフ夕レート、 ポリ ブチレンテレフ夕 1/ "ト、 ァクリロニトリリ スチレン鍾合体(AS樹脂) 、 シンジォ 夕クチックポリスチレン、 ポリフエ二レンォキシド、 ポリアセタール、 ポリメタクリ Λ メチル、 ポリフエ二レンスルフイド、 ポリエーテルスルホン、 ポリアリレート、 ポリアミ ド、 ポリイミド又はポリエチレンナフタレ一ト For example, polyacrylonitrile-butadiene-styrene copolymer (ABS resin), polyacrylonitrile-styrene copolymer (AS resin), syndiotactic polystyrene, polyphenylene resin, polyethylene resin, polypropylene resin, Examples include dilenoxide, polyacetal, polymethyl methacrylate, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene naphtholate. Of these, polycarbonate resins, polystyrene resins, polypropylene resins, syndiotactic polystyrene, polyphenylene oxide, and polyphenylene sulfide are preferred, and poly-polycarbonate is particularly preferred from the viewpoint of flame retardancy. It is a system resin. Further, a polymer blend may be used as the thermoplastic resin. Preferably, a polymer blend composed of a combination of a polycarbonate-based concept and a translation selected from any of the following can be used. Polyethylene resin, polypropylene resin, acrylonitrile butadiene styrene copolymer (ABS resin), polystyrene resin, polyethylene terephthalate, polybutylene terephthalate 1 / ", acrylonitrile styrene consolidation (AS resin), syndio Polystyrene, polyphenylene oxide, polyacetal, polymethyl methacrylate, polyphenylene sulfide, polyether sulfone, polyarylate, polyamide, polyimide or polyethylene naphthalate
この中で発泡性の観点から、 ポリカーボネート系樹脂と結晶性の熱可塑性樹脂 (ポリエチレン系樹脂、 ポリプロピレン系翻旨、 シンジオタクチックポリスチレン、 ポ リエチレンテレフタレート、 ポリプチレンテレフタレ一卜、 ポリフエ二レンスルフィド、 ポリアミド、 ステレオコンプレックスポリメ夕クリル酸メチル) との組み合わせで あるポリマーブレンド好ましい。  Among these, from the viewpoint of foamability, polycarbonate-based resins and crystalline thermoplastic resins (polyethylene-based resins, polypropylene-based syllables, syndiotactic polystyrene, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, Preferred is a polymer blend which is a combination of a polyamide and a stereocomplex methyl methacrylate.
ポリ力一ポネート系樹脂以外のポリマープレンドとしては、 ポリフエ二レンス ルフィドと分岐ポリフエ二レンスルフィド、 シンジオタクチックポリスチレンと耐 褸摩|生ポリスチレン、 又は、 シンジオタクチックポリスチレンと耐 «»|生ポリスチレンと ポリフエ二レンォキシド等の各ポリマープレンドブレンド ましい。  Examples of polymer blends other than the polycapone-based resin include polyphenylene sulfide and branched polyphenylene sulfide, syndiotactic polystyrene and rag-resistant raw polystyrene, or syndiotactic polystyrene and «» | Polymer blends such as polyphenylene oxide are preferred.
上記ポリカーボネート系樹脂としては、 直鎖タイプ、 分岐タイプ、 長鎖分岐夕 イブ、 直鎖ポリカーボネ一トーポリジメチルシロキサン共重合体 (以下、 P C— P DM S ) 、 長鎖分岐 P C— P DM S共重合体等が挙げられる。  The above-mentioned polycarbonate resins include linear type, branched type, long chain branched resin, linear polycarbonate polydimethylsiloxane copolymer (hereinafter, PC-PDMS), and long-chain branched PC-PDMS copolymer. Coalescence and the like.
また、 これらポリカーボネートをブレンドして使用しても良く、 例えば分岐ポ リカーポネートと直鎖ポリカーボネートをブレンドして使用してもよい。  Further, these polycarbonates may be blended and used, for example, a blend of a branched polycarbonate and a linear polycarbonate may be used.
ここで、 分岐ポリカーボネートとは、 .典型的には二価フエノール及びホスゲン 又は炭酸エステル化合物を、 分岐剤及び必要に応じ末端停止剤の存在下に重合し て得られるものをいう。  Here, the term “branched polycarbonate” refers to a product obtained by polymerizing a divalent phenol and phosgene or a carbonate compound typically in the presence of a branching agent and, if necessary, a terminal stopper.
直鎖ポリ力一ポネートとは、 典型的には二価フエノール及びホスゲンまたは炭 酸エステル化合物を、 必要に応じ末端停止剤の存在下に重合して得られるものを いう。 すなわち、 分岐剤を用いない他は、 分岐ポリ力一ポネート樹脂と同様であ る。  The linear polycarboxylic acid is typically obtained by polymerizing a divalent phenol and phosgene or a carbonate compound in the presence of a terminal stopper as required. In other words, except that no branching agent is used, it is the same as the branched poly-one-ponate resin.
この中で、 発泡性の観点から長鎖分岐タイプのポリカーポネ一卜、 難燃性の観 点から直鎖 P C— P D M S共重合体が好ましく、 これら両方の観点から長鎖分岐 P C— P D M S共重合体力特に好ましい。 上記多孔質フイラ一は、 細孔容積が 0.01 c c/g以上、 好ましくは 0. 2 c c/g以上、 特に好ましくは 0. 3 c cZg以上であるか、 又は比表面積値が 10m2Zg以上、 好ましくは 400m2/g以上、 より好ましくは 500 m2ノ g以上、 特に好ましくは 1000m2Zg以上である。 Among them, a long-chain branched type polycarbonate is preferred from the viewpoint of foaming properties, and a straight-chain PC-PDMS copolymer is preferred from the viewpoint of flame retardancy. From both viewpoints, the long-chain branched PC-PDMS copolymer is preferred. Particularly preferred. The porous FILLER scratch, pore volume of 0.01 cc / g or more, preferably 0. 2 cc / g or more, and particularly preferably either at 0. 3 c cZg above, or specific surface area is 10 m 2 Zg above, preferably 400 meters 2 / g or more, more preferably 500 m 2 Roh g or more, particularly preferably 1000 m 2 Zg above.
細孔容積が 0.01 c c/g未満又は比表面積値が 10m2Zg未満では、 発泡 剤を保持する能力が低下し、 発泡セルが肥大化し、 不均質となり、 発泡体の物性 が低下する恐れがある。 If the pore volume is less than 0.01 cc / g or the specific surface area value is less than 10 m 2 Zg, the ability to retain the foaming agent is reduced, the foam cells are enlarged, the foam becomes inhomogeneous, and the physical properties of the foam may be reduced. .
ここで、 細孔容積及び比表面積値は BET法 (窒素吸着法) により測定した値 である。  Here, the pore volume and the specific surface area are values measured by the BET method (nitrogen adsorption method).
多孔質フイラ一の形状は、 板状、 粉末状又は繊維状でよい。 好ましくは粉末状 又は繊維状である。 粉末状である場合、 粒子径としては、 好ましくは平均粒子径 で1011111〜50 /111、 特に好ましくは 100 nm〜30 Atmである。 平均粒 子径が 1 Onm未満である場合は 2次凝集が激しく、 分散が困難となり、 平均粒 子径が 50 mを超える場合は機械強度が低下する恐れがある。  The shape of the porous filler may be plate-like, powdery or fibrous. Preferably, it is in the form of powder or fiber. In the case of a powder, the particle diameter is preferably 1011111 to 50/111, particularly preferably 100 nm to 30 Atm in terms of average particle diameter. If the average particle diameter is less than 1 Onm, secondary aggregation is severe and dispersion becomes difficult. If the average particle diameter exceeds 50 m, mechanical strength may be reduced.
繊維状である場合は、 その繊維径は、 好ましくは 2 ηπ!〜 20 m、 特に好 ましくは 10 nm〜l 0 xmである。 繊維径が 2nm未満では、 絡み合いによ り分散が困難であり、 繊維径が 20 mを超えると機械強度が低下する恐れが ある。  If it is fibrous, its fiber diameter is preferably 2 ηπ! 2020 m, particularly preferably 10 nm〜10 xm. If the fiber diameter is less than 2 nm, it is difficult to disperse due to entanglement, and if the fiber diameter exceeds 20 m, the mechanical strength may decrease.
好ましい多孔質フイラ一としては、 多孔質シリカ、 活性炭、 ゼォライト、 シリ 力ゲル又は繊維状活性炭 (アド一ル、 デキン:ュニチカ (株) 製等) 等がある。 多孔質フイラ一は、 必要に応じてシランカップリング剤、 チタネート系カップ リング剤、 オルガノシロキサン等の反応性化合物により表面処理してもよい。 樹脂マトリックスと多孔質フイラ一との界面接着性をコントロールすることで 発泡時における発泡剤の、 多孔質フィラーからのリリースの制御が期待 きる。 これらは樹脂マ卜リックスの熱可塑性樹脂の種類に応じて適宜選定すればよい。 上記表面処理剤の添加処理量は、 熱可塑性樹脂成分に対し 0. 1〜5重量%、 より好ましくは 0. 2〜3重量%、 特に好ましくは 0. 3〜1重量%である。 5 重量%を超えると、 機械強度及び耐熱性が損なわれる恐れがある。  Preferred examples of the porous filler include porous silica, activated carbon, zeolite, silica gel, and fibrous activated carbon (Adil, Dekin: manufactured by Unitika Ltd.) and the like. The surface of the porous filler may be treated with a reactive compound such as a silane coupling agent, a titanate coupling agent, or an organosiloxane, if necessary. By controlling the interfacial adhesion between the resin matrix and the porous filler, release of the foaming agent from the porous filler during foaming can be expected to be controlled. These may be appropriately selected according to the type of the thermoplastic resin of the resin matrix. The amount of the surface treatment agent to be added is 0.1 to 5% by weight, more preferably 0.2 to 3% by weight, and particularly preferably 0.3 to 1% by weight, based on the thermoplastic resin component. If it exceeds 5% by weight, mechanical strength and heat resistance may be impaired.
発泡剤に超臨界状流体を用いる場合は、 多孔質フィラーは吸水していない方が、 発泡セルを均一にするうえで有効である。 吸水量は多孔質フイラ一に対し、 5重 量%以下、 好ましくは 2重量%以下、 特に好ましくは 1重量%以下である。 上述の熱可塑性樹脂及び多孔質フィラーの他に、 熱可塑性樹脂の溶融張力を調 整し、 発泡体の発泡セルの大きさを制御するために、 溶融張力調整剤を添加して もよい。 溶融張力調整剤としては以下のものがある。 When a supercritical fluid is used as the foaming agent, it is more effective to make the foam cells uniform if the porous filler does not absorb water. The amount of water absorption is 5 times for one porous filler %, Preferably at most 2% by weight, particularly preferably at most 1% by weight. In addition to the thermoplastic resin and the porous filler described above, a melt tension adjuster may be added to adjust the melt tension of the thermoplastic resin and control the size of the foam cells of the foam. The following are the melt tension modifiers.
(1) 分岐鎖構造を有する熱可塑性樹脂  (1) thermoplastic resin having a branched chain structure
熱可塑性樹脂に分岐鎖構造を有する熱可塑性樹脂を使用してもよいが、 通常の 直鎖タイプの熱可塑性樹脂に分岐鎖構造を有する熱可塑性樹脂を適宜配合しても よい。  Although a thermoplastic resin having a branched chain structure may be used as the thermoplastic resin, a thermoplastic resin having a branched chain structure may be appropriately mixed with a normal linear type thermoplastic resin.
分岐剤としては、 熱可塑性樹脂分子の基本骨格と同一または類似の骨格からな り 3官能以上の反応基を有していれば良い。 例えば、 ポリスチレンであれば、 ト リビニルベンゼン等の分岐剤が挙げられ、 これらを 0. :!〜 5重量%程度含むス チレンモノマーを重合して得られた重合体が使用でき、 ポリカーボネートであれ ば、 分岐剤としては 1, 1, 1ートリス (4ーヒドロキシフエニル) ェタンが好 適に用いることができる。  The branching agent may have a skeleton that is the same as or similar to the basic skeleton of the thermoplastic resin molecule and has a reactive group having three or more functional groups. For example, in the case of polystyrene, a branching agent such as trivinylbenzene may be used, and a polymer obtained by polymerizing a styrene monomer containing about 0 to 5% by weight of these may be used. For example, 1,1,1-tris (4-hydroxyphenyl) ethane can be suitably used as a branching agent.
(2) 高分子量アクリル系樹脂  (2) High molecular weight acrylic resin
熱可塑性樹脂の分子構造中に分岐構造を有するもの以外に、 高分子量ァクリル 系樹脂を添加して同様の高溶融張力を発現させることができる。 高分子量ァクリ ル系樹脂の重量平均分子量としては 30万以上が好ましく、 200万以上がより 好ましい。 ミ菱レーヨン (株) 社製 P 53 OA, P 551 A等が適用できる。  A similar high melt tension can be exhibited by adding a high molecular weight acryl-based resin in addition to the thermoplastic resin having a branched structure in its molecular structure. The weight average molecular weight of the high molecular weight acryl-based resin is preferably 300,000 or more, more preferably 2,000,000 or more. P53 OA, P 551 A, etc., manufactured by Mirishi Rayon Co., Ltd. can be applied.
(3) ポリテトラフルォロエチレン  (3) Polytetrafluoroethylene
溶融張力が向上するフイブリル形成能を有するものが好適である。  Those having a fibril-forming ability for improving the melt tension are preferred.
(4) ポリテトラフルォロエチレン含有複合粉体  (4) Polytetrafluoroethylene-containing composite powder
三菱レ一ヨン (株) 社製 A3000等を用いることができる。  A3000 manufactured by Mitsubishi Rayon Co., Ltd. or the like can be used.
(5)繊讓 才  (5) A young man
$職隹強ィ 才の例として、 ガラスファイバー、 カーボンファイバー、 チタン^ 7リウムゥ ィスカ^!カ举げられるがこれに跪されない。  For example, you can use glass fiber, carbon fiber, and titanium ^ 7 luminous discs!
(6) 高^? *ポリエチレン  (6) High ^? * Polyethylene
高分 ポリエチレンのメルトフ口—レイト MFR (190°C、 荷重 2. 16k g) は、 好ましくは 0. 01〜5 g/10分程度であり、 より好ましくは 0. 0 3〜3 gノ 10分程度である。 所望の発泡度合いに応じて適宜選定できる。 繊隹強化材及ぴ ポリエチレンも溶融張力を向上し、 セルの肥大化、 破泡、 連 泡を抑制し、 微細なセルの形成に寄与する。 High melt polyethylene melt mouth-rate MFR (190 ° C, load 2.16 kg) is preferably about 0.01 to 5 g / 10 minutes, more preferably about 0.03 to 3 g 10 minutes. It is about. It can be appropriately selected according to the desired degree of foaming. Fiber reinforcing material and polyethylene also improve the melt tension, suppress cell enlargement, foam breakage and open cells, and contribute to the formation of fine cells.
上記 (1) 〜 (6) をそれぞれ単独で使用しても良く、 又は混合して使用して もよい。  The above (1) to (6) may be used alone or in combination.
熱可塑性樹脂組成物が上記熱可塑性樹脂及び多孔質フィラーにより構成される 場合、 熱可塑性樹脂の熱可塑性樹脂組成物に占める量としては、 好ましくは 50 〜99. 9重量%、 より好ましくは 70〜99. 9重量%、 特に好ましくは 90 〜99. 9重量%である。 熱可塑性樹脂の量が少なすぎると、 流動性の不足や、 機械強度が低下する恐れがある。  When the thermoplastic resin composition is composed of the thermoplastic resin and the porous filler, the amount of the thermoplastic resin in the thermoplastic resin composition is preferably from 50 to 99.9% by weight, more preferably from 70 to 99.9% by weight. It is 99.9% by weight, particularly preferably 90 to 99.9% by weight. If the amount of the thermoplastic resin is too small, there is a possibility that the fluidity is insufficient or the mechanical strength is reduced.
多孔質フイラ一の添加量としては、 用途、 要求特性、 多孔質フイラ一の種類及 び比表面積にもよるが、 好ましくは 0. 1〜50重量%、 より好ましくは 0. 1 〜30重量%、 特に好ましくは 0. 1〜10重量%である。 配合量が 0. 1重 量%未満では発泡効果が認められず、 50重量%を超えると発泡セルが肥大化し 発泡体の機械強度が低下する。  The amount of the porous filler to be added depends on the application, required characteristics, the type of the porous filler and the specific surface area, but is preferably 0.1 to 50% by weight, more preferably 0.1 to 30% by weight. It is particularly preferably 0.1 to 10% by weight. If the amount is less than 0.1% by weight, no foaming effect is observed, and if the amount exceeds 50% by weight, the foam cells become large and the mechanical strength of the foam decreases.
また、 熱可塑性樹脂組成物が熱可塑性樹脂、 多孔質フイラ一及び溶融張力調整 剤により構成される場合、 熱可塑性樹脂の熱可塑性樹脂組成物に占める量として は、 上記と同じ理由により、 好ましくは 45〜99. 9重量%、 より好ましくは 65〜99. 9重量%、 特に好ましくは 87〜99. 9重量%である。  Further, when the thermoplastic resin composition is composed of a thermoplastic resin, a porous filler and a melt tension modifier, the amount of the thermoplastic resin in the thermoplastic resin composition is preferably the same as the above, for the same reason as described above. 45 to 99.9% by weight, more preferably 65 to 99.9% by weight, particularly preferably 87 to 99.9% by weight.
多孔質フイラ一の添加量は、 上記と同様に、 好ましくは 0. 1〜50重量%、 より好ましくは 0. 1〜30重量%、 特に好ましくは 0. 1〜10重量%でぁる。 溶融張力調整剤 (1) 〜 (4) の添加量は、 樹脂マトリックスである熱可塑性 樹脂、 用途、 要求特性に応じて適宜選定すればよいが、 好ましくは 0. 1〜10 重量%、 より好ましくは 0. 2〜5重量%、 特に好ましくは 0. 5〜3愈量%で ある。 添加量が 0. 1重量%未満では、 マト '〕ックス樹脂の分子量、 分岐構造の 有無にもよるが、 セルが合一して肥大化する恐れがあり、 10重量%を超えると コストアップになる他、 マトリックス樹脂本来の特性を損なう恐れがある。  Similar to the above, the amount of the porous filler is preferably 0.1 to 50% by weight, more preferably 0.1 to 30% by weight, and particularly preferably 0.1 to 10% by weight. The amount of the melt tension modifiers (1) to (4) may be appropriately selected according to the thermoplastic resin serving as the resin matrix, the application, and the required characteristics, but is preferably 0.1 to 10% by weight, more preferably. Is 0.2 to 5% by weight, particularly preferably 0.5 to 3% by weight. If the added amount is less than 0.1% by weight, the cells may be united and enlarged, depending on the molecular weight of the matrix resin and the presence or absence of a branched structure. If the added amount exceeds 0.1% by weight, the cost increases. In addition, the inherent properties of the matrix resin may be impaired.
溶融張力調整剤 (5) , (6) の添加量は、 樹脂マトリックスである熱可塑性 樹脂、 用途、 要求特性に応じて適宜選定すればよいが、 好ましくは 0. 5〜50 重量%、 より好ましくは 3〜40重量%である。 添加量が 0. 5重量%未満では、 溶融張力が向上しない恐れがあり、 50重量%を超えると溶融張力が高すぎて発 泡を阻害する上に、 残留応力が大きくなり、 成形体の反り、 変形が低減しない、 即ち、 成形性が悪化する恐れがある。 The amount of the melt tension modifiers (5) and (6) to be added may be appropriately selected according to the thermoplastic resin serving as the resin matrix, the application, and the required characteristics, but is preferably 0.5 to 50% by weight, more preferably. Is from 3 to 40% by weight. If the amount is less than 0.5% by weight, the melt tension may not be improved. If the amount is more than 50% by weight, the melt tension is too high. In addition to inhibiting bubbles, the residual stress increases, and the warpage and deformation of the molded body are not reduced, that is, the moldability may be deteriorated.
さらに、 上記熱可塑性樹脂組成物に、 酸化防止剤を添加してもよい。  Further, an antioxidant may be added to the thermoplastic resin composition.
熱可塑性樹脂がポリカーボネート系樹脂の場合は、 ホスファイト系、 芳香族ホ スフイン系の酸化防止剤が好ましく、 配合量としては 0 . 0 1〜0 . 5重量%が 好ましい。 用途、 要求特性に応じて選定することができる。  When the thermoplastic resin is a polycarbonate-based resin, a phosphite-based or aromatic phosphine-based antioxidant is preferable, and the compounding amount is preferably 0.01 to 0.5% by weight. Selection can be made according to the application and required characteristics.
その他、 アルミナ、 窒化珪素、 タルク、 マイ力、 酸化チタン、 カーボンブラッ ク、 溶融シリカ、 粘土化合物 (モンモリロナイト、 カオリナイト等) 、 ガラスピ ーズ、 ガラスフレーク等の無機フィラーを添加してもよい。 粒度 ·形状に特に制 限はなく、 配合量としては、 0. 1〜 5重量%が好ましいが、 用途、 要求特性に 応じて選定することができる。  In addition, inorganic fillers such as alumina, silicon nitride, talc, My power, titanium oxide, carbon black, fused silica, clay compounds (montmorillonite, kaolinite, etc.), glass beads, glass flakes and the like may be added. There is no particular limitation on the particle size and shape, and the amount is preferably 0.1 to 5% by weight, but can be selected according to the application and required characteristics.
また、 ガラス繊維、 炭素繊維等の強化繊維を添加してもよい。  Further, reinforcing fibers such as glass fiber and carbon fiber may be added.
難燃性が必要な場合には、 リン系 Zポリテトラフルォロエチレン、 金属塩 Zポ リテトラフルォロエチレン、 オルガノポリシロキサン/ポリテトラフルォロェチレ ン、 ノンデカブロム系、 フ J<#化マグネシウム等の難燃剤を添加してもよい。  If flame retardancy is required, use phosphorous Z polytetrafluoroethylene, metal salt Z polytetrafluoroethylene, organopolysiloxane / polytetrafluoroethylene, non-decabrom, A flame retardant such as magnesium oxide may be added.
このような熱可塑性樹脂組成物は単軸押出機、 二軸押出機等により溶融混練し、 成形、 造粒 (ペレット化) 等できる。  Such a thermoplastic resin composition can be melt-kneaded by a single-screw extruder, a twin-screw extruder, or the like, and can be molded, granulated (pelletized), and the like.
次に本発明の発泡体及びその製造方法について説明する。  Next, the foam of the present invention and the method for producing the same will be described.
上記の熱可塑性樹脂組成物、 又はこの組成物を予め溶融混練し造粒したものを、 発泡させて発泡体にすることができる。  The above-mentioned thermoplastic resin composition, or a composition obtained by melt-kneading and granulating the composition in advance can be foamed into a foam.
本発明の発泡体の発泡セルの最大セル径は、 好ましくは 5 0 /z m以下、 より 好ましくは 2 0 以下である。 最大セル径が 5 0 より大きい場合は発泡 体の機械的強度が低下する恐れがある。  The maximum cell diameter of the foam cell of the foam of the present invention is preferably 50 / zm or less, more preferably 20 or less. If the maximum cell diameter is larger than 50, the mechanical strength of the foam may decrease.
熱可塑性樹脂組成物を発泡させる際には、 水、 空気、 窒素、 二酸化炭素、 その 他成形材料に対して不活性な気体等の流体、 超臨界状流体、 亜臨界状流体等の発 泡剤を用いる。  When foaming the thermoplastic resin composition, foaming agents such as fluids such as water, air, nitrogen, carbon dioxide, and other gases inert to molding materials, supercritical fluids, and subcritical fluids Is used.
発泡剤として水を使用するときは、 樹脂発泡体の製造装置として通常の樹脂成 形機、 例えば射出成形機、 押出成形機等が使用できる。  When water is used as the foaming agent, an ordinary resin molding machine such as an injection molding machine or an extrusion molding machine can be used as a resin foam production apparatus.
具体的には、 未乾燥状態の熱可塑性樹脂組成物、 あるいは熱可塑性樹脂組成物 を予め溶融混練したペレツ卜を恒温恒湿槽に入れる等の方法により吸湿させて、 押出成形機に投入し溶融混練し成形する。 Specifically, a thermoplastic resin composition in an undried state, or a pellet obtained by previously melting and kneading the thermoplastic resin composition is absorbed by a method such as putting into a constant temperature and humidity chamber, It is put into an extruder, melt-kneaded and molded.
水の吸湿量は、 多孔質フイラ一の総重量を 1 0 0重量部として好ましくは 1〜 1 0重量部、 より好ましくは 2〜 5重量部である。 7_K分が 1重量部未満では、 発 泡剤としての機能が発揮されず、 1 0重量部を超えると、 粗大な発泡セルを形成 し、 得られる熱可塑性樹脂組成物の機械物性が低下する恐れがある。  The moisture absorption of water is preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight, with the total weight of the porous filler being 100 parts by weight. If the 7_K content is less than 1 part by weight, the function as a foaming agent is not exhibited.If the content exceeds 10 parts by weight, coarse foamed cells are formed, and the mechanical properties of the obtained thermoplastic resin composition may be reduced. There is.
この製造方法においては、 水が多孔質フイラ一に吸着して、 多孔質フイラ一が 水の溶融樹脂への溶解性 (溶解 ·含浸性) を向上させると同時に核剤としても作 用する。 その結果、 満足なセル密度及びセルの均一性を有する発泡体を得ること ができる。  In this production method, water is adsorbed on the porous filler, and the porous filler improves the solubility (dissolution / impregnation) of water in the molten resin and also acts as a nucleating agent. As a result, a foam having a satisfactory cell density and cell uniformity can be obtained.
発泡剤として超臨界状流体を使用するときは、 超臨界状流体を供給して、 その 超臨界状流体を熱可塑性樹脂組成物に溶解 ·含浸する。 そのための装置としては 特に制限はないが、 例えば、 射出成形機、 押出成形機、 オートクレープ等が使用 できる。  When a supercritical fluid is used as a blowing agent, the supercritical fluid is supplied, and the supercritical fluid is dissolved and impregnated in the thermoplastic resin composition. The apparatus for this is not particularly limited, but for example, an injection molding machine, an extrusion molding machine, an autoclave and the like can be used.
超臨界状流体の含浸方法としては、 例えば射出成形、 押出成形の場合のように、 超臨界状流体を熱可塑性樹脂組成物の溶融混練時に供給して含浸させることがで ぎる。  As a method of impregnating a supercritical fluid, for example, as in the case of injection molding or extrusion molding, a supercritical fluid can be supplied and impregnated during melt-kneading of a thermoplastic resin composition.
また、 予め成形した熱可塑性樹脂組成物に超臨界状流体を含浸させてもよい。 例えば、 成形した熱可塑性樹脂組成物をォ一トクレーブ内に置いて超臨界状流体 を含浸させる (バッチ式) 。  In addition, a pre-formed thermoplastic resin composition may be impregnated with a supercritical fluid. For example, a molded thermoplastic resin composition is placed in a autoclave and impregnated with a supercritical fluid (batch type).
発泡剤として作用する超臨界状流体は、 上記熱可塑性樹脂組成物に溶け込むこ とができかつ不活性であれば特に限定はされないが、 安全性、 コスト等の面から 二酸化炭素や窒素又はこれらの混合ガスが好ましい。  The supercritical fluid acting as a foaming agent is not particularly limited as long as it can be dissolved in the thermoplastic resin composition and is inert, but from the viewpoint of safety, cost, etc. A mixed gas is preferred.
超臨界状流体を熱可塑性樹脂組成物に浸透させる方法としては、 超臨界状流体 を加圧または減圧した状態で注入する方法や、 液体状態の不活性ガスをブランジ ャ一ポンプ等で注入する方法がある。  As a method of infiltrating the supercritical fluid into the thermoplastic resin composition, there are a method of injecting the supercritical fluid in a pressurized or depressurized state, a method of injecting a liquid inert gas by a pump, etc. There is.
超臨界状ガスを熱可塑性樹脂組成物に浸透させる場合の圧力は、 浸透させる超 臨界状流体の臨界圧以上を必須とし、 より浸透速度を向上させるためには、 1 5 MP a以上、 さらに好ましくは 2 O MP a以上である。  The pressure at which the supercritical gas is permeated into the thermoplastic resin composition must be equal to or higher than the critical pressure of the supercritical fluid to be permeated.To further improve the permeation rate, 15 MPa or more, more preferably Is not less than 2 O MPa.
超臨界状流体は、 その種類にもよるが、 熱可塑性樹脂組成物 1 0 0重量部に対 し、 好ましくは 0. 1 ~ 2 0重量部、 より好ましくは 0. 5〜1 0重量部、 特に 好ましくは 1〜 5重量部浸透させる。 超臨界状流体が 0 . 1重量部よりも少ない と、 微細な発泡セルを得ることができず、 2 0重量部よりも多いと発泡体表面に 外観不良が生じ、 粗大な発泡セルが生成しゃすくなる恐れがある。 The supercritical fluid is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the thermoplastic resin composition, depending on the type thereof. In particular Preferably, 1 to 5 parts by weight are permeated. If the supercritical fluid is less than 0.1 part by weight, fine foam cells cannot be obtained. If the supercritical fluid is more than 20 parts by weight, the appearance of the foam surface is poor, and coarse foam cells are formed. There is a risk of getting better.
熱可塑性樹脂組成物に超臨界状流体を含浸させた後、 超臨界状態を温度及び// 又は圧力を下げることにより解除させて発泡させる。  After impregnating the thermoplastic resin composition with the supercritical fluid, the supercritical state is released by lowering the temperature and / or the pressure to foam.
例えば、 熱可塑性樹脂組成物が可塑化している温度で、 系内の圧力を下げるこ とにより、 超臨界状流体を膨張させて発泡体を得る。 また、 射出成形機を用いる 場合は、 超臨界状流体を含浸させた熱可塑性樹脂組成物を金型内に充填させると 温度が下がって超臨界状態が解除される。  For example, by lowering the pressure in the system at a temperature at which the thermoplastic resin composition is plasticized, the supercritical fluid is expanded to obtain a foam. When an injection molding machine is used, when the thermoplastic resin composition impregnated with a supercritical fluid is filled in a mold, the temperature drops and the supercritical state is released.
上記製法による発泡体は、 超臨界状流体の優れた溶解性と優れた拡散性に加え、 多孔質フィラーが超臨界状流体を吸着することにより、 熱可塑性樹脂組成物への 超臨界状流体の含浸量が向上するため、 微細で均一な発泡セルを形成することが でき、 その結果、 機械的強度が高く、 且つ軽量な樹脂発泡体を得ることができる。 特に、 バッチ式においては、 本発明の組成物を用いることにより超臨界流体の中 に置く時間をかなり短縮できる。  Foams produced by the above-mentioned method provide excellent solubility and excellent diffusivity of the supercritical fluid, and the porous filler adsorbs the supercritical fluid so that the supercritical fluid can be added to the thermoplastic resin composition. Since the impregnation amount is improved, fine and uniform foam cells can be formed, and as a result, a resin foam having high mechanical strength and light weight can be obtained. In particular, in a batch system, the time of being placed in a supercritical fluid can be considerably reduced by using the composition of the present invention.
また、 超臨界状流体に窒素を使用した場合は、 地球環境に影響を与えることが なく、 環境面に配慮した発泡体の製造法であるといえる。  Also, when nitrogen is used as the supercritical fluid, it can be said that this is a method for producing foam that does not affect the global environment and is environmentally friendly.
本発明の発泡体は満足なセル密度及びセルの均一性を有するので、 OA電気電 子、 自動車、 建築等分野の部材、 高反射材、 断熱材、 遮音材、 緩衝材、 低比重材、 分離膜、 燃料電池セパレ一夕一、 低誘電体、 各種軽量化構造体、 光学機器ベース、 光コネクター、 光ピックアップ又はランプリフレクタ一等に使用できる。  Since the foam of the present invention has a satisfactory cell density and uniformity of cells, it can be used for OA electronics, automobiles, construction and other fields, high reflection materials, heat insulation materials, sound insulation materials, cushioning materials, low specific gravity materials, and separation. It can be used for membranes, fuel cell separators, low dielectrics, various lightweight structures, optical equipment bases, optical connectors, optical pickups, lamp reflectors, etc.
[実施形態] [Embodiment]
以下、 本発明の発泡体の製造方法について図面を用いて説明する。 この実施形 態では、 超臨界状流体を用いて射出成形により発泡体を製造する。  Hereinafter, the method for producing a foam of the present invention will be described with reference to the drawings. In this embodiment, a foam is manufactured by injection molding using a supercritical fluid.
図 1は本発明の発泡体を製造するための射出成形機の模式図である。  FIG. 1 is a schematic view of an injection molding machine for producing the foam of the present invention.
この射出成形機 1は、 上記の熱可塑性樹脂組成物と超臨界状流体から所定形状 の発泡体である射出成形品を製造する機械であり、 射出成形機本体 1 1と、 金型 1 2とを備える。 また、 超臨界状流体を射出成形機内に導入するため、 射出成形 機本体 1 1のシリンダー 1 1 1に超臨界状流体導入装置 2 1が設けられている。 この超臨界状流体導入装置 2 1は、 原料ガスが充填されているガスボンベ 2 1 1と、 ガスボンベ 2 1 1からの原料ガスを臨界圧力まで昇圧する昇圧機 2 1 2と、 臨界圧力まで昇圧された超臨界状ガスのシリンダー 1 1 1内への導入量を制御す る制御ポンプ 2 1 3とを備える。 This injection molding machine 1 is a machine for producing an injection molded product that is a foam of a predetermined shape from the thermoplastic resin composition and a supercritical fluid, and includes an injection molding machine main body 11, a mold 12, Is provided. Further, in order to introduce the supercritical fluid into the injection molding machine, a supercritical fluid introduction device 21 is provided in the cylinder 11 of the injection molding machine main body 11. The supercritical fluid introducing device 21 is a gas cylinder 21 filled with a raw material gas. 1, a pressure booster 2 1 2 that pressurizes the source gas from the gas cylinder 2 1 1 to the critical pressure, and a control pump that controls the amount of supercritical gas pressurized to the critical pressure into the cylinder 1 1 1 2 1 and 3 are provided.
次に、 この射出成形機 1を用いた発泡体の製造方法について説明する。  Next, a method for producing a foam using the injection molding machine 1 will be described.
まず、 熱可塑性樹脂組成物、 及び必要に応じて各種添加剤をホッパー 1 1 3か らシリンダー 1 1 1内に投入する。  First, the thermoplastic resin composition and various additives as required are charged into the cylinder 111 from the hopper 113.
ガスボンベ 2 1 1を開き、 窒素ガスを昇圧機 2 1 2で臨界圧力以上、 臨界温度 以上に昇圧、 昇温する。 制御ポンプ 2 1 3を開き、 超臨界状流体をシリンダー 1 1 1内に導入し、 熱可塑性樹脂組成物が可塑化している部位に浸透させる (浸透 工程) 。  Open the gas cylinder 2 1 and pressurize and raise the temperature of the nitrogen gas above the critical pressure and above the critical temperature with the booster 2 12. The control pump 213 is opened, and the supercritical fluid is introduced into the cylinder 111 to permeate the part where the thermoplastic resin composition is plasticized (penetration step).
次に、 スクリユー 1 1 2によりシリンダ一 1 1 1内の原料を移動させ、 金型 1 2内の隙間 1 2 1に導入する (導入工程) 。  Next, the raw material in the cylinder 11 is moved by the screw 11 and introduced into the gap 12 1 in the mold 12 (introduction step).
この際、 超臨界状流体が、 原料が金型 1 2内への導入が終了するまでは、 超臨 界状態を維持するため、 型締を加えたり、 カウンタープレッシャーをかけておい てもよい (臨界状態維持工程) 。  At this time, the supercritical fluid may be subjected to mold clamping or counter pressure in order to maintain the supercritical state until the introduction of the raw material into the mold 12 is completed. Critical state maintaining step).
金型 1 2に接する熱可塑性樹脂組成物の表面にスキン層が形成され、 その内部 が溶融状態である間に、 金型 1 2の可動金型 1 2 Bを後退させ、 減圧させて発泡 させる (圧力低下工程) 。  While the skin layer is formed on the surface of the thermoplastic resin composition in contact with the mold 12 and the inside thereof is in a molten state, the movable mold 12 B of the mold 12 is retracted and decompressed to foam. (Pressure drop process).
さらに、 冷却、 固化し、 所定の冷却時間が経過したら、 金型 1 2を開き、 成形 品を取り出す。  Further, after cooling and solidification, and a predetermined cooling time has elapsed, the mold 12 is opened and the molded product is taken out.
[実施例] [Example]
(発泡用熱可塑性樹脂組成物の製造)  (Production of thermoplastic resin composition for foaming)
実施例 1〜 2 0 Examples 1 to 20
表 1に示す、 熱可塑性樹脂、 多孔質フイラ一及び溶融張力調整剤等の各種添加 剤から構成される配合組成物を、 二軸混練押出機 (3 5 mm ( を用いて、 表 1記載の温度条件にてスクリユー回転数 3 0 0 r pmで混練し、 各実施例のペレ ットを得た。 尚、 多孔質フイラ一の詳細については表 3に示す。  Using a twin-screw kneading extruder (35 mm (see Table 1), a compounded composition comprising various additives such as a thermoplastic resin, a porous filler, and a melt tension modifier shown in Table 1 was used. The mixture was kneaded at a screw rotation speed of 300 rpm under temperature conditions to obtain pellets of the respective examples, and the details of the porous filter are shown in Table 3.
比較例 1〜 4 Comparative Examples 1-4
表 1に示す、 配合組成、 混練温度にて、 実施例 1と同様に各比較例のペレット を得た。 実施例 2 1〜 3 9 Pellets of each comparative example were obtained in the same manner as in Example 1 at the composition and kneading temperature shown in Table 1. Example 21 to 39
表 2に示す、 配合組成、 混練温度にて、 実施例 1と同様に各実施例のペレット を得た。 多孔質フィラーの詳細については表 3に示す。 Pellets of each example were obtained in the same manner as in Example 1 at the composition and kneading temperature shown in Table 2. Table 3 shows the details of the porous filler.
表 1 table 1
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000017_0001
91 91
蘭 OOZdfAlOd 8l6fi0/£00Z OAV 溶融張力調整剤 1 :高分子量アクリル樹脂 Orchid OOZdfAlOd 8l6fi0 / £ 00Z OAV Melt tension modifier 1: High molecular weight acrylic resin
三菱レーヨン (株) 社製、 P 53 OA  Mitsubishi Rayon Co., Ltd., P 53 OA
溶融張力調整剤 2 :ポリテトラフルォロェチレン含有複合紛体 Melt tension regulator 2: Polytetrafluoroethylene-containing composite powder
三菱レーヨン (株) 社製、 A3000  A3000 manufactured by Mitsubishi Rayon Co., Ltd.
溶融張力調整剤 3 :ポリテトラフルォロエチレン Melt tension regulator 3: Polytetrafluoroethylene
モンテフルォス社製、 ァルゴフロン F 5  Argoflon F5, manufactured by Montefluos
PC:ポリ力一ポネ一卜 PC: Poly power
出光石油化学 (株) 社製、 タフロン FN1700A  Teflon FN1700A, manufactured by Idemitsu Petrochemical Co., Ltd.
分岐 PC:分岐ポリ力一ポネート Branch PC: Branch Poly-Polyone
出光石油化学 (株) 社製、 夕フロン FB 250 OA Made by Idemitsu Petrochemical Co., Ltd., Even Freon FB 250 OA
PPS :ポリフエ二レンスルフィド PPS: Polyphenylene sulfide
ディー ·アイ 'シ Γ一'ピ一 (株) 社製、 LR2G 分岐 PPS:分岐ポリフエ二レンスルフィド  LR2G Branch PPS: Branch Polyphenylene Sulfide
ディー 'アイ 'シ一 ·ィ一 'ピ一 (株) 社製、 LF3G PPO:ポリフエ二レンォキシド、 ゼネラル'エレクトリック社製、 646 H I PS :耐衝擊性ポリスチレン、 出光石油化学 (株) 社製、 I T44 出光石油化学 (株) 社製、 ザレック 130 Z C  LF3G PPO: Polyphenylene oxide, General Electric Co., Ltd., 646 HI PS: Impact resistant polystyrene, Idemitsu Petrochemical Co., Ltd., I T44 Idemitsu Petrochemical Co., Ltd., Zarek 130 ZC
分岐 PP:分岐ポリプロピレン、 サンァロマー (株) 社製、 PF814 Branched PP: Branched polypropylene, manufactured by San-Alomer Co., Ltd., PF814
表 2 Table 2
配合組成 (重 1%) へ。レット化 多孑し質 多孑し質 多孔質 多孑し質 溶融弓長力 溶融張力 溶融張力  To the composition (weight 1%). Lettuce mulberry porridge mulberry porous mulberry porcelain melt bow strength melt tension melt tension
PC- 混鍊温度 PC- mixing temperature
PC PPS PPO HIPS SPS PP フイラ- 7 . フイラ- 8 フイラ- 9 フイラ- 10 調整剤 4 調整剤 5 調整剤 6 PC PPS PPO HIPS SPS PP Filer 7. Filer-8 Filer-9 Filer-10 Conditioner 4 Conditioner 5 Conditioner 6
PDMS C)  PDMS C)
(重量%) (重量%) (重量%) (重量%)  (% By weight) (% by weight) (% by weight) (% by weight)
(重量%) (重量%) ( % By weight ) ( % by weight )
21 y 丄 O 280 21 y 丄 O 280
22 /y 丄 Δn\) 200 y 丄 on 28022 / y 丄 Δn \) 200 y 丄 on 280
68 Δ 28068 Δ 280
59.5 0.5 40 28059.5 0.5 40 280
9fi 69 1 30 2809fi 69 1 30 280
27 b / o o o 28027 b / o oo 280
28 bo Δ 28028 bo Δ 280
29 oy.y 1).丄 oU 280 施 30 by.o U.iD 280 例 29 oy.y 1). 丄 oU 280 Application 30 by.o U.iD 280 Example
31 Do Δ o 340 31 Do Δo 340
32 69 1 30 34032 69 1 30 340
33 69 1 30 34033 69 1 30 340
34 69 1 30 34034 69 1 30 340
35 14 53 2 30 30035 14 53 2 30 300
36 16 32 20 2 30 30036 16 32 20 2 30 300
37 69.9 0.1 30 20037 69.9 0.1 30 200
38 94.5 0.5 5 20038 94.5 0.5 5 200
39 69 1 30 200 39 69 1 30 200
溶融張力調整剤 4: Melt tension modifier 4:
旭ファイバーグラス (株) 社製、 CS 03 A 409 C 溶融張力調整剤 5 :カーボンファイバー  Asahi Fiberglass Co., Ltd., CS 03 A 409 C Melt tension modifier 5: Carbon fiber
東邦テナックス (株) 社製、 ベスフアイト C6— SRS 溶融張力調整剤 6 :高分子量ポリエチレン  Toho Tenax Co., Ltd., Besphite C6—SRS melt tension modifier 6: high molecular weight polyethylene
出光石油化学 (株) 社製出光ポリエチレン 640UF MFR=0. 05  Idemitsu Petrochemical Co., Ltd. Idemitsu Polyethylene 640UF MFR = 0.05
PC:ポリカーボネート PC: polycarbonate
出光石油化学 (株) 社製、 タフロン FN1700A  Teflon FN1700A, manufactured by Idemitsu Petrochemical Co., Ltd.
PC-PDMS:ポリカーポネ一トーポリジメチルシロキサン共重合体 PC-PDMS: Polycarbonate polydimethylsiloxane copolymer
出光石油化学 (株) 社製、 夕フロン FC 1700  Made by Idemitsu Petrochemical Co., Ltd., Even Freon FC 1700
PPS :ポリフエ二レンスルフィド PPS: Polyphenylene sulfide
ディ一'アイ ·シ一 ·ィ一 ·ピー (株) 社製、 L 2G  Di-i-i-i-pi-P Corporation, L2G
PPO:ポリフエ二レンォキシド、 ゼネラル ·ェレクトリック社製、 646 HI PS :耐衝撃性ポリスチレン、 出光石油化学 (株) 社製、 IT44 SPS :シンジオタクチックポリスチレン PPO: Polyphenylene oxide, manufactured by General Electric, 646 HI PS: Impact-resistant polystyrene, Idemitsu Petrochemical Co., Ltd., IT44 SPS: Syndiotactic polystyrene
出光石油化学 (株) 社製、 ザレック 130 Z C  Zarek 130 ZC, manufactured by Idemitsu Petrochemical Co., Ltd.
PP:ポリプロピレン、 出光石油化学 (株) 社製、 E— 150GK PP: polypropylene, manufactured by Idemitsu Petrochemical Co., Ltd., E—150GK
表 3 Table 3
比表面積 (BET法) 平均粒子径 繊維径 細孔容積 sa; N o . フィフ一の種類 1共 兀、 及ひ t¾  Specific surface area (BET method) Average particle diameter Fiber diameter Pore volume sa; N o.
(mゾ g) (μ.τα) (mm) (g/c c) 多孔質フイラ一 1 シリカ 日本化学工業 (株) 社製 S I LFAM B 1000 17 ― 1.26 多孔質フイラ一 2 活性炭 三菱化学 (株) ダイァホープ 6 D 1100 325メッシュ ― 0.7 多孔質フイラ一 3 活性炭素繊維 ュニチカ株式会社製ァドール A 20 2000 ― 13 1.00 多孔質フィラ一 4 シリカ 水澤化学工業 (株) 社製 P— 603 30 2.2 ― 0.06 多孔質フイラ一 5 シリカ 水澤化学工業 (株) 社製 P— 78 A 360 3.3 ― 1.6 多孔質フィラ一 6 シリカ 水澤化学工業 (株) 社製 P-803 180 2.4 0.58 多孔質フイラ一 7 シリカ 日本ァエロジル社製 380 380  (mzo g) (μ.τα) (mm) (g / cc) Porous filler 1 Silica Nippon Kagaku Kogyo Co., Ltd. SI LFAM B 1000 17 ― 1.26 Porous filler 1 2 Activated carbon Mitsubishi Chemical Corporation Diahope 6 D 1100 325 mesh-0.7 Porous filler 3 Activated carbon fiber Adol A 20 2000-13 1.00 Porous filler 4 Silica Mizusawa Chemical Industries P- 603 30 2.2-0.06 Porous Fila-I 5 Silica Mizusawa Chemical Co., Ltd. P-78 A 360 3.3-1.6 Porous filler 6 Silica Mizusawa Chemical Co., Ltd. P-803 180 2.4 0.58 Porous Fila 7 Silica Nippon Aerosil Co., Ltd. 380 380
多孔質フイラ一 8 シリカ 日本ァエロジル社製 200 CF 200 Porous filler 1 8 Silica Nippon Aerosil 200 CF 200
多孔質フィラ一9 シリカ 7K澤化学工業 (株) 社製 P— 740 T 387 3.8 1.65 多孔質フイラ一 10 リン酸カルシウム 丸尾カルシウム (株) 社製 HAF— 30NP 110 2.9 Porous filler 9 Silica 7K Sawa Chemical Industry Co., Ltd. P—740 T 387 3.8 1.65 Porous filler 10 Calcium phosphate Maruo Calcium Co., Ltd. HAF—30NP 110 2.9
非多孔質フイラ一 シリカ 電気化学工業 (株) 社製 FB-950 2.8 24 Non-porous filler Silica Denki Kagaku Kogyo KK FB-950 2.8 24
(発泡体の製造:発泡剤として超臨界状流体を用いた射出成形法) (Production of foam: injection molding method using supercritical fluid as foaming agent)
実施例 4 0〜5 6 Example 4 0 to 5 6
実施例 1〜1 7記載のペレットを、 マイクロセルラー発泡用射出成形機 (J S W社製、 1 8 0トン) 及び 1 4 0 mm角 X 2 mm厚の板状形状の金型によりマ イクロセルラー発泡成形し試験片を得た。  The pellets described in Examples 1 to 17 were subjected to microcellular foaming using a microcellular foaming injection molding machine (manufactured by JSW, 180 tons) and a 140 mm square X 2 mm thick plate-shaped mold. A test piece was obtained by molding.
このときの射出成形機シリンダーへの窒素ガスの注入条件は 1 5 MP aの圧力 下で、 窒素ガスの注入量は 0 . 3重量部であった。  At this time, the injection condition of the nitrogen gas into the cylinder of the injection molding machine was under a pressure of 15 MPa, and the injection amount of the nitrogen gas was 0.3 part by weight.
この試験片のゲート部及び流動末端部位の発泡倍率を測定した。  The foaming ratio at the gate portion and the flow end portion of this test piece was measured.
実施例 4 0〜 5 6、 以下に示す実施例 5 7、 比較例 5〜 8の発泡成形条件、 及 び発泡倍率を表 4に示す。 尚、 発泡倍率は、 発泡前の密度を発泡後の密度で除し て求めた。  Table 4 shows the expansion molding conditions and expansion ratios of Examples 40 to 56, Example 57 shown below, and Comparative Examples 5 to 8. The expansion ratio was determined by dividing the density before foaming by the density after foaming.
試料の断面を、 走査型電子顕微鏡により倍率 5 0 0倍で観察して、 発泡セル径 を測定した。 観察範囲は約 0 . 2 5 mm X 0 . 2 0 mmであり、 その範囲にお ける実施例 4 3の試験片の流動末端部の最小〜最大セル径は 2〜 1 3 mであ つた。  The cross section of the sample was observed with a scanning electron microscope at a magnification of 500 times, and the foam cell diameter was measured. The observation range was about 0.25 mm X 0.20 mm, and the minimum to maximum cell diameter of the flow end of the test piece of Example 43 in that range was 2 to 13 m.
得られた試料の発泡倍率の測定結果から、 試料中で発泡セルが均一に形成して いること、 及び比較例と比べて高発泡倍率の成形品が成形可能であることが確認 できた。  From the measurement results of the expansion ratio of the obtained sample, it was confirmed that the foam cells were formed uniformly in the sample and that a molded article having a higher expansion ratio than the comparative example could be molded.
比較例.5〜 8 Comparative Example 5-8
比較例 1〜4で作製したペレツトを用いた他は、 実施例 4 0と同じ条件で試験 片を作製した。  Test pieces were prepared under the same conditions as in Example 40 except that the pellets prepared in Comparative Examples 1 to 4 were used.
(発泡体の製造.:発泡剤として水を使用した射出成形法)  (Manufacture of foam. Injection molding method using water as foaming agent)
実施例 5 7 Example 5 7
実施例 2で作製したペレットを、 恒温恒湿槽で 1 2 0 °C、 湿度 9 0 % R Hの 条件で 2 4時間吸湿させ、 上記マイクロセルラ一発泡用射出成形機により窒素ガ スは注入せずに成形した。 このときのペレットの吸水量は 0 . 2 5重量部であつ た。  The pellets prepared in Example 2 were absorbed in a constant temperature and humidity chamber at 120 ° C and a humidity of 90% RH for 24 hours, and nitrogen gas was injected by the microcellular foaming injection molding machine. Without molding. At this time, the amount of water absorbed by the pellets was 0.25 parts by weight.
得られた試料の発泡倍率の測定結果から、 試料中で発泡セルが均一に形成して いることが確認できた。 表 4 From the measurement result of the expansion ratio of the obtained sample, it was confirmed that the foam cells were formed uniformly in the sample. Table 4
Figure imgf000023_0001
Figure imgf000023_0001
(発泡体の製造:発泡剤として超臨界状流体を用いた射出成形法) (Production of foam: injection molding method using supercritical fluid as foaming agent)
実施例 5 8〜 7 3 Example 5 8 to 7 3
実施例 2 1〜3 6で作製したペレツトを用いた他は、 実施例 4 0と同じ条件で 試験片を作製した。  Test pieces were prepared under the same conditions as in Example 40 except that the pellets prepared in Examples 21 to 36 were used.
発泡成形条件及び発泡倍率を表 5に示す。 表 5 Table 5 shows the expansion molding conditions and expansion ratios. Table 5
Figure imgf000024_0001
Figure imgf000024_0001
(発泡体の製造:発泡剤として超臨界状流体を用いた押出成形法) (Production of foam: extrusion molding method using supercritical fluid as foaming agent)
実施例 74〜76 Examples 74 to 76
実施例 37〜3 9で作製したペレツトを用いて、 押出発泡シート製造機 ( (株) 東芝機械社製、 商品名: DSPU— 641) にて、 超臨界 CO 2の注入 圧力を 10MP a、 押出圧力を 7. 5MPaとして、 300mm幅の発泡シート を得た。 Using the pellets prepared in Examples 37 to 39, using an extruded foam sheet manufacturing machine (manufactured by Toshiba Machine Co., Ltd., trade name: DSPU-641), the injection pressure of supercritical CO 2 was 10 MPa, and the extrusion was performed. At a pressure of 7.5 MPa, a foamed sheet having a width of 300 mm was obtained.
発泡成形条件及び発泡倍率を表 6に示す。 表 6 Table 6 shows the expansion molding conditions and expansion ratios. Table 6
Figure imgf000025_0001
Figure imgf000025_0001
(発泡体の製造:発泡剤として超臨界状流体を用いたバッチ法) (Production of foam: batch method using supercritical fluid as foaming agent)
実施例 7 7〜 8 6 Examples 7 7 to 8 6
実施例 1〜7及び 1 8〜2 0記載のペレツトを用い、 上記射出成形法における 成形温度と同一設定温度にてプレスフィルム (厚さ 3 0 0 m) を作製した。 得られたフィルムを幅 1 0 mm、 長さ 5 0 mmに切り出して、 オートクレ一ブ 中に投入し、 任意の含浸温度にて超臨界状流体状態の二酸化炭素を 1 5 M P aで 3 0分間含浸した後、 任意の発泡温度にて急減圧を行った後、 室温まで冷却し発 泡体を得た。 この発泡体外観観察及びその発泡倍率を測定した。  Using the pellets described in Examples 1 to 7 and 18 to 20, press films (thickness: 300 m) were produced at the same temperature as the molding temperature in the above-mentioned injection molding method. The obtained film was cut into a width of 10 mm and a length of 50 mm, put into an autoclave, and carbon dioxide in a supercritical fluid state at an arbitrary impregnation temperature at 15 MPa for 30 minutes. After impregnation, the pressure was rapidly reduced at an arbitrary foaming temperature, and then cooled to room temperature to obtain a foam. The appearance of this foam was observed and its expansion ratio was measured.
実施例 7 7〜 8 6及び以下に示す比較例 9〜 1 2の発泡成形条件、 外観観察及 び発泡倍率を表 7に示す。 尚、 外観観察において、 良好とは、 成形体全体が均一 に白化している状態であり、 不良とは白化の程度が部位により差異がある状態で ある。 また、 実施例 8 0の最小〜最大セル径を実施例 4 3と同様に測定した結果、 試験片の流動末端部の最小〜最大セル径は 1 i m未満〜 7 であった。 Table 7 shows the foaming molding conditions, appearance observations, and expansion ratios of Examples 77 to 86 and Comparative Examples 9 to 12 shown below. In the external appearance observation, “good” means a state where the entire molded product is uniformly whitened, and “defective” means a state where the degree of whitening varies depending on the part. Further, the minimum to maximum cell diameter of Example 80 was measured in the same manner as in Example 43, and as a result, the minimum to maximum cell diameter at the flow end of the test piece was less than 1 im to 7.
表 7 Table 7
Figure imgf000026_0001
比較例 9〜 1 2
Figure imgf000026_0001
Comparative Examples 9 to 12
比較例 1〜 4で作製した混練べレットを用いた他は、 実施例 7 7と同じ条件で 試験片を作製した。 但し、 比較例 1 2については含浸温度 2 0 0 °C、 発泡温度 1 6 5 T:の条件で行った。  Test pieces were prepared under the same conditions as in Example 77 except that the kneading bellets prepared in Comparative Examples 1 to 4 were used. However, Comparative Example 12 was performed under the conditions of an impregnation temperature of 200 ° C. and a foaming temperature of 165 T :.
得られた試料の発泡倍率の測定結果から、 比較例と比べて高発泡倍率であり、 外観も良好な成形品が得られることが確認できた。 産業上の利用可能性  From the measurement result of the expansion ratio of the obtained sample, it was confirmed that a molded article having a higher expansion ratio and a good appearance was obtained as compared with the comparative example. Industrial applicability
本発明によれば、 発泡倍率が高く発泡構造が均一な発泡用熱可塑性樹脂組成物 及びその発泡体を提供することができる。  According to the present invention, it is possible to provide a thermoplastic resin composition for foaming having a high foaming ratio and a uniform foamed structure, and a foam thereof.

Claims

請 求 の 範 囲 The scope of the claims
1. (a) 熱可塑性樹脂 45〜99. 9重量%、 1. (a) 45 to 99.9% by weight of thermoplastic resin,
(b) 多孔質フイラ一 0. 1〜50重量%、 及び  (b) a porous filler 0.1 to 50% by weight, and
(c) 溶融張力調整剤 0〜10重量%、  (c) melt tension modifier 0-10% by weight,
を含む、 発泡用熱可塑性樹脂組成物。 A thermoplastic resin composition for foaming.
2. (A) 熱可塑性樹脂 45〜 99. 9重量%、 2. (A) thermoplastic resin 45 ~ 99.9% by weight,
(B) 多孔質フイラ一 0. 1〜50重量%、  (B) Porous filler 0.1 to 50% by weight,
(C) 溶融張力調整剤 0〜10重量%、 及び  (C) a melt tension modifier: 0 to 10% by weight, and
(D) 発泡セル、  (D) foam cells,
を含む発泡体。 Including foam.
3. 前記発泡セルの最大セル径が 50 以下である請求の範囲第 2項に記載 の発泡体。 3. The foam according to claim 2, wherein the maximum cell diameter of the foam cell is 50 or less.
4. 前^孔質フイラ一の細孔容積値が 0. 01 c cZg以上又は比表面積値が 10m2Zg以上である請求の範囲第 2項に記載の発泡体。 5. 前記多孔質フイラ一が、 平均粒子径 50 zm以下のシリカ、 活性炭、 ゼォ ライト、 シリカゲル又は繊維径 20 以下の繊維状活性炭である請求の範囲 第 2項に記載の発泡体。 4. The foam according to claim 2 , wherein the pore volume of the porous filter is 0.01 ccZg or more or the specific surface area is 10 m2Zg or more. 5. The foam according to claim 2, wherein the porous filler is silica, activated carbon, zeolite, silica gel having an average particle diameter of 50 zm or less, or fibrous activated carbon having a fiber diameter of 20 or less.
6. 前 §βί張力調 (Iが、 下記のいずれかである請求の範囲第 2項に記載の発泡体。 6. The foam according to claim 2, wherein β is the tension adjustment (I is any of the following:
(1) 分隱 litを ¾ る熱可塑謂旨  (1) Thermoplastic using lit lit
(2) 高; アクリル樹脂  (2) High; acrylic resin
( 3 ) フィプリ 繊 ¾を るポリテトラフルォロエチレン  (3) Polytetrafluoroethylene that makes fipri fibers
(4) ポリテトラフルォロエチレンとアクリル樹脂の複合体  (4) Composite of polytetrafluoroethylene and acrylic resin
(5)纖強 ίは才  (5) Fiber strength
(6) 高 ^¾ポリエチレン (6) High ^ ¾ polyethylene
7 . mm mMMmm, ( 5) n隹強化材又は(6) 高 ポリエチレンである 請求の範囲第 6項に纖の発泡 ίあ 7. mm mM Mmm, (5) n reinforced material or (6) high polyethylene Fiber foam Pia in claim 6.
8 . 前記熱可塑性樹脂が、 ポリカーボネート系樹脂、 ポリエチレン系樹脂、 ポリプロピ レン系樹脂、 ァクリロニトリ トブタジエン一スチレン共重合体 (AB S樹脂) 、 ポリ スチレン系樹脂、 ポリエチレンテレフタレ一卜、 ポリブチレンテレフ夕レート、 ァクリロ 二トリゾ "スチレン共重合体(AS樹脂) 、 シンジオタクチックポリスチレン、 ポリフエ 二レンォキシド、 ポリアセタール、 ポリメタクリ J礮メチル樹脂、 ポリフエ二レンスルフ イド、 ポリエーテルスフレホン、 ポリアリレート、 ポリアミド、 ポリイミド又はポリェチレ ンナフタレ一トである請求の範囲第 2項に ff3載の発泡体。 8. The thermoplastic resin is a polycarbonate resin, a polyethylene resin, a polypropylene resin, an acrylonitritobutadiene-styrene copolymer (ABS resin), a polystyrene resin, a polyethylene terephthalate, a polybutylene terephthalate. Rate, acrylonitrizo styrene copolymer (AS resin), syndiotactic polystyrene, polyphenylene oxide, polyacetal, polymethacrylic J-methyl resin, polyphenylene sulfide, polyether sulphone, polyarylate, polyamide, polyimide or polyethylene 3. The foam according to claim 2, wherein the foam is an annaphthalate.
9 . 嫌 S熱可塑性樹脂が、 ポリ力一ポネート系樹脂と下記のレずれかより選ばれる樹脂 との組み合わせからなるポリマープレンドである請求の範囲第 2項に記載の発泡体。 ポリエチレン系樹脂、 ポリプロピレン系樹脂、 ァクリロニトリノ 1 ~ブタジエンースチ レン共重合体(AB S樹脂) 、 ポリスチレン系樹脂、 ポリエチレンテレフタレー卜、 ポリ ブチレンテレフ夕レート、 ァクリロ二トリ スチレン共重合体(AS樹脂) 、 シンジォ タクチックポリスチレン、 ポリフヱニレンォキシド、 ポリアセタール、 ポリメタクリル酸 メチル、 ポリフエ二レンスルフイド、 ポリエ一テルスルホン、 ポリアリレート、 ポリアミ ド、 ポリイミド又はポリエチレンナフタレート 9. The foam according to claim 2, wherein the unfavorable S thermoplastic resin is a polymer blend comprising a combination of a polyolefin resin and a resin selected from the following. Polyethylene resin, polypropylene resin, acrylonitrino 1-butadiene styrene copolymer (ABS resin), polystyrene resin, polyethylene terephthalate, polybutylene terephthalate, acrylonitrile styrene copolymer (AS resin), syndio Tactic polystyrene, polyphenylene oxide, polyacetal, polymethyl methacrylate, polyphenylene sulfide, polyester sulphone, polyarylate, polyamide, polyimide or polyethylene naphthalate
1 0 . 嫌 3ポリカーボネート系樹脂が、 下記のい f¾T ^より選ばれる翩旨である請求の 範囲第 8項に記載の発泡体。 10. The foam according to claim 8, wherein the polycarbonate resin is fool selected from the following f¾T ^.
( 1)分岐ポリカーボネート戰  (1) Branch polycarbonate warfare
( 2 )分岐ポリカーボネー卜と直鎖ポリカーポネー卜とのポリマープレンド  (2) Polymer blend of branched polycarbonate and straight-chain polycarbonate
(3) ポリカーポネ一トーポリジメチルシロキサン共重合体  (3) Polycarbonate polydimethylsiloxane copolymer
1 1 . 嫌己ポリカーボネート系樹脂が、 下記のレ fTl ^より選ばれる棚旨である請求の 範囲第 9項に記載の発泡体。 11. The foam according to claim 9, wherein the disgusting polycarbonate resin has a shelf selected from the following fTl ^.
( 1)分!!!^リカーポネート戦 ( 2 ) 分岐ポリカーボネートと麵ポリカーポネ一 1、とのポリマ一プレンド (1) minutes !!! ^ Recarnate match (2) Polymer blend of branched polycarbonate and polycarbonate 1
( 3) ボリカーボネート一ポリジメチルシロキサン共重合体  (3) Polycarbonate-polydimethylsiloxane copolymer
1 2. 編 3熱可爵繊脂が下記のい ^より選ばれるポリマーブレンドである、 請求 の範囲第 2項に記載の発泡体。 1 2. The foam according to claim 2, wherein the hot-dip fat is a polymer blend selected from the following.
( 1 ) ポリフエ二レンスルフィド及び分岐ポリフエ二レンスルフィド  (1) Polyphenylene sulfide and branched polyphenylene sulfide
( 2 ) シンジオタクチックポリスチレン及び耐衝擊 I生ポリスチレン  (2) Syndiotactic polystyrene and impact resistant raw polystyrene
( 3 ) シンジオタクチックポリスチレン、 耐衝摯 [生ポリスチレン及びポリフエ二レンォ キシド  (3) Syndiotactic polystyrene, anti-shock [raw polystyrene and polyphenylene oxide
- -
1 3. 請求の範囲第 1項に記載の発泡用熱可塑性樹脂組成物に発泡剤を含浸させ、 前記多孔質フイラ一に前記発泡剤を吸着させて、 前記発泡剤を発泡させる発泡体 の製造方法。 1 3. Production of a foam in which the foaming thermoplastic resin composition according to claim 1 is impregnated with a foaming agent, the foaming agent is adsorbed on the porous filler, and the foaming agent is foamed. Method.
1 4. 前記発 が、 水分、 超臨界状流体又は亜臨界状流体である請求の範囲第 1 3項に記載の発泡体の製造方法。 14. The method for producing a foam according to claim 13, wherein the source is water, a supercritical fluid, or a subcritical fluid.
1 5 . 押出成形による請求の範囲第 1 3項に記載の発泡体の製造方法。 15. The method for producing a foam according to claim 13 by extrusion molding.
1 6. 請求の範囲第 1 3項に記載の製造方法により製造される発泡体。 1 6. A foam produced by the production method according to claim 13.
PCT/JP2003/010825 2002-02-28 2003-08-27 Thermoplastic resin composition for foamed product and foamed product therefrom WO2005023918A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW092123660A TW200508299A (en) 2002-02-28 2003-08-27 Foamable thermoplastic resin composition and foam thereof
AU2003261746A AU2003261746A1 (en) 2003-08-27 2003-08-27 Thermoplastic resin composition for foamed product and foamed product therefrom
PCT/JP2003/010825 WO2005023918A1 (en) 2003-08-27 2003-08-27 Thermoplastic resin composition for foamed product and foamed product therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/010825 WO2005023918A1 (en) 2003-08-27 2003-08-27 Thermoplastic resin composition for foamed product and foamed product therefrom

Publications (1)

Publication Number Publication Date
WO2005023918A1 true WO2005023918A1 (en) 2005-03-17

Family

ID=34260064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010825 WO2005023918A1 (en) 2002-02-28 2003-08-27 Thermoplastic resin composition for foamed product and foamed product therefrom

Country Status (2)

Country Link
AU (1) AU2003261746A1 (en)
WO (1) WO2005023918A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1036039C (en) * 2008-10-09 2010-04-12 Synbra Tech Bv PARTICULATE, EXPANDABLE POLYMER, METHOD FOR MANUFACTURING PARTICULAR EXPANDABLE POLYMER, AND A SPECIAL USE OF THE OBTAINED FOAM MATERIAL.
CN1730542B (en) * 2005-07-29 2010-05-05 上海普利特复合材料有限公司 Little odor acrylonitrile-butadiene-styrene ternary copolymerized resin material and its preparation method
WO2010083482A1 (en) * 2009-01-19 2010-07-22 Owens Corning Intellectual Capital, Llc Room temperature crosslinked foam
EP2752444A1 (en) * 2011-08-31 2014-07-09 Mitsubishi Chemical Corporation Foam molded body
US8875472B2 (en) 2006-12-29 2014-11-04 Owens Corning Intellectual Capital, Llc Room temperature crosslinked foam
CN106084274A (en) * 2016-06-12 2016-11-09 武汉理工大学 A kind of preparation method of light high-strength heat preservation foamed composite
US9714331B2 (en) 2006-12-29 2017-07-25 Owens Corning Intellectual Capital, Llc Room temperature crosslinked foam
US9868836B2 (en) 2006-12-29 2018-01-16 Owens Corning Intellectual Capital, Llc Room temperature crosslinked foam
US10119775B2 (en) * 2011-07-13 2018-11-06 Saint-Gobain Isover High-performance heat-insulating materials
CN109159393A (en) * 2018-07-12 2019-01-08 华南理工大学 A kind of biomass composite product molding method based on subcritical water fretting map
CN109676850A (en) * 2018-12-27 2019-04-26 孙兴普 A kind of manufacturing process of foamed silica gel product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443542A (en) * 1987-08-08 1989-02-15 Sumitomo Electric Industries Blowing agent for expansion molding of polyolefin resin
JPH05186626A (en) * 1992-01-13 1993-07-27 Sekisui Chem Co Ltd Foamable thermoplastic resin composition
JPH05222233A (en) * 1992-02-10 1993-08-31 Kumi Kasei Kk Polypropylene-based resin composition for foam, laminated sheet and laminate
JPH06192564A (en) * 1992-12-25 1994-07-12 Toyo Tire & Rubber Co Ltd Production of rigid polyurethane foam
JPH09124817A (en) * 1995-10-27 1997-05-13 Suzuki Yushi Kogyo Kk Foam
JPH09194620A (en) * 1995-11-14 1997-07-29 Tosoh Corp Preparation of thermoplastic resin foam
JP2001002943A (en) * 1999-06-22 2001-01-09 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition
JP2003253032A (en) * 2002-02-28 2003-09-10 Idemitsu Petrochem Co Ltd Foamable thermoplastic resin composition and foam thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443542A (en) * 1987-08-08 1989-02-15 Sumitomo Electric Industries Blowing agent for expansion molding of polyolefin resin
JPH05186626A (en) * 1992-01-13 1993-07-27 Sekisui Chem Co Ltd Foamable thermoplastic resin composition
JPH05222233A (en) * 1992-02-10 1993-08-31 Kumi Kasei Kk Polypropylene-based resin composition for foam, laminated sheet and laminate
JPH06192564A (en) * 1992-12-25 1994-07-12 Toyo Tire & Rubber Co Ltd Production of rigid polyurethane foam
JPH09124817A (en) * 1995-10-27 1997-05-13 Suzuki Yushi Kogyo Kk Foam
JPH09194620A (en) * 1995-11-14 1997-07-29 Tosoh Corp Preparation of thermoplastic resin foam
JP2001002943A (en) * 1999-06-22 2001-01-09 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition
JP2003253032A (en) * 2002-02-28 2003-09-10 Idemitsu Petrochem Co Ltd Foamable thermoplastic resin composition and foam thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730542B (en) * 2005-07-29 2010-05-05 上海普利特复合材料有限公司 Little odor acrylonitrile-butadiene-styrene ternary copolymerized resin material and its preparation method
US8875472B2 (en) 2006-12-29 2014-11-04 Owens Corning Intellectual Capital, Llc Room temperature crosslinked foam
US9868836B2 (en) 2006-12-29 2018-01-16 Owens Corning Intellectual Capital, Llc Room temperature crosslinked foam
US9714331B2 (en) 2006-12-29 2017-07-25 Owens Corning Intellectual Capital, Llc Room temperature crosslinked foam
KR101726453B1 (en) 2008-10-09 2017-04-12 신브라 테크놀로지 비.브이. Particulate, expandable polymer, method for producing particulate expandable polymer, as well as a special use of the obtained foam material
WO2010041936A3 (en) * 2008-10-09 2010-09-30 Synbra Technology B.V. Particulate, expandable polymer, method for producing particulate expandable polymer, as well as a special use of the obtained foam material
KR20110079715A (en) * 2008-10-09 2011-07-07 신브라 테크놀로지 비.브이. Particulate, expandable polymer, method for producing particulate expandable polymer, as well as a special use of the obtained foam material
NL1036039C (en) * 2008-10-09 2010-04-12 Synbra Tech Bv PARTICULATE, EXPANDABLE POLYMER, METHOD FOR MANUFACTURING PARTICULAR EXPANDABLE POLYMER, AND A SPECIAL USE OF THE OBTAINED FOAM MATERIAL.
WO2010083482A1 (en) * 2009-01-19 2010-07-22 Owens Corning Intellectual Capital, Llc Room temperature crosslinked foam
US10119775B2 (en) * 2011-07-13 2018-11-06 Saint-Gobain Isover High-performance heat-insulating materials
EP2752444A4 (en) * 2011-08-31 2015-03-25 Mitsubishi Chem Corp Foam molded body
EP2752444A1 (en) * 2011-08-31 2014-07-09 Mitsubishi Chemical Corporation Foam molded body
CN106084274A (en) * 2016-06-12 2016-11-09 武汉理工大学 A kind of preparation method of light high-strength heat preservation foamed composite
CN106084274B (en) * 2016-06-12 2019-05-24 武汉理工大学 A kind of preparation method of light high-strength heat preservation foamed composite
CN109159393A (en) * 2018-07-12 2019-01-08 华南理工大学 A kind of biomass composite product molding method based on subcritical water fretting map
CN109676850A (en) * 2018-12-27 2019-04-26 孙兴普 A kind of manufacturing process of foamed silica gel product

Also Published As

Publication number Publication date
AU2003261746A1 (en) 2005-03-29

Similar Documents

Publication Publication Date Title
JP4191510B2 (en) Thermoplastic resin composition for foam and foam thereof
JP4072360B2 (en) Thermoplastic resin composition for foam and foam thereof
Banerjee et al. Foamability and special applications of microcellular thermoplastic polymers: a review on recent advances and future direction
JP4828093B2 (en) Open cell foam made of high melting point plastic
Bledzki et al. Injection moulded microcellular wood fibre–polypropylene composites
Prasad et al. Permeability control in polymeric systems: a review
JP2007523243A (en) Method for producing foam sheet containing filler
Kaewmesri et al. Effects of CO2 and talc contents on foaming behavior of recyclable high-melt-strength PP
KR20050021912A (en) Composition for polyolefin resin foam, foam of the same, and process for producing foam
JP2007084744A (en) Styrene-based resin expandable beads and method for producing the same, and styrene-based resin expansion molded form
WO2005023918A1 (en) Thermoplastic resin composition for foamed product and foamed product therefrom
WO1996018671A1 (en) Thermoplastic resin foam and method of production thereof
JP6933909B2 (en) Fiber composite and its manufacturing method
WO1998014507A1 (en) Expandable synthetic resin composition, synthetic resin foam, and process for the production of the foam
Jiang et al. Poly (ether imide)/epoxy foam composites with a microcellular structure and ultralow density: bead foam fabrication, compression molding, mechanical properties, thermal stability, and flame-retardant properties
HUE032578T2 (en) A foam material with very low thermal conductivity and a process for manufacturing the foam material
JP2020152051A (en) Fiber-reinforced hollow material and method for producing fiber-reinforced hollow material
US20220041831A1 (en) Micro, sub-micron, and/or nano-cellular foams based on siloxane containing (co)polymers and blends
JP3453313B2 (en) Polyamide-based resin foam and method for producing the same
JP6962716B2 (en) Fiber complex
KR101269050B1 (en) Non-flammable light wood plastic compound and preparing thereof
JP2001181428A (en) Thermoplastic polyester resin foam and method for producing the same
JP4249533B2 (en) Foam and burr reduction method
RU2190638C2 (en) Method of self-extinguishing frothed plate making
Guo Development of fine-celled bio-fiber composite foams using physical blowing agents and nano-particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP