WO2005023465A1 - Dispositif pour atomiser un jet de matiere fondue et procede pour atomiser des metaux ou des ceramiques refractaires - Google Patents

Dispositif pour atomiser un jet de matiere fondue et procede pour atomiser des metaux ou des ceramiques refractaires Download PDF

Info

Publication number
WO2005023465A1
WO2005023465A1 PCT/EP2004/009769 EP2004009769W WO2005023465A1 WO 2005023465 A1 WO2005023465 A1 WO 2005023465A1 EP 2004009769 W EP2004009769 W EP 2004009769W WO 2005023465 A1 WO2005023465 A1 WO 2005023465A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
nozzle
gas flow
lavalduse
melt nozzle
Prior art date
Application number
PCT/EP2004/009769
Other languages
German (de)
English (en)
Inventor
Lüder GERKING
Original Assignee
Gerking Lueder
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerking Lueder filed Critical Gerking Lueder
Priority to EP04764728A priority Critical patent/EP1658150A1/fr
Publication of WO2005023465A1 publication Critical patent/WO2005023465A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Definitions

  • the invention relates to a device for spraying a melt jet according to the preamble of the main claim and a method for spraying refractory metals and ceramics.
  • melt jet is injected by accompanying gas streams at high speeds into the supersonic range.
  • the gas velocity must be high on the one hand, but advantageously also the gas density and thus the gas pressure in order to have a correspondingly high flow impulse of the gas and much of it due to shear stresses to transfer to the melt jet for its rejuvenation.
  • the speed of sound of the gases sets limits here, as does the gas pressure in the technical design of the devices.
  • the object of the invention is to create a device and a method for spraying a melt jet, in particular for metals and ceramics with a higher melting point, which, with less energy expenditure than in the heating of the gas used in the prior art, up to the liquid state of the emerging melt maintains far into the high speed area of gas flow and produce fine powder with narrow distribution if desired.
  • melt nozzle is covered with thermal insulation, which is also in the lower area of the A melt shield is provided and essentially only leaves the outlet opening free, a kind of protective shield against heat dissipation through the supplied gas flow is formed, so that by maintaining the liquid state of the melt flow emerging from the melt nozzle, high shear stresses between gas as far as possible into the high-speed region of the accompanying laminar gas flow - and melt flow can be achieved, whereby fine powders can be produced, for example, down to an average diameter of less than 10 ⁇ m.
  • the melt nipple is isolated from the gas flow, advantageously by the air layers between the melt nipple and the heat-insulating guide walls guiding the gas flow.
  • the melt nipple can be heated, which is particularly useful when starting the process, piecing, and high melt temperatures well above 1000 ° C.
  • the shock-like quenching effect of the gas at the start of atomization - from a crucible by rapidly pulling the stopper rod serving as a closure - is counteracted by the stored heat from the previous heating.
  • non-spherical particles can also be produced by introducing a cold medium - gas or liquid - in the area below the point of rupture for deterrence.
  • the process can be operated with a gas pressure by the same pressure prevailing over the crucible as in the gas supply.
  • the latter can also be regulated separately, for which purpose both rooms, crucible and gas supply room, must be separated. This has the advantage that the melt throughput can be additionally controlled by the positive pressure difference between the two.
  • Continuous processes can also be operated with pumps in the lower temperature range, for example with lead smelting, whereby two pressure systems are available from the start.
  • Sprayings above about 1000 ° C are of particular importance, starting with aluminum and copper alloys at slightly above 800 ° C, over iron alloys (steel) at above 1500 ° C and platinum all around 2000 ° C, each melt temperature during spraying.
  • the special thermal protection measures on the melt nipple, even heating only during start-up, are generally not necessary, but can be advantageous for continuous operation.
  • spraying at higher temperatures, i.e. around and above 1000 ° C under the effect of the automatic bursting after a few millimeters of running, the combination of active and passive thermal insulation was found as the best option given the small dimensions of the spraying zone do without gas heating and external heating of the melt jet.
  • the melt monofilament is clearly over 10 mm, depending on the discharge cross-section, also over 25 mm in length before it bursts open.
  • the risk of freezing the monofilament over this length is not great there because of the relatively small temperature difference between the melt jet and the gas flow, in particular the heat loss due to radiation is proportional to T 4 and measures of the present invention were not considered.
  • Ceramic melts cover a much broader spectrum in the particle shape produced than metals and their alloys, because they can be atomized into beads as well as fibers or endless threads, or fibers with balls, so-called pearls, depending on whether the toughness or the surface tension forces predominate. In the latter case, individual particles are formed, for example with metals. Plastic and general melts can also be atomized into individual particles by the method according to the invention if the surface tension has a stronger effect than the thread-forming toughness.
  • the outflow cross sections of the melt from the melt nipples have a round cross section and monofilaments emerge. They can also be slit-shaped (in addition to conceivable other irregular shapes) and a melt film emerges.
  • the atomization mechanism of the accelerating laminar gas flow is more diverse than the described "regular" bursting of a melt onofil.
  • the film constricts itself from the edges, thickens there, also forms streak-like thickenings across its width and again, due to these curvatures of the melt surfaces, the surface forces outweigh the toughness forces and the film is divided into individual particles in a clearly defined area solidify again in good spherical shape, unless special measures of sudden cooling are carried out by a third medium.
  • the atomization of a film results in a broader distribution of the particle sizes and these are coarser for a material under otherwise identical conditions than is possible with omnidirectional (monofilament) atomization according to the present method.
  • the throughput in film atomization can, however, be much larger because the slot cross section can be larger and the gas forces laterally attack a thin melt stream.
  • Fig. 1 shows a section through the atomizing device according to the invention
  • FIGS. 2a and 2b mutually perpendicular section through the lower region of a device for jetting with a slot-shaped melt nozzle.
  • Fig. 1 shows a device for atomizing metal melts consisting of a crucible 1, usually made of ceramic or graphite, with a melt nipple 2 or a melt nozzle arranged under an outflow opening 3 of the crucible 1, all in the form shown here in a rotationally symmetrical design ,
  • a stopper rod (not shown here) at the upper end of the outflow opening 3, which closes the crucible 1 downwards and is pulled upwards at the beginning of the piecing and releases the outflow.
  • the melt nipple 2 also made of ceramic or graphite, has at the end of its flow channel 4 an outflow bore 5 of smaller cross-section, approximately between 0.5 and 2.5 mm in diameter, and is convergent via a Laval nozzle unit 6 with that below the melt outlet 5 and then divergent passage cross section arranged.
  • a gas flow flows according to the arrows 7 from the side to the narrowest cross section 8, where it accelerates to the speed of sound when the critical pressure ratio is reached or exceeded.
  • the gas flow can be "cold", ie it can be ambient temperature or the temperature from it Compression and need not be heated up.
  • the melt nozzle 2 or the melt nipple is surrounded by a heat protection arrangement, which preferably has active and passive heat protection.
  • the passive thermal protection consists of several insulating pieces 10, 11, 13, an inner insulating piece 10 which surrounds the melt nozzle or the melt nipple 2 in the immediate vicinity, an outer insulating piece 11 which sits over the inner insulating piece 10 and lower insulating piece 13 which the engages the lower part of the inner insulating piece 10 and the melt nipple 2.
  • the lower insulating piece 13 is of particular importance since it surrounds the nipple 2 with the formation of an air gap 14 and shields almost its entire end face against the gas flow, so that only a small area at 15 remains free for the melt to pass through.
  • the active thermal protection consists of an electrical heater 12 with a power connection 16, which is arranged between the melt nozzle 2 and the inner insulating piece, it being possible for it to be applied directly to the inner circumference and the upper end face of the insulating piece 10.
  • the power connection 16 is electrically connected to the heater 12 on the end face and led to the outside.
  • the heater 12 can be a cage-shaped heater made of graphite, cut in a meandering shape.
  • a separating flange 18 which separates the atomization chamber 19 below, in which the powder is collected and transported further in the narrowest area 8 of the Lavalduse 6 after the melt monofilament has burst open, and is transported further from the pressure chamber 20 located above. Because of the high temperatures, both the Lavalduse 6 and the housing of the container forming the atomizing chamber 19 are cooled, e.g. by being double-walled for the flow of cooling water.
  • the gas is supplied from the outside, and the melt is heated by an inductive heating in coil form around the crucible 1, expediently insulated against the crucible 1, cooling water flowing through the coil.
  • Resistance heaters are also used, but less so.
  • the design of rooms 20 and 19 in Fig. 1 is similar to that in DE 33 11 343, only in the room 20 above the separating flange 18 is a pressure vessel for pressures of 20, 30 bar overpressure and more, in the atomization chamber 19 below a vessel for pressures slightly above atmospheric pressure in order to be able to overcome the following separating devices such as cyclones, classifiers and filters.
  • the room 19 can also as
  • Pressure vessel are executed. This has advantages with the production of very fine powders, in which the average density in the atomization area of the narrowest cross section 8 is greater than if the pressure is relaxed to about atmospheric pressure.
  • the insulating pieces 10, 11 In order to obtain the greatest possible shielding effect against heat loss of the nipple from the materials of the insulating pieces 10, 11, these are to be carried out by appropriate fits to one another so that no gas flow from above from the space 20 to the area of the lower pressure at the cross section 8 concentric to the nipple 2 flows down. This requirement applies to the heater 12 and the insulation 17 at the same time and is easy to meet due to the manufacturing accuracy of today's insulation materials.
  • the insulating pieces 10, 11 consist of different materials, as a result of which they can be better adapted to the temperature conditions. But they can also consist of the same materials and in one piece.
  • a unit for the atomization from a slot is shown.
  • the melt nozzle can be connected to a crucible, but it can also be connected to a feed pump or generally to a melt feed line.
  • the pressure p 2 prevails in the capsule 34 and a higher pressure pi above the melt nozzle 24, namely the pressure of the crucible or the feed line.
  • the pressure difference p x - p 2 regulates the throughput superimposed on the gravity of the Melt column.
  • the insulating piece 21 comprises, in the area of the lower wedge-shaped melt nipple 24, a screen 29 made of the best possible heat-insulating material, but which withstands the temperature, to reduce the heat dissipation on both sides of the lower wedge-shaped melt nipple 24. For further heat insulation there is between the screen 29 and the melt nipple 24 An air gap 30 is provided in the lower region.
  • the melt nipple 24 has a flow channel 31 which merges into a slot-shaped space 32 (see FIG. 2 b) which is arcuate in cross section and has a slot length and corresponding slot-shaped outlet opening 26.
  • the melt flow channel 31 can already be oval in preparation for the later expansion to the slot, as shown in FIG. 2b at 33.
  • the heat-insulating screen 29 is brought close to the slot-shaped outlet opening 26 and only a small part of the melt nipple 24 is released around it.
  • the lower wedge-shaped end 25 of the melt nipple 24 with the slit-shaped outlet opening 26 is above the likewise slit-shaped Lavalduse 27, which opens into an atomization chamber (not shown) with the pressure p 3 .
  • the upper part of the melt nipple 24, not shown here in more detail, is insulated against heat dissipation by, for example, rotationally symmetrical parts and, as shown in FIG. 1, can additionally be actively supported by heating.
  • the melt is fed to the flow channel 31 for spraying and the melt film emerging from the slot-shaped outlet opening is accelerated by the gas flow, which flows laterally into the capsule 34 along the arrows and accelerates on the way to the narrowest cross section 28 of the Lavalduse 27. Just below the Lavalduse, the film breaks up as described above.
  • Stainless steel of the type X2CrNiMo 17-12-2 corresponding to 316L was atomized from a crucible 1 and the nipple 2 with a discharge diameter of 1.5 mm, both made of aluminum oxide, at a melt temperature of 1680 ° C.
  • the diameter of the Lavalduse 6 was 4 mm.
  • a brass melt with a temperature of 950 ° C. was atomized from a device according to FIG. 1 with nitrogen (N 2 ) of 2 barg, and water was blown in laterally through 2 bores of 1.5 mm in diameter directly below the narrowest cross section 8.
  • the melt throughput was 1.3 kg / min, the amount of water sprayed in to cool the metal particles as quickly as possible, without round particles being produced by the surface tension, was about 1.5 kg / min.
  • the particles had a strongly irregular shape from ellipsoids to bone and root-shaped, but finer round particles also resulted.
  • the size distribution showed approximately

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

L'invention concerne un dispositif et un procédé pour atomiser un jet de matière fondue, notamment des métaux ou des céramiques réfractaires, et les transformer en poudre. Le jet de matière fondue, qui se présente sous forme de monofil ou de film, sort d'une buse alimentée en matière fondue et dotée d'un orifice de sortie dans la zone d'une tuyère de Laval. Ce jet de matière fondue est accompagné d'un flux gazeux de préférence «froid» que la tuyère de Laval accélère jusque dans le domaine de vitesse supersonique, un éclatement se produisant derrière la tuyère de Laval. La buse alimentée en matière fondue est entourée d'une isolation thermique qui s'étend jusque dans la zone de la tuyère de Laval et ne laisse libre pratiquement que l'orifice de sortie de ladite buse, de sorte que le jet de matière fondue est protégé du flux gazeux à sa sortie.
PCT/EP2004/009769 2003-08-29 2004-08-27 Dispositif pour atomiser un jet de matiere fondue et procede pour atomiser des metaux ou des ceramiques refractaires WO2005023465A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04764728A EP1658150A1 (fr) 2003-08-29 2004-08-27 Dispositif pour atomiser un jet de matiere fondue et procede pour atomiser des metaux ou des ceramiques refractaires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340606.9 2003-08-29
DE2003140606 DE10340606B4 (de) 2003-08-29 2003-08-29 Vorrichtung zum Verdüsen eines Schmelzestrahls und Verfahren zum Verdüsen von hochschmelzenden Metallen und Keramikschmelzen

Publications (1)

Publication Number Publication Date
WO2005023465A1 true WO2005023465A1 (fr) 2005-03-17

Family

ID=34223306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009769 WO2005023465A1 (fr) 2003-08-29 2004-08-27 Dispositif pour atomiser un jet de matiere fondue et procede pour atomiser des metaux ou des ceramiques refractaires

Country Status (3)

Country Link
EP (1) EP1658150A1 (fr)
DE (1) DE10340606B4 (fr)
WO (1) WO2005023465A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923187A1 (fr) * 2006-11-14 2008-05-21 Linde Aktiengesellschaft Dispositif et procédé pour la génération de particules
EP1923188A1 (fr) * 2006-11-14 2008-05-21 Linde Aktiengesellschaft Dispositif de production de particule
CN102837001A (zh) * 2012-09-29 2012-12-26 湖南恒基粉末科技有限责任公司 一种金属液流易流出的微细金属粉末雾化喷嘴
CN104985187A (zh) * 2015-07-08 2015-10-21 深圳市金鼎丰首饰器材有限公司 一种粉末制备的贵金属雾化装置
CN109550623A (zh) * 2018-12-29 2019-04-02 中材江苏太阳能新材料有限公司 一种提高多晶硅铸锭用坩埚内表面粗糙度的方法
CN109986086A (zh) * 2019-03-08 2019-07-09 北京矿冶科技集团有限公司 一种用于增材制造的高球形度多组元合金粉末的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827822B2 (en) * 2007-07-25 2010-11-09 Schott Corporation Method and apparatus for spray-forming melts of glass and glass-ceramic compositions
DE102008004607A1 (de) 2008-01-16 2009-05-28 Daimler Ag Lichtbogendrahtbrenner
DE102013022096B4 (de) * 2013-12-20 2020-10-29 Nanoval Gmbh & Co. Kg Vorrichtung und Verfahren zum tiegelfreien Schmelzen eines Materials und zum Zerstäuben des geschmolzenen Materials zum Herstellen von Pulver
DE102014016723A1 (de) 2014-11-13 2016-05-19 C. Hafner Gmbh + Co. Kg Amorph erstarrende Legierung auf Edelmetallbasis
DE202014008963U1 (de) 2014-11-13 2016-02-16 C. Hafner Gmbh + Co. Kg Amorph erstarrende Legierung auf Edelmetallbasis
DE102019201472A1 (de) * 2019-02-05 2020-08-06 Deutsches Institut Für Lebensmitteltechnik E.V. Vorrichtung und Verfahren zur Herstellung feiner Fettpartikel
DE102021212367A1 (de) * 2021-11-03 2023-05-04 Sms Group Gmbh Verdüsungs-Einheit zum Verdüsen von metallenen Schmelzen, insbesondere für pulvermetallurgische Zwecke

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534917A (en) * 1983-03-29 1985-08-13 Alfred Walz Metal powders and a process for the production thereof
US4631013A (en) * 1984-02-29 1986-12-23 General Electric Company Apparatus for atomization of unstable melt streams
US4784302A (en) * 1986-12-29 1988-11-15 Gte Laboratories Incorporated Gas atomization melt tube assembly
US5280884A (en) * 1992-06-15 1994-01-25 General Electric Company Heat reflectivity control for atomization process
US5468133A (en) * 1992-07-27 1995-11-21 General Electric Company Gas shield for atomization with reduced heat flux
DE19607114A1 (de) * 1995-01-28 1996-12-05 Lueder Dr Ing Gerking Fäden aus Schmelzen mittels kalter Gasstrahlen
US6481638B1 (en) * 1997-12-17 2002-11-19 Gunther Schulz Method and device for producing fine powder by atomizing molten material with gases

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622001A (en) * 1985-03-12 1986-11-11 Electra Form, Inc. Cavity cooling system
DE3533964C1 (de) * 1985-09-24 1987-01-15 Alfred Prof Dipl-Ing Dr-I Walz Verfahren und Vorrichtung zum Herstellen von Feinstpulver in Kugelform
DE19929709C2 (de) * 1999-06-24 2001-07-12 Lueder Gerking Verfahren zur Herstellung von im Wesentlichen endlosen feinen Fäden und Verwendung der Vorrichtung zur Durchführung des Verfahrens
DE10001968B4 (de) * 1999-10-15 2004-02-12 Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus) Verfahren zur Herstellung eines Pulvers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534917A (en) * 1983-03-29 1985-08-13 Alfred Walz Metal powders and a process for the production thereof
US4631013A (en) * 1984-02-29 1986-12-23 General Electric Company Apparatus for atomization of unstable melt streams
US4784302A (en) * 1986-12-29 1988-11-15 Gte Laboratories Incorporated Gas atomization melt tube assembly
US5280884A (en) * 1992-06-15 1994-01-25 General Electric Company Heat reflectivity control for atomization process
US5468133A (en) * 1992-07-27 1995-11-21 General Electric Company Gas shield for atomization with reduced heat flux
DE19607114A1 (de) * 1995-01-28 1996-12-05 Lueder Dr Ing Gerking Fäden aus Schmelzen mittels kalter Gasstrahlen
US6481638B1 (en) * 1997-12-17 2002-11-19 Gunther Schulz Method and device for producing fine powder by atomizing molten material with gases

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923187A1 (fr) * 2006-11-14 2008-05-21 Linde Aktiengesellschaft Dispositif et procédé pour la génération de particules
EP1923188A1 (fr) * 2006-11-14 2008-05-21 Linde Aktiengesellschaft Dispositif de production de particule
CN102837001A (zh) * 2012-09-29 2012-12-26 湖南恒基粉末科技有限责任公司 一种金属液流易流出的微细金属粉末雾化喷嘴
CN104985187A (zh) * 2015-07-08 2015-10-21 深圳市金鼎丰首饰器材有限公司 一种粉末制备的贵金属雾化装置
CN104985187B (zh) * 2015-07-08 2017-03-01 深圳市金鼎丰贵金属设备科技有限公司 一种粉末制备的贵金属雾化装置
CN109550623A (zh) * 2018-12-29 2019-04-02 中材江苏太阳能新材料有限公司 一种提高多晶硅铸锭用坩埚内表面粗糙度的方法
CN109986086A (zh) * 2019-03-08 2019-07-09 北京矿冶科技集团有限公司 一种用于增材制造的高球形度多组元合金粉末的制备方法

Also Published As

Publication number Publication date
DE10340606A1 (de) 2005-03-31
EP1658150A1 (fr) 2006-05-24
DE10340606B4 (de) 2005-10-06

Similar Documents

Publication Publication Date Title
EP3083107B1 (fr) Dispositif et procédé de fusion en zone flottante d'un matériau et d'atomisation du matériau fondu pour fabriquer de la poudre
EP0120506B1 (fr) Poudre métallique et son procédé de fabrication
EP0220418B1 (fr) Procédé et installation pour la fabrication de poudre très fine sous forme sphérique
DE2240643C3 (de) Düsenstein für Gießpfannen an Metallverdüsungsanlagen
DE3505659A1 (de) Schmelz-zerstaeubung mit reduzierter gasstroemung sowie vorrichtung zum zerstaeuben
DE10340606B4 (de) Vorrichtung zum Verdüsen eines Schmelzestrahls und Verfahren zum Verdüsen von hochschmelzenden Metallen und Keramikschmelzen
EP2071258A1 (fr) Buse de canon à neige, utilisation d'une buse de canon à neige, canon à neige, canon à ventilateur et procédé de production de cristaux de neige et de neige artificielle
DE3505660A1 (de) Vorrichtung und verfahren zum zerstaeuben instabiler schmelzstroeme
DE4102101C2 (de) Einrichtung zum Herstellen von Pulvern aus Metallen
DE4209162A1 (de) Verfahren und vorrichtung zur erzeugung von hyperfeinen, gefrorenen partikeln
AT409235B (de) Verfahren und vorrichtung zur herstellung von metallpulver
DE7441597U (de) Vorrichtung zum herstellen von durch die umgebungsluft nicht verunreinigtem kugeligem metallpulver
WO2007054313A1 (fr) Dispositif de chauffage de gaz a haute pression
DE2821880A1 (de) Verfahren und einrichtung zum schmelzspritzen von metall
DE2043882C3 (de) Verfahren zur Herstellung eines Stahlgußblockes, insbesondere einer Bramme aus unberuhigtem Stahl und Vorrichtung zur Durchführung des Verfahrens
EP4034320B1 (fr) Dispositif d'atomisation d'un flux de fusion au moyen d'un gaz
DE19758111C2 (de) Verfahren und Vorrichtung zur Herstellung feiner Pulver durch Zerstäubung von Schmelzen mit Gasen
DE4105154A1 (de) Verfahren zur herstellung von metallpartikeln aus einer metallschmelze durch verduesung
DE2757410C2 (de) Verfahren und Vorrichtung zur Erzeugung von Metallpulver
EP4368318A1 (fr) Dispositif et procédé pour réduire un courant de fusion au moyen d'un gaz d'échappement
DE4019563C2 (fr)
EP0007536A1 (fr) Procédé et dispositif pour la granulation d'un metal fondu en vue de la production de poudre
DE3505661A1 (de) Verfahren zur zerstaeubung einer schmelze von einer eng gekuppelten duese sowie vorrichtung zum zerstaeuben und gebildetes produkt
DE2057862C3 (de) Verfahren und Vorrichtung zur Herstellung eines Metallpulvers
DE3737130C2 (de) Verfahren und Vorrichtung zum Herstellen von Feinstpulver

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004764728

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004764728

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004764728

Country of ref document: EP