WO2005023117A1 - Appareil et procede d'affichage couleur d'images d'ultrasons - Google Patents

Appareil et procede d'affichage couleur d'images d'ultrasons Download PDF

Info

Publication number
WO2005023117A1
WO2005023117A1 PCT/CN2004/001030 CN2004001030W WO2005023117A1 WO 2005023117 A1 WO2005023117 A1 WO 2005023117A1 CN 2004001030 W CN2004001030 W CN 2004001030W WO 2005023117 A1 WO2005023117 A1 WO 2005023117A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
image
ultrasonic
signal
parameters
Prior art date
Application number
PCT/CN2004/001030
Other languages
English (en)
French (fr)
Inventor
Jingjiang Wen
Original Assignee
Jingjiang Wen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingjiang Wen filed Critical Jingjiang Wen
Publication of WO2005023117A1 publication Critical patent/WO2005023117A1/zh
Priority to US11/369,603 priority Critical patent/US8360979B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging

Definitions

  • the present invention relates to an ultrasonic image color display device and method, and particularly to an ultrasonic image color display device and method suitable for industrial non-destructive testing and medical diagnosis. Background technique
  • color ultrasound The currently used color ultrasound medical imaging on the market, usually referred to as "color ultrasound", is essentially a black and white ultrasound reflection image plus a color Doppler blood flow image. It can be said that the ultrasound imaging technology is still essentially in the black and white era, that is, the B-ultrasound era.
  • B the English capital letter B stands for the English word Brightness, which means brightness.
  • Brightness the English word
  • the full name of a B-ultrasound should be a brightness ultrasound imager. Industrial ultrasonic testing is even further behind in using images.
  • the coloring method of another type of color ultrasound image is borrowed from cartography.
  • Most color topographic maps published around the world use a conventional color gradation method, which uses a specific color to represent a specific altitude. For example, dark blue means the deepest sea at the lowest altitude, light blue means shallow sea, green means plain, dark brown means Liaoyuan, and so on.
  • the brightness of a black and white image is converted into a color scale representing a height, and the black and white image becomes a color image.
  • Color gradation-based color ultrasound systems are not popular because they neither contain more information than black and white images, nor can they improve the efficiency of image reading and the recognition rate of abnormal phenomena. It can be said that the color scale method is more "false" than the pseudo color method.
  • the information collected by any ultrasound probe from the target carries only the acoustic properties of the target and its spatial distribution, and does not contain pure visual information such as color.
  • the color of the ultrasound image is not related to the actual color of the human organs. Even if it is sometimes similar, it is also purely artificial design. The working principle and performance are irrelevant. Doctors and patients also fully understand this. In fact, not reflecting true colors (optical colors) is a feature and advantage of ultrasound diagnostics. Suppose that a certain part of a human organ has an abnormal lesion. Its color has not changed, but its acoustic characteristics such as tissue density and elastic coefficient have changed. The ability to detect such lesions and express them with images is the great advantage of ultrasound diagnosis over visual or optical diagnosis (including endoscopic diagnosis). It can be seen that the authenticity of color is not the goal that ultrasound or other medical imaging should pursue.
  • ultrasound systems convert non-visual signals into visible images.
  • the first reason is the spatial sense of vision.
  • the sense of space in human vision is inherent and requires no training.
  • the ultrasound images also intuitively reflect the spatial properties of these tissues, such as location, shape, size, and the relationship between them and surrounding objects.
  • the second and more important reason is the unparalleled efficiency of visual reception of external information.
  • Color has basically nothing to do with the sense of space, but the effect on bandwidth is fundamental.
  • ordinary grayscale images and "pseudo-color" images are mostly 128 levels, which means that each pixel has 128 possible luminances. If the three color parameters of each pixel of a color image are 128 steps, each pixel has more than two million kinds (128 cubes) of possible colors.
  • the information contained in a color image is the cube of the amount of information in the black and white image.
  • the bandwidth that human eyes use to obtain information from color images is the cube of the bandwidth from which information is obtained from black and white images.
  • existing medical imaging technologies including ultrasound imaging, utilize only a very small portion of the human eye's bandwidth.
  • the color ultrasonic imaging method disclosed in the present invention is the vigorous exploration and utilization of the human eye bandwidth in the ultrasonic imaging field.
  • the penetrating force of ultrasonic waves on non-transparent objects enables the ultrasound system to obtain a 'section' of the measured object without dissecting the measured object.
  • the single physical quantity used in most traditional ultrasound images is the reflection coefficient of the image point to the ultrasound. Because reflection is only at the interface of two different materials, for example, in medical imaging, the interface of two different body tissues, in industrial inspection, Cracks, bubbles, or foreign objects in the workpiece occur at the interface with the surrounding material. Therefore, typical ultrasonic cross-sections, such as B-mode images, are composed of several bright lines that show the position of the interface.
  • the ultrasonic wave reflection performance is an indispensable parameter in ultrasonic imaging, so that traditional ultrasonic images limited by a single imaging parameter have little expressive power to the physical properties of continuous media at non-interface parts.
  • the object of the present invention is to provide an ultrasonic image color display device, which can show the spatial distribution of multiple physical quantities on a detected target, which contains far more abundant information about the detected target than any traditional ultrasonic image, making full use of people
  • the bandwidth of the eye to the color image greatly improves the speed at which the reader reads the picture, the recognition rate and accuracy of the abnormal phenomenon.
  • Yet another object of the present invention is to provide an ultrasonic image color display method with a completely new concept, which is completely different from the "color ultrasound" and "pseudo-color” popular on the market.
  • This method uses the richness of the colors of the color ultrasound image to represent the detected target, such as the richness of the internal structure of the human body or the acoustic characteristics of the workpiece, so that the bandwidth for the human eye to read the color image is fully utilized, and the speed of image diagnosis is abnormal.
  • the phenomenon recognition rate and accuracy have been greatly improved.
  • the ultrasonic image color display device of the present invention includes an ultrasonic generating device for transmitting ultrasonic waves to a measured target; an ultrasonic signal receiving device for receiving an ultrasonic signal returned from the measured target; and a data processing device for receiving the received
  • the ultrasonic signal of the measured object is converted into a digital signal and mathematically processed to obtain two to three color parameters for each image point; a color display device is used to use the two to three color parameters provided by the data processing device to convert Each image point is displayed in color.
  • the invention is characterized in that at least two physical quantities are used to define the color of the image point from the ultrasound signal corresponding to each image point of the measured target.
  • the entire ultrasound image is a comprehensive reflection of the spatial distribution of the at least two physical quantities.
  • the invention is characterized by:
  • the same ultrasound probe receives all the ultrasound signals returned.
  • the received signal is a reflection of the acoustic characteristics of all the image points on the distance (sound path) of the transmitted signal;
  • the signal waveform corresponding to each image point on the sound path is sequentially separated from the received total signal. Generally, only the signal points worth considering at the image point corresponding to the acoustic interface passed by the sound path. Corresponding There is no signal at the image point on the sound path between the interfaces.
  • the transmission and subsequent reception of the ultrasonic probe at each position produces an ultrasonic color scan line that is perpendicularly incident from the emission point to the depth of the measured target.
  • the ultrasonic probe emission point moves along a uniform straight line on the surface of the measured object, and transmits and receives ultrasonic signals to generate a series of color scanning lines, and synthesizes an ultrasonic color cross-sectional view vertically cut into the measured target from the probe moving track.
  • the apparatus and method of the present invention are also Including: compensating for propagation loss and / or filtering out background noise, highlighting the curvature of the interface near the reflection point, the unevenness and the signal waveform changes caused by the thin layer structure to improve the sensitivity of detecting foreign objects.
  • multiple physical quantities corresponding to each image point of the measured target are taken from the same ultrasound signal corresponding to the image point; or from different ultrasounds obtained at different times in different ways but corresponding to the same image point signal.
  • each physical quantity is directly used as a color parameter in a standard color image after normalization.
  • the selected physical quantity is less than or more than three, according to the importance of each physical quantity and the purpose of the current application, the three physical quantities that are most conducive to detection or diagnosis can be concluded by weighted linear or non-linear combination. After normalization, it is used as three color parameters in the standard color image.
  • the physical quantities include, but are not limited to, the following physical quantities involved in the theory and practice of ultrasonic applications-characteristic parameters of the ultrasonic signal waveform corresponding to each image point, such as various wave peaks, zero positions, statistical parameters, various types of mathematics Model parameters; Characteristic parameters of spectrum analysis of ultrasonic signal waveform; Total transmission function of each image point; Transmission function with different interferences removed; Ultrasonic absorption loss of total sound path; Reflection coefficient that compensates absorption loss; The reflection coefficient of the wave; the harmonic coefficients of the image point; the local spatial distribution function and its parameters; the curvature; the normal direction and its components; the mass density of the image point derived from the signal waveform combined with other measured or theoretical values, Elasticity coefficient, acoustic impedance, geometric parameters of layered structure; various filter parameters; various distribution functions for analyzing or numerically highlighting or diminishing certain characteristics of the target; etc., and different forms of these physical quantities The combination.
  • three signal parameters are preferably obtained from an ultrasound signal corresponding to a given image point, which are represented by a signal parameter A, a signal parameter B, and a signal parameter C. These three signal parameters are directly used as a standard after normalization.
  • the three color parameters in the color image form a color image of the measured object.
  • the reflected signals from the two acoustic interfaces in the measured target are passed from the incident sound wave successively.
  • Two sets of signal parameters, and then based on the difference between the two sets of signal parameters, three color parameters are calculated to determine the image color of the continuous medium between the two acoustic interfaces.
  • the same information source can be used to obtain different focus points, different physical meanings, and different application purposes. Ultrasound color images.
  • the color image obtained by the method of the present invention can simultaneously display the spatial distribution of multiple physical quantities on the detected target, and contains far more abundant information about the subject than any traditional ultrasound image.
  • the information of the detection target makes full use of the bandwidth of the human eye to the color image, and the far-rich and easy-to-recognize information is transmitted to the viewer's brain in the first time, which greatly improves the speed of reading the image and recognizes abnormal phenomena. Rate and accuracy.
  • the present invention While maintaining the traditional ability to detect the position of the acoustic interface within the measured target, the present invention also provides an effective expressive power for continuous media between interfaces, which is lacking in traditional ultrasonic instruments.
  • FIG. 1 is a flowchart of determining the color of a pixel in the implementation of the ultrasonic color imaging method according to the present invention. detailed description
  • each of the inexhaustible colors can be called up with the three primary colors of red, yellow, and blue on the palette.
  • the color of each pixel uses three independent color parameters (most digital color images use three primary colors: red, green, and blue). Decided uniquely.
  • a color system using three primary colors is the cube of the order of the color parameters. The order is determined by the number of bits (BIT number) of the parameter. For example, the order of a 7-bit parameter is 128 (the seventh power of 2), and the order of an 8-bit parameter is 256 (the power of 2). Therefore, three 128-level color parameters can produce more than two million colors.
  • the image is determined based on the ultrasonic reflection characteristics at each coordinate point in the detected target.
  • These images are images of the spatial distribution of a single physical quantity. From a color perspective, this type of image, whether it is the reflection image part of a color ultrasound, or a black and white image, a pseudo-color image, or a color scale image, uses only one color parameter. The value of the color parameter is determined by the spatial distribution of the physical quantity (such as the ultrasonic reflection coefficient) used.
  • the color ultrasound image proposed by the present invention is an effective solution to this weakness of traditional ultrasound images.
  • the new method derives multiple signal parameters from the ultrasound signal corresponding to each image point in the measured target, and concludes it by proper weighting and combination. Three parameters are used as the three color parameters of the image point after normalization.
  • the color image obtained in this way while expressing the internal sound reflection performance of the measured object, can also express the spatial distribution of many other physical parameters. Compared with the standard digital color image of the same bit, this color image has the same richness Color, the same discriminative power, and the same bandwidth for transmitting information to the human brain, greatly improve the speed of reading pictures, the recognition rate and accuracy of abnormal phenomena.
  • FIG. 1 is a flowchart of determining an image point color by the ultrasonic image color display method.
  • the reflection of ultrasonic waves will only occur at the interface between two materials with different acoustic impedances, such as the interface between human organs and surrounding tissues, or cracks in industrial materials, and the interface between foreign objects and surrounding normal materials.
  • the ultrasonic signal enters the measured object from the detection point, it is reflected by the interface along the way back to the receiving device, such as a probe, and is detected by the detector.
  • the head is converted into a voltage signal and then converted into a digital sequence by an analog-to-digital converter in the ultrasound system.
  • the ultrasound software determines the position of the interface that caused the reflected signal based on the sequence position of the digital signal, the traditional ultrasound imager
  • a signal parameter is derived from a digital signal, usually the maximum amplitude of the signal or a preselected one
  • the peak value of the lobe (such as the Nth) is used to determine the brightness of the corresponding image point.
  • Some ultrasound systems calculate the second harmonic component of the ultrasonic reflected signal and draw it as a second harmonic image, but the second harmonic image and the main signal image (or fundamental image) are expressed as two black and white images respectively.
  • the processing is no longer the same as the traditional method.
  • the present invention calculates multiple signal parameters from signal waveforms corresponding to the same image point (reflection point).
  • the weighted linear or non-linear combination is reduced to three parameters, which are represented by a signal parameter A, a signal parameter B, and a signal parameter C in the flowchart. After normalizing these three signal parameters, they are directly used as three color parameters in the standard color image to form a color profile image of the measured object.
  • the combination of the signal parameters of the ultrasound color image in this embodiment is-A: the fundamental wave component of the main signal;
  • Both the fundamental wave and the second harmonic effect are displayed in the same image. Assume that the color parameters A are red, B is green, and C is blue. At the strongest image point of the second harmonic, The green is the strongest, the blue is the weakest, and the total color of the image point is yellow. At the weakest second harmonic point, the green is the weakest, the blue is the strongest, and the total color of the image point is purple.
  • the non-linear characteristics of the organization can multiply the signal parameter B of each image point by a uniform weighting factor to greatly enhance the effect of the second harmonic component on the image color.
  • A The maximum positive amplitude of the main signal
  • , C
  • the main energy distribution area of the main signal is divided into three periods.
  • the division rule of the period must be consistent throughout the imaging process; the combination of signal parameters of the ultrasound color image is:
  • A the sum of the absolute values of all signal points in the first period
  • Example 2 Same as in Example 1, except that a linear filter is calculated according to the main signal and the probe's inherent signal waveform, and the probe's intrinsic signal waveform passes the linear filter to achieve the best approximation to the main signal.
  • the coefficients of the filter are divided into three groups. The coefficient grouping rules must be consistent throughout the imaging process.
  • the combination of signal parameters of the ultrasound color image is:
  • A the sum of the first set of internal coefficients
  • the linear filter represents the acoustic characteristics of the reflection point in the measured object. If the calculation is correct, it has nothing to do with the waveform of the probe's intrinsic signal.
  • the waveform of the reflection signal is the acoustics of the probe's intrinsic signal and the reflection point.
  • the purpose of using a linear filter is to filter out the imprint of the probe's inherent signal waveform on the ultrasonic reflection image to the maximum extent, so that the image depends only on the acoustic characteristics of the target.
  • the filter coefficients are grouped to filter
  • the most important feature of the reflector is also the most important acoustic feature of the reflection point, which is expressed in color.
  • This embodiment can also effectively filter out background noise, highlight the curvature of the interface near the reflection point, the unevenness and the signal waveform changes caused by the thin layer structure. , Improve the sensitivity of detecting foreign objects.
  • Example 2 Same as in Example 1, except that the combination of the signal parameters of the ultrasound color image is-A: the reflection coefficient calculated according to the maximum amplitude of the main signal; B : Set the acoustic impedance of material A according to the empirical or theoretical values;
  • the above materials A and B respectively represent substances on both sides of the reflection interface.
  • the acoustic impedance of the material on the other side can be directly calculated.
  • the acoustic impedance change of material B can be displayed sensitively in the image.
  • the acoustic impedance of material A can be obtained through empirical, theoretical estimation, actual measurement, or attempted approximation.
  • Traditional black-and-white or pseudo-color ultrasound images are mostly reflection images. Since reflections occur only on the acoustic interface, pure reflection images have little performance on image points in continuous media that are not on the acoustic interface.
  • the acoustic impedance on both sides of the interface is also used to jointly display the acoustic interface, which greatly improves the ability to distinguish the variation of the acoustic interface itself.
  • the acoustic impedance on both sides of the interface is also used directly or indirectly to color the image points in the continuous medium (material A and material B) on both sides of the interface.
  • the signal parameters used are also completely the same.
  • the difference is that after the three signal parameters corresponding to each acoustic interface are obtained, the color of the image points on the interface is not directly calculated, but two interfaces adjacent to each other are used.
  • the difference between the two sets of signal parameters determines the color of the image point of the continuous medium between the two interfaces. When the image points of the medium on both sides of the interface have been determined, the interface itself appears naturally. Using the method of this embodiment, it is necessary to stop Use sound path absorption loss compensation.
  • the image shown in this embodiment is essentially a variety of media in the measured target.
  • the waveform changes caused by the passing ultrasonic pulse signals are changed by three sets of linear filter coefficients.
  • the change of the parameter is a mathematical description, and the change of the color of the medium is the image expression.
  • This embodiment fully reflects the unique expressive power of the multi-parameter color image method proposed by the present invention on the acoustic characteristics of a continuous medium.

Description

超声波图像彩色显示装置及方法 技术领域
本发明涉及一种超声波图像彩色显示装置及方法,特别是适用于工业无损检测 和医疗诊断的超声波图像彩色显示装置及方法。 背景技术
目前市场上应用的彩色超声波医学成像, 通常简称 "彩超", 实质上是黑白的 超声波反射图像加上彩色的多普勒血流图。 可以说, 超声图像技术实质上仍然处于 黑白时代, 也就是 B超时代。 这里英文大写字母 B代表英文单词 Brightness, 即亮度 的意思。 B超的完整名称应是亮度超声成像仪。 工业超声检测在使用图像方面则更 为落后。
市场上还有另一类带彩色显示的医用超声成像仪。这类超声成像仪将黑白亮度 图像显示为其他颜色的亮度。 最常用的颜色为肉色, 橙灰色, 兰灰色, 绿灰色等柔 和色调。 此类彩色亮度图像并不比黑白灰度图像提供更多信息, 与彩色照片, 彩色 电视有根本性的差别。 再加之 "彩超"这一名称已被广泛用来特指带彩色多普勒血 流图的超声波诊断仪, 彩色亮度成像仪在超声行业被称为 "伪彩" 。
另一类彩色超声图像的著色法是从地图学借鉴来的。全世界出版的大多数彩色 地形图都采用一种约定俗成的色阶法, 即用特定的颜色表示特定的海拔髙度。 比如 深蓝色表示最低海拔的深海, 浅蓝色表示浅海, 绿色表示平原, 深棕色表示髙原, 等等。 将黑白图像的亮度转换成代表高度的色阶, 黑白图像就变成了彩色图像。 基 于色阶法的彩色超声仪并不流行, 因为它既不比黑白图像包含更多信息, 也不能改 进读图效率及对异常现象的辨认率。 可以说, 色阶法比伪彩法的颜色还 "伪" 。
任何超声探头从目标所采回的信息, 携带的只是目标的声学性质及其空间分 布, 不含颜色一类纯视觉信息。 超声图像的色彩, 无论是黑白, 伪彩, 色阶或多普 勒血流图的大蓝大红, 与人体器官的实际颜色并无联系, 即使有时相近, 也是纯粹 的人为设计, 与超声仪的工作原理及性能毫不相干。 对此医生和病人也完全明白。 事实上, 不反映真实颜色 (光学颜色)正是超声波诊断的特色和优势。 设想某一人体 器官的某一局部发生了异常病变, 其颜色没有改变, 但其组织密度, 弹性系数等声 学特性发生了变化。 能将这样的病变探测出来并用图像表达正是超声诊断相对于视 觉诊断或光学诊断 (包括窥镜诊断)的巨大优势。 由此可见, 颜色的真实性并非超声 波或其他医疗成像应该追求的目标。
超声仪之所以将非视觉信号转换为可视的图像, 有两个明显原因。第一个原因 是视觉的空间感。 人类视觉的空间感是与生俱来, 不需训练的。 超声图像除了告诉 医生人体内各种生物组织的声学特性,还直观地反映这些组织的空间属性,如位置, 形状, 大小, 与周边物体的相互关系, 等等。 第二个, 也是更重要的原因是视觉接 受外界信息的无以伦比的高效率。 人眼在一瞬间送入大脑的信息, 如果转换成可听 的音响信号连续播放, 一个人一辈子也听不完。 用描述信息传递效率的通用术语带 宽 (表示某一设施每秒钟发送或接受信息的能力)来说, 视觉具有比听觉 (且不说超 声是听不见的声音)大得无可比拟的带宽。 医用超声仪, 核磁共振仪, X射线仪, 电 子扫描仪, CT机都无一例外地选择图像形式来表达以不同物理方法获取的信息, 最 根本的原因是利用人类视觉的空间感和高带宽。
颜色与空间感基本无关, 对带宽的影响却是根本性的。 举例来说, 普通灰度图 像和 "伪彩" 图像多为 128阶, 就是说每个像点有 128种可能辉度。 如果彩色图像每 个像点的三个颜色参量各为 128阶, 每个像点有两百万种以上(128的立方)可能颜 色。 从信息学的角度看, 彩色图像包含的信息是黑白图像信息量的立方。 由于人眼 对颜色的天赋的感受能力, 人眼从彩色图像获取信息的带宽是从黑白图像获取信息 的带宽的立方。 遗憾的是, 包括超声波成像在内的现有的医学成像技术, 只利用了 人眼带宽的极小部分。 本发明所公开的彩色超声成像法, 正是对人眼带宽在超声波 成像领域的大力发掘与利用。
超声波对非透明物体的穿透力, 使超声仪能在不剖开被测物的情况下获得被测 物的'剖面图。 绝大多数传统超声图像釆用的单一物理量是像点对超声波的反射系数. 由於反射只在两种不同材质的界面,例如在医学成像中, 两种不同机体组织的界面, 在工业检测中, 工件中的裂纹,气泡或异物与周边材质的界面处发生, 因此典型的 超声剖面图, 比如 B超图像,是由若干条显示界面位置的亮线构成的, 由於界面位置 对检测或诊断的重要性, 声波反射性能在超声成像中是必用不可的参量, 致使受限 于单一成像参量的传统超声图像对非界面部位的连续介质的物理特性几乎没有表 现力。 发明内容
本发明的目的在于提供一种超声波图像彩色显示装置,该装置能够显现被探测 目标上多个物理量的空间分布,蕴涵著较任何传统超声图像远为丰富的关于被探测 目标的信息, 充分利用人眼对彩色图像的带宽, 极大地提高阅读者阅图的速度、 对 异常现象的辨认率及准确度。
本发明的再一目的在于提供一种概念全新的, 与市场上流行的 "彩超"及 "伪 彩"截然不同的超声波图像彩色显示法。 这一方法利用彩色超声图像的色彩的丰富 性来表现被探测目标, 例如人体内部结构或工件的声学特质的丰富性, 使人眼阅读 彩色图像的带宽获得充分利用, 使图像诊断的速度, 异常现象辨认率, 准确度获得 极大的提高。
本发明的超声波图像彩色显示装置包括-一超声波发生装置, 用以向被测目标 发射超声波; 超声信号接收装置, 用以接收从被测目标返回的超声信号; 数据处理 装置, 用以将所接受的被测目标的超声信号转换为数字信号并进行数学处理, 为每 一像点得出两到三个颜色参量; 彩色显示装置, 用于以数据处理装置提供的两到三 个颜色参量, 将每一像点显示为彩色.
本发明的特征在于从对应于被测目标每一像点的超声信号中采用至少两个物 理量来定义该像点的颜色。整个超声图像是所述至少两个物理量的空间分布的综合 反映。 本发明特征在于:
用超声探头向与被测目标表面垂直的方向发射一超声波信号;
同一超声探头接收返回的所有超声信号.接收到的信号是发射信号所经过路程 (声程)上所有像点的声学特性的集合反映;
从接收的总信号中依次分离出对应于该声程上每一像点的信号波形. 通常情 况下只有被声程沿途穿过的声学界面所对应的像点处才有值得考虑的信号, 对应于 界面之间声程上的像点处没有信号。
从信号的时间分布确定反射界面的位置, 读出对应于界面的信号波形, 分析计 算该界面上像点的多个物理参量, 进而定出该像点的彩色。
本发明特征还在于:
超声探头在每一位置的发射及随后的接收产生一条从发射点垂直入射被测目 标深处的超声彩色扫描线。
超声探头发射点沿被测目标表面的均匀直线移动及发射接收超声信号产生一 系列彩色扫描线, 合成一幅从探头移动轨迹垂直切入被测目标的超声彩色剖面图. 本发明的装置及方法还包括: 补偿传播损耗和 /或滤去背景噪音, 凸显反射点 附近界面曲率, 凹凸度及薄层结构引起的信号波形变化, 以提高探测异物的灵敏 度。
本发明中,对应于被测目标每一像点的多个物理量取自对应于该像点的同一超 声信号; 或者取自在不同时刻、 以不同方式得到、 但对应于相同像点的不同超声信 号。
当所选用的物理量恰好为三个时,每个物理量通过归一化处理后直接用作标准 彩色图像中的颜色参量。
当所选用的物理量少于或多于三个时,可根据各个物理量的重要性及当前应用 的目的性, 用加权线性或非线性组合的方式归结出三个最有利于检测或诊断需要的 物理量, 经过归一化处理后用作标准彩色图像中的三个颜色参量。
所述的物理量包括,但不局限于超声波应用的理论与实践中所涉及的如下物理 量- 对应各像点的超声信号波形的特征参量, 如各种波峰值,零点位置, 统计参量, 各类数学模型参量; 超声信号波形的频谱分析特征参量; 各像点的总传输函数; 去 除了不同干扰的传输函数; 总声程的超声吸收损耗; 补偿了吸收损耗的反射系数; 像点对各次谐波的反射系数; 像点产生的各次谐波系数; 局部空间分布函数及其参 数; 曲率; 法向及其分量; 由信号波形结合其他测量值或理论值推导出的像点的质 量密度, 弹性系数, 声阻抗,层状结构的几何参数; 各种滤波器参量; 各种用于突 出或淡化目标的某些特征的, 解析或数值形式的分布函数; 等等. 以及这些物理量 的不同形式的组合。
本发明优选从对应于给定像点的超声信号中得出三个信号参量, 由信号参量 A, 信号参量 B和信号参量 C代表. 这三个信号参量经过归一化后直接用作'标准彩色图像 中的三个颜色参量, 形成被测目标的一幅彩色图像。
为了加强传统超声仪所缺乏的, 声学界面之间的连续介质的表现力,在某些应 用中从入射声波先后通过的, 被测目标内的两个声学界面的反射信号中,分别取得 两组信号参量, 然后根据两组信号参量的差异, 推算出三个颜色参量, 用以确定两 个声学界面之间的连续介质的图像颜色。
通过改变三个信号参量的定义 (相对权重, 组合成分, 所用数字处理方法), 可 以从同样的信息源 (同样的模拟信号釆集), 得到侧重点不同, 物理意义不同, 应用 目的不同的多幅超声彩色图像。
本发明相比现有技术具有如下优点: 用本发明所述的方法得到的彩色图像, 能同时显现被探测目标上多个物理量的空间分布,蕴涵著较任何传统超声图像远为 丰富的关于被探测目标的信息, 充分利用人眼对彩色图像的带宽, 将为远丰富且易 于识别的信息以第一时间传送到阅图者的大脑中, 极大地提高阅图的速度, 对异常 现象的辨认率及准确度。 在保持传统的, 对被测目标内声学界面位置的探测能力的 同时, 本发明还提供传统超声仪所缺乏的, 对界面之间的连续介质的有效表现力。 附图说明
图 1为本发明所述超声波彩色成像法的实施中决定像点颜色的流程图。 具体实施方式
自然界千奇万变, 不可穷尽的色彩中, 每一种都能在调色板上用红黄蓝三原色 调出来。 基于此理, 在数字彩色电视, 彩色数码相机, 电脑彩色屏幕中, 每一像点 的颜色用三个独立的颜色参量 (绝大多数数字彩色图像才用红,绿,蓝三种基色)来 唯一地决定。 采用三基色的彩色系统, 每一像点能够采用的颜色的总数, 是颜色参 量的阶数的立方。阶数由参量的位元数 (BIT数)决定, 比如 7位元参量的阶数是 128 (2 的 7次方), 8位元参量的阶数是 256 (2的 8次方)。 所以, 三个 128阶的颜色参量能产 生二百万种以上颜色。
除了多普勒血流图以外, 目前使用中的超声波图像, 绝大多数是反射图像。 就 是说, 图像是根据被探测目标内每一坐标点上的超声波反射特性决定的。 这类图像 是单一物理量的空间分布的映像。 从颜色的角度看, 这类图像, 无论是彩超的反射 图像部分, 还是黑白图像, 伪彩图像或色阶图像, 只使用一个颜色参量。 颜色参量 的数值由所采用的物理量(比如超声波反射系数) 的空间分布定值。
本发明提出的彩色超声图像, 是对传统超声图像的这一弱点有效解决. 新方法 从对应于被测目标中每一像点的超声信号中推导出多个信号参量, 经过适当加权组 合归结出三个参量, 经归一化后用作该像点的三个颜色参量。这样得到的彩色图像, 在表达被测目标内部声反射性能的同时,还能表达其它多个物理参量的空间分布. 与同样位元的标准数字彩色图像相比, 这种彩色图像具有同样丰富的色彩, 同样的 区别力, 同样的向人脑传递信息的带宽, 极大地提高阅图的速度, 异常现象辨认率 及准确度。
图 1为所述超声波图像彩色显示法决定像点颜色的流程图。根据声的传播原理, 超声波的反射只会在具有不同声阻抗的两种材料的界面, 比如人体器官与周围组织 的界面, 或工业材料中的裂紋, 异物与周围正常材质的界面上发生。 当超声信号从 探测点进入被测目标后, 受到沿途穿过的界面的反射返回接收装置, 如探头, 由探 头转换为电压信号, 再由超声仪内的模数转换器变成数字序列. 超声仪软件根据数 字信号出现的序列位置确定造成该反射信号的界面的位置后, 传统的超声成像仪从 相应的数字信号中得出一个信号参量, 通常是信号的最大幅值或预先选定的某个
(比如第 N个)波瓣的峰值, 据以定出对应的像点的亮度。 有些超声仪计算超声反射 信号的二次谐波分量并绘成二次谐波图像, 但二次谐波图像和主信号图像 (或基波 图像)分别表达为两幅黑白图像。
如图 1所示, 本发明在得到对应于界面的数字信号后与传统方法的处理不再相 同. 本发明从对应于同一像点 (反射点)的信号波形中计算出多个信号参量, 经过加 权线性或非线性组合后归结为三个参量, 在流程图中由信号参量 A, 信号参量 B和信 号参量 C代表。 这三个信号参量经过归一化后直接用作标准彩色图像中的三个颜色 参量, 形成被测目标的一幅彩色剖面图像。
下面用实施例进一步描述本发明, 以利于对其实施、 特点、 效果的更好了解。 但所述实施例仅用于说明本发明而不是限制本发明。各实施例的基本流程均可由图 1的流程图表示, 不同之处只在于三个信号参量, 即流程图中信号参量 A, 信号参量 B和信号参量 C的选取和使用。 实施例 1
本实施例超声彩色图像的信号参量组合为- A: 主信号的基波分量;
B: 主信号的二次谐波分量;
C: 基波分量与二次谐波分量之差;
本实施例的特点: 在同一幅图像中同时显示基波与二次谐波效应. 假定以颜色 参量 A为红色, B为绿色, C为蓝色. 在二次谐波最强的像点, 绿色最强, 蓝色最弱, 该像点的总颜色偏黄. 在二次谐波最弱的像点, 绿色最弱, 蓝色最强, 该像点的总 颜色偏紫. 为凸显目标组织的非线性特性, 可对各像点的信号参量 B, 乘以一个统 一的加权因子, 大大强化二次谐波分量对图像颜色的影响。
实施例 2
同实施例 1, 不同的是, 超声彩色图像的信号参量组合为:
A: 主信号最大正幅值;
B: 主信号最大负幅值;
C: 空缺;
本实施例的特点: 这是一个两参量的实施例. 与传统的, 基於信号最大幅值的 黑白或伪彩图像相比, 本实施例可以有效地显示出不同像点对反射信号波形的不同 影响. 当声学界面处有声学特性的异变而没有几何特性的变化时, 反射信号的位置 不变, 有时最大幅值也不变, 但波形总有变化. 正负幅值之间此增彼减是最显著的 波形变化方式之一, 正好由本实施例有效地显示出来. 信号参量 C可以用信号参量 A 和信号参量 B的某种组合, 比如 C=0. 6A+0. 4B, C= | A | - | B | , C= | A/B |,等等来赋值, 变两参量为三参量彩色图像。
实施例 3
同实施例 1, 不同的是, 超声彩色图像的信号参量组合为- A: 主信号最大峰值;
B: 主信号最大峰值左侧波瓣的峰值;
C: 主信号最大峰值右侧波瓣的峰值;
本实施例的特点: 与前例相比, 可同时反映三个波瓣的相对变化, 更有利于凸 显界面附近的超薄层结构及界面上其它对信号波形有显著影响的部分。 实施例 4
同实施例 1, 不同的是, 将主信号的主要能量分布区划分为三个时段。 时段的 划分规则在整个成像过程中须保持一致; 超声彩色图像的信号参量组合为:
A: 第一时段内的所有信号点的数值的绝对值之和;
B: 第二时段内的所有信号点的数值的绝对值之和;
C: 第三时段内的所有信号点的数值的绝对值之和;
本实施例的特点: 有利于凸显反射点附近薄层结构,凹凸不平及对界面的入射 角引起的信号拉长。 与实施例 3相比, 可通过改变时段的划分对图像进行精调, 以 在灵敏性和稳定性之间找到最佳平衡。 实施例 5
同实施例 1, 不同的是, 根据主信号与探头固有信号波形算出一个线性滤波器, 探头固有信号波形通过线性滤波器后与主信号达到最佳近似. 将滤波器的系数分为 三组, 系数分组规则在整个成像过程中须保持一致。 超声彩色图像的信号参量组合 为:
A: 第一组内系数之和;
B: 第二组内系数之和;
C: 第三组内系数之和;
本实施例的特点: 线性滤波器代表的是被测目标内的反射点的声学特性,如果 计算正确, 与探头固有信号的波形无关. 而反射信号的波形却是探头固有信号与反 射点的声学特性共同的产物. 使用线性滤波器的目的是最大限度地滤去探头固有信 号波形对超声反射图像的烙印, 使图像只取决于被测目标内部的声学特性. 将滤波 器系数分组是为了将滤波器最重要的特征, 也是反射点最重要的声学特征, 用彩色 表现出来. 本实施例还能有效地滤去背景噪音, 凸显反射点附近界面曲率, 凹凸度 及薄层结构引起的信号波形变化, 提髙探测异物的灵敏度。 实施例 6
同实施例 1, 不同的是, 超声彩色图像的信号参量组合为- A: 根据主信号最大幅值算出的反射系数; B: 根据经验值或理论值设定材料甲的声阻抗;
C: 根据反射系数及材料甲的声阻抗算出材料乙的声阻抗;
以上材料甲、 材料乙分别代表反射界面两侧的物质。 根据声反射的基本理论, 已知反射系数和反射界面一侧材料的声阻抗, 可以直接算出另一侧材料的声阻抗。
当材料甲的声阻抗设定正确时,材料乙的声阻抗变化可以在图像中得到灵敏的 显示。 材料甲的声阻抗可通过经验, 理论估计, 实测, 或尝试逼近法得到。 本实施例的特点: 传统的黑白或伪彩超声图像, 绝大多数是反射图像. 由於反 射只发生于声学界面上, 因此纯反射图像对不在声学界面上的连续介质中的像点几 乎没有表现力. 本实施例在声学界面上除了使用反射系数这一传统的成像参量, 还 加用了界面两侧的声阻抗来共同显示声学界面, 大大改进了对声学界面本身性状变 异的分辨能力, 不仅如此,界面两侧的声阻抗还直接或间接地用于界面两侧连续介 质 (材料甲和材料乙)内的像点的著色。 本实施例说明, 以多物理参量表现的彩色图 像, 较之传统的,仅靠声学反射系数成像的黑白或伪彩图像, 不但从本质上改进了 对声学界面的表现力, 而且更大程度地改进了对由声学界面所界定的连续声学介质 的表现力。 实施例 7
同实施例 5, 使用的信号参量也完全相同. 不同的是, 在得到对应于各个声学 界面的三信号参量后, 不是直接计算界面上的像点颜色, 而是用前后相邻的两个界 面的两组信号参量之差, 决定两个界面之间的连续介质的像点颜色, 当界面两侧介 质的像点都已确定, 界面自己也就自然显现, 使用本实施例的方法, 必需停止使用 声程吸收损耗补偿。
本实施例的特点: 本实施例的图像所表现的, 实质上是被测目标内的各种介质, 对穿行而过的超声脉冲信号所造成的波形改变, 波形的改变以三组线性滤波系数的 改变为数学描述, 以介质颜色的改变为图像表现, 本实施例充分体现了本发明提出 的多参量彩色图像法对连续介质声学特性的独特的表现力。

Claims

权利要求
1. 一种超声波图像彩色显示装置, 包括一 -超声波发生装置, 用以向被测目标 发射超声波; 超声信号接收装置, 用以接收从被测目标返回的超声信号; 数据处理 装置, 用以将所接受的被测目标的超声信号转换为数字信号并进行数学处理, 为每 一像点得出两到三个颜色参量; 彩色显示装置, 用于以数据处理装置提供的两到三 个颜色参量, 将每一像点显示为彩色。
2. 一种超声波图像彩色显示法, 其特征在于从对应于被测目标每一像点的超 声信号中采用多个物理量来定义该像点的颜色, 整个超声图像是这些物理量的空间 分布的综合反映。
3. 根据权利要求 2所述的超声波图像彩色显示法, 其特征在于包括: 用超声探头向与被测目标表面垂直的方向发射一超声波信号;
同一超声探头接收返回的所有超声信号,接收到的信号是发射信号所经过路程 ---声程上所有像点的声学特性的集合反映;
从接收的总信号中依次分离出对应于该声程上每一像点的信号波形. 通常情 况下只有被声程沿途穿过的声学界面所对应的像点处才有值得考虑的信号, 对应于 界面之间声程上的像点处没有信号;
从信号的时间分布确定反射界面的位置, 读出对应于界面的信号波形, 分析计 算该界面上像点的多个物理参量, 进而定出该像点的彩色。
4. 根据权利要求 3所述的超声波图像彩色显示法, 其特征包括- 超声探头在每一位置的发射及随后的接收产生一条从发射点垂直入射被测目 标深处的超声彩色扫描线;
超声探头发射点沿被测目标表面的均匀直线移动及发射接收超声信号产生一 系列彩色扫描线, 合成一幅从探头移动轨迹垂直切入被测目标的超声彩色剖面图。
5. 根据权利要求 2所述的超声波图像彩色显示法, 其特征在于所述的对应于每 一像点的多个物理量取自对应于该像点的同一超声信号; 或者取自在不同时刻,以 不同方式得到, 但对应于相同像点的不同超声信号。
6. 根据权利要求 2或 3所述的超声波图像彩色显示法, 其特征在于所选用的物 理量为三个, 每个物理量通过归一化处理后直接用作标准彩色图像中的颜色参量。
7. 根据权利要求 2或 3所述的超声波图像彩色显示法, 其特征在于选用的物 理量多于或少于三个, 用加权线性或非线性组合的方式归结出三个最有利于检测或 诊断需要的物理量, 经过归一化处理后用作标准彩色图像中的三个颜色参量。
8. 根据权利要求 2或 3所述的超声波图像彩色显示法, 其特征在于所述的物理 量包括超声波应用的理论与实践中所涉及的如下物理量或这些物理量各种组合: 对 应各像点的超声信号波形的特征参量, 如各种波峰值,零点位置, 统计参量, 各类 数学模型参量; 超声信号波形的频谱分析特征参量; 各像点的总传输函数; 去除了 不同干扰的传输函数; 总声程的超声吸收损耗; 补偿了吸收损耗的反射系数; 像点 对各次谐波的反射系数; 像点产生的各次谐波系数; 局部空间分布函数及其参数; 曲率; 法向及其分量; 由信号波形结合其他测量值或理论值推导出的像点的质量密 度, 弹性系数, 声阻抗,层状结构的几何参数; 各种滤波器参量; 各种用于突出或 淡化目标的某些特征的, 解析或数值形式的分布函数。
9. 根据权利要求 2所述的超声波图像彩色显示法, 其特征在于从对应于给定像 点的超声信号中得出三个信号参量, 由信号参量 A, 信号参量 B和信号参量 C代表, 这三个信号参量经过归一化后直接用作标准彩色图像中的三个颜色参量, 形成被测 目标的彩色图像。
10. 根据权利要求 9所述的超声波图像彩色显示法, 其特征在于从入射声波先 后通过的被测目标内的两个声学界面的反射信号中, 分别取得两组信号参量, 然后 根据两组信号参量的差异, 推算出三个颜色参量, 用以确定两个声学界面之间的连 续介质的图像颜色。 '
11 . 根据权利要求 2所述的超声波图像彩色显示法, 其特征在于通过改变三个 信号参量的定义, 如相对权重, 组合成分, 所用数字处理方法,从同样的信息源 -一 同样的模拟信号采集, 得到侧重点不同, 物理意义不同, 应用目的不同的多幅超声 彩色图像。
PCT/CN2004/001030 2003-09-08 2004-09-08 Appareil et procede d'affichage couleur d'images d'ultrasons WO2005023117A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/369,603 US8360979B2 (en) 2004-09-08 2006-03-07 Apparatus and method for ultrasonic color imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN03156547 2003-09-08
CN03156547.6 2003-09-08

Publications (1)

Publication Number Publication Date
WO2005023117A1 true WO2005023117A1 (fr) 2005-03-17

Family

ID=34240837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/001030 WO2005023117A1 (fr) 2003-09-08 2004-09-08 Appareil et procede d'affichage couleur d'images d'ultrasons

Country Status (1)

Country Link
WO (1) WO2005023117A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672807B2 (en) * 2005-08-15 2010-03-02 Jing Jiang Wen Ultrasonic color imaging characterizing ultra-fine structures and continuously distributed physical conditions
CN112816563A (zh) * 2019-11-15 2021-05-18 声澈科技(上海)有限公司 超声波检测及成像的方法及装置、超声波成像系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108846A (zh) * 1994-03-18 1995-09-20 武汉市无线电研究所 B型超声图像加色处理技术及其装置
CN1182357A (zh) * 1996-03-18 1998-05-20 古野电气株式会社 超声波诊断装置
US5860928A (en) * 1997-08-07 1999-01-19 Siemens Medical Systems, Inc. Method and system for selectively smoothing color flow images in an ultrasound system
US6571018B1 (en) * 1999-04-06 2003-05-27 Medison Co., Ltd. Encoding and/or decoding system for three-dimensional color ultrasonic image
US6579240B2 (en) * 2001-06-12 2003-06-17 Ge Medical Systems Global Technology Company, Llc Ultrasound display of selected movement parameter values

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108846A (zh) * 1994-03-18 1995-09-20 武汉市无线电研究所 B型超声图像加色处理技术及其装置
CN1182357A (zh) * 1996-03-18 1998-05-20 古野电气株式会社 超声波诊断装置
US5860928A (en) * 1997-08-07 1999-01-19 Siemens Medical Systems, Inc. Method and system for selectively smoothing color flow images in an ultrasound system
US6571018B1 (en) * 1999-04-06 2003-05-27 Medison Co., Ltd. Encoding and/or decoding system for three-dimensional color ultrasonic image
US6579240B2 (en) * 2001-06-12 2003-06-17 Ge Medical Systems Global Technology Company, Llc Ultrasound display of selected movement parameter values

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672807B2 (en) * 2005-08-15 2010-03-02 Jing Jiang Wen Ultrasonic color imaging characterizing ultra-fine structures and continuously distributed physical conditions
CN112816563A (zh) * 2019-11-15 2021-05-18 声澈科技(上海)有限公司 超声波检测及成像的方法及装置、超声波成像系统

Similar Documents

Publication Publication Date Title
CN101370431B (zh) 弹性图像显示方法及弹性图像显示装置
JP6017576B2 (ja) 平面波送信を使用するベクトルドップラーイメージングのための推定及び表示
CN102641137B (zh) 使用幅度-相位调制超声波的粘弹性测量
CN104135937B (zh) 使用多孔超声确定材料刚度
CN103356241B (zh) 二维超声设备成像质量评估系统
CN102596052B (zh) 超声波诊断装置、被检体的诊断对象部位的疾病评价用图像生成方法、及被检体的诊断对象部位的疾病评价用图像生成程序
CN101938942B (zh) 超声波诊断装置
EP2016905B1 (en) Ultrasound diagnostic apparatus
CN105246415B (zh) 超声波观测装置以及超声波观测装置的动作方法
US8118746B2 (en) Ultrasonic diagnostic apparatus
JPH05501825A (ja) 画像分析法の改良
CN101036162A (zh) 在显示的图像数据中保持一致的解剖视图的方法和系统
US20090024033A1 (en) Ultrasound diagnostic apparatus
CN108670303B (zh) 超音波影像均匀度检测方法及其系统
US9855025B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image processing apparatus
US8360979B2 (en) Apparatus and method for ultrasonic color imaging
JP2006305160A (ja) 超音波診断装置
CN1113631C (zh) 人体组织超声衰减成像方法
KR101196211B1 (ko) 초음파 진단장치 및 그 방법
CN100489659C (zh) 超声波图像彩色显示装置及方法
WO2005023117A1 (fr) Appareil et procede d'affichage couleur d'images d'ultrasons
JP7286025B2 (ja) 胎盤を評価するためのシステム及び方法
KR20090013199A (ko) 3차원 심장 초음파 검사의 형상 분석
CN110710989B (zh) 弹性成像方法、系统及计算机可读存储介质
KR101024857B1 (ko) 3차원 초음파 영상에 컬러 모델링 처리를 수행하는 초음파 시스템 및 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11369603

Country of ref document: US

122 Ep: pct application non-entry in european phase