JPH05186626A - Foamable thermoplastic resin composition - Google Patents

Foamable thermoplastic resin composition

Info

Publication number
JPH05186626A
JPH05186626A JP385592A JP385592A JPH05186626A JP H05186626 A JPH05186626 A JP H05186626A JP 385592 A JP385592 A JP 385592A JP 385592 A JP385592 A JP 385592A JP H05186626 A JPH05186626 A JP H05186626A
Authority
JP
Japan
Prior art keywords
gas
thermoplastic resin
resin composition
foam
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP385592A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kurio
浩行 栗尾
Hitoshi Shirato
斉 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP385592A priority Critical patent/JPH05186626A/en
Publication of JPH05186626A publication Critical patent/JPH05186626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the composition using clean carbon dioxide as a foaming agent and capable of readily and safely giving highly foamed products at a low pressure by impregnating a resin composition comprising a thermoplastic resin and a specific porous material with the inorganic gas. CONSTITUTION:(A) A resin composition comprising (i) 100 pts.wt. of a thermoplastic resin (e.g. polyethylene, polypropylene, 6 nylon), (ii) 5-100 pts.wt. of a porous material (e.g. zeolite, silica gel) having an average particle diameter of <=500mum (preferably 100mum) and, if necessary, a filler and an antioxidant is charged in a pressure container, and the container is filled with (B) an inorganic gas, followed by heating and pressing the charged materials at a temperature above the softening point of the component (i) to obtain the objective composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クリーンな発泡剤であ
る無機ガスを含浸せしめた発泡性熱可塑性樹脂組成物に
関し、更に詳しくは、熱可塑性樹脂に多孔質体粉末を添
加することにより、無機ガスを容易に溶解・吸着させ、
低圧力で高発泡倍率の発泡体を与える発泡性熱可塑性樹
脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foamable thermoplastic resin composition impregnated with a clean foaming agent, inorganic gas, and more specifically, by adding a porous material powder to the thermoplastic resin, Easily dissolves and adsorbs inorganic gas,
The present invention relates to a foamable thermoplastic resin composition that gives a foam having a high expansion ratio at low pressure.

【0002】[0002]

【従来の技術】従来より、熱可塑性樹脂発泡体の製造方
法としては、熱分解型化学発泡剤を樹脂に練り込み、該
発泡剤の分解温度以上に加熱することにより発泡せしめ
る化学発泡剤法と、ブタン、ペンタン、ジクロロジフロ
ロメタン(フロンR−12)のような樹脂の融点以下に
沸点を有する有機ガスまたは揮発性液体を溶融樹脂に圧
入した後、低圧域に放出して発泡せしめるガス発泡法が
知られている。
2. Description of the Related Art Conventionally, as a method for producing a thermoplastic resin foam, there is a chemical foaming agent method in which a pyrolytic chemical foaming agent is kneaded into a resin and heated to a temperature equal to or higher than the decomposition temperature of the foaming agent for foaming. Gas foaming that causes an organic gas or volatile liquid having a boiling point below the melting point of a resin, such as butane, pentane, or dichlorodifluoromethane (CFC R-12), to be injected into the molten resin and then released into the low-pressure region for foaming. The law is known.

【0003】化学発泡剤法を用いることにより、均一か
つ微細な独立気泡を有する発泡体を得ることができる
が、発泡体中に残存する発泡剤の分解残渣のために、発
泡体の変色、臭気の発生、食品衛生上の問題などを生じ
る。
By using the chemical foaming agent method, a foam having uniform and fine closed cells can be obtained, but discoloration and odor of the foam due to the decomposition residue of the foaming agent remaining in the foam. Occurs, and food hygiene problems occur.

【0004】一方、ガス発泡法については、使用する発
泡剤がブタン、ペンタンのような低沸点有機溶剤の場
合、発泡体製造時に爆発性のガスを発生するので、爆発
の危険が生じる。また、使用する発泡剤がジクロロジフ
ロロメタン(フロンR−12)の場合、爆発の危険も少
なく、発泡時の気化に伴う蒸発潜熱により気泡膜を急激
に冷却固化でき、さらにセル膜に対するガス透過性が小
さいため高発泡体が得られやすいが、オゾン層破壊等の
環境問題からフロン系ガスは全廃の方向へ進んでいる。
On the other hand, in the gas foaming method, when the foaming agent used is a low-boiling organic solvent such as butane or pentane, an explosive gas is generated during the production of the foam, which causes a danger of explosion. Also, when the blowing agent used is dichlorodifluoromethane (CFC R-12), there is little danger of explosion, the bubble film can be rapidly cooled and solidified by the latent heat of vaporization associated with the vaporization during foaming, and gas permeation to the cell film Although it is easy to obtain a high foam due to its poor property, due to environmental problems such as ozone layer depletion, CFC-based gas is being abolished.

【0005】このような従来法の問題点を解決するため
に、炭酸ガス、窒素、空気のような無機ガス(気体)あ
るいは水を発泡剤とする方法が提案されている。これら
の発泡剤は、クリーンであり、前記のような問題は生じ
ないが、次のような問題がある。
In order to solve the problems of the conventional method, a method has been proposed in which carbon dioxide, nitrogen, an inorganic gas (gas) such as air, or water is used as a foaming agent. These foaming agents are clean and do not cause the above problems, but have the following problems.

【0006】例えば、特開昭60−31538号には、
ポリプロピレン系樹脂の無機ガスによる押出発泡法につ
いて開示されているが、無機ガスの樹脂に対する溶解度
が低いために、高倍率の発泡体が得られない。そして、
発泡倍率を上げるためには、押出機を用い高圧で無機ガ
スを樹脂中に圧入し、溶解させる必要がある。この高圧
混合溶解物は、押出機口金から大気中へ押し出されるま
で、その高圧状態が保たれなければならない。もし、押
出機または口金内で圧力が下がると、樹脂と無機ガスは
容易に分離し、高倍率の発泡体を得ることができない。
また、口金まで高圧状態が保たれたとしても、口金から
大気中へ出た瞬間に急激な膨張が起こるため、樹脂はそ
の膨張圧力に耐えられず、引き裂かれた状態になり、そ
の結果、高倍率で美麗な発泡体は得られない。
For example, Japanese Patent Application Laid-Open No. 60-31538 discloses that
Although an extrusion foaming method using a polypropylene-based resin with an inorganic gas is disclosed, a high-magnification foam cannot be obtained because the solubility of the inorganic gas in the resin is low. And
In order to increase the expansion ratio, it is necessary to press the inorganic gas into the resin at a high pressure using an extruder to dissolve it. This high-pressure mixed melt must be maintained in its high-pressure state until it is extruded from the extruder die into the atmosphere. If the pressure is lowered in the extruder or the die, the resin and the inorganic gas are easily separated and a high-magnification foam cannot be obtained.
Also, even if the high pressure state is maintained up to the base, the resin will not withstand the expansion pressure and will be torn due to the rapid expansion at the moment when the base is released into the atmosphere, and as a result, a high pressure will result. A beautiful foam cannot be obtained at a magnification.

【0007】また、イギリス特許第899,389号に
は、架橋したポリエチレンを耐圧容器中で窒素ガスによ
り発泡する方法が開示されているが、高倍率の発泡体を
得るためには、非常な高圧力が必要となり、危険で、設
備コストが高く、作業効率も悪い。
Further, British Patent No. 899,389 discloses a method of foaming cross-linked polyethylene with nitrogen gas in a pressure resistant container. However, in order to obtain a high-magnification foam, it is extremely high. Pressure is required, it is dangerous, equipment costs are high, and work efficiency is poor.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術の欠点を克服して、発泡剤としてクリーンな無
機ガスを用い、しかも低圧力で高倍率発泡体を容易に安
全に製造することが可能な発泡性熱可塑性樹脂組成物を
提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to overcome the above-mentioned drawbacks of the prior art and use a clean inorganic gas as a foaming agent and easily and safely manufacture a high-magnification foam at a low pressure. An object of the present invention is to provide a foamable thermoplastic resin composition.

【0009】本発明者らは、前記課題を解決するために
鋭意研究した結果、平均粒径500μm以下の多孔質体
と熱可塑性樹脂からなる樹脂組成物に無機ガスを含浸せ
しめた発泡性組成物を用いれば、低圧力で高倍率発泡体
を容易に安全に製造できることを見いだした。本発明者
らは、これらの知見に基づいて、本発明を完成するに至
った。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, a foamable composition obtained by impregnating a resin composition composed of a porous material having an average particle diameter of 500 μm or less and a thermoplastic resin with an inorganic gas. It was found that a high-foaming foam can be easily and safely produced at a low pressure by using. The present inventors have completed the present invention based on these findings.

【0010】[0010]

【課題を解決するための手段】本発明によれば、熱可塑
性樹脂と平均粒径500μm以下の多孔質体を含有する
樹脂組成物に無機ガスを含浸せしめたことを特徴とする
発泡性熱可塑性樹脂組成物が提供される。
According to the present invention, a foamable thermoplastic resin composition characterized in that a resin composition containing a thermoplastic resin and a porous material having an average particle size of 500 μm or less is impregnated with an inorganic gas. A resin composition is provided.

【0011】以下、本発明について詳細に説明する。ガ
ス発泡法により熱可塑性樹脂発泡体を製造する場合、発
泡倍率10〜40倍の高倍率発泡体を得るためには、発
泡時のガス抜け等を考慮すると、少なくとも10〜40
cc[STP;標準状態(0℃、1atm)]程度のガ
スを樹脂組成物1gに対して溶解させなければならな
い。
The present invention will be described in detail below. In the case of producing a thermoplastic resin foam by the gas foaming method, in order to obtain a high-magnification foam having an expansion ratio of 10 to 40, at least 10 to 40 should be taken into consideration in consideration of gas escape during foaming.
A gas of about cc [STP; standard condition (0 ° C., 1 atm)] must be dissolved in 1 g of the resin composition.

【0012】一般に、溶融状態の樹脂に対するガスの溶
解度は、ほぼガス圧に比例することが知られているが、
同一圧力においては、無機系ガスの溶解度は有機系ガス
に比べて低い。図1(a)に溶融状態の低密度ポリエチ
レンに対する炭酸ガス溶解量のガス圧依存性を示した。
低密度ポリエチレン1gに対し炭酸ガスを10〜40c
c(STP)の割合で溶解させるためには、30〜12
0kg/cm2の高圧力のガス圧が必要となることがわ
かる。
It is generally known that the solubility of gas in a molten resin is almost proportional to the gas pressure.
At the same pressure, the solubility of the inorganic gas is lower than that of the organic gas. FIG. 1 (a) shows the gas pressure dependence of the amount of dissolved carbon dioxide in low-density polyethylene in the molten state.
Carbon dioxide is 10-40c for 1g of low-density polyethylene
In order to dissolve at a ratio of c (STP), 30 to 12
It can be seen that a high gas pressure of 0 kg / cm 2 is required.

【0013】そこで、本発明者らは、より低圧のガスで
同一のガス溶解度を得る手段を種々検討した結果、ガス
に対して吸着能を有する多孔質体を熱可塑性樹脂に含有
させることにより、該樹脂組成物に対する無機ガスの溶
解度を向上できることを見いだした。図1(b)に、低
密度ポリエチレン100重量部に対しゼオライト20重
量部添加した樹脂組成物の炭酸ガス含浸量のガス圧依存
性を示した。図1からわかるように、多孔質体を添加す
ることにより、同一ガス圧での炭酸ガス含浸量が増加し
ている。また、多孔質体の配合部数を調節することによ
り、無機ガスの含浸量が調節できるため、発泡体の発泡
倍率を制御することが可能である。
Therefore, as a result of various studies on means for obtaining the same gas solubility with a lower pressure gas, the present inventors have found that by incorporating a porous material having an adsorbing ability for gas into a thermoplastic resin, It was found that the solubility of the inorganic gas in the resin composition can be improved. FIG. 1B shows the gas pressure dependency of the carbon dioxide impregnation amount of the resin composition in which 20 parts by weight of zeolite was added to 100 parts by weight of low-density polyethylene. As can be seen from FIG. 1, the carbon dioxide impregnation amount under the same gas pressure is increased by adding the porous body. Moreover, since the amount of the inorganic gas impregnated can be adjusted by adjusting the number of parts of the porous body, it is possible to control the expansion ratio of the foam.

【0014】本発明に用いられる熱可塑性樹脂として
は、特に限定されず、例えば、ポリエチレン、ポリプロ
ピレン、ポリメチルメタクリレート、ポリ塩化ビニル、
ポリフッ化ビニル、エチレン−プロピレン共重合体、エ
チレン−エチルアクリレート共重合体、エチレン−プロ
ピレン−ジエン共重合体、ABS樹脂、ポリスチレン、
スチレン分を50%以上含む共重合体等のポリオレフィ
ン及びポリスチレン系樹脂;6−ナイロン、66−ナイ
ロン、12−ナイロン等のポリアミド;ポリエチレンテ
レフタレート、ポリブチレンテレフタレート等のポリエ
ステル;ビスフェノールA系のポリカーボネート;その
他、ポリフェニレンオキサイド、ポリアセタール、ポリ
フェニレンスルフィド等が挙げられる。これらの樹脂
は、単独で用いても2種以上を併用してもよい。
The thermoplastic resin used in the present invention is not particularly limited, and examples thereof include polyethylene, polypropylene, polymethylmethacrylate, polyvinyl chloride,
Polyvinyl fluoride, ethylene-propylene copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene-diene copolymer, ABS resin, polystyrene,
Polyolefins such as copolymers containing 50% or more of styrene and polystyrene resins; polyamides such as 6-nylon, 66-nylon and 12-nylon; polyesters such as polyethylene terephthalate and polybutylene terephthalate; bisphenol A type polycarbonates; others , Polyphenylene oxide, polyacetal, polyphenylene sulfide and the like. These resins may be used alone or in combination of two or more kinds.

【0015】多孔質体としては、ゼオライト、活性炭、
アルミナ、シリカゲル、多孔質ガラス、活性白土、珪藻
土、クレー等、あるいはこれらの2種以上の混合物が用
いられる。
As the porous material, zeolite, activated carbon,
Alumina, silica gel, porous glass, activated clay, diatomaceous earth, clay, or the like, or a mixture of two or more thereof is used.

【0016】本発明で用いる多孔質体は、その平均粒径
が500μm以下、好ましくは100μm以下のもので
ある。平均粒径が500μmより大きいものを用いた場
合は、均一で微細な気泡の発泡体が得られず、破泡の原
因となる。また、平均粒径が100mμ以下の多孔質体
は、それ自身が気泡核形成剤として作用し、気泡の大き
さを微細化しかつ均一化し、分散を一様にする。
The porous material used in the present invention has an average particle diameter of 500 μm or less, preferably 100 μm or less. If an average particle size of more than 500 μm is used, a uniform and fine cell foam cannot be obtained, which may cause cell breakage. Further, the porous body having an average particle size of 100 mμ or less acts as a cell nucleating agent by itself, and makes the size of cells fine and uniform, and makes the dispersion uniform.

【0017】多孔質体の添加量は、熱可塑性樹脂100
重量部に対して、通常5〜100重量部、好ましくは1
0〜70重量部である。多孔質体の添加量が5重量部未
満の場合、該樹脂組成物に対する無機ガスの含浸(溶解
・吸着)度が余り上がらず、低圧力で高倍率の発泡体を
得ることが難しい。逆に、100重量部を越した場合
は、多孔質体が発泡を阻害し、破泡が起こり易いため、
この場合も高倍率の発泡体を得ることが困難である。
The amount of the porous material added is 100
5 to 100 parts by weight, preferably 1 part by weight
It is 0 to 70 parts by weight. When the amount of the porous body added is less than 5 parts by weight, the degree of impregnation (dissolution / adsorption) of the inorganic gas into the resin composition does not increase so much, and it is difficult to obtain a high-magnification foam at low pressure. On the other hand, when the amount exceeds 100 parts by weight, the porous body hinders foaming and foam breakage easily occurs,
Also in this case, it is difficult to obtain a high-magnification foam.

【0018】また、本発明においては、組成物中に、必
要に応じて、充填材、抗酸化剤、顔料、難燃剤等を添加
することができる。発泡剤としての無機ガスとしては、
炭酸ガス、窒素、空気、酸素、あるいはネオン、アルゴ
ンなどの不活性ガス等を挙げることができる。高倍率発
泡体を得るためには、熱可塑性樹脂に対する溶解度の高
い炭酸ガスあるいは炭酸ガスと他の無機ガスとの混合物
が好ましい。
Further, in the present invention, if necessary, a filler, an antioxidant, a pigment, a flame retardant, etc. may be added to the composition. As an inorganic gas as a foaming agent,
Examples thereof include carbon dioxide gas, nitrogen, air, oxygen, or an inert gas such as neon or argon. In order to obtain a high-magnification foam, carbon dioxide having a high solubility in a thermoplastic resin or a mixture of carbon dioxide and another inorganic gas is preferable.

【0019】本発明における発泡性熱可塑性樹脂組成物
を製造するには、(1)熱可塑性樹脂と平均粒径500
mμ以下の多孔質体とを混練した樹脂組成物に無機ガス
を圧入する方法、(2)あらかじめ無機ガスを吸着させ
た平均粒径500mμ以下の多孔質体と熱可塑性樹脂を
混練する方法、(3)あらかじめ無機ガスを吸着させた
平均粒径500mμ以下の多孔質体と熱可塑性樹脂を混
練した樹脂組成物に、さらに無機ガスを圧入する方法、
などの方法がある。
To produce the expandable thermoplastic resin composition of the present invention, (1) the thermoplastic resin and an average particle size of 500
a method of injecting an inorganic gas into a resin composition obtained by kneading a porous body having a particle size of mμ or less, (2) a method of kneading a porous resin having an average particle size of 500 mμ or less, in which an inorganic gas is adsorbed in advance, and a thermoplastic resin, 3) A method of further injecting an inorganic gas into a resin composition obtained by kneading a thermoplastic resin with a porous body having an average particle size of 500 mμ or less which has been adsorbed with an inorganic gas in advance,
There is a method such as.

【0020】本発明の発泡性熱可塑性樹脂組成物は、高
圧下で無機ガスを含浸させているため、減圧により無機
ガスが放出される。したがって、無機ガスを含浸した発
泡性熱可塑性樹脂組成物を圧力のかかった状態から低圧
域に放出すると、多孔質体から脱着するガス及び樹脂に
溶解しているガスが膨張し、これに伴って樹脂組成物は
発泡する。この場合、樹脂組成物の溶融粘度を適正な範
囲に調整しておくことが破泡を防ぐ上で重要である。
Since the expandable thermoplastic resin composition of the present invention is impregnated with the inorganic gas under high pressure, the inorganic gas is released by reducing the pressure. Therefore, when the expandable thermoplastic resin composition impregnated with the inorganic gas is released from the pressure-applied state to the low-pressure region, the gas desorbed from the porous body and the gas dissolved in the resin expand, and with this The resin composition foams. In this case, it is important to adjust the melt viscosity of the resin composition within an appropriate range in order to prevent foam breakage.

【0021】一般に、無架橋の熱可塑性樹脂は、融点付
近で急激な粘度変化を生じるため、発泡に好適な粘弾性
を示す温度範囲が狭く、発泡時の適正な温度と粘度を制
御するには高度の技術力が必要となる。そこで、発泡に
適正な温度と粘度の制御を容易にするため、熱可塑性樹
脂組成物を架橋することが好ましい。
In general, a non-crosslinked thermoplastic resin causes a rapid change in viscosity near its melting point, and therefore has a narrow temperature range exhibiting viscoelasticity suitable for foaming, and it is necessary to control the proper temperature and viscosity during foaming. A high level of technical skill is required. Therefore, it is preferable to crosslink the thermoplastic resin composition in order to facilitate control of the proper temperature and viscosity for foaming.

【0022】該組成物の架橋方法としては、(1)電子
線を照射して架橋する方法、(2)有機過酸化物を添加
して加熱によりラジカルを発生させて架橋する方法、
(3)オレフィン系樹脂と−C=C−基及び−Si(O
R)n基[R:Hまたはアルキル基、n=2または3]
を有するシラン化合物を遊離ラジカル発生剤の存在下加
熱することによりシラングラフト化ポリオレフィンを製
造し、水及び必要に応じてシラノール縮合触媒によって
架橋させる方法、等が挙げられる。
The cross-linking method of the composition is (1) a method of cross-linking by irradiating an electron beam, (2) a method of adding an organic peroxide and generating a radical by heating to cross-link the composition.
(3) Olefin-based resin, -C = C- group, and -Si (O
R) n group [R: H or alkyl group, n = 2 or 3]
Examples of the method include producing a silane-grafted polyolefin by heating a silane compound having a silane compound in the presence of a free radical generator, and crosslinking the silane-grafted polyolefin with water and, if necessary, a silanol condensation catalyst.

【0023】架橋度は、発泡時にゲル分率で60%以
下、好ましくは5〜60%、より好ましくは10〜50
%とすることが望ましい。ゲル分率が60%を越える
と、発泡時の樹脂の粘度が高くなりすぎて高倍率の発泡
体が得られない。一方、ゲル分率が5%未満の場合に
は、発泡に好適な粘弾性を示す温度範囲が無架橋の場合
とあまり変わらず、温度と粘度の制御がなお困難であ
る。なお、必要に応じて架橋助剤を加えてもよい。
The degree of crosslinking is 60% or less, preferably 5 to 60%, more preferably 10 to 50 in terms of gel fraction at the time of foaming.
It is desirable to set it as%. When the gel fraction exceeds 60%, the viscosity of the resin at the time of foaming becomes too high, and a foam having a high magnification cannot be obtained. On the other hand, when the gel fraction is less than 5%, the temperature range exhibiting viscoelasticity suitable for foaming is not so different from that in the case of non-crosslinked, and it is still difficult to control the temperature and the viscosity. A crosslinking aid may be added if necessary.

【0024】発泡性熱可塑性樹脂組成物から発泡体を製
造するには、押出機で発泡する方法あるいは圧力容器中
で発泡する方法等が挙げられる。
To produce a foam from the expandable thermoplastic resin composition, there may be mentioned a method of foaming with an extruder or a method of foaming in a pressure vessel.

【0025】押出機で発泡させる方法としては、(1)
多孔質体と熱可塑性樹脂からなる組成物を押出機に投入
し、該樹脂組成物が溶融状態にある押出機の途中で、ガ
ス圧入孔から無機ガスを圧入して押圧発泡する方法、
(2)あらかじめ多孔質体に無機ガスを吸着させてお
き、ドライブレンドにより本発明の樹脂組成物を製造
し、必要に応じて押出機の途中から無機ガスを圧入して
押出発泡する方法、(3)多孔質体以外の樹脂組成物を
押出機のホッパーから供給し、該組成物が溶融した状態
にある所に、あらかじめ無機ガスを吸着させた多孔質体
および無機ガスを同時にまたは別々に注入して押出発泡
する方法等がある。
As a method of foaming with an extruder, (1)
A method in which a composition comprising a porous body and a thermoplastic resin is charged into an extruder, and the resin composition is in the molten state in the middle of the extruder, in which an inorganic gas is press-fitted by pressurizing an inorganic gas,
(2) A method in which an inorganic gas is adsorbed in advance on a porous body, the resin composition of the present invention is produced by dry blending, and if necessary, the inorganic gas is pressed in from the middle of the extruder to perform extrusion foaming. 3) A resin composition other than the porous body is supplied from the hopper of the extruder, and the porous body and the inorganic gas in which the inorganic gas is adsorbed in advance are injected simultaneously or separately into the molten state of the composition. Then, there is a method of extrusion foaming.

【0026】圧力容器中で発泡する方法としては、まず
多孔質体と熱可塑性樹脂からなる組成物を溶融混練し、
シート状またはブロック状に成形し、次いで該成形体を
圧力容器中に投入し、無機ガスを充満させて熱可塑性樹
脂の軟化点以上に加熱・加圧しシート状またはブロック
状の発泡性熱可塑性樹脂組成物を得る。架橋する場合に
は、架橋はこの時の加熱により行うか、あるいは圧力容
器投入前に行う。無機ガスを十分に該樹脂組成物に溶解
させた後、減圧することにより発泡体を製造することが
できる。
As a method of foaming in a pressure vessel, first, a composition comprising a porous body and a thermoplastic resin is melt-kneaded,
A sheet-shaped or block-shaped expandable thermoplastic resin which is formed into a sheet-shaped or block-shaped, and then the molded body is put into a pressure vessel, filled with an inorganic gas, and heated and pressed to a temperature not lower than the softening point of the thermoplastic resin. Obtain the composition. In the case of cross-linking, the cross-linking is carried out by heating at this time or before introducing into a pressure vessel. A foam can be produced by sufficiently dissolving an inorganic gas in the resin composition and then reducing the pressure.

【0027】[0027]

【実施例】以下に実施例及び比較例を挙げて、本発明に
ついて更に具体的に説明するが、本発明は、これらの実
施例のみに限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0028】実施例1 <配合処方> ゼオライト(平均粒径10mμ) 20重量部 低密度ポリエチレン(密度0.921、MI=2.0) 100重量部 抗酸化剤 0.6重量部 上記各成分をドライブレンドし、130℃に設定された
ベントタイプφ65mm押出機(L/D=35)のホッ
パーに供給した。溶融部を通って十分に樹脂と添加剤が
混練している溶融体へベント部より炭酸ガスを60kg
/cm2の圧力で圧入し、更に十分混練した後、113
℃に設定されたφ2mmの口金より20kg/cm2
吐出量でロッド状に押出発泡したところ、発泡倍率が2
0.0倍である表面平滑な均一微細気泡の発泡体が得ら
れた。
Example 1 <Compound formulation> Zeolite (average particle size 10 mμ) 20 parts by weight Low density polyethylene (density 0.921, MI = 2.0) 100 parts by weight Antioxidant 0.6 parts by weight The mixture was dry-blended and supplied to the hopper of a vent type φ65 mm extruder (L / D = 35) set at 130 ° C. 60 kg of carbon dioxide gas from the vent to the melt where the resin and additives are sufficiently kneaded through the melt.
After press-fitting at a pressure of / cm 2 and further thoroughly kneading, 113
When extruded into a rod shape at a discharge rate of 20 kg / cm 2 from a φ2 mm die set to ℃, the expansion ratio was 2
A foam having uniform fine cells with a smooth surface of 0.0 times was obtained.

【0029】実施例2 <配合処方> ゼオライト(平均粒径10mμ) 20重量部 低密度ポリエチレン(密度0.921、MI=2.0) 100重量部 抗酸化剤 0.6重量部 上記各成分を130℃に設定されたミキシングロールで
混練後、加熱プレスにより2mm厚のシート状に成形し
た。該シート状成形体に、電圧540kev、照射線量
5.3Mradの電子線を両面に照射して架橋した。こ
の時のゲル分率は35%であった。次いで、該シート状
成形体を圧力容器中に投入し、真空ポンプで脱気後、炭
酸ガスを圧入し、加熱せしめ、60kg/cm2、14
0℃に2時間保った。次いで、圧力容器を解放し大気圧
まで急激に減圧、冷却したところ、発砲倍率が25.0
倍で表面平滑な均一微細気泡の発泡体が得られた。
Example 2 <Compound formulation> Zeolite (average particle size 10 mμ) 20 parts by weight Low density polyethylene (density 0.921, MI = 2.0) 100 parts by weight Antioxidant 0.6 parts by weight After kneading with a mixing roll set at 130 ° C., it was formed into a sheet having a thickness of 2 mm by a hot press. The sheet-like molded body was cross-linked by irradiating both sides with an electron beam having a voltage of 540 kev and an irradiation dose of 5.3 Mrad. The gel fraction at this time was 35%. Next, the sheet-shaped molded product is put into a pressure vessel, deaerated by a vacuum pump, carbon dioxide gas is then press-fitted, and heated to 60 kg / cm 2 , 14
It was kept at 0 ° C. for 2 hours. Next, the pressure vessel was released, and the pressure was rapidly reduced to atmospheric pressure and cooled, and the firing rate was 25.0.
As a result, a foam having uniform fine cells with a smooth surface was obtained.

【0030】比較例1 ゼオライトを添加しなかったこと以外は実施例1と同一
条件で押し出したところ、発泡倍率が14.0倍で、表
面平滑ではあるが、気泡の粗い発泡体が得られた。
Comparative Example 1 When extruded under the same conditions as in Example 1 except that no zeolite was added, a foaming ratio of 14.0 times and a smooth surface but coarse cells was obtained. ..

【0031】比較例2 ゼオライトを添加しなかったこと、及び実施例1と同じ
発砲倍率を得るために炭酸ガスを80kg/cm2で圧
入したこと以外は実施例1と同一条件で押し出したとこ
ろ、部分的には発泡倍率が20.0倍の発泡体が得られ
たが、口金からのガス抜け、樹脂の飛散、口金内部での
発泡等により表面が粗荒な、部分的に気泡が粗大化した
発泡体が得られた。
Comparative Example 2 Extrusion was carried out under the same conditions as in Example 1 except that no zeolite was added and that carbon dioxide gas was pressed in at 80 kg / cm 2 in order to obtain the same expansion ratio as in Example 1. A foam with an expansion ratio of 20.0 was obtained partially, but the surface was rough due to gas escape from the die, resin scattering, foaming inside the die, etc. A foam was obtained.

【0032】比較例3 ゼオライトを添加しなかったこと以外は実施例2と同一
条件で発泡体を製造したところ、発泡倍率が17.5倍
で、表面平滑ではあるが、気泡の粗い発泡体が得られ
た。
Comparative Example 3 A foam was produced under the same conditions as in Example 2 except that zeolite was not added. As a result, a foam having a foaming ratio of 17.5 times and a smooth surface, but having coarse cells was obtained. Was obtained.

【0033】[0033]

【発明の効果】本発明の発泡性熱可塑性樹脂組成物を用
いると、樹脂組成物に対するガス含浸率が著しく向上
し、比較的低圧力のガスで安全に効率よく高倍率の発泡
体が製造できる。また、平均粒径が100mμ以下の多
孔質体を使用すると、気泡核形成剤の添加が不要という
利点もある。本発明による発泡体は、断熱材、緩衝材、
シール材、フロート材等の多方面への適用が可能であり
極めて有用である。
EFFECTS OF THE INVENTION By using the expandable thermoplastic resin composition of the present invention, the gas impregnation rate to the resin composition is remarkably improved, and a foam having a high expansion ratio can be safely and efficiently produced with a gas having a relatively low pressure. .. Further, when a porous body having an average particle diameter of 100 mμ or less is used, there is an advantage that it is not necessary to add a cell nucleating agent. The foam according to the present invention comprises a heat insulating material, a cushioning material,
It is extremely useful because it can be applied to various fields such as sealing materials and float materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は、溶融状態の低密度ポリエチレン
に対する炭酸ガス溶解度を、(b)は、低密度ポリエチ
レン100重量部に対しゼオライト20重量部添加した
樹脂組成物の炭酸ガス含浸量を示すグラフである。
FIG. 1 (a) is a carbon dioxide gas solubility in low-density polyethylene in a molten state, and (b) is a carbon dioxide impregnation amount of a resin composition in which 20 parts by weight of zeolite is added to 100 parts by weight of low-density polyethylene. It is a graph which shows.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂と平均粒径500μm以下
の多孔質体を含有する樹脂組成物に無機ガスを含浸せし
めたことを特徴とする発泡性熱可塑性樹脂組成物。
1. A foamable thermoplastic resin composition, which is obtained by impregnating a resin composition containing a thermoplastic resin and a porous material having an average particle size of 500 μm or less with an inorganic gas.
JP385592A 1992-01-13 1992-01-13 Foamable thermoplastic resin composition Pending JPH05186626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP385592A JPH05186626A (en) 1992-01-13 1992-01-13 Foamable thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP385592A JPH05186626A (en) 1992-01-13 1992-01-13 Foamable thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH05186626A true JPH05186626A (en) 1993-07-27

Family

ID=11568802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP385592A Pending JPH05186626A (en) 1992-01-13 1992-01-13 Foamable thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH05186626A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348512B1 (en) 1995-12-29 2002-02-19 Pmd Holdings Corp. Medium density chlorinated polyvinyl chloride foam and process for preparing
NL1023638C2 (en) * 2003-06-11 2004-12-14 Synbra Tech Bv Particulate, expandable polystyrene (EPS), method for manufacturing particulate expandable polystyrene, as well as a special application of polystyrene foam material.
WO2005023918A1 (en) * 2003-08-27 2005-03-17 Idemitsu Kosan Co., Ltd. Thermoplastic resin composition for foamed product and foamed product therefrom
JP2010037367A (en) * 2008-07-31 2010-02-18 Asahi Fiber Glass Co Ltd Polyolefin resin foam and production method thereof
JP2012025798A (en) * 2010-07-20 2012-02-09 Sekisui Chem Co Ltd Method of producing polyolefin resin foam
JP2014518299A (en) * 2011-06-29 2014-07-28 ダウ グローバル テクノロジーズ エルエルシー Method for producing organic foam composites containing airgel particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348512B1 (en) 1995-12-29 2002-02-19 Pmd Holdings Corp. Medium density chlorinated polyvinyl chloride foam and process for preparing
NL1023638C2 (en) * 2003-06-11 2004-12-14 Synbra Tech Bv Particulate, expandable polystyrene (EPS), method for manufacturing particulate expandable polystyrene, as well as a special application of polystyrene foam material.
EP1486530A1 (en) * 2003-06-11 2004-12-15 Synbra Technology B.V. Activated carbon-containing particulate, expandable polystyrene
WO2005023918A1 (en) * 2003-08-27 2005-03-17 Idemitsu Kosan Co., Ltd. Thermoplastic resin composition for foamed product and foamed product therefrom
JP2010037367A (en) * 2008-07-31 2010-02-18 Asahi Fiber Glass Co Ltd Polyolefin resin foam and production method thereof
JP2012025798A (en) * 2010-07-20 2012-02-09 Sekisui Chem Co Ltd Method of producing polyolefin resin foam
JP2014518299A (en) * 2011-06-29 2014-07-28 ダウ グローバル テクノロジーズ エルエルシー Method for producing organic foam composites containing airgel particles

Similar Documents

Publication Publication Date Title
JPS5975929A (en) Production of polyolefin foam
JPH0229095B2 (en)
JP3638960B2 (en) Polyolefin resin expanded particles and method for producing the same
JPH05186626A (en) Foamable thermoplastic resin composition
GB2030151A (en) Producing cross-linked polypropylene
JPS60252636A (en) Preparation of preexpanded particle
JP3159791B2 (en) Foamable thermoplastic resin composition and foam
JPS614738A (en) Preparation of foamed polypropylene resin particle
JPH05320400A (en) Production of thermoplastic resin foam
JP3205225B2 (en) Polypropylene resin foam
JPH10279724A (en) Production of polyolefin resin open cell foam
JPH05287106A (en) Expandable thermoplastic resin composition
JPH05255531A (en) Production of molded polymer foam
JPH05156060A (en) Fomable thermolstic resin composition
JPS612741A (en) Manufacture of polypropylene resin expanded beads
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JP3126171B2 (en) Method for producing expanded polyolefin resin particles
JPH0314845A (en) Preparation of pre-expanded bead of polyolefin resin
JPH0892408A (en) In-mold expanded molding of antistatic polypropylene resin
JPS60245649A (en) Preparation of foamed particle of crosslinked polyolefin resin
JPS6341942B2 (en)
JPH01190736A (en) Production of expanded polyolefin resin particle
JPS63159450A (en) Production of expandable ethylene resin bead
JP2002053692A (en) Flame retarded polyolefin-based resin foaming particle, and its foamed molding
JPS58210933A (en) Preparation of pre-expanded granule of ethylene-propylene copolymer